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As a technique to investigate link-level loss rates of a computer network
with low operational cost, loss tomography has received considerable atten-
tions in recent years. A number of parameter estimation methods have been
proposed for loss tomography of networks with a tree structure as well as a
general topological structure. However, these methods suffer from either high
computational cost or insufficient use of information in the data. In this paper,
we provide both theoretical results and practical algorithms for parameter es-
timation in loss tomography. By introducing a group of novel statistics and
alternative parameter systems, we find that the likelihood function of the ob-
served data from loss tomography keeps exactly the same mathematical for-
mulation for tree and general topologies, revealing that networks with differ-
ent topologies share the same mathematical nature for loss tomography. More
importantly, we discover that a reparametrization of the likelihood function
belongs to the standard exponential family, which is convex and has a unique
mode under regularity conditions. Based on these theoretical results, novel
algorithms to find the MLE are developed. Compared to existing methods in
the literature, the proposed methods enjoy great computational advantages.

1. Introduction. Network characteristics such as loss rate, delay, available
bandwidth and their distributions are critical to various network operations and
important for understanding network behaviors. Although considerable attention
has been given to network measurements, due to various reasons (e.g., security,
commercial interest and administrative boundary), some characteristics of the net-
work cannot be obtained directly from a large network. To overcome this difficulty,
network tomography was proposed in Vardi (1996), suggesting the use of end-to-
end measurement and statistical inference to estimate characteristics of a large
network. In an end-to-end measurement, a number of sources are attached to the
network of interest to send probes to receivers attached to the other side of the net-
work, and paths from sources to receivers cover links of interest. Arrival orders and
arrival times of the probes carry the information of the network, from which many
network characteristics can be inferred statistically. Characteristics that have been
estimated in this manner include link-level loss rates [Bu et al. (2002), Cáceres
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et al. (1999a, 1999b, 1999c), Coates and Nowak (2000a, 2000b), Duffield et al.
(2002a, 2002b, 2006), Harfoush, Bestavros and Byers (2000), Zhu and Geng
(2004, 2005)], delay distributions [Arya, Duffield and Veitch (2008), Chen, Cao
and Bu (2010), Deng et al. (2012), Dinwoodie and Vance (2007), Duffield et al.
(2001), Lawrence, Michailidis and Nair (2006), Liang and Yu (2003), Presti et al.
(2002), Shih and Hero III (2003), Tsang, Coates and Nowak (2003)], origin-
destination traffic [Airoldi and Blocker (2013), Bell (1991), Bianco, Confessore
and Reverberi (2001), Cao et al. (2000, 2002), Cascetta and Nguyen (1988), Castro
et al. (2004), de Dios Ortuzar and Willumsen (2011), Fang, Vardi and Zhang
(2007), Liang, Taft and Yu (2006), Liang and Yu (2003), Lo, Zhang and Lam
(1996), Medina et al. (2002), Tebaldi and West (1998), Vardi (1996), Yang et al.
(1992), Zhang et al. (2003)], loss patterns [Arya, Duffield and Veitch (2007)] and
the network topology [Rabbat, Nowak and Coates (2004)]. In this paper, we focus
on the problem of estimating loss rates.

Network topologies connecting sources to receivers can be divided into two
classes: tree and general. A tree topology, as named, has a single source attached
to the root of a multicast tree to send probes to receivers attached to the leaf nodes
of the tree. A network with a general topology, however, requires a number of
trees to cover all links of the network. Each tree has one source sending probes
to receivers in it. Because of the use of multiple sources to send probes in a net-
work with general topology, those nodes and receivers located at intersections of
multiple trees can receive probes from multiple sources. In this case, we must con-
sider impacts of probes sent by all sources simultaneously in order to get a good
estimate. This task is much more challenging than the tree topology case.

Numerous methods have been proposed for loss tomography in a tree topology.
Cáceres et al. (1999c) used a Bernoulli model to describe the loss behavior of a
link, and derived the MLE for the pass rate of a path connecting the source to
a node, which was expressed as the solution of a polynomial equation [Cáceres
et al. (1999a, 1999b, 1999c)]. To ease the concern of using numerical methods
to solve a high-degree polynomial, several papers have been published to acceler-
ate the calculation at the price of a little accuracy loss: Zhu and Geng proposed
a recursively defined estimator based on a bottom-up strategy in Zhu and Geng
(2004, 2005); Duffield et al. (2006) proposed a closed-form estimator, which has
the same asymptotic variance as the MLE to the first order. Considering the un-
availability of multicast in some networks, Harfoush, Bestavros and Byers (2000)
and Coates and Nowak (2000b) independently proposed the use of the unicast-
based multicast to send probes to receivers, where Coates and Nowak (2000b) also
suggested the use of the EM algorithm [Dempster, Laird and Rubin (1977)] to
estimate link-level loss rates.

For networks beyond a tree, however, little research has been done, although a
majority of networks in practice fall into this category. Conceptually, the topology
of a general network can be arbitrarily complicated. However, no matter how com-
plicated a general topology is, it can always be covered by a group of carefully
selected trees, in each of which an end-to-end experiment can be carried out inde-
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pendently to study the properties of the subnetwork covered by the tree. If these
trees do not overlap with each other, the problem of studying the whole general
network can be decomposed into a group of smaller subproblems, each for one
tree. However, due to the complexity of the network topology and practical con-
straints, it is more than often that the selected trees overlap significantly, that is,
some links are shared by two or more trees (see Figure 2, e.g.). The shared links
of two selected trees induce dependence between the two trees. Simply ignoring
the dependence leads to a loss of information. How to effectively integrate the in-
formation from multiple trees to achieve a joint analysis is a major challenge in
network tomography of general topology.

The first effort on network tomography of general topology is due to Bu et al.
(2002), who attempted to extend the method in Cáceres et al. (1999c) to networks
with general topology. Unfortunately, the authors failed to derive an explicit ex-
pression for the MLE like the one presented in Cáceres et al. (1999c) for this
more general case. They then resorted to an iterative procedure (i.e., the EM al-
gorithm) to search for the MLE. In addition, a heuristic method, called minimum
variance weighted average (MVWA) algorithm, was also proposed in Bu et al.
(2002), which deals with each tree in a general topology separately and averages
the results. The MVWA algorithm is less efficient than the EM algorithm, espe-
cially when the sample size is small. Rabbat, Nowak and Coates (2004) consid-
ered the tomography problem for networks with an unknown but general topology,
mainly focusing on network topology identification, which is beyond the scope of
our current paper.

In this paper, we provide a new perspective for the study of loss tomography,
which is applicable to both tree and general topologies. Our theoretical contribu-
tions are as follows: (1) introducing a set of novel statistics, which are complete
and minimal sufficient; (2) deriving two alternative parameter systems and the
corresponding reparameterized likelihood functions, which benefit us both theo-
retically and computationally; (3) discovering that the loss tomography for a gen-
eral topology shares the same mathematical formulation as that of a tree topology;
and, (4) showing that the likelihood function belongs to the exponential family
and has a unique mode (which is the MLE) under regularity conditions. Based on
these theoretical results, we propose two new algorithms (a likelihood-equation-
based algorithm called LE-ξ and an EM-based algorithm called PCEM) to find
MLE. Compared to existing methods in the literature, the proposed methods are
computationally much more efficient.

The rest of the paper is organized as follows. Section 2 introduces notation for
tree topologies and the stochastic model for loss rate inference. Section 3 describes
a set of novel statistics and two alternative parameter systems for loss rate analysis
in tree topologies. New forms of the likelihood function are established based on
the novel statistics and reparametrization. Section 4 extends the above results to
general topologies. Sections 5 and 6 propose two new algorithms for finding MLE
of θ , which enjoy great computational advantages over existing methods. Section 7
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evaluates performances of the proposed methods by simulations. We conclude the
article in Section 8.

2. Notation and assumptions.

2.1. Notation for tree topologies. We use T = (V ,E) to denote the multi-
cast tree of interest, where V = {v0, v1, . . . , vm} is a set of nodes representing the
routers and switches in the network, and E = {e1, . . . , em} is a set of directed links
connecting the nodes. Two nodes connected by a directed link are called the parent
node and the child node, respectively, and the direction of the arrow indicates that
the parent forwards received probes to the child. Figure 1 shows a typical multicast
tree. Note that the root node of a multicast tree has only one child, which is slightly
different from an ordinary tree, and each nonroot node has exactly one parent.

Each link is assigned a unique ID number ranging from 1 to m, based on which
each node obtains its unique ID number ranging from 0 to m correspondingly so
that link i connects node i with its parent node. Number 0 is reserved for the
source node. In contrast to Cáceres et al. (1999c) and Duffield et al. (2006), whose
methods are node-centric, our methods here focus on links instead. For a network
with tree topology, the two reference systems are equivalent, as there exists a one-
to-one mapping between nodes and links: every node in the network (except for the
source) has a unique parent link. For a network with general topology, however,
the link-centric system is more convenient, as a node in the network may have
multiple parent links.

We let fi denote the unique parent link, Bi the brother links, and Ci the child
links, respectively, of link i. To be precise, Bi contains all links that share the same
parent node with link i, including link i itself. A subtree Ti = {Vi,Ei} is defined
as the subnetwork composed of link i and all its descendant links. We let R and Ri

denote the set of receivers (i.e., leaf nodes) in T and Ti , respectively. Sometimes,
we also use R or Ri to denote the leaf links of T or Ti . The concrete meaning of
R and Ri can be determined based on the context.

Taking the multicast tree displayed in Figure 1 as an example, we have V =
{0,1, . . . ,7}, E = {1,2, . . . ,7} and R = {4,5,6,7}. For the subtree T2, however,

FIG. 1. A multicast tree.
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we have V2 = {1,2,4,5}, E2 = {2,4,5} and R2 = {4,5}. For link 2, its parent link
is f2 = {1}, its brother links are B2 = {2,3}, and its child links are C2 = {4,5}.

2.2. Stochastic model. In a multicast experiment, n probe packages are sent
from the root node 0 to all the receivers. Let X

(t)
i = 1 if the t th probe package

reached node i, and 0 otherwise. The status of probes at receivers {X(t)
r }r∈R,1≤t≤n

can be directly observed from the multicast experiment, but the status of probes
at internal links cannot be directly observed. In the following, we use XR =
{X(t)

R }1≤t≤n, where X
(t)
R = {X(t)

r }r∈R , to denote the data collected in a multicast
experiment in tree T .

In this paper, we model the loss behavior of links by the Bernoulli distribution
and assume the spatial-temporal independence and temporal homogeneity for the
network, that is, the event {X(t)

i = 0|X(t)
fi

= 1} is independent across i and t , and

P
(
X

(t)
i = 0|X(t)

fi
= 0

) = 1, P
(
X

(t)
i = 0|X(t)

fi
= 1

) = θi.

We call θ = {θi}i∈E the link-level loss rates, and the goal of loss tomography is to
estimate θ from XR .

2.3. Parameter space. In principle, θi can be any value in [0,1]. Thus, the
natural parameter space of θ is �∗ = [0,1]m, an m-dimensional closed unit cube.
In this paper, however, we assume that θi ∈ (0,1) for every i ∈ E, and thus con-
strain the parameter space to � = (0,1)m to simplify the problem. If θi = 1 for
some i ∈ E, then the subtree Ti is actually disconnected from the other part of the
network, since no probes can go through link i. In this case, the loss rate of other
links in Ti are not estimable due to the lack of information. On the other hand, if
θi = 0 for some i ∈ E, the original network of interest degenerates to an equivalent
network where node i is removed and all its child nodes are connected directly to
node i’s parent node. By constraining the parameter space of θ into �, we exclude
these degenerate cases from consideration.

3. Statistics and likelihood function.

3.1. The likelihood function and the MLE. Given the loss model for each link,
we can write down the likelihood function and use the maximum likelihood princi-
ple to determine unknown parameters. That is, we aim to find the parameter value
that maximizes the log-likelihood function:

arg max
θ∈�

L(θ) = arg max
θ∈�

∑
x∈�

n(x) logP(x; θ),(3.1)

where x stands for the observation at receivers (i.e., a realization of XR), � =
{0,1}|R| is the space of all possible observations with |R| denoting the size of
set R, n(x) is the number of occurrences of observation x, and P(x; θ) is the
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probability of observing x given parameter value θ . However, the log-likelihood
function (3.1) is more symbolic than practical because of the following reasons:
(1) evaluating the log-likelihood function (3.1) is an expensive operation, as it
needs to scan through all possible x ∈ �; and (2) the likelihood equation derived
from (3.1) cannot be solved analytically, and it is often computationally expensive
to pursue a numerical solution.

3.2. Internal state and internal view. Instead of using the log-likelihood func-
tion (3.1) directly, we consider rewriting it in a different form. Under the posited
probabilistic model, the overall likelihood P(XR|θ) is the product of the likelihood
from each probe, that is,

P(XR|θ) =
n∏

t=1

P
(
X

(t)
R |θ)

.

Thus, an alternative form of the overall likelihood can be obtained by explicating
the likelihood of each single probe and accumulating them. Two concepts called
internal state and internal view can be generated from this process.

3.2.1. Internal state. For a link i ∈ E, given the observation of probe t at Ri

and Rfi
, we are able to partially confirm whether the probe passes link i. Formally,

for observation {X(t)
j }j∈Ri

, we define Y
(t)
i = maxj∈Ri

X
(t)
j as the internal state of

link i for probe t . If Y
(t)
i = 1, probe t reaches at least one receiver attached to Ti ,

which implies that the probe passes link i. Furthermore, by considering Y
(t)
fi

and

Y
(t)
i simultaneously, we have three possible scenarios for each internal node i:

• Y
(t)
fi

= Y
(t)
i = 1, that is, we observed that probe t passed link i; or

• Y
(t)
fi

= 1 and Y
(t)
i = 0, that is, we observed that probe t reached node fi , but we

did not know whether it reached node i or not; or
• Y

(t)
fi

= Y
(t)
i = 0, that is, we did not know whether probe t reached node fi or not

at all;

as Y
(t)
fi

= 0 and Y
(t)
i = 1 can never happen by definition of Y .

The three scenarios have different impacts on the likelihood function. Formally,
define

Et,1 = {
i ∈ E : Y (t)

i = 1
}
,

Et,2 = {
i ∈ E : Y (t)

fi
= 1, Y

(t)
i = 0

}
,

Et,3 = {
i ∈ E : Y (t)

fi
= Y

(t)
i = 0

}
.

We have

P
(
X

(t)
R |θ) = ∏

i∈Et,1

(1 − θi)
∏

i∈Et,2

ξi(θ),(3.2)
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where

ξi(θ) = P(Xj = 0,∀j ∈ Ri |Xfi
= 1; θ)

represents the probability that a probe sending out from the root node of Ti fails to
reach any leaf node in Ti .

3.2.2. Internal view. Accumulating the internal states of each link in the ex-
periment, we have

ni(1) =
n∑

t=1

Y
(t)
i ,(3.3)

which counts the number of probes whose pass through link i can be confirmed
from observations. Specifically, we define n0(1) = n. Moreover, define

ni(0) = nfi
(1) − ni(1),(3.4)

for ∀i ∈ E. We call the statistics {ni(1), ni(0)} the internal view of link i. Based on
internal views, we can write the log-likelihood of XR in a more convenient form:

L(θ) = ∑
i∈E

[
ni(1) log(1 − θi) + ni(0) log ξi(θ)

]
.

3.3. Reparametrization. Two alternative parameter systems can be introduced
to reparameterize the above log-likelihood function. First, based on the definition
of ξi(θ), we have

ξi(θ) = θi + (1 − θi)
∏

j∈Ci

ξj (θ), i ∈ E.(3.5)

Note that if i ∈ R, we have Ci = ∅, and (3.5) degenerates to ξi(θ) = θi . Let
ξi � ξi(θ) for i ∈ E. Equation (3.5) defines a one-to-one mapping between two
parameter systems θ = {θi}i∈E and ξ = {ξi}i∈E , that is,

� : � �→ �, ξ = �(θ) �
(
ξ1(θ), . . . , ξm(θ)

)
,

where � and � are the domain and image, respectively. The inverse mapping of �

is

�−1 : � �→ �, θ = �−1(ξ) �
(
θ1(ξ), . . . , θm(ξ)

)
,

where

θi(ξ) = ξi − ∏
j∈Ci

ξj

1 − ∏
j∈Ci

ξj

, i ∈ E.(3.6)

Using ξ to replace θ in L(θ), we have the following alternative log-likelihood
function with ξ as parameters:

L(ξ) = ∑
i∈E

[
ni(1) log

(
1 − ξi

1 − ∏
j∈Ci

ξj

)
+ ni(0) log ξi

]
.
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Second, L(ξ) can be further reorganized into

L(ξ) = ∑
i∈E

ni(1) log
(

1 − θi(ξ)

ξi

)
+ ∑

i∈E

nfi
(1) log ξi

= n log ξ1 + ∑
i∈E

ni(1) logψi(ξ),

where ψi(ξ) is defined as

ψi(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log
1 − θi(ξ)

ξi

, i ∈ R,

log
ξi − θi(ξ)

ξi

, i /∈ R.
(3.7)

Similarly, let ψi � ψ(ξ) for i ∈ E. Equation (3.7) defines a one-to-one mapping
between parameter system ξ = {ξi}i∈E and ψ = {ψi}i∈E , that is,

	 : � �→ 
, ψ = 	(ξ) �
(
ψ1(ξ), . . . ,ψm(ξ)

)
,

where 
 � 	(�) is the image of ψ . The inverse mapping of 	 is

	−1 : 
 �→ �, ξ = 	−1(ψ) �
(
ξ1(ψ), . . . , ξm(ψ)

)
.

It can be shown that

ψi = logP(Xi = 1|Xfi
= 1;Xj = 0,∀j ∈ Ri) for i /∈ R,

from which the physical meaning of ψi can be better understood. Using ψ to
replace ξ in L(ξ), we have the following log-likelihood function with ψ as param-
eters:

L(ψ) = n log ξ1(ψ) + ∑
i∈E

ni(1)ψi.

To illustrate the relations of θ , ξ and ψ , let’s consider the toy network in Fig-
ure 1 with θi = 0.1 for i = 1, . . . ,7. It is easy to check that

ξ4 = ξ5 = ξ6 = ξ7 = 0.1,

ξ2 = ξ3 = 0.1 + (1 − 0.1) × 0.12 = 0.109,

ξ1 = 0.1 + (1 − 0.1) × 0.1092 ≈ 0.1107;
ψ4 = ψ5 = ψ6 = ψ7 = log

1 − 0.1

0.1
≈ 2.1972,

ψ2 = ψ3 = log
0.109 − 0.1

0.109
≈ −2.4941,

ψ1 ≈ log
0.1107 − 0.1

0.1107
≈ −2.3366.

We list these concrete values in Table 1 for comparison purposes. The notation,
statistics and parameter systems are summarized in Table 2 for easy reference.
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TABLE 1
Comparing different parameter systems for the toy network in Figure 1

Link 1 2 3 4 5 6 7

θ 0.1 0.1 0.1 0.1 0.1 0.1 0.1
ξ 0.1092 0.109 0.109 0.1 0.1 0.1 0.1
ψ −2.3366 −2.4941 −2.4941 2.1972 2.1972 2.1972 2.1972

4. Likelihood function for general networks. In this section we will extend
the concept of internal view and alternative parameter systems to general networks
containing multiple trees. Formally, we use N = {T1, . . . , TK} to denote a general
network covered by K multicast trees, where each multicast tree Tk covers a sub-
network with Sk as the root link. For example, Figure 2 illustrates a network with
K = 2, S1 = 0 and S2 = 32. Let S = {S1, . . . , SK} be the set of root links in N .

For each tree Tk , let {nk,i(1), nk,i(0)} be the internal view of link i ∈ Ek in
Tk based on the nk probes sent out from Sk . Specially, define nk,i(1) = 0 for link
i /∈ Ek . The experiment on Tk results in the following log-likelihood functions with

TABLE 2
Collection of symbols

Symbol Meaning

T The multicast tree of interest
V The node set of T

E The link set of T

R The set of leaf nodes (receivers) or leaf links of T

Ti The subtree with link i as the root link
Vi The node set of subtree Ti

Ri The set of leaf nodes (receivers) or leaf links of Ti

fi The parent link of link i

Bi The brother links of link i

Ci The child links of link i

X
(t)
i X

(t)
i = 1 if probe t reached node i, and 0 otherwise

Y
(t)
i maxj∈Ri

X
(t)
j

ni(1)
∑n

t=1 Y
(t)
i , number of probes that passed link i for sure

ni(0) nfi
(1) − ni(1)

θi P (Xi = 0|Xfi
= 1), the loss rate of link i

ξi P (Xj = 0,∀j ∈ Ri |Xfi
= 1), the loss rate of Ti

ψi logP(Xi = 1|Xfi
= 1;Xj = 0,∀j ∈ Ri)
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FIG. 2. A 5-layer network covered by two trees.

θ , ξ and ψ as parameters, respectively:

Lk(θ) = ∑
i∈E

[
nk,i(1) log(1 − θi) + nk,i(0) log ξi(θ)

]
,

Lk(ξ) = ∑
i∈E

[
nk,i(1) log

(
1 − ξi

1 − ∏
j∈Ci

ξj

)
+ nk,i(0) log ξi

]
,

Lk(ψ) = nk log ξSk
(ψ) + ∑

i∈E

nk,i(1)ψi.

Considering that a multicast experiment in a general network N is a pool of K

independent experiments in the K trees of N , the log-likelihood function of the
whole experiment is just the summation of K components, that is,

L(θ) =
K∑

k=1

Lk(θ), L(ξ) =
K∑

k=1

Lk(ξ) and L(ψ) =
K∑

k=1

Lk(ψ).

Define the internal view of link i in a general network as

ni(1) =
K∑

k=1

nk,i(1), ni(0) =
K∑

k=1

nk,i(0).(4.1)

It is straightforward to see that

L(θ) = ∑
i∈E

[
ni(1) log(1 − θi) + ni(0) log ξi(θ)

]
,(4.2)

L(ξ) = ∑
i∈E

[
ni(1) log

(
1 − ξi

1 − ∏
j∈Ci

ξj

)
+ ni(0) log ξi

]
,(4.3)

L(ψ) =
K∑

k=1

nk log ξSk
(ψ) + ∑

i∈E

ni(1)ψi.(4.4)
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Note that in this general case, we have

For i ∈ S , nSk
(1) = nk; and

For i /∈ S , ni(0) + ni(1) = ∑
j∈Fi

nj (1).

Here, Fi stands for the unique or multiple parent links of link i in the general
network N .

5. Likelihood equation. The bijections among the three parameter systems
mean that we can switch among them freely without changing the result of param-
eter estimation:

PROPOSITION 1. The results of likelihood inference based on the three pa-
rameter systems are equivalent, that is,

�
(
arg max

θ∈�
L(θ)

)
= arg max

ξ∈�
L(ξ) = 	−1

(
arg max

ψ∈

L(ψ)

)
;

and the likelihood equations under different parameters share the same solution,
that is,

∂L(θ)

∂θ

∣∣∣
θ=θ∗ = 0 ⇔ ∂L(ξ)

∂ξ

∣∣∣
ξ=ξ∗ = 0 ⇔ ∂L(ψ)

∂ψ

∣∣∣
ψ=ψ∗ = 0,

if θ∗ ∈ �, or ξ∗ ∈ �, or ψ∗ ∈ 
 , where �(θ∗) = ξ∗ = 	−1(ψ∗).

This flexibility provides us great theoretical and computational advantages. On
the theoretical aspect, as {nk}Kk=1 are known constants, L(ψ) falls into the standard
exponential family with ψ as the natural parameters. Thus, based on the properties
of the exponential family [Lehmann and Casella (1998)], we have the following
results immediately:

PROPOSITION 2. The following results hold for loss tomography:

1. Statistics {ni(1)}i∈E are complete and minimal sufficient.
2. The likelihood equation ∂L(ψ)

∂ψ
= 0 has at most one solution ψ∗ ∈ 
 .

3. If ψ∗ exists, ψ∗ [or θ∗ = (	 ◦ �)−1(ψ∗)] is the MLE.

On the computational aspect, the parameter system ξ plays a central role. Dif-
ferent from the likelihood equation with θ as parameters, which is intractable, the
likelihood equation with ξ as parameters enjoys unique computational advantages.
Let

ri = ni(1)

ni(1) + ni(0)
.
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It can be shown that the likelihood equation with ξ as parameters is

ξi = (1 − ri) + ri · ∏
j∈Bi

ξj · I (i /∈ S ),(5.1)

for any link i ∈ E.
For link i ∈ S , (5.1) degenerates to

ξi = 1 − ri .

For link i /∈ S , define πi = ∏
j∈Bi

ξj . We note that solving ξi from (5.1) is equiv-
alent to solving the following equation about πi :

πi = ∏
j∈Bi

[
(1 − rj ) + rj · πi

]
,(5.2)

which can be solved analytically when |Bi | = 2, and by numerical approaches
[Todd (2013)] when |Bi | > 2.

From (5.1) and (5.2), it is transparent that only local statistics {rj }j∈Bi
are in-

volved in estimating ξi . This observation leads to the following fact immediately: if
a processor keeps the values of {rj }j∈Bi

in its memory, {ξj }j∈Bi
can be effectively

estimated by the processor independent of estimating the other parameters. Based
on this unique property of the likelihood equation with ξ as parameter, we propose
a parallel procedure called the “LE-ξ” algorithm to estimate θ (see Algorithm 1).

The validity of the LE-ξ algorithm is guaranteed by the following theorem:

THEOREM 1. When nk → ∞ for all 1 ≤ k ≤ K , with probability one, the
LE-ξ algorithm has a unique solution in � = (0,1)m that is the MLE.

PROOF OF THEOREM 1. First, we will show that under the following regular-
ity conditions:

ni(1) > 0, ni(0) > 0 and
∑
j∈Fi

nj (1) <
∑
j∈Bi

nj (1) for ∀i ∈ E,(5.3)

the likelihood equation with ξ as parameters has a unique solution in (0,1)m.
Note that when (5.3) holds, we have

0 < ri < 1 and
∑
j∈Bi

rj > 1 for ∀i ∈ E.

Because Lemma 1 in Cáceres et al. (1999c) has shown that if 0 < cj < 1 and∑
j cj > 1, the equation for x,

x = ∏
j

[
(1 − cj ) + cjx

]
,
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Algorithm 1 The LE-ξ Algorithm

Hardwire requirement:
{Pi}i : a collection of processors indexed by node ID i ∈ V ;

Input:
{rj }j∈E with distributed storage where Pi keeps {rj }j∈Ci

;
Output:

θ̂ = {θ̂j }j∈E .

Procedure:
Operate in parallel for IDs of all nonleaf nodes {i ∈ V : i /∈ R}

If i ∈ S ,
Get ξ̂j = 1 − rj for the unique child link j of node i with Pi ;

If i /∈ S ,
Get x̂i with Pi from {rj }j∈Ci

by solving equation below about x

x = ∏
j∈Ci

[(1 − rj ) + rj x],
Get ξ̂j = (1 − rj ) + rj x̂i for every j ∈ Ci with Pi ;

End parallel operation

Return θ̂ = �−1(ξ̂ ).

has a unique solution in (0,1). It is transparent that under the regularity conditions
in (5.3), equation (5.2) has a unique solution π̂i ∈ (0,1) for every nonroot link i.
Considering that for every link i ∈ E,

ξi = (1 − ri) + ri · πi · I (i /∈ S ),

it is straightforward to see that the likelihood equation with ξ as parameters has a
unique solution ξ̂ ∈ (0,1)m.

Moreover, if

ξ̂ ∈ �,(5.4)

we have ψ̂ = 	(ξ̂) ∈ 
 . Thus, based on Proposition 1 and Proposition 2, we know
that if both (5.3) and (5.4) are satisfied, ψ̂ , which is the solution of the likelihood
equation with ψ as parameter, is the MLE. Considering the bijections among θ , ξ

and ψ , this also means that θ̂ = �−1(ξ̂ ) is the MLE.
Note that the probability that (5.3) or (5.4) fails goes to zero when nk → ∞ for

k = 1, . . . ,K ; we complete the proof.
The large sample properties of MLE have been well studied by Cáceres et al.

(1999c) for tree topology, where the asymptotic normality, asymptotic variance
and confidence interval are established. Considering that the likelihood function
keeps exactly the same form for both tree and general topologies, it is natural to
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extend these theoretical results for MLE established in Cáceres et al. (1999c) to a
network of general topology.

With a finite sample, there is a chance that (5.3) or (5.4) fails. In this case, the
MLE of θ falls out of �, and may be missed by the LE-ξ algorithm. For example:

1. If ni(1) = 0 and ni(0) > 0, we have ξ̂i = 1;
2. If ni(1) > 0 and ni(0) = 0, we have ξ̂i = 0;
3. If

∑
j∈Fi

nj (1) = ∑
j∈Bi

nj (1) > 0, we have θ̂i = 0;

4. If ξ̂i ≤ π̂i = ∏
j∈Bi

ξ̂j (i.e., ξ̂ /∈ �), we have θ̂i ≤ 0.

Moreover, if ni(1) = ni(0) = 0, the parameters in subtree Ti (i.e., {θj }j∈Ti
) are not

estimable due to lack of information.
In all these cases, we cannot guarantee that the estimate from the LE-ξ algo-

rithm θ̂ is the global maximum in �∗ = [0,1]m. In practice, we can increase sam-
ple size by sending additional probes to avoid this dilemma. In the case that it is
not realistic to send additional probes, we can simply replace θ̂ by the point in �∗
that is the closest to θ̂ , or search the boundary of �∗ to maximize L(θ). �

6. Impacts on the EM algorithm. The above theoretical results have two
major impacts to the EM algorithm widely used in loss tomography. First, as we
have shown in Theorem 1, as long as regularity conditions (5.3) and (5.4) hold,
likelihood function L(θ) has a unique mode in �. In this case, the EM algorithm
always converges to the MLE for any initial value θ(0) ∈ �. Considering that the
chance of violating (5.3) or (5.4) goes to zero with the increase of sample size, we
have the following corollary for the EM algorithm immediately:

COROLLARY 1. When nk → ∞ for all 1 ≤ k ≤ K , the EM algorithm con-
verges to the MLE with probability one for any initial value θ(0) ∈ �.

Second, the formulation of the new statistics {ni(1)}i∈E naturally leads to a
“pattern-collapsed” implementation of the EM algorithm, which is computation-
ally much more efficient than the widely used naive implementation where the
samples are processed one by one separately. In the naive implementation of the
EM algorithm, one enumerates all possible configurations of the internal links
compatible with each sample carrying the information on whether the correspond-
ing probe reached the leaf nodes or not. The complexity of the naive implemen-
tation in each E-step can be O(n2m) in the worst case. With the pattern-collapsed
implementation, however, the complexity of an E-step can be dramatically reduced
to O(m).

The first pattern-collapsed EM algorithm is proposed by Deng et al. (2012) in
the context of delay tomography. The basic idea is to reorganize the observed data
at receivers in delay tomography into delay patterns, and make use of a delay
pattern database to greatly reduce the computational cost in the E-step. We will
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show below that the spirit of this method can be naturally extended to the study of
loss tomography.

Define event {Yi = 0|Yfi
= 1}, or, equivalently, {Xj = 0,∀j ∈ Ri |Xfi

= 1}, as
the loss event in subtree Ti , denoted as Li . Letting L(XV ; θ) be the log-likelihood
of the complete data where the status of probes at internal nodes are also observed,
and θ(r) the estimation obtained at the r th iteration, the objective function to be
maximized in the (r + 1)th iteration of the EM algorithm is

Q
(
θ, θ(r)) = Eθ(r)

(
L(XV ; θ)|XR

) =
n∑

t=1

Eθ(r)

(
L

(
X

(t)
E ; θ)|X(t)

R

)
(6.1)

= ∑
i∈E

[
ni(1) log(1 − θi) + ni(0)Q

(
θTi

, θ (r))],

where QLi
(θTi

, θ (r)), which is called the localized Q-function of loss event Li , is
defined as

QLi

(
θTi

, θ (r)) = Eθ(r)

[
logP(XTi

; θTi
)|Li

]
.

Similar to the results for delay patterns shown in Proposition 1 of Deng et al.
(2012), QLi

(θTi
, θ (r)) has the following decomposition:

QLi

(
θTi

, θ (r)) = (
1 − ψi

(
θ(r))) log(θi)

(6.2)

+ ψi

(
θ(r))[log(1 − θi) + ∑

j∈Ci

QLj

(
θTj

, θ(r))].

Integrating (6.1) and (6.2), we have

Q
(
θ, θ(r)) = ∑

i∈E

[
ωi(1) log(1 − θi) + ωi(0) log(θi)

]
,

where {ωi(1),ωi(0)}i∈E are defined recursively as follows:
• for i ∈ {S1, . . . , SK}, that is, being one of the root links,

ωi(1) = ni(1) + ni(0) · ψi

(
θ(r)),

ωi(0) = ni(0) · (
1 − ψi

(
θ(r)));

• for i /∈ {S1, . . . , SK},
ωi(1) = ni(1) + ∑

j∈Fi

ωj (0) · ψj

(
θ(r)),

ωi(0) = ∑
j∈Fi

ωj (0) · (
1 − ψj

(
θ(r))).

And, the M-step is

θ
(r+1)
i = ωi(0)

ωi(0) + ωi(1)
, ∀i ∈ E.
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In this paper we refer to the EM with the pattern-collapsed implementation as
PCEM to distinguish from the EM with the naive implementation, which is re-
ferred to as NEM. We have shown in Deng et al. (2012) by simulation and theo-
retical analysis that PCEM is computationally much more efficient than the naive
EM in the context of delay tomography. In the context of loss tomography, it is
easy to see from the above analysis that PCEM enjoys a complexity of O(m) for
each E-step, which is much more efficient than the naive EM, whose complexity
can be O(n2m) for each E-step in the worst case.

7. Simulation studies. We verify the following facts via simulations:

1. PCEM obtains exactly the same results as the naive EM for both tree topol-
ogy and general topology, but is much faster;

2. LE-ξ obtains exactly the same results as the EM algorithm when regularity
conditions (5.3) and (5.4) hold, but is much faster when the speedup from parallel
computation is considered.

We carried out simulations on a 5-layer network covered by two trees as shown
in Figure 2. The network has 49 nodes labeled from Node 0 to Node 48, and two
sources Node 0 and Node 32. We conduct two set of simulations. One is based
on the ideal model, and the other is by using network simulator 2 [ns-2, McCanne
et al. (1997)].

7.1. Simulation study with the ideal model. In the first set of simulations, the
data is generated from the ideal model where each link has a predefined constant
loss rate.

To test the performance of methods on different magnitudes of loss rates,
we draw the link-level loss rates from Beta distributions with different param-
eters. The link-level loss rates θ = {θi}i are randomly sampled from Beta(1,99),
Beta(5,995), Beta(2,998) or Beta(1,999). For example, the mean of Beta(1,999)

is 0.001, so if we draw loss rates from Beta(1,999), then on average we expect a
0.1% link-level loss rate in the network. Given the loss rate vector θ for each net-
work, we generated 100 independent data sets with sample sizes 50, 100, 200 and
500, respectively. Thus, a total of 100 × 4 × 4 = 1600 data sets were simulated.
The sample size is evenly distributed into the two trees, for example, the source of
each tree will send out 100 probes when sample size n = 200.

To each of the 1600 simulated data sets, we applied NEM, PCEM, LE-ξ and
MVWA, respectively. The stopping rule of the EM algorithms is maxi |θ(t+1)

i −
θ

(t)
i | ≤ 10−6, and the initial values are θ

(0)
i = 0.03 for all i ∈ E. We implement

the MVWA algorithm by obtaining the MLE estimate in each tree with the LE-
ξ algorithm. Table 3 summarizes the average running time and MSEs of these
methods under different settings. From the tables, we can see that:

1. The performances of all four methods in terms of MSE improve with the
increase of sample size n in both networks.
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2. NEM and PCEM always get exactly the same results.
3. The result from LE-ξ is slightly different from those of the EM algorithms

when sample size n is as small as 100 or 200 due to the violation of the regu-
larity conditions (5.3) and (5.4). When n = 500, the results of the LE-ξ and EM
algorithms become identical.

4. The LE-ξ , PCEM and MVWA algorithms implemented with LE-ξ are
dramatically faster than NEM. For example, in simulation configuration with
Beta(1,1000) and sample size n = 500, the running time of NEM is almost 2000
times of LE-ξ and PCEM.

5. The MSE of MVWA is always larger than the MSE of the other three meth-
ods, which capture the MLE. This is consistent with the result in Bu et al. (2002).

7.2. Simulation study by network simulator 2. We also conduct the simulation
study using ns-2. We use the network topology shown in Figure 2, where the two
sources located at Node 0 and Node 32 multicast probes to the attached receivers.
Besides the network traffic created by multicast probing, a number of TCP sources
with various window sizes and a number of UDP sources with different burst rates
and periods are added at several nodes to produce cross-traffic. The TCP and UDP
cross-traffic takes about 80% of the total network traffic. We generated 100 inde-
pendent data sets by running the ns-2 simulation for 1, 2, 5 or 10 simulation sec-
onds. The longer experiments generate more multicast probes samples. We record
all pass and loss events for each link during the simulation, and the actual loss rates
are calculated and considered as the true loss rates for calculating MSEs. Table 4
shows the average number of packets (sample size), running time of methods and
MSEs for different ns-2 simulation times.

In Table 4, we observe similar results as shown in Table 3. The performances
of all four methods in terms of MSE improve with the increase of sample size n

in both networks. The result from LE-ξ is slightly different from those of the EM
algorithms when sample size n is as small. More importantly, LE-ξ and PCEM are
dramatically faster than NEM.

8. Conclusion. We proposed a set of sufficient statistics called internal view
and two alternative parameter systems ξ and ψ for loss tomography. We found
that the likelihood function keeps exactly the same formulation for both tree and
general topologies under all three types of parametrization (θ , ξ and ψ), and we
can switch among the three parameter systems freely without changing the result
of the parameter estimation. We also discovered that the parameterization of the
likelihood function based on ψ falls into the standard exponential family, which
has a unique mode in parameter space 
 under regularity conditions, and the
parametrization based on ξ leads to an efficient algorithm called LE-ξ to calcu-
late the MLE, which can be carried out in a parallel fashion. These results indicate
that loss tomography for general topologies enjoys the same mathematical nature
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TABLE 3
Performance of different methods on simulated data from the ideal model on the 5-layer network in Figure 2

Beta(1,100) Beta(5,1000) Beta(2,1000) Beta(1,1000)

n Method Time (ms) MSE (1e-5) Time (ms) MSE (1e-5) Time (ms) MSE (1e-5) Time (ms) MSE (1e-5)

50 NEM 5065.50 764.49 4444.10 364.88 3396.20 188.78 2778.15 91.10
PCEM 2.25 764.49 2.55 364.88 2.55 188.78 2.60 91.10
LE-ξ 2.15 768.14 2.25 365.44 2.15 189.12 2.20 91.22

MVWA 2.35 772.01 2.05 368.78 2.35 189.70 2.60 91.34

100 NEM 12,102.90 434.39 9109.65 245.08 7323.90 89.64 7112.55 36.69
PCEM 3.85 434.39 3.90 245.08 3.90 89.64 4.85 36.69
LE-ξ 3.70 436.41 3.50 247.29 3.80 90.02 4.30 36.74

MVWA 4.70 439.50 4.40 247.36 4.90 90.08 5.00 36.80

200 NEM 31,368.95 212.79 23,558.50 109.03 19,184.65 44.79 16,249.45 18.52
PCEM 12.10 212.79 11.05 109.03 10.20 44.79 11.20 18.52
LE-ξ 11.65 212.87 10.65 109.69 10.70 44.91 10.75 18.54

MVWA 13.90 213.90 11.05 109.75 11.80 44.90 10.20 18.55

500 NEM 90,221.95 85.17 49,625.15 43.88 45,402.80 14.35 43,475.15 6.98
PCEM 25.05 85.17 22.25 43.88 22.70 14.35 22.35 6.98
LE-ξ 28.05 85.17 21.75 43.88 21.30 14.35 23.10 6.98

MVWA 27.00 85.45 22.50 44.02 28.10 14.38 24.25 6.98
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TABLE 4
Performance of different methods on simulated data from network

simulator 2

Sim time (n) Method Time (ms) MSE (1e-5)

1 s (528) NEM 54,675.20 581.29
PCEM 21.80 581.29
LE-ξ 22.00 581.29

MVWA 22.80 584.50

2 s (2038) NEM 256,270.60 232.49
PCEM 21.80 232.49
LE-ξ 22.00 232.49

MVWA 22.80 233.63

5 s (5648) NEM 745,393.40 122.23
PCEM 329.40 122.23
LE-ξ 315.00 122.23

MVWA 299.10 122.86

10 s (13,355) NEM 1,334,478.90 75.24
PCEM 612.90 75.24
LE-ξ 612.10 75.24

MVWA 657.00 76.59

as that for tree topologies, and can be resolved effectively. The proposed statistics
and alternative parameter systems also lead to a more efficient pattern-collapsed
implementation of the EM algorithm for finding MLE, and a theoretical promise
that the EM algorithm converges to the MLE with probability one when the sample
size is large enough. Simulation studies confirmed our theoretical analysis as well
as the superiority of the proposed methods over existing methods.
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