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Variable selection is gaining more attention because it plays an important
role in deriving practical and reliable optimal treatment regimes for personal-
ized medicine, especially when there are a large number of predictors. Most
existing variable selection techniques focus on selecting variables that are
important for prediction. With such methods, some variables that are poor
in prediction but are critical for treatment decision making may be ignored.
A qualitative interaction of a variable with treatment arises when the treat-
ment effect changes direction as the value of the variable varies. Variables
that have qualitative interactions with treatment are of clinical importance
for treatment decision making. Gunter, Zhu and Murphy [Stat. Methodol. 8
(2011) 42–55] proposed the S-score method to characterize the magnitude
of qualitative interaction of an individual variable with treatment. In this pa-
per, we develop a sequential advantage selection method based on a modified
S-score. Our method sequentially selects variables with a qualitative interac-
tion and can be applied in multiple decision-point settings. To select the best
candidate subset of variables for decision making, we also propose a BIC-
type criterion that is based on the sequential advantage. The empirical perfor-
mance of the proposed method is evaluated by simulation and an application
to depression data from a clinical trial.

1. Introduction. Personalized medicine is emerging as a new strategy for
treatment that takes individual heterogeneity in background characteristics, clin-
ical measurements and genetic information into consideration. In this paradigm,
treatment duration, dose and type are adjusted over time and are tailored accord-
ing to an individual’s information with the aim of optimizing the effectiveness of
treatment. This approach is different from the traditional “one-size-fits-all” treat-
ment, which ignores the long-term benefits and individual heterogeneities. Great
interest lies in finding optimal treatment regimes based on data from clinical trials
and observational studies [e.g., Moodie, Richardson and Stephens (2007), Murphy
(2003), Robins (2004)].

A large number of approaches have been developed to estimate optimal treat-
ment regimes, including marginal structural models [Murphy, van der Laan and
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Robins (2001), Robins (1997)], Q-learning [Chakraborty, Murphy and Strecher
(2010), Murphy (2005a, 2005b), Song et al. (2011), Watkins (1989), Watkins and
Dayan (1992), Zhao et al. (2011)], A-learning [Murphy (2003), Robins (2004)]
and value-based optimization methods [Zhang et al. (2012a, 2012b, 2013), Zhao
et al. (2012)].

As the amount of information able to be collected on individuals continues to
increase, more and more covariates are measured and are available in clinical stud-
ies. For example, a clinical trial may collect a large amount of information on a
patient’s demographics, medical history, intermediate outcomes and side effects.
However, it may be expensive or time-consuming to collect all of this informa-
tion in clinical practice, and redundancy in covariate information may impair the
accuracy of optimal treatment decisions as well as its interpretation. Thus, a nat-
ural problem that arises in the estimation of optimal treatment regimes is how to
identify the important covariates for treatment decision making.

Our work was motivated from the Sequenced Treatment Alternatives to Re-
lieve Depression (STAR*D) study [Fava et al. (2003), Rush et al. (2004)]. The
STAR*D study was a sequential, multiple-assignment, randomized trial [SMART,
see Murphy (2005a), Qian, Nahum-Shani and Murphy (2013)] for patients with
nonpsychotic major depressive disorder. This study aimed to determine which an-
tidepressant medications, in what order and what combination, should be given
to patients to yield the optimal treatment effect. A large number of covariates
were collected at baseline, such as patient demographic characteristics and med-
ical history. In addition, several intermediate medical measurements were taken
to assist in treatment decision making at the second or higher treatment deci-
sion points. It is hard to select covariates useful for making decisions from such
a large number of covariates based on experts’ opinions only. Thus, variable
selection is crucial for deriving the optimal treatment regimes in the STAR*D
trial.

Although variable selection is an important area in modern statistical research,
current variable selection techniques mainly focus on selecting variables for pre-
diction. Such approaches may not be able to adequately predict the interactions of
variables with treatment and thus may neglect variables that are vital for decision
making. In medical decision making settings, variables that have qualitative inter-
actions with treatments are clinically important [Peto (1982)]. These variables are
called prescriptive variables, which help prescribe the optimal treatment regimes.
These variables should be distinguished from predictive variables, which help to
increase prediction accuracy.

Scarce research has been done to study variable selection techniques for de-
cision making. Qualitative interaction tests [Gail and Simon (1985), Piantadosi
and Gail (1993), Yan (2004)] have been used to test a small number of expert
determined prespecified interactions. However, many of the tests were designed
to test only qualitative interactions between categorical variables and treatments.
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Moreover, when the number of covariates is large, these tests are too conserva-
tive when controlling the error rate for multiple testing. Penalized methods have
also been studied to identify variables important for making treatment decisions.
Among others, Qian and Murphy (2011) developed a two-step procedure, where
they first estimate the conditional mean response using the penalized least squares
regression with the L1 penalty and then derive the estimated optimal treatment
regimes from this estimated conditional mean. Lu, Zhang and Zeng (2013) pro-
posed a penalized least squares regression in an A-learning framework, which does
not require the correct specification of the baseline mean model and directly se-
lects variables with nonzero interactions with treatment. However, both methods
do not directly target prescriptive variables that are important for treatment deci-
sion making. Gunter, Zhu and Murphy (2011) proposed a variable-ranking mea-
sure that characterizes the qualitative interaction of an individual variable with
treatment, namely, the S-score. Then, a hybrid algorithm that combines S-score
ranking and weighted LASSO was used to select variables for treatment decision
making.

In this paper, we propose a variable selection method to identify prescriptive
variables for deriving optimal treatment regimes with single-stage and multi-stage
treatment decisions. In particular, we develop a quantity named sequential advan-
tage, which can be viewed as a sequential S-score. This quantity characterizes
additional information provided by a new variable to treatment decision making,
conditional on the effects of the covariates that are included from previous steps.
We also propose a BIC-type criterion that is based on sequential advantage to
choose the best candidate model for treatment decision making. As sequential ad-
vantage measures the potential for a qualitative interaction with treatment, our
method targets prescriptive variables.

Compared to the S-score method, our method is more accurate in the sense that
it tends to select more prescriptive variables but selects fewer variables overall.
This behavior is due to the sequential advantage selection, which can incorpo-
rate the correlation among variables. Thus, our method can largely exclude spuri-
ous variables that are marginally important but jointly unimportant. The proposed
method has satisfactory performance in each stage of dynamic treatment regimes.
Because the proposed method starts from the null model, the implementation is
feasible in high-dimensional settings provided that the true model is sufficiently
sparse.

The remainder of the paper is organized as follows. In Section 2 we introduce
the framework for deriving optimal dynamic treatment regimes and S-score rank-
ing for selecting prescriptive variables. Section 3 provides the proposed sequential
advantage selection method for variable selection in optimal treatment decision
making. We demonstrate the method’s performance in Section 4 by simulation
studies in various scenarios and illustrate the method using data from the STAR*D
clinical trial in Section 5.
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2. Overview for dynamic treatment regime and S-score ranking.

2.1. Dynamic treatment regime. Suppose that treatment decisions are made
at a finite number of time points, which are denoted by t1, . . . , tK with t1 being
the baseline. The data for a single individual are summarized as (X1,A1, . . . ,XK,

AK,Y ), where X1 are the baseline covariates obtained prior to the first treatment
decision, Xk are the covariates accrued between tk−1 and tk , k = 2, . . . ,K , Ak is
the treatment given at tk , k = 1, . . . ,K , and Y is the outcome of interest with larger
values indicating better response. For simplicity, assume that Ak = 0 or 1 for all k.
Overbar notation is used to denote the history of time-dependent variables. That
is, X̄k = (X1, . . . ,Xk), Āk = (A1, . . . ,Ak), k = 1, . . . ,K . The observed data for n

subjects are summarized as{
(X1i ,A1i , . . . ,XKi,AKi, Yi), i = 1, . . . , n

}
,

which are independent and identically distributed (i.i.d.) across i.
A dynamic treatment regime is a set of rules that dictates how treatments are as-

signed to an individual over time based on past information. We denote a dynamic
treatment regime as d = (d1, . . . , dK), where dk : �k → Ak = {0,1} is a map of
the information available at time tk to the possible treatment decisions that could
be made at tk . In the mapping, �k = {(x̄k, āk−1) ∈ X̄k × Āk−1}, which is the set
of historical information including both covariates and treatments. To define the
optimal dynamic treatment regime that maximizes the expected response, we need
to introduce potential outcomes [Robins (1986), Rubin (1978)]. Specifically, for a
fixed treatment regime āK ∈ ĀK , the potential outcomes are given by

W = {{
X1,X∗

2(ā1), . . . ,X∗
K(āK−1), Y

∗(āK)
}
, for all āK ∈ ĀK

}
,

where X∗
k(āk−1) denote the potential intermediate covariates that would accrue

between tk−1 and tk given the treatment history āk−1 (k = 2, . . . ,K), and Y ∗(āK)

denotes the potential outcome that would result if treated according to āK . The
optimal dynamic treatment regime is then defined as dopt = arg maxd∈D E[Y ∗(d)],
where D is a class of possible treatment regimes.

To estimate the expected potential outcome following a dynamic treatment
regime from the observed data, two assumptions are typically needed: the stable
unit treatment value assumption [Rubin (1978)] and the sequential randomization
assumption [Robins (1997)]. The first assumption is usually reasonable but cannot
be verified generally. The second assumption is met in a sequentially randomized
trial such as the STAR*D study. With these two assumptions, the expected poten-
tial outcome following dynamic treatment regime d can be expressed as

E
[
Y ∗(d)

] = E
[
E

[· · ·E[Y |X̄K, ĀK−1,AK = dK ] · · · |X1,A1 = d1
]]

.

Therefore, the expected potential outcome following a dynamic treatment regime
can be estimated from the observed data. Furthermore, an optimal dynamic treat-
ment regime can be derived, for example, using Q-learning or A-learning.
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2.2. S-score ranking. When deriving optimal treatment regimes, only vari-
ables that have qualitative interaction effects with the treatment play a role. Gunter,
Zhu and Murphy (2011) pointed out two factors that affect the degree of a quali-
tative interaction: the magnitude of interaction between the variable and the treat-
ment, and the proportion of patients for whom the optimal treatment changes given
the knowledge of the variable. Based on these two factors, they proposed the S-
score, which characterizes the degree of qualitative interaction of a variable. For
single treatment decision A, the S-score for the j th covariate, Xj , is defined as

Sj =
n∑

i=1

[
max

a

{
Ê(Yi |Xij = xij ,Ai = a)

} − Ê(Yi |Xij = xij ,Ai = â)
]
,(1)

where Ê(Yi |Xij = xij ,Ai = a) is an estimator of E(Yi |Xij = xij ,Ai = a), and
â = arg maxa Ê(Y |A = a), that is, the treatment that leads to the largest treatment-
specific mean response. The S-score is always nonnegative, and a higher valued S-
score indicates a greater potential for the covariate to have a qualitative interaction
with treatment.

To show that the S-score captures both the magnitude of interaction and the
proportion of subjects whose optimal treatment changes, we illustrate with an ex-
ample. Consider the model E(Y |Xj,A) = β0 + β1Xj + β2A + β3XjA, and let
(β̂0, β̂1, β̂2, β̂3)

T denote the estimates of (β0, β1, β2, β3)
T . The S-score for Xj is

then given by

Sj =
n∑

i=1

(β̂2 + β̂3xij )
[
1(β̂2 + β̂3xij ≥ 0) − â

]
.(2)

In equation (2), (β̂2 + β̂3xij ) represents the magnitude of the treatment effect as
a function of Xij , and 1(β̂2 + β̂3xij ≥ 0) − â indicates whether the optimal treat-
ment for patient i changes given the knowledge of Xij . Therefore, both factors are
reflected in the S-score.

Although the S-score has very appealing properties for characterizing qualita-
tive interaction of an individual covariate, there are some limitations with the S-
score ranking. First, when the number of covariates is large, the S-score is not very
effective for selecting qualitative interactions; variables that have no qualitative in-
teraction with treatment can have nonzero S-scores due to correlations among co-
variates. In the algorithm proposed by Gunter, Zhu and Murphy (2011), a weighted
LASSO is used to select important interactions based on a linear model built on
variables with nonzero S-scores, and the inverses of individual S-scores are used
as the weights in the weighted LASSO selection. In addition, an adjusted gain in
value criterion is used to select the best subset of variables along the solution path
for those selected nonzero S-scores. This hybrid algorithm helps to pick variables
among the pool of variables with nonzero S-scores. Second, because the S-score
evaluates each variable individually, some variables that are jointly crucial for op-
timal treatment decision making may be neglected. Third, the S-score method
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proposed by Gunter, Zhu and Murphy (2011) is only studied for a single-stage
treatment decision. These limitations motivate us to develop a forward-selection
procedure based on a modified S-score, named sequential advantage, for selecting
variables having qualitative interactions with treatment for both single-stage and
multi-stage treatment decisions.

3. Sequential advantage selection. In this section we introduce sequential
advantage and describe sequential advantage selection algorithms for both single-
stage and multi-stage treatment decisions.

3.1. Sequential advantage. We introduce sequential advantage in a single-
stage treatment decision study. Let M = {j1, . . . , j k} denote an arbitrary model
with Xj1, . . . ,Xjk as the selected covariates and F = {1, . . . , p} denote the full
model. In addition, let Xi denote the covariate for subject i and Xi(M) = {Xij :
j ∈M} denote the associated covariates corresponding to model M. The sequen-
tial advantage of variable Xj , j ∈F \M(k−1), is defined as

S
(k)
j = 1

n

n∑
i=1

[
max

a

{
Ê(Y |XM(k)

j

= x
iM(k)

j

,A = a)
}

(3)
− Ê

(
Y |XM(k)

j

= x
iM(k)

j

,A = a
(k−1)
opt (xiM(k−1) )

)]
,

where M(k−1) = {j1, . . . , j k−1} is the model selected at the (k − 1)th step,
M(k)

j = M(k−1) ∪ {j}, Ê(Y |XM(k)
j

= x
iM(k)

j

,A = a) is the estimated conditional

mean response based on an assumed model with predictors XM(k)
j

and A, and

a
(k−1)
opt (xiM(k−1) ) is the optimal treatment regime obtained based on the vari-

ables in M(k−1). In practice, a linear model with main effects of XM(k)
j

and

A as well as interaction effects between XM(k)
j

and A can be used to obtain

Ê(Y |XM(k)
j

= x
iM(k)

j

,A = a). Similarly, a
(k−1)
opt (xiM(k−1) ) can be obtained based

on the fitted model Ê(Y |XM(k−1) = xiM(k−1)
,A = a). The sequential advantage

defined in (3) is similar to the S-score in spirit, but represents the additional ben-
efit of including variable Xj to improve the optimal treatment regime estimated
based on previously selected variables.

3.2. Sequential advantage selection algorithm. In this section we propose a
variable selection method based on sequential advantage in a forward selection
manner. We first describe the sequential advantage selection (SAS) algorithm for
selecting variables that have a qualitative interaction with treatment in a single
treatment decision study, and then extend SAS to accommodate multiple treatment
decisions using Q-learning in the next section. The SAS algorithm for a single-
stage treatment decision is given as follows:
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(i) Initialization. Set M(0) = ∅. Compute a
(0)
opt = arg maxa Ê(Y |A = a), and

let S(0) = Ê(Y |A = a
(0)
opt) − Ê(Y ).

(ii) Sequential advantage selection. In the kth step (k ≥ 1), we have M(k−1).
For every j ∈F \M(k−1), we consider candidate covariates M(k)

j = M(k−1) ∪{j}
and compute the sequential advantage (3) corresponding to the j th covariate in the
kth step. The kth variable to be selected is the one with the largest sequential ad-
vantage in this step: jk = arg maxj∈F\M(k−1){S(k)

j }. Update M(k) =M(k−1)∪{jk}
and the estimated optimal treatment regime based on the first k selected vari-
ables XM(k) , that is, a

(k)
opt(xM(k) ) = arg maxa Ê(Y |XM(k) = xM(k) ,A = a). Let

S(k) = S
(k)

jk .
(iii) Selection of best subset. Iterate step (ii) to obtain a solution path for the

first m selected variables: M(m) = {j1, . . . , jm}, where m is a predefined integer
that is usually chosen to be less than n/2. We use a BIC-type criterion to select the
best subset of variables:

BIC(l) = − log

(
l∑

i=0

S(i)

)
+ l log(n)/n.

Let m̂ = arg min0≤l≤m BIC(l). Then, M(m̂) is the set of selected important vari-

ables for the treatment decision, and a
(m̂)
opt (xM(m̂) ) is the estimated optimal treat-

ment regime obtained based on the selected variables XM(m̂) .

In the SAS algorithm, S(k) is the sequential advantage based on the kth selected
variable, and the proposed BIC-type criterion balances between the accumulated
sequential advantages for making the optimal treatment decision and the size of
the model.

3.3. Extension to multi-stage treatment decisions. For a study with multiple
treatment decisions that has the data structure as shown in Section 2.1, we use a
modified Q-learning algorithm to estimate the optimal dynamic treatment regime
via backward induction. We apply the SAS algorithm at each stage to select im-
portant variables for treatment decision making and use these variables to model
Q-functions. The sequential advantage selection algorithm for multiple treatment
decisions is given as follows:

(i) At the K th stage, the response is Y and the covariates are HK =
{X1,A1, . . . ,AK−1,XK}. Following the SAS algorithm, m̂K variables are se-
lected, and the set of indexes of selected variables is denoted by M̂K . The Q-
function at the K th stage based on the selected variables is

QK(hK,M̂K
, aK) = E(Y |HK,M̂K

= hK,M̂K
,AK = aK).

In addition, the contrast function is CK(hK,M̂K
) = QK(hK,M̂K

,1)−QK(hK,M̂K
,

0). Then, the corresponding optimal treatment regime and value function at the
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K th stage are

d
opt
K (hK,M̂K

) = I
{
CK(hK,M̂K

) ≥ 0
}
,

VK(hK,M̂K
) = Y + CK(hK,M̂K

)
{
d

opt
K (hK,M̂K

) − aK

}
.

(ii) At the kth stage (k = K − 1, . . . ,1), use Vk+1(hk+1,M̂k+1
) from the

previous stage as the response, and the covariates at this stage are Hk =
{X1,A1, . . . ,Ak−1,Xk}. Following the SAS algorithm, m̂k variables are se-
lected. Similar to the K th stage, we can define M̂k and derive the Q-function
Qk(hk,M̂k

, ak) and contrast function Ck(hk,M̂k
) based on the selected variables.

Then, the corresponding optimal treatment regime and value function at the kth
stage are

d
opt
k (hk,M̂k

) = I
{
Ck(hk,M̂k

) ≥ 0
}
,

Vk(hk,M̂k
) = Vk+1(hk+1,M̂k+1

) + Ck(hk,M̂k
)
{
d

opt
k (hk,M̂k

) − ak

}
.

In the above algorithm, the value function is estimated based on the contrast
function, which is different from the classical Q-learning algorithm where the
value function is estimated based on the Q-function directly. Compared with the
Q-function-based value estimation, the contrast-function based value estimation is
more robust in the sense that the baseline model is not required to be specified cor-
rectly. As the method targets prescriptive variables that have qualitative interaction
with treatment, the contrast-function-based value estimation is more suitable.

4. Simulation studies. In this section we conducted simulation studies to
evaluate the performance of the proposed method in both single-stage and multi-
stage treatment decisions studies.

4.1. Single-stage treatment decision study. The performance of the proposed
SAS method is evaluated and compared with the S-score method and the method
proposed by Lu, Zhang and Zeng (2013) under various settings. The S-score
method was implemented as follows: we first identified all variables with nonzero
S-scores and ranked the importance of variables based on their S-scores in decreas-
ing order. Finally, we selected the variables with the largest k nonzero S-scores,
where k was chosen as the number of important prescriptive variables selected
by our SAS method for easy comparison. Note that the focus here is to compare
the performance of sequential advantage and S-score in terms of variable rank-
ing. Therefore, the S-score method considered here is different from the original
S-score method proposed by Gunter, Zhu and Murphy (2011), which is a hybrid
algorithm that combines S-score ranking and weighted LASSO selection.

For the method of Lu, Zhang and Zeng (2013), we considered LASSO selection
based on a least square loss with constant baseline, that is,

min
α,β

n∑
i=1

[
Yi − α − {

Ai − π(Xi )
}
βT X̃i

]2 + λ

p∑
j=0

|βj |,
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where π(Xi ) = P(Ai = 1|Xi ) is the propensity score, X̃i = (1,XT
i )T , and β =

(β0, β1, . . . , βp)T . In our simulations, π(Xi) is constant and is estimated by the
sample proportion. This method was implemented using the R-package glmnet,
and the tuning parameter λ was chosen by the built-in cross-validation. We refer
to this method as LASSO.

We consider the following four models to generate simulation data:

– Model I: Y = 1 + γ T
1 X +AβT X̃ + ε with γ1 = (1,−1,0p−2)

T , β = (0.1,1,07,

−0.9,0.8,0p−10);
– Model II: Y = 1 + 0.5 sin(πγ T

1 X) + 0.25(1 + γ T
2 X)2 + AβT X̃ + ε with γ1 =

(1,−1,0p−2)
T , γ2 = (1,02,−1,05,1,0p−10)

T , and β being the same as in
Model I;

– Model III: Y = 1 + γ T
1 X + AβT X̃ + ε with γ1 = (1,−1,0p−2)

T , β =
(0.1,1,07,−0.9,0.8,010,1,0.8,−1,05,1,−0.8,0p−30);

– Model IV: Y = 1 + 0.5 sin(πγ T
1 X)+ 0.25(1 + γ T

2 X)2 +AβT X̃ + ε with γ1 and
γ2 being the same as in Model II, and β being the same as in Model III.

Although all four models have linear interaction forms between covariates and
treatment, they have different functional forms for the baseline effects. In our SAS
method, the forward selection is based on the working model: E(Y ) = γ T X̃ +
AβT X̃, which is correctly specified under Models I and III but is misspecified un-
der Models II and IV. Models I and II have three important prescriptive variables
(X1,X9,X10), while Models III and IV have eight important prescriptive variables
(X1,X9,X10,X21,X22,X23,X29,X30). Covariates X = (X1, . . . ,Xp)T are gener-
ated from a multivariate normal distribution: each entry is normal with mean zero,
variance one, and the correlation between covariates is Corr(Xj ,Xk) = ρ|j−k|, for
j �= k, j, k = 1, . . . , p. Here, ρ is chosen to be 0.2, 0.5 and 0.8, representing weak,
moderate and strong correlations. We considered randomized trials, where A is
generated from a Bernoulli distribution with the success probability of 0.5. The
error term, ε, is normally distributed with mean zero and variance 0.25. We ran
500 simulations for each scenario with n = 200 and p = 1000.

Because the generative models are complex, it becomes rather difficult to eval-
uate the degree of qualitative interaction of each variable with treatment. As an
illustration, we show in Figure 1 the marginal interaction plots of variables X1, X9
and X10 with treatment under two scenarios: ρ = 0.2 and ρ = 0.8. These marginal
plots are for one simulated data under Model I, where X1, X9 and X10 are im-
portant prescriptive variables. Based on Figure 1, when the correlation is weak
(ρ = 0.2), all variables show clear qualitative interaction with treatment; when the
correlation is strong (ρ = 0.8), either variable X9 or X10 (here is X9) has nearly no
qualitative interaction with treatment. This is possibly due to the fact that these two
variables have strong positive correlation but opposite covariate effects. This result
implies that the S-score method may fail to identify one of the variables because
the method relies on the measures for the marginal qualitative interaction.
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FIG. 1. Plots of the marginal interaction of covariates X1, X9 and X10 with treatment (triangles
are for treatment 1, and circles are for treatment 0). The fitted lines for treatment 1 (dashed) and
treatment 0 (dotted) are from simple linear regression. The left panel is for ρ = 0.2; the right panel
is for ρ = 0.8.

Table 1 summarizes simulation results for variable selection and estimated opti-
mal treatment regimes of the three methods. For variable selection, we report size
and true positive (TP), which are the average numbers of selected variables and
correctly identified prescriptive variables over 500 simulations, respectively. For
assessing estimated optimal treatment regimes, we compute the mean value ra-
tio between the value following the estimated optimal treatment regime, Q(ĝopt),
and the value following the true optimal treatment regime, Q(gopt), denoted by
VR = Q(ĝopt)/Q(gopt). Here, the value of a given treatment regime is computed
by averaging outcomes generated from the true model with the treatment dictated
by the considered regime using Monte Carlo simulations with 10,000 replicates. In
addition, we report the mean error rates of the estimated optimal treatment regimes
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TABLE 1
Simulation results of sequential advantage selection (SAS), S-score and LASSO methods in the

single-stage treatment decision study

SAS S-score LASSO

ρ Size TP VR ER Size S �= 0 TP VR ER Size TP VR ER

Model I
0.2 6.70 2.98 99.1 5.6 765.28 1.61 84.7 27.5 21.94 1.75 79.5 32.8

(0.06) (0.01) (0.1) (0.1) (5.16) (0.02) (0.2) (0.3) (0.74) (0.03) (0.4) (0.3)

0.5 7.56 2.91 98.5 7.4 757.18 1.31 86.7 26.6 15.04 1.37 84.2 29.4
(0.08) (0.01) (0.1) (0.2) (5.24) (0.02) (0.1) (0.2) (0.59) (0.03) (0.3) (0.3)

0.8 8.21 1.76 94.2 17.2 738.44 1.04 94.2 18.8 11.44 1.10 93.0 20.6
(0.07) (0.03) (0.1) (0.2) (5.48) (0.01) (0.0) (0.1) (0.45) (0.01) (0.1) (0.2)

Model II
0.2 11.14 2.24 89.8 28.3 765.27 1.73 87.7 31.5 15.84 1.48 86.3 34.3

(0.10) (0.03) (0.2) (0.3) (5.23) (0.02) (0.2) (0.3) (0.68) (0.03) (0.2) (0.3)

0.5 11.81 1.82 88.9 30.8 758.89 1.30 87.3 33.7 13.36 1.10 87.5 33.5
(0.09) (0.03) (0.2) (0.2) (5.34) (0.02) (0.1) (0.2) (0.70) (0.03) (0.2) (0.3)

0.8 10.84 1.36 90.4 29.5 749.84 1.09 92.2 26.7 11.65 0.98 92.1 26.0
(0.09) (0.02) (0.1) (0.2) (5.38) (0.01) (0.1) (0.2) (0.48) (0.02) (0.2) (0.3)

Model III
0.2 11.73 5.13 84.2 18.3 783.39 3.38 74.7 29.1 27.09 4.03 73.4 30.9

(0.13) (0.12) (0.7) (0.5) (7.13) (0.05) (0.4) (0.3) (1.15) (0.10) (0.4) (0.3)

0.5 10.41 4.67 87.0 18.6 776.15 2.88 78.3 28.1 25.05 3.24 77.6 29.3
(0.11) (0.10) (0.5) (0.4) (7.38) (0.04) (0.3) (0.2) (1.17) (0.08) (0.3) (0.3)

0.8 7.74 3.01 90.0 19.6 760.68 2.93 90.9 20.3 17.37 2.49 88.5 22.2
(0.10) (0.05) (0.1) (0.2) (7.62) (0.03) (0.1) (0.2) (0.67) (0.04) (0.2) (0.2)

Model IV
0.2 11.85 3.29 81.4 29.1 779.14 3.21 81.2 30.5 23.80 3.50 80.5 32.6

(0.11) (0.09) (0.4) (0.4) (7.56) (0.05) (0.2) (0.3) (1.12) (0.10) (0.3) (0.4)

0.5 11.68 2.80 82.9 29.6 769.07 2.67 82.3 31.1 18.83 2.51 82.4 32.2
(0.11) (0.07) (0.3) (0.3) (7.65) (0.04) (0.2) (0.2) (1.01) (0.07) (0.3) (0.3)

0.8 9.68 2.47 88.6 25.7 758.69 2.82 90.8 23.7 15.72 2.18 89.2 25.6
(0.11) (0.05) (0.2) (0.2) (7.58) (0.03) (0.2) (0.2) (0.64) (0.04) (0.2) (0.3)

Size: the average number of selected variables; Size S �= 0: the average number of variables with
nonzero S-scores; TP: the average number of correctly identified prescriptive variables (the true
value is three under Models I and II, and is eight under Models III and IV); VR: the mean value ratio;
ER: the mean error rate. Sample standard deviations are shown in parentheses.

for treatment decision making compared with the true optimal treatment regimes,
denoted by ER. The numbers given in parentheses are the associated sample stan-
dard deviations.

The results in Table 1 show that the SAS method selects more true prescrip-
tive variables in most cases but with fewer selected variables. For example, under
Model I, SAS has size = 6.7 and TP = 2.98, whereas S-score has TP = 1.61 and
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LASSO has TP = 1.75 with size = 21.94. In addition, it is observed that there
are too many variables with nonzero S-scores and that the LASSO method tends
to select more variables than the SAS method, especially when ρ = 0.2 and 0.5.
Compared to the marginal S-score method, the SAS method includes more true
positives in most cases, which indicates that the sequential advantage is a better
characterization of prescriptive variables than the S-score. Under Model I with
weak and moderate correlations, the SAS method can recover almost all of the im-
portant variables. However, for the other three models, all three methods missed
a few important variables due to the weak signals of these variables and/or model
misspecification.

Based on results about values and error rates on estimated optimal treatment
regimes in Table 1, the SAS method provides good estimates of optimal treatment
regimes with values close to the true optimal values and low error rates among all
three methods. The error rates provided by the LASSO method are high in most
cases; this is partly because the LASSO estimates tend to have large bias due to
shrinkage. As correlation increases, the values of estimated treatment regimes are
less affected by the quality of the variable selection because some variables may
be good surrogates for the true variables when estimating the optimal treatment
regime.

We also compare solution paths of the three methods in Figure 2. Here, we de-
fine a solution path as the trajectory of the number of identified important variables
as the number of selected variables increases according to the selection order. For
demonstration purposes, we only plot the solution paths for the first 30 selected
variables. The SAS method has a natural order of selected variables. For the S-
score method, we ranked the variables in descending order of the S-scores of these
variables. The LASSO method has a solution path of β , which can be used to de-
termine the order of variables entering the model. The solution path plots allow us
to evaluate the ability of each method to identify important variables given that the
same number of variables is selected.

Figure 2 indicates that when the size is fixed, the SAS method includes the
largest number of important variables in most cases. When the data are generated
under Model I, the SAS method can include all of the important variables quickly
under weak and moderate correlations. However, under strong correlations, they
are likely to be missed by all three methods because some important variables are
highly correlated. When the model is misspecified, the SAS method is slightly
better in Model II, while all three methods do not differ significantly in Model IV.

Overall, the SAS method performs well on both the aspect of variable selection
and the aspect of estimating optimal treatment regime. The SAS method can select
most important variables at a moderate size of the selected variables. When the
model is correctly specified and the correlations between covariates are not too
high, the SAS method is able to identify all important variables. Moreover, the
error rates of the optimal treatment regime based on the SAS method are low, and
the estimated values are close to the true optimal value.
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FIG. 2. Solution paths of sequential advantage selection (SAS, solid line), S-score (doted line) and
LASSO (dashed line) methods for the single-stage treatment decision simulation study.
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4.2. Multi-stage treatment decisions study. To illustrate the sequential advan-
tage selection algorithm for the multi-stage treatment decisions (MTD) study, we
applied the SAS algorithm to simulated data with two-stage treatment decisions
based on the following generative model for the final response:

Y = A1A2 + A2
(
a + βT

12X1 + βT
21X2

) + A1
(
a + βT

11X1
) + ε,(4)

where Ak , the treatment at stage k, follows a Bernoulli distribution with pa-
rameter 0.5 for k = 1 and 2. The covariates collected at baseline, X1, include
p1 = 500 variables and are denoted as X1 = (X1,1,X1,2, . . . ,X1,p1)

T . We gen-
erate X1 from a multivariate normal distribution with mean zero, variance one
and correlation corr(X1,j ,X1,l) = 0.2|j−l|, j �= l. The intermediate covariates col-
lected at the second stage are denoted by X2. For demonstration purposes, we
consider a one-dimensional intermediate covariate X2 and assume that X2 =
c0 + c1X1,1 + c2A1 + c3A1X1,1 + e, where the normal random error e has mean
zero and variance σ 2

2 . The random error for response Y , ε, is normally distributed
with mean zero and variance σ 2

1 .
The parameter values for the above two-stage model are chosen as follows:

β12 = (0,0,1,−1,0p1−4)
T , β21 = 1, β11 = (04,1,−1,0p1−6)

T , a = 0. For the
standard deviations of two random errors, we choose σ1 = σ2 = 0.5. For the pa-
rameter c = (c0, c1, c2, c3)

T in the model for X2, we consider three sets of values
to evaluate the carry-on effects of baseline variables through intermediate covari-
ates: c = (0,1,0,0)T , (0,0,1,0)T and (0,1,1,1)T .

Based on the generative model (4), it is clear that the optimal treatment regime
at stage 2 is g

opt
2 (x1, a1, x2) = 1(a1 + βT

12x1 + β21x2 ≥ 0). Thus, four variables
(X2,A1,X1,3,X1,4) determine the optimal treatment regime at stage 2. At stage 1,
the Q-function is

Q1(X1,A1) = E
{∣∣A1 + βT

12X1 + β21X2
∣∣+|X1,A1

} + A1
(
βT

11X1
)

= σ2
1√
2π

exp
{
− μ2

1

2σ 2
2

}
+ μ1

[
1 − �(−μ1/σ2)

] + A1
(
βT

11X1
)
,

where μ1 = A1 +βT
12X1 +β21[c0 +c1X1,1 +c2A1 +c3A1X1,1]. The optimal treat-

ment regime at stage 1 is g
opt
1 (x1) = 1{Q1(x1,1) > Q1(x1,0)}. There are five im-

portant variables (X1,1,X1,3,X1,4,X1,5,X1,6) for determining the optimal treat-
ment regime at stage 1 when c = (0,1,0,0)T and (0,1,1,1)T , and four important
variables (X1,3,X1,4,X1,5,X1,6) when c = (0,0,1,0)T . Table 2 summarizes the
optimal treatment regimes and the important variables in this simulation study. Al-
though the optimal treatment regime and the corresponding important variables at
stage 2 are explicitly defined, the optimal treatment regime at stage 1 takes a com-
plex nonlinear form. Therefore, the effects of the important variables are difficult
to evaluate.

We applied the SAS algorithm to the simulated data for sample sizes n = 100,
200 and 400 over 100 replications. Simulation results are summarized in Tables 3
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TABLE 2
Optimal treatment regimes and corresponding important variables in multi-stage simulation study

Optimal treatment regime Important variables

Stage 2 1(a1 + βT
12x1 + β21x2 ≥ 0) (X2,A1,X1,3,X1,4)

Stage 1 1{Q1(x1,1) > Q1(x1,0)} c = (0,1,0,0)T (X1,1,X1,3,X1,4,X1,5,X1,6)
and (0,1,1,1)T

c = (0,0,1,0)T (X1,3,X1,4,X1,5,X1,6)

and 4. Table 3 presents results on variable selection and estimated optimal treat-
ment regimes at both stages 1 and 2, where the same statistics as in Table 1 are re-
ported (Size, TP, VR and ER). For the mean value ratio at stage 2 (VR2), we adopt
random treatment regimes at stage 1 to calculate the outcome values because the
optimal treatment regimes at stage 1 have not been estimated at this stage. Table 4
reports the proportions of each important variable being selected for all scenarios.

According to Table 3, the numbers of true positives at stage 2 increase and get
close to the true number (four) when the sample size gets large; at stage 1, the num-
bers of true positives also increase, but 1–2 variables are missed. We will examine
which variables are missed when analyzing results in Table 4. Based on the results
for values and error rates, SAS provides good estimated optimal treatment regimes

TABLE 3
Simulation results of SAS–MTD method for two-stage treatment decisions study

Stage 2 Stage 1

n Size TP VR2 ER Size TP VR1 ER

c = (0,1,1,1)T

100 5.22 (0.46) 2.08 (0.09) 85.3 17.8 6.29 (0.36) 0.70 (0.07) 73.1 26.9
200 4.08 (0.11) 3.25 (0.06) 94.3 8.8 5.43 (0.25) 2.34 (0.10) 93.4 14.5
400 4.02 (0.06) 3.75 (0.04) 97.5 4.4 3.61 (0.11) 3.14 (0.04) 98.2 8.5

c = (0,1,0,0)T

100 6.70 (0.28) 1.80 (0.11) 67.7 24.9 8.88 (0.35) 0.45 (0.07) 49.1 39.8
200 6.38 (0.21) 3.48 (0.06) 89.7 13.5 11.80 (0.27) 1.78 (0.08) 78.2 26.6
400 5.82 (0.19) 3.88 (0.03) 96.1 7.8 13.01 (0.36) 2.41 (0.07) 92.7 16.6

c = (0,0,1,0)T

100 5.93 (0.29) 1.94 (0.10) 80.2 21.6 4.96 (0.41) 0.63 (0.08) 71.4 25.0
200 5.13 (0.15) 3.15 (0.04) 94.8 11.5 5.75 (0.34) 1.89 (0.08) 91.0 15.6
400 4.70 (0.16) 3.53 (0.05) 97.8 7.0 4.12 (0.23) 2.91 (0.09) 97.4 8.5

Size: the average number of selected variables; TP: the number of correctly identified important
variables; VR2: the mean value ratio, where random treatment regimes are adopted at stage 1; VR1:
the mean value ratio between the estimated and true treatment regimes; ER: the mean error rate. VR1,
VR2 and ER are presented in the percentage scale. Sample standard errors are shown in parenthesis.
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TABLE 4
Proportion of each important variable being selected at stage 2 and stage 1

Stage 2 Stage 1

X1,3 X1,4 X2 A1 X1,3 X1,4 X1,5 X1,6 X1,1
n 1 −1 1 1 ∗ ∗ 1 −1 ∗/−

c = (0,1,1,1)T

100 0.58 0.49 0.85 0.16 0.01 0.01 0.13 0.08 0.47
200 0.95 0.96 0.97 0.37 0.02 0.03 0.72 0.71 0.86
400 1.00 1.00 1.00 0.75 0.07 0.07 1.00 1.00 1.00

c = (0,1,0,0)T

100 0.59 0.51 0.55 0.15 0.01 0.00 0.24 0.16 0.04
200 0.99 1.00 0.92 0.57 0.03 0.04 0.82 0.84 0.05
400 1.00 1.00 0.98 0.90 0.17 0.07 1.00 1.00 0.17

c = (0,0,1,0)T

100 0.57 0.49 0.55 0.33 0.05 0.03 0.26 0.29 –
200 1.00 1.00 0.79 0.36 0.13 0.10 0.82 0.84 –
400 1.00 1.00 0.96 0.57 0.54 0.39 0.99 0.99 –

Important variables at stage 2 are X1,3,X1,4,X2 and A1, and the corresponding coefficients in
the true optimal treatment regime at stage 2 are (1,−1,1,1). Important variables at stage 1 are
X1,3,X1,4,X1,5,X1,6,X1,1 for the first two scenarios and X1,3,X1,4,X1,5,X1,6 for the third sce-
nario. The coefficients for X1,5 and X1,6 are 1 and −1 in the true optimal treatment regime at stage
1; X1,3,X1,4 and/or X1,1 appear in the true optimal treatment regime at stage 1 with a nonlinear
form. “*” means this variable is important for the treatment decision and the coefficient is unknown,
while “–” means this variable is not important for the treatment decision.

at both stages 1 and 2 when the sample size is large. We note that performances for
c = (0,1,0,0)T at stage 1 are worse than the other scenarios. This indicates that
the manner in which the intermediate variable depends on covariates from the last
stage also affects the quality of the estimated optimal treatment regime. It is not
apparent why the case with c = (0,1,0,0)T performs worse, and results in Table 4
partially explain this phenomenon.

Table 4 shows more detailed variable selection results. At stage 2, all but A1
among the four important variables can almost always be selected when the sam-
ple size is large. A1 can be selected more often for c = (0,1,0,0)T than for the
other two scenarios; this may be because X2 depends on A1 in these cases, which
partially eliminates the effects of A1 on the final response, Y . At stage 1, only vari-
ables X1,5 and X1,6 can always be selected for all three scenarios when n = 400.
These two variables appear in the optimal treatment regime at stage 1 in a linear
form. On the contrary, variables X1,3, X1,4 and X1,1 that present in a nonlinear
form are not always selected. The probabilities of selecting X1,3 and X1,4 for all
three scenarios are low. This may be because these two variables do not have sub-
stantial effects on the optimal treatment regime; the high values and low error rates
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at stage 1 in Table 3 also verify this argument. The probabilities of including X1,1
differ between the first two scenarios. A possible explanation is that X1,1 interacts
with A1 in μ1 for the first scenario, which makes its sequential advantage for be-
ing selected large. This may also explain why the scenario with c = (0,1,1,1)T

performs better than the scenario with c = (0,1,0,0)T in Table 3.
Based on these results, the SAS algorithm performs well on both variable se-

lection and optimal treatment regime estimation. The complex form of the optimal
treatment regime at stage 1 makes it more difficult to identify important variables
and brings a challenge for variable selection.

5. Application to STAR*D study. We apply the proposed method to data
from the STAR*D study, which was conducted to determine the effectiveness
of different treatments for patients with major depressive disorder (MDD) who
had not been adequately benefiting from initial treatment with an antidepressant.
There were 4041 participants (ages 18–75) with nonpsychotic MDD enrolled in
this study. Initially, these participants were treated with citalopram (CIT) up to 14
weeks. Subsequently, 3 more levels of treatments were provided for participants
without a satisfactory response to CIT. At Level 2, participants were eligible for
seven treatment options, which may be conceptualized as two treatment strategies:
medication or psychotherapy switch, and medication or psychotherapy augmen-
tation. Available treatments for participants to switch were as follows: sertraline
(SER), venlafaxine (VEN), bupropion (BUP) and cognitive therapy (CT); avail-
able treatments for patients to augment were the following: augmenting CIT with
bupropion (CIT+BUP), buspirone (CIT+BUS) or cognitive therapy (CIT+CT).
Participants without a satisfactory response to CT were provided additional medi-
cation treatments, which is called Level 2A. All participants who did not respond
satisfactorily at Level 2 or 2A were eligible for Level 3, where possible treat-
ments were medication switch to mirtazapine (MIRT) or nortriptyline (NTP), and
medication augmentation with either lithium (Li) or thyroid hormone (THY). Par-
ticipants without satisfactory response to Level 3 were re-randomized at Level 4
to either tranylcypromine (TCP) or a combination of mirtazapine and venlafaxine
(MIRT+VEN). Participants who responded satisfactorily were followed up to 1
year. See Fava et al. (2003) and Rush et al. (2004) for a more detailed description
of this STAR*D design.

For illustration, we focus on a subset of participants who were given treatment
BUP or SER at Level 2, did not receive satisfactory responses, and were random-
ized to treatment MIRT or NTP at Level 3. There were 73 participants who meet
this condition. Among these participants, 36 were treated with BUP and 37 were
treated with SER at Level 2, and 33 were treated with NTP and 40 were treated
with MIRT at Level 3. Our goal is to identify relevant prescriptive predictors and
estimate optimal dynamic treatment regimes at Levels 2 and 3 that maximize the
mean response at the end of Level 3. We consider 381 covariates as possible rel-
evant predictors, which are listed in Table 5. These covariates include participant
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TABLE 5
List of covariates used in the analysis of STAR*D study

Participant features
1 Gender 2–6 Ethnicity
7 Economic study consent 8 Depressed mood
9 Diminished interest or pleasure 10 Weight loss while not dieting
11 Insomnia or hypersomnia 12 Psychomotor agitation or retardation
13 Fatigue or loss of energy 14 Feelings of worthlessness or guilt
15 Diminished ability to concentrate 16 Recurrent thoughts of death or suicide
17 Age 18 Number of relatives living with patient
19 Number of friends living with patient 20 Total number of persons in household
21 Years of schooling completed 22 Highest degree received
23 On medical or psychiatric leave 24 Medicare
25 Medicaid 26 Private insurance
27 Better able to make important decisions 28 Better able to enjoy things
29 Impact of your family and friends 30–35 Current marital status
36–41 Current employment status 42–44 Currently a student
45–46 Currently do volunteer work
Illness features
47–60 Cumulative Illness Rating Scale 61–78 Hamilton rating scale for depression
79–82 Medication history 83–221 Psychiatric diagnostic screening
222 Baseline Axis I psychiatric condition questionnaire
223 Baseline Axis II psychiatric condition 224 Family hx depression
225 Family hx bipolar disorder 226 Family hx alcohol abuse
227 Family hx drug abuse 228 Family hx suicide
Care features
229 Type of clinical site
Intermediate medical conditions at level 1
230 QIDS-C score change rate 231 AIDS-C percent improvement
232 QIDS-SR score change rate 233 FISER frequency score change rate
234 FISER intensity score change rate 235 GRSEB score change rate
236 CGII score change rate 237 Patient presently a suicide risk
238 Patient in remission 239 Study medical daily dose
240–290 Patient rated inventory of 291–305 Quick Inventory of Depressive

side effects Symptomatology
Intermediate medical conditions at level 2
306 QIDS-C score change rate 307 AIDS-C percent improvement
308 QIDS-SR score change rate 309 FISER frequency score change rate
310 FISER intensity score change rate 311 GRSEB score change rate
312 CGII score change rate 313 Patient presently a suicide risk
314 Patient in remission 315 Study medical daily dose
316–366 Patient rated inventory of 367–381 Quick Inventory of Depressive

side effects Symptomatology

features such as age, gender, socioeconomic status and ethnicity; illness features
such as medication history and family history of mood disorders; and care features
such as clinician type. Intermediate medical conditions from Levels 1 and 2, such
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as degree of symptom improvement and side effect burden, are also considered.
For treatment regime at Level 3, all 381 covariates and the treatment at Level 2 are
considered as possible predictors. For the treatment regime at Level 2, the interme-
diate medical conditions at Level 2 are no longer available, thus there are only 305
covariates considered for treatment decision making. We used negative 16-item
Quick Inventory of Depressive Symptomatology-Clinician-Rated (QIDS-C16) at
the end of Level 3 as the final response, which is a measurement of symptomatic
status. Because low QIDS-C16 stands for remission, the negative QIDS-C16 was
used such that a larger value indicates better response.

We apply the SAS algorithm to this data set. The results are as follows. At
Level 3, there are four covariates selected based on the BIC criterion: “ringing
in ears” in patient rated inventory of side effects at Level 2 (EARNG-Level2),
“hard to control worrying” in psychiatric diagnostic screening questionnaire at
baseline (WYCRL), “feeling of worthlessness or guilt” in baseline protocol eligi-
bility (DSMFW), and “fatigue or loss of energy” in baseline protocol eligibility
(DSMLE). All four covariates are binary covariates with 1 indicating “Yes” and 0
indicating “No.” The estimated optimal treatment regime is I (−18.57 + 13.79 ×
(EARNG-Level2)− 8.46 × WYCRL + 6.36 × DSMFW + 16.88 × DSMLE ≥ 0),
where 1 stands for treatment NTP and 0 stands for treatment MIRT. This optimal
treatment regime assigns 25 participants to NTP and the remaining 48 partici-
pants to MIRT. At Level 2, there are seven covariates selected based on the BIC
criterion: “TE flashbacks of traumatic event” in the psychiatric diagnostic screen-
ing questionnaire at baseline (TEFSH), “EM worry saying something stupid” in
the psychiatric diagnostic screening questionnaire at baseline (EMSTP), “QIDS
psychomotor agitation” in the quick inventory of depressive symptomatology-
clinician at Level 1 (CAGIT), “think drink too much” in the psychiatric diag-
nostic screening questionnaire at baseline (DKMCH), “QIDS outlook (self)” in
the quick inventory of depressive symptomatology-clinician at Level 1 (CVWSF),
“IM convinced others spying” in the psychiatric diagnostic screening question-
naire at baseline (IMSPY), and “sleep at least 1–2 hours less 2 weeks” in the
psychiatric diagnostic screening questionnaire at baseline (LSL2W). Among these
seven covariates, TEFSH, EMSTP, DKMCH, IMSPY and LSL2W are binary, with
1 indicating “Yes” and 0 indicating “No”; CAGIT and CVWSF are categorical co-
variates with 4 levels indicated by 0 to 3. The estimated optimal treatment regime is
I (−5.50+3.91×TEFSH+11.17×EMSTP+3.76×CAGIT−4.65×DKMCH+
4.29 × CVWSF + 6.57 × IMSPY − 8.48LSL2W ≥ 0), where 1 stands for treat-
ment BUP and 0 stands for treatment SER. This optimal treatment regime assigns
39 participants to BUP and the remaining 34 participants to SER.

To further examine the estimated optimal dynamic treatment regime, we esti-
mate the value of the estimated optimal dynamic treatment regime, that is, the
mean outcome following the estimated optimal treatment regime, using the inverse
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TABLE 6
Estimated values of different treatment regimes and confidence intervals for the differences of values

Treatment regime Estimated value Diff 95% CI on Diff

Optimal regime from SAS-MTD −5.26
BUP + NTP −13.27 8.01 [2.83,13.64]
BUP + MIRT −11.71 6.45 [1.83,11.02]
SER + NTP −13.15 7.89 [1.94,13.72]
SER + MIRT −12.63 7.37 [2.88,11.86]

probability weighted estimator proposed by Zhang et al. (2013), defined as

IPW = 1

n

n∑
i=1

YiI (Ai,1 = g1(Xi ),Ai,2 = g2(Xi ))

π(Ai,1)π(Ai,2)
.

Here Yi is the outcome for ith individual, Ai,1 and Ai,2 are the treatments given to
the ith individual at stage 1 and stage 2, respectively, g1(Xi) and g2(Xi ) are the es-
timated treatment regimes at stages 1 and 2, and π(Ai,1) and π(Ai,2) are the proba-
bilities of receiving treatment Ai,1 at stage 1 and treatment Ai,2 at stage 2, respec-
tively. The estimated value for the estimated optimal dynamic treatment regime
based on the SAS algorithm is compared to the estimated values when all subjects
are treated with the nondynamic treatment regimes: BUP + NTP, BUP + MIRT,
SER + NTP and SER + MIRT. The estimated values are shown in Table 6. We
also report the 95% confidence intervals for the differences between values of the
estimated optimal dynamic treatment regime and the four nondynamic treatment
regimes based on 1000 bootstrap samples. The results show that the value of the
estimated optimal dynamic treatment regime based on the SAS algorithm is sig-
nificantly larger than those of the nondynamic treatment regimes.

6. Discussion. In this article we propose a forward-stepwise variable selec-
tion method based on sequential advantage for deriving optimal treatment regimes
in both single-stage and multi-stage treatment decision studies. Our method gener-
alizes S-score ranking and directly targets prescriptive variables that are important
for decision making. We also propose a BIC-type criterion to select the number of
important prescriptive variables needed for treatment decision making. The pro-
posed method can be extended to other types of outcomes, such as categorical or
censored survival data.

As suggested by a reviewer, a two-step procedure may be used for selecting
important prescriptive variables. For example, in the first step, we fit a flexible
regression model of Y given A and X using some tree-based methods, such as
BART or GBM. Let Q̂(X) denote the estimated interaction effects of covariates
X and treatment indicator A. In the second step, we can consider a classifica-
tion problem with responses sign{Q̂(X)} and covariates X, and select important
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covariates based on high-dimensional classification methods such as penalized lo-
gistic regression or support vector machine (SVM). Such a two-step procedure
can potentially decrease the chance of missing important covariates as compared
to a one-step approach such as the proposed method. Although a two-step proce-
dure looks appealing, it also has limitations. First, when p is much larger than n,
the estimation of the interaction effects using a tree-based method is usually quite
challenging, especially when the effects are only small to moderate. Second, if the
interaction effects are badly estimated in the first step, the resulting classification
and selection in the second step can be erroneous.

In addition, inspired by the composite algorithm proposed by Gunter, Zhu
and Murphy (2011), a two-step hybrid procedure can be built based on the SAS
method. Specifically, in the first step, we use a penalized regression method to
select important variables both in the main effects and in the interaction effects
based on an assumed model. In the second step, we apply the SAS method based
on selected variables from the first step. Such a hybrid procedure generally may
have better selection performance than a single-step selection method.
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