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Ambulatory cardiovascular (CV) measurements provide valuable in-
sights into individuals’ health conditions in “real-life,” everyday settings.
Current methods of modeling ambulatory CV data do not consider the dy-
namic characteristics of the full data set and their relationships with covari-
ates such as caffeine use and stress. We propose a stochastic differential equa-
tion (SDE) in the form of a dual nonlinear Ornstein–Uhlenbeck (OU) model
with person-specific covariates to capture the morning surge and nighttime
dipping dynamics of ambulatory CV data. To circumvent the data analytic
constraint that empirical measurements are typically collected at irregular and
much larger time intervals than those evaluated in simulation studies of SDEs,
we adopt a Bayesian approach with a regularized Brownian Bridge sampler
(RBBS) and an efficient multiresolution (MR) algorithm to fit the proposed
SDE. The MR algorithm can produce more efficient MCMC samples that is
crucial for valid parameter estimation and inference. Using this model and
algorithm to data from the Duke Behavioral Investigation of Hypertension
Study, results indicate that age, caffeine intake, gender and race have effects
on distinct dynamic characteristics of the participants’ CV trajectories.

1. Introduction. Coronary heart disease (CHD) is the leading cause of mor-
bidity and mortality in older adults, and instances of deaths due to CHD and stroke
are estimated by the Centers for Disease Control and Prevention (CDC) as “nearly
twice the number of lives claimed by cancer or collectively by World War II, and
the Korean and Vietnam conflicts” [Centers for Disease Control and Prevention
(1999)]. There has been increasing evidence that cardiovascular (CV) measures,
such as ambulatory blood pressure (ABP) taken in everyday, nonlaboratory set-
tings, provide better diagnostic and prognostic value than multiple clinic blood
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pressure (BP) readings [Clement et al. (2003), Dolan et al. (2009)], and are indica-
tive of the occurrence of multiple CV events [Beckham et al. (2009), Muller, Tofler
and Stone (1989), Willich et al. (1992)].

ABP and related CV activities (CA) have well-established circadian patterns,
characterized by rises in early morning, culminating in a plateau around noon, and
followed by nocturnal (nighttime) dipping. While nighttime BP has been found to
be a stronger predictor of cardiovascular risk than clinic or daytime ABP [Hansen
et al. (2011)], increasing evidence has pointed to the importance of also consid-
ering morning surges in ABP in addition to nighttime BP [Kario et al. (2003),
Verdecchia et al. (2012)]. The importance of studying the dynamics of ABP is fur-
ther reflected in the inclusion of trend reports in popular ABP measurement tools
such as the dabl system [O’Brien (2011)], which provide indices such as time-
weighted measures of variability, measures of nocturnal dip, morning surge, peak
as well as trough levels, and smoothness of BP curves, among many other indices
of CV events [Dolan et al. (2006), Rothwell et al. (2010)]. Despite the richness of
the dynamic information in ABP data, diagnosis/prognosis involving ABP is typi-
cally performed on levels of ABP obtained from isolated segments of the data. As
an example, morning surge is typically defined as a rise in BP > 55 mmHg from the
lowest nighttime reading [for a review see O’Brien (2011)]. In a similar vein, indi-
viduals are identified as exhibiting BP nondipping—a commonly used prognostic
indicator of CV morbidity and mortality for both hypertensive and nonhyperten-
sive individuals—when they show <10% fall in systolic BP (SBP) from day to
night [Fagard et al. (2008), Ingelsson et al. (2006)]. Such conventional approaches
of analyzing ABP rely solely on levels of BP during selected time windows, and
utilize levels of BP at a single time point (e.g., the lowest nighttime reading), which
are less than ideal given the noisy nature of BP and other CV measures. In addi-
tion, some of the more subtle individual differences in dynamic characteristics of
CV measures, such as the surge and dipping rates of CV measures, are completely
bypassed.

One possible way to extract more dynamic information from individuals’ full
time series of CV measures is to analyze such data in the context of a stochas-
tic differential equation (SDE) model. The SDE of choice has to capture critical
aspects of CV dynamics while providing a platform to relate these dynamic at-
tributes to individual difference characteristics such as stress levels, age and so on.
To enable SDE modeling of multiple measures of population CV activities (e.g.,
systolic BP, diastolic BP and heart rate), we propose a latent SDE in the form
of a dual nonlinear Orstein–Uhlenbeck (OU) model with person-specific dynamic
effects. This modeling framework provides a direct way to (i) represent the unob-
served dynamics of CV activities based on noisy multivariate measurements from
multiple subjects; (ii) accommodate subject-specific, irregularly spaced discrete
time points, particularly the sparse measurements at night to minimize disruptions
to the participants’ sleep schedules; and (iii) allow the evaluation of questions per-
taining to the dynamics of ambulatory CV data, including individual differences in
morning surge and nighttime dipping patterns.
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Estimation and inference of SDE models using ambulatory CV data are chal-
lenging. Due to the intractability of the proposed SDE, we employ discretization
approximation [Pedersen (1995)]. Unfortunately, real-life ambulatory CV data are
characterized by much sparser and irregularly spaced time intervals than those in-
vestigated in most simulation studies involving nonlinear SDE models [Kou et al.
(2012), Lindström (2012)]. Achieving reasonable estimation properties necessi-
tates the use of a large number of imputations between subsequent observed inter-
vals, a procedure that quickly becomes inefficient for the kind of data considered.
We develop an efficient regularized Brownian bridge sampler (RBBS) and mul-
tiresolution (MR) algorithm to fit the proposed SDE model.

2. Data analytic and methodological issues. The empirical data in our study
consist of CV measures from multiple subjects. Figure 1 shows the data from six
subjects from the study. The dashed, solid and dot-dashed curves are SBP, DBP
and heart rate, respectively. All three measures are characterized by relatively sys-
tematic circadian rhythms and some subject-specific characteristics.

Over a 24-hour period, all three measures typically decrease to their lowest
points during nighttime sleep and increase rapidly upon rising in the morning.

FIG. 1. Trajectories of SBP, DBP and heart rate of six subjects in the case study, which are the
dashed, solid and dot-dashed curves, respectively.
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However, the circadian patterns and magnitudes of change, which are related to
cardiovascular risk, show considerable between-subject heterogeneities. Consider
the baseline levels around which the trajectories fluctuate at daytime and nighttime
as two equilibria. First, the differences between two equilibria may be different for
different subjects. For instance, the subject in Figure 1(a) shows less difference in
his/her daytime and nocturnal equilibria than the subject depicted in Figure 1(b),
thus signaling less dipping (or poorer recovery). Second, even if the differences
between two equilibria are similar, the magnitudes of the equilibria can be differ-
ent [e.g., Figure 1(c) and (d)]. Such cases demonstrate that using the differences
between the equilibria alone to analyze BP data may obscure important dynamic
features of the data. Third, the rates of change during dipping and surge may be
different and also show various degrees of asymmetry across subjects. Both the
morning surge rate and nocturnal dipping rate in Figure 1(b) are large; the noc-
turnal equilibrium, in particular, is attained very quickly and efficiently. In com-
parison, the subject in Figure 1(e) shows quick dipping and slower surge than the
subject in Figure 1(b), while Figure 1(f) shows the reverse change patterns. Last,
SBP, DBP and HR often share common features/circadian trends within subjects,
thus motivating us to use a latent process to characterize their common dynamics.

We formulate a Latent Stochastic Differential Equation Model (LSDEM) to
capture subject-specific (i.e., covariate-dependent): (i) daytime and nighttime CV
equilibria, (ii) nighttime dipping rate and morning surge rate, and (iii) dipping and
surge patterns. The Ornstein–Uhlenbeck (OU) process is widely used to model
a stochastic process that fluctuates around an equilibrium [Beaulieu et al. (2012),
Ricciardi and Sacerdote (1979), Uhlenbeck and Ornstein (1930)]. The CV patterns
observed in Figure 1 motivated us to employ a modified dual-OU process model
expressed as

dxi(t) = [
I (t ∈ Mi)β

∗
i1

(
β∗

i2 − xi(t)
)β∗

i3 + I (t /∈ Mi)β
∗
i4

(
β∗

i5 − xi(t)
)β∗

i6
]
dt

(2.1)
+ √

ψ dBt ,

where xi(t) is the ith subject’s latent CV activity at time t , Mi is subject i’s
daytime period, determined based on commonly used time windows and subject-
specific data cues (which include, e.g., the preawakening window during which
participants have not started engaging in their everyday routines but may have
started to show rises in CV activities), and ψ is the variance of the Wiener process,
commonly referred to as the diffusion parameter. The β∗

ij = wT
i βj for j = 1, . . . ,6

are subject-specific dynamic parameters, where wi and βj are vectors of covariates
and slope parameters, respectively. Moreover, β∗

i1, β∗
i3, β∗

i4 and β∗
i6 are assumed to

be positive.
The conventional OU process is a special case of (2.1) with β∗

i1 = β∗
i4, β∗

i2 = β∗
i5,

and β∗
i3 = β∗

i6 = 1. The drift function in (2.1) quantifies the absolute rates of
change. The β∗

i2 and β∗
i5 are used to represent the daytime and nighttime equi-

libria, respectively, around which the CV trajectories fluctuate. It is assumed that
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FIG. 2. The latent scores and corresponding drift functions given different parameter values
in (2.1). The first row of plots features the expected trajectories and the drift function with differ-
ent relative change rates, while the second row is those with different change instabilities. The cross,
circle and solid curves are generated from large, medium and small relative change rates or change
instabilities, respectively.

the rate of change of CV activities is proportional to the difference between the
current CV activities and the equilibrium, and the relative rates of change in day-
time and nighttime are modeled by β∗

i1 and β∗
i4, respectively. The first row of plots

in Figure 2 illustrates the effect of β∗
i4 during dipping. The left plots show the

trajectories simulated from (2.1) with 3 levels of β∗
i4 and ψ = 0. The right plots

show the corresponding values of the drift function, where a value of zero on the
ordinate represents no change in the value of xi(t) for a specific value of dt . The
larger β∗

i4 is, the faster CV activities go to the night equilibrium. The β∗
i3 and β∗

i6
affect the shape of the drift function. We interpret them as the change instability
parameters. The second row of Figure 2 illustrates the effect of β∗

i6 during dipping.
Larger β∗

i6 leads to quicker dipping at the beginning. However, the rate of change
decreases more quickly as CV activities approach the equilibrium. Hence, the rate
of change is less stable. In comparison, the rate of change decreases more slowly
for smaller β∗

i6 values. The interpretations of β∗
i1 and β∗

i3 are similar for morning
surge.

We assume the diffusion parameter, ψ , to be constant in (2.1). Substantively, it
is reasonable to assume that the main variations of CV activities among subjects
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stem from differences in mean levels of CV activities during daytime and night-
time, as well as the transitions in between, which are mainly characterized by the
drift function in (2.1). Consequently, the diffusion function only characterizes the
fluctuation around the equilibriums of CV activities, the scale of which is compar-
atively small and the differences across subjects are comparatively insignificant.
Thus, we only consider a constant diffusion function in the current analysis.

Methodological challenges associated with fitting SDE models such as that
shown in (2.1) can become formidable in the presence of sparse and wide-ranging
time intervals. Among methods for estimating parameters in SDEs [for a review
see Sørensen (2004)], likelihood-based methods have received much attention, but
they require solutions of transition density functions of SDEs that are analytically
available for only a very limited class of SDEs. Methods to circumvent this diffi-
culty include closed-form expansion of the transition density [Aït-Sahalia (2008)],
exact simulation method [Beskos et al. (2006), Sermaidis et al. (2013)] and dis-
crete Euler–Maruyama approximation with data augmentation between observed
time points [Durham and Gallant (2002), Pedersen (1995), Zhu, Taylor and Song
(2011)]. The last approach is popular due to its general applicability, but the time
intervals in studies involving ambulatory measures are usually too large to enable
accurate estimation. Specifically, to achieve reasonable approximation accuracy,
the time points between successive observations need to be augmented with miss-
ing data [Elerian, Chib and Shephard (2001)]. Increasing the number of the aug-
mented time points not only leads to better approximation, but also increases the
dependency among modeling parameters and the diffusion paths [Elerian, Chib
and Shephard (2001)], leading to slower convergence of the data augmentation al-
gorithms for estimation and inference. In situations involving irregularly spaced
time points, this problem is exacerbated because large time intervals require more
imputed time points to insure approximation accuracy. Block updating algorithms
have been proposed to alleviate the dependency among missing data at augmented
time points, but the dependency between parameters in the diffusion function
and the diffusion paths remains problematic in most SDEs [Roberts and Stramer
(2001)]. To handle these problems, we adopt a Bayesian approach for parame-
ter estimation and inference, and utilize two efficient MCMC algorithms, namely,
block updating with regularized Brownian bridge sampler (RBBS) and a multires-
olution (MR) algorithm, derived and adapted respectively from Lindström (2012)
and Kou et al. (2012), to fit the proposed SDE model.

Bayesian approaches have served as promising tools for the estimation and in-
ference for SDEs [Durham and Gallant (2002), Elerian, Chib and Shephard (2001),
Golightly and Wilkinson (2008), Roberts and Stramer (2001)]. Recently, Stramer
and Bognar (2011) proposed the use of two different simulation-based approxi-
mations to achieve better approximation of the likelihood with fewer imputations.
Golightly and Wilkinson (2011) developed particle MCMC algorithms to update
the processes globally and sequentially, avoiding the dependency problem as the
processes and parameters are sampled jointly.
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3. Latent stochastic differential equation models (LSDEMs). While the
SDE model shown in (2.1) is designed specifically to capture ambulatory CV dy-
namics, our estimation algorithms are applicable to a broader class of models that
includes other linear and nonlinear latent stochastic models (LSDEMs) as special
cases. The general model is a hierarchical model consisting of two parts: (i) a fac-
tor analysis model that relates a vector of latent variables to their noisy, observed
counterparts, and (ii) a SDE model for describing the changes in the latent vari-
ables.

3.1. Factor analysis model. Let xi (t) be a q × 1 vector of latent processes
of interest, where the indices i and t , respectively, denote individuals and time;
yi (t) is a p × 1 vector of observed processes (e.g., SBP, DBP and heart rate in our
study). The latent variables in xi (t) are measured indirectly through yi (t) based on
the measurement model:

yi (t) = μ + �xi (t) + εi (t),(3.1)

where μ is a p × 1 vector of intercepts, � is a p × q loading matrix, and εi (t) de-
notes a p × 1 vector of measurement error processes that is independent of xi (t).
In most human dynamics studies, however, we only measure yi (t) at irregularly
spaced time points tij for j = 1, . . . , Ti and i = 1, . . . , n, where tij is the j th
time point for the ith individual.The measurement model (3.1) at tij is given by
yij = μ + �xij + εij , 1 ≤ j ≤ Ti , 1 ≤ i ≤ n, where xij = xi (tij ), εij = εi(tij ) and
yij = yi (tij ). The εij is independent of xij and follows N(0,�ε), in which �ε is
a diagonal matrix with diagonal elements (σ 2

ε1, . . . , σ
2
εp).

3.2. SDE model for latent change processes. We consider SDEs for delineat-
ing the dynamics of latent variables. Let d be the differential operator. The SDE
model of interest is given by

dxi (t) = f
(
xi (t), θxi

)
dt + S

(
xi (t), θxi

)
dBi (t),(3.2)

where f(·) = (f1(·), . . . , fq(·)) is a q × 1 vector of drift functions, S is a q × q ma-
trix of diffusion functions, and Bi (t) is a q×1 vector of standard Wiener processes,
whose increments, dBi (t), are Gaussian distributed with zero means and vari-
ances that increase with the length of time interval, dt . Moreover, θxi = g(wi ,b),
where g(·) is a known function with a vector of parameters b and covariates wi .
One important question of our study is to identify predictors that can explain
the heterogeneities in dynamics across subjects. The θxi is used to characterize
subject-specific differences in change as related to known, person-specific covari-
ates. A heuristic interpretation of f and S is that f governs the local changes (i.e.,
drift rates) in xi (t) over dt , whereas S governs the variance of local changes, or in
other words, the diffusion rates.
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Since most SDEs in (3.2) do not have analytical solutions, it is common to
employ a discretized approximation, such as Euler–Maruyama, at selected time
points to form an approximate likelihood for model (3.2):

�xij = f(xij , θxi)�tij + �t
1/2
ij S(xij , θxi)Zij(3.3)

for 0 ≤ j < Ti and 1 ≤ i ≤ n, where �xij = xi,j+1 − xij , �tij = ti,j+1 − tij ,
and Zij follows a multivariate Gaussian distribution N(0, Iq), in which Iq is a
q × q identity matrix. When j = 0, the initial observations of the processes xi0 are
assumed to be known for all i.

Empirical data are usually sampled at relatively sparse intervals, so the Euler–
Maruyama approximation (3.3) performed only at empirically observed time
points usually leads to poor likelihood approximation [Elerian, Chib and Shep-
hard (2001)]. To increase the accuracy of the approximation (3.3), we impute xi (t)

at additional unobserved time points between tij ’s as missing data. In practice, the
number of imputed missing data between two observed time points determines the
resolution and accuracy of the approximation (3.3). Let X(0) = (X(0)

1 , . . . ,X(0)
n )

and X(0)
i = (xi1, . . . ,xiTi

) be the processes at the observed time points for the ith
individual. More time points are imputed between two adjacent time points with
larger �tij . The time intervals after imputation are close to the minimal time inter-

val before imputation. Denote t
(1)
ij to be the ith subject’s j th time point after im-

putation, �t
(1)
ij = t

(1)
i,j+1 − t

(1)
ij , and x

(1)
ij = xi(t

(1)
ij ) for 0 ≤ j < T

(1)
i and 1 ≤ i ≤ n.

Let this imputation be the 1st resolution. The accuracy of the Euler–Maruyama
approximation can be refined by increasing the number of imputed time points,
that is, increasing the resolution. The kth resolution is constructed by imputing
one time point between two adjacent time points at the (k − 1)th resolution. For
notational simplicity, we assume that only 1 time point is imputed between each
pair of adjacent observed time points to construct the 1st resolution. However, the
algorithm is applicable to general situations with heterogeneous imputation at the
1st resolution. Let k∗ = 2k . At the kth resolution, let x(k)

ij = xi (t
(k)
ij ), and

t
(k)
ij = t

(k−1)
is + (

t
(k−1)
i,s+1 − t

(k−1)
is

)j − 2s

2

for 2s ≤ j ≤ 2(s + 1) and s = 0, . . . , T
(k−1)
i .

Consequently, x(k)
i,sk∗ = xis . Let �t

(k)
ij = t

(k)
i,j+1 − t

(k)
ij , X(k)

i = (x(k)
i1 , . . . ,x(k)

i,T
(k)
i

), and

X(k) = (X(k)
1 , . . . ,X(k)

n ). The approximated transition density is

Pk

(
x(k)
i,j+1|x(k)

ij , θxi

) = φq

(
x(k)
ij + f

(
x(k)
ij , θxi

)
�t

(k)
ij ,�t

(k)
ij �

(
x(k)
ij , θxi

))
,(3.4)

where �(x(k)
ij , θxi) = S(x(k)

ij , θxi)S(x(k)
ij , θxi)

T and φq(μ,�) denotes the density
of a q-dimensional Gaussian random vector with mean vector μ and covariance
matrix �.
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4. Bayesian estimation and inference with MCMC algorithms. Let Yi =
(yi1, . . . ,yiTi

), Y = (Y1, . . . ,Yn) and θ = {b,μ,�,�ε}. We augment X(k) to the
observed data Y, and then use MCMC algorithms [Geman and Geman (1984),
Hastings (1970)] to sample Pk(θ ,X(k)|Y) ∝ Pk(Y,X(k)|θ)P (θ). Generally, any
distributions representing the prior information could be used. We assume that
P(θ) = P(μ)P (�,�ε)P (b), and use the prior distributions leading to standard
full conditional distributions,

P(μr) = φ1
(
μr0, σ

2
μ0

)
, P (�r ) = φp

(
�0r , σ

2
εr��r

)
,

(4.1)
P

(
σ 2

εr

) = IG(a1r , a2r ),

where r = 1, . . . , p, μr is the r th row of μ, and �T
r is the r th row of �. The

μr0, σ 2
μ0, �0r , a1r , a2r and positive definite matrix ��r are hyperparameters, the

values of which are assumed to be given by prior information. The IG(·, ·) stands
for the inverse gamma distribution. The μr estimate is more robust with different
signal strengths, for example, scale of σ 2

εr . Hence, its prior distribution is assumed
to be independent of σ 2

εr . As b includes parameters that are involved in the func-
tions f(· · ·) and S(· · ·), the corresponding prior distributions have to be tailored
specifically to the dynamic model considered.

For sparsely spaced data, efficient sampling of X(k) is very challenging. Most
approaches based on the Euler–Maruyama approximation only use one resolu-
tion k. Larger k results in better approximation, but it increases computational
costs from two aspects. First, the dimension of X(k) increases with k. Second,
the MCMC efficiency decreases dramatically because smaller �t

(k)1/2
ij S(x(k)

ij , θxi)

leads to high correlations among x(k)
ij . Consequently, more iterations of the Gibbs

sampler are required to obtain “good” MCMC samples that cover the entire param-
eter/unobserved components space. Choosing k to strike an effective balance be-
tween approximation accuracy and sampling efficiency is challenging, especially
for nonlinear processes, where a large k is usually required. We develop an efficient
multiresolution MCMC algorithm [Kou et al. (2012)] to address such challenging
issues.

4.1. Multiresolution (MR) algorithm. The MR algorithm [Kou et al. (2012)]
provides one way to circumvent the inadequacies of using one specific resolution
scheme by consolidating samples obtained at multiple resolutions. They proposed
the MR algorithm for stochastic processes observed at discrete time points for a
single subject. We will extend the MR algorithm for latent processes for population
data.

The MR approach is a mixture of a series of local samplers and a global sam-
pler, and generates samples for every resolution sequentially. In each iteration,
the local samplers and the global sampler are chosen with certain probabilities.
The MR algorithm begins with the first resolution with the least imputation. At
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each resolution, any MCMC algorithms designed for a single resolution can be
used as local samplers, which explore the local features of Pk(θ,X(k)|Y). Start-
ing from the second resolution, a global sampler called “cross-resolution sam-
pler” is also used, which essentially performs an independent Metropolis–Hastings
(MH) update of X(k) and θ jointly. Let T(k) = {t (k)

ij |0 ≤ j ≤ T
(k)
i ,1 ≤ i ≤ n}

and X(k)\(k−1) be the processes at T(k) but not at T(k−1). The proposal dis-
tribution q(X(k), θ) = q(X(k)\(k−1)|X(k−1), θ)q(X(k−1), θ), where q(X(k−1), θ) =
Pk−1(θ ,X(k−1)|Y). Practically, (X(k−1), θ) are empirically sampled from the
MCMC samples for Pk−1(θ,X(k−1)|Y). The proposal samples are weighted in
order that the target distribution follows Pk(θ ,X(k)|Y). The cross-resolution sam-
pler is independent of the current state of X(k) and θ and overcomes the degen-
eracy caused by increasing dependency among x(k)

ij as k increases. Moreover, the

empirical samples from a coarser resolution Pk−1(θ ,X(k−1)|Y) have lower auto-
correlation. Hence, a cross-resolution sampler could move across the space of X(k)

and θ faster. It is worth noting that even though the cross-resolution sampler for
(X(k), θ) is based on the MCMC samples of X(k−1), the MCMC samples of X(k)

at T(k−1) are partially different from those of X(k−1) because local samplers are
also used with nonzero probability. More details of the MR algorithm and cross-
resolution sampler can be found in S1.2 and S1.3 in supplementary material [Lu et
al. (2015)], and in Kou et al. (2012).

4.1.1. Local updating algorithms. Let k̃ = k∗ − 1. We use two local sam-
plers to generate posterior samples of X(k) including (i) a 1-step RBBS that
samples x(k)

ij at each time point; and (ii) a block updating scheme for Xis =
(xi,sk∗, . . . ,xi,(s+1)k∗) based on a (k̃ + 2)-step RBBS. Related samplers were pro-
posed for univariate and multivariate nonlinear SDEs for a single subject with
observed processes, respectively, in Kou et al. (2012) and Lindström (2012). We
extend these samplers to handle latent SDEs for population data. The general idea
of the RBBSs is to construct a multivariate normal proposal distribution for x(k)

ij

and X(k)
is sequentially, and use the MH algorithm. Lindström (2012) is an exten-

sion of Durham and Gallant (2002)’s results on nonlinear processes, in which the
drift functions dominate the diffusion functions. Users should adjust the tuning
parameter α according to specific problems, for which Lindström (2012) provided
intuitive suggestions. More information regarding these extensions is described
in S1.4 in supplementary material [Lu et al. (2015)].

5. Case study. We analyzed a set of 24-hour ambulatory CV data from the
Duke Biobehavioral Investigation of Hypertension study [Sherwood et al. (2002)].
The data set consists of 179 men and women whose ages range from 25 to 45
years. Ambulatory BP and other CV measures were monitored using the nonin-
vasive AccuTracker II ABP Monitor (Suntech AccuTracker II, Raleigh, NC) from
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around 9 AM until the same time in the following morning. The monitors were
programmed to measure four times an hour at random intervals ranging from 12 to
28 minutes apart during waking hours. During sleeping hours, the monitors were
programmed to record only two readings hourly, customized to fit the participants’
sleep habits. The study maintained participants’ normal schedules and documented
a diary entry indicating posture, activity, location, positive affect and negative af-
fect at each reading. Mood states were scored by circling a number on a 5-point
Likert Scale, with 1 representing “not at all” and 5 representing “very much.”

Covariates of interest used in xi in model (2.1) are (i) mean caffeine consump-
tion during daytime and nighttime; (ii) overall negative emotion score calculated
as the mean of “Stress,” “Anger” and “Tense” ratings throughout the entire day;
(iii) overall positive emotion score calculated as the mean of “Happy” and “In
control” ratings throughout the day; (iv) gender; (v) race; and (vi) age. In addition,
it is assumed that the effects of caffeine consumption during daytime (nighttime)
only affect the CV activities in the daytime (nighttime) through β∗

i1, β∗
i2 and β∗

i3
(β∗

i4, β∗
i5 and β∗

i6).
Time was rescaled such that 1 unit represents 12 hours. The resulting lengths

of time intervals between two adjacent observed time points range from 0.01 to
0.48, corresponding to a range of 0.72 minutes to 5.76 hours in time. To form the
1st resolution, imputed time points are placed evenly between two observed time
points. The time intervals between the imputed time points are around 0.07 (cor-
responding to 5 minutes). To obtain the daytime and nighttime windows in (2.1),
we used manual coding to extract subject-specific time windows for each subject.
Specifically, the daytime window for each subject was defined to end when sys-
tematic dipping of BP and heart rate were observed, while the nighttime window
was defined to end when systematic rise in BP and heart rate were observed.

The measurement model for the latent process xij at j = sk∗ is given by

( yis1, yis2, yis3 )T = (1, λ1, λ2 )T xij + ( εis1, εis2, εis3 )T ,(5.1)

where yis1, yis2 and yis3 are, respectively, SBP, DBP and heart rate at the
sth observed time for the ith subject. Each yisj , j = 1,2,3, was standardized
by the mean and standard deviation calculated using all i and s. Moreover,
(εis1, εis2, εis3)

T ∼ N [0,diag(σ 2
ε1, σ

2
ε2, σ

2
ε3)], and the 1 in the loading matrix is

fixed for identification. The initial conditions of the latent SDEs were fixed to the
estimated factor scores of the subjects using the values of SBP, DBP and heart
rate at the first observed time point. Without any prior information, vague prior
distributions βj ∼ N(b0j ,�0bj )I (Sj ) and ψ ∼ IG(aψ1, aψ2) were assumed for
the parameters in model (2.1), where b0j = 0, �0bj = 106I, for j = 1, . . . ,6;
aψ1 = 0.01, and aψ2 = 0.01. Sj = {βj |wT

i βj > 0, i = 1, . . . , n} for j = 1,3,4,6,
and S2 = S5 = R7. We also set �0r = 0, ��r = 106, a1r = 3, and a2r = 1 in (4.1).
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TABLE 1
The estimates (Est), standard errors (SE) and Est/SE (Z) in the case study

Intercept Caffeine Negative Positive Gender Race Age

Relative Est 2.568 0.606 0.026 0.214 0.458 0.242 −0.083
surge SE 0.188 0.189 0.149 0.121 0.173 0.179 0.149
rate β∗

1 Z 13.669 3.203 0.176 1.773 2.649 1.349 −0.557

Daytime Est 0.377 0.025 0.106 −0.014 0.206 −0.163 0.110
equilibrium SE 0.049 0.030 0.058 0.044 0.043 0.056 0.045
β∗

2 Z 7.624 0.827 1.839 −0.324 4.777 −2.944 2.414

Daytime Est 1.621 −0.203 −0.196 −0.181 −0.238 −0.034 0.157
instability SE 0.142 0.082 0.126 0.126 0.135 0.159 0.130
β∗

3 Z 11.445 −2.480 −1.555 −1.438 −1.758 −0.212 1.212

Relative Est 2.737 0.326 0.002 0.236 0.269 0.632 0.184
dipping SE 0.262 0.342 0.193 0.156 0.224 0.258 0.220
rate β∗

4 Z 10.448 0.954 0.010 1.518 1.200 2.447 0.837

Nighttime Est −1.206 0.168 0.067 −0.013 0.298 −0.109 0.147
equilibrium SE 0.115 0.063 0.075 0.084 0.073 0.106 0.072
β∗

5 Z −10.459 2.678 0.886 −0.159 4.081 −1.024 2.027

Nighttime Est 1.135 0.702 0.286 −0.030 0.060 −0.113 −0.001
instability SE 0.214 0.477 0.182 0.101 0.134 0.146 0.133
β∗

6 Z 5.299 1.473 1.573 −0.295 0.448 −0.772 −0.006

ψ Est 2.992 SE 0.114

5.1. Results. Four resolutions were used in the MR algorithm described in
Section 4.1. For each resolution in the MR algorithm, 2000 burn-in samples were
discarded and another 4000 MCMC samples were acquired for estimation and in-
ference. The MR algorithm improves the efficiency of the MCMC algorithm by
dramatically reducing the autocorrelations of the MCMC samples of most param-
eters (see S2 in supplementary material [Lu et al. (2015)] for further details). In
this study, the selection of tuning parameter α in RBBS does not affect the sam-
pling algorithm much because the drift function does not dominate the diffusion
function. Estimated posterior means (Est), standard errors (SE) and their quotient
(Z) based on the finest resolution are shown in Table 1. The Z values that pass the
false positive rate threshold [Benjamini and Hochberg (1995)] q = 0.05 are high-
lighted in bold font, while those between q = 0.05 and q = 0.10 are highlighted in
bold and italic font.

Some covariates were found to be significantly correlated with one or more
aspects of the participants’ CV trajectories. Based on the estimated coefficients,
we numerically simulated the mean trajectories of subjects with different levels
of certain covariates from (2.1), which are plotted in Figure 3. For continuous
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FIG. 3. The first and second rows are the estimated mean trajectories and drift functions of CV
trajectories, respectively. The first and second columns show the night dipping and morning surge
given different levels of caffeine consumption, respectively. The third column displays the gender
differences during morning surge.

covariates, three levels of covariates were used, namely, the minimum, median and
maximum of the covariates. Table 2 shows the estimated equilibriums of SBP, DBP
and HR at daytime and nighttime for different levels of covariates.

TABLE 2
Estimated equilibriums of SBP, DBP and HR at daytime and nighttime for different levels of

covariates. For continuous covariates, the first and second rows are equilibriums at the minimum
and maximum of the covariates. For gender, the first row is female’s equilibriums. For race, the first

row is black subjects’ equilibriums

Night equilibrium Morning equilibrium

Caffeine Gender Gender Race Age

SBP 100 95.2 125.1 131.9 126.2
121.9 105.8 132.5 123.9 132.5

DBP 58.7 55.2 77.4 82.4 78.1
71.7 63.1 82.8 76.4 82.8

HR 68 66.4 76.5 78.7 76.8
75.4 70 78.9 76 78.9
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We calculated the posterior predictive p-value [Gelman, Meng and Stern
(1996)] of the χ2 goodness-of-fit measure:

D(Y,X,�,�ε) =
n∑

i=1

Ti∑

j=1

(yij − �xij )
T �−1

ε (yij − �xij ).

Let Xk , �k and �εk be the kth MCMC sample of X, � and �ε , respectively.
Yk was generated based on (5.1) with Xk , �k and �εk . The estimated posterior
predictive p-value is the proportion of D(Yk,Xk,�k,�εk) that are greater than
D(Y,Xk,�k,�εk) for all MCMC samples (0.485), indicating a reasonable fit of
the model to the data. We also checked the predictive performance of our model.
The pointwise estimated median and 95% credible intervals formed by all Yk for
three randomly selected subjects are displayed in Figure S3. The prediction is rea-
sonably good even in the presence of sparsely spaced observations.

The acceptance rates of the cross-resolution move are 0.04, 0.14 and 0.27 at
the 2nd, 3rd and 4th resolution, respectively. The increasing acceptance rates
agree with Kou et al. (2012). As k increases, the empirical distribution for
Pk−1(θ ,X(k−1)|Y) becomes a better proposal distribution because the difference
between Pk−1(θ ,X(k−1)|Y) and Pk(θ ,X(k)|Y) decreases.

The estimation is not very sensitive to the specification of the hyperparame-
ters in (4.1). Specifically, we set the covariance matrices of the multivariate nor-
mal prior distributions to 10I, which represents moderate prior covariances, and
changed the prior mean to two times or half of the estimated parameters. The esti-
mation results were similar to Table 1.

5.2. Substantive findings. One interesting finding is that the estimated inter-
cept of β∗

3 is significantly greater than 1. From a modeling aspect, this contradicts
the common assumption of the linear OU process and demonstrates the added
value of the nonlinear model considered. Practically, compared to the dipping at
night, the daytime surge is much faster at the beginning and slower at the end,
resulting in a less stable change.

The covariates were found to play discrepant roles in affecting the subjects’
daytime and nighttime CV dynamics. To further shed light on the substantive im-
plications of such differences, we compared two aspects of the modeling results
thought to be important from a CV standpoint: (i) daytime and nighttime equilib-
rium levels of CV activities (modeled by β∗

2 and β∗
5 ); (ii) relative rates and the

instability of the surge and dipping of CV activities.
Caffeine and gender were related to the CV activities equilibrium at night, while

gender, race and age are related to the daytime equilibrium. (i) The effects of caf-
feine intake in the literature remain mixed. For instance, Eggertsen et al. (1993) re-
ported that “habitual coffee drinking did not influence the 24-hour blood pressure
profiles.” However, Green and Suls (1996) found that caffeine intake affected day-
time SBP as well as DBP, and nighttime BP. Lane et al. (2002) showed increased
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levels of ABP persisting for a few hours following caffeine consumption. In this
study, we found that caffeine significantly increased the CV activities equilibrium
at night (β51), which is shown in Figure 3(a). In contrast, caffeine intake in the
daytime did not affect the CV activities equilibrium in the morning [Figure 3(b)].
(ii) Carels, Blumenthal and Sherwood (2000) showed that effect of negative emo-
tion increases the whole day CV activities. However, the daytime and nighttime
CV activities were not studied separately. In our study, the daytime equilibrium
was not related to negative emotion. (iii) We found that male subjects have higher
equilibrium in both day and night. Studies using 24-hour ABP have shown that
BP is higher in men than in women at similar ages [Reckelhoff (2001)]. (iv) Elder
subjects have higher daytime equilibrium. In the US population, SBP increases
progressively with age, and DBP peaks at around age 55 years. Central arterial
stiffening with age is considered to account for this phenomenon [Franklin et al.
(1997)]. (v) Minority subjects exhibit higher daytime equilibrium. However, black
and white subjects do not show much difference in the nighttime equilibrium.
Hinderliter et al. (2004) reported that African Americans have a smaller noctur-
nal decline in BP than white subjects.

The disagreement between Hinderliter et al. (2004) and our result regarding
race difference in nighttime equilibrium may be explained by the relative rate of
change found to be smaller for black subjects in our model. In Hinderliter et al.
(2004), the daytime and nighttime BP were defined to be the average BP when
subjects are awake or asleep. As illustrated in Figure 2(a), the average score is
larger for subjects with a smaller rate of change even when the daytime and night-
time equilibriums are identical. In this aspect, our result agrees with Hinderliter
et al. (2004), which may shed light on the advantage of our data analysis by con-
sidering the change of CV activities in addition to equilibriums.

The rate of change of CV activities was seldom studied in the literature. (i) We
found that white subjects have a faster nighttime relative dipping rate. The pattern
of latent scores and drift functions are similar to those shown in Figure 2(a) and (b).
(ii) The daytime surge rate and stabilization parameter are affected by daytime caf-
feine intake. Although the absolute rates of change of caffeine users are relatively
small due to the smaller difference between the two equilibriums, relative morning
surge rates are larger and the surge rates are more stable. The patterns of latent
scores and drift functions for subjects with different levels of caffeine consump-
tion are shown in Figure 3(b) and (e). (iii) Male subjects have a higher relative
surge rate. The latent scores and drift functions for male and female are shown in
Figure 3(c) and (f).

6. Conclusion. We have presented a latent SDE framework for population
dynamic data with covariates measured at irregularly spaced time points. Using
the Euler–Maruyama approximation to generate numerical solutions of the SDEs,
several local and global samplers for sampling the latent processes have been de-
veloped based on modifications of existing samplers in the literature. The proposed
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model has been applied to the Duke Biobehavioral Investigation of Hypertension
study. Significant covariate effects have been identified. Risk factors of Coronary
heart disease (CHD) in different scenarios have been discussed. Several scientific
findings in our analysis were not evident from previous studies. First, more infor-
mation of the population dynamic data is revealed in our study. Instead of studying
the difference between daytime and nighttime CV activities, we investigate sev-
eral dynamic characteristics of CV activities, including the daytime and nighttime
equilibriums, rates of change and change stability during the night dipping and
morning surge, respectively. Second, we explain the variation among the popula-
tion dynamic data with the effects of covariates. We identify covariates that are
correlated with these dynamic characteristics. Third, the covariates effects for the
characteristics in daytime and nighttime are found to be asymmetric.

There are still some limitations of the proposed model, and further develop-
ments are needed. First, the processes between different subjects are assumed to
be independent in our model. One possible alternative is to consider random effects
variations of the proposed modeling framework to allow for information borrowing
among subjects. Second, the time windows for capturing BP surges and dipping
were constructed based on subjective information. It would be more appealing to
develop data-driven methods to extract daytime and nighttime windows, or to es-
timate the transition/change points empirically [e.g., Barry and Hartigan (1993)].
Finally, the initial conditions of the SDEs were fixed to the estimated latent scores
for each subject at the first observed time point. Other methods for approximating
the unknown initial conditions [e.g., as mixed effects to be estimated as other mod-
eling parameters; Chow et al. (2015)] can, in principle, be used with the proposed
MR algorithm. The effects of using different approaches to estimate the initial
conditions of latent SDE models warrant further investigation.

The MR algorithm can produce efficient MCMC chains as the resolution in-
creases. However, careful design and implementation are still required for the MR
algorithm to work properly and efficiently. The proposal distribution consists of
two parts, that is, the posterior distribution at the previous resolution and the pro-
posal distribution of the processes at additional time points at the new resolution.
The posterior distribution depends recursively on the local updating algorithm at
the first resolution. Thus, the performance of the local updating algorithms should
be reasonably satisfactory at the first resolution in order to provide good building
blocks for the MR algorithm. Otherwise, the empirical distribution of the MCMC
samples may not approximate the posterior distribution well, and may not serve
as a good proposal distribution in the cross-resolution sampler, resulting in a low
acceptance rate of the cross resolution move and offsetting any potential advan-
tages of the MR algorithm. We use the sampler in Lindström (2012) as the second
part, which contains a tuning parameter accounting for the nonlinearity of the pro-
cesses. We suggest using the same tuning parameter in the local sampler with high
acceptance rate.
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The efficiency of the MR algorithm may be reduced when the number of sub-
jects is large. The MR algorithm is essentially a MH algorithm, which updates
the processes for all subjects at observed and imputed time points and all pa-
rameters simultaneously. Maintaining the acceptance ratio of a large number of
random variables is challenging for the MH algorithm. Algorithms to update the
processes subject by subject may be helpful. In addition, other MCMC algorithms
[e.g., Andrieu, Doucet and Holenstein (2010), Golightly and Wilkinson (2011),
Stramer and Bognar (2011)] that sample the stochastic processes globally and do
not lead to a convergence problem when the number of imputation increases are
worthy of further research.

Another caveat is that even though the block updating scheme can overcome
the dependence between the latent states, the dependence between the latent states
and the parameters in the diffusion function remains, as discussed by Roberts and
Stramer (2001).4 In our studies, the MCMC algorithms work satisfactorily at the
first resolution, and the MR algorithm keeps improving the MCMC algorithms as
the number of imputations increased. However, when the 1-step and block updat-
ing algorithm fail at the first resolution, other alternative MCMC algorithms should
be considered as the building block for the MR resolution to work properly.

SUPPLEMENTARY MATERIAL

Supplementary materials of “Bayesian analysis of ambulatory blood pres-
sure dynamics with application to irregularly spaced sparse data” (DOI:
10.1214/15-AOAS846SUPP; .pdf). We provide details of the MCMC algorithms
and additional analysis of the case study
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