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Abstract. Holroyd and Liggett recently proved the existence of a stationary 1-dependent 4-coloring of the integers, the first sta-
tionary k-dependent g-coloring for any k and ¢, and arguably the first natural finitely dependent process that is not a block factor
of an i.i.d. process. That proof specifies a consistent family of finite-dimensional distributions, but does not yield a probabilistic
construction on the whole integer line. Here we prove that the process can be expressed as a finitary factor of an i.i.d. process. The
factor is described explicitly, and its coding radius obeys power-law tail bounds.

Résumé. Holroyd et Liggett ont récemment prouvé 1’existence d’un 4-coloriage stationnaire et 1-dépendant des entiers, le premier
g-coloriage stationnaire et k-dépendant pour tous k et g, et probablement le premier processus naturel a dépendance finie qui
ne corresponde pas a un facteur par blocs d’un processus i.i.d. Cette preuve définit une famille consistante de distributions fini-
dimensionnelles, mais n’offre pas de construction probabiliste sur tous les entiers. On montre ici que 1’on peut exprimer le processus
comme un facteur par blocs d’un processus i.i.d. Le facteur a une description explicite, et son rayon de codage satisfait des bornes
de type loi de puissance.
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1. Introduction

Let X = (X;);ez be a stochastic process, i.e. a random element of RZ. Wecall X a (proper) g-coloring if each X; takes
values in [¢] := {1, ..., ¢}, and almost surely we have X; # X;41 for all i € Z. A process X is called k-dependent
if the random vectors (X;);es and (X;);ep are independent of each other whenever A and B are two subsets of Z
satisfying |a — b| > k for all a € A and b € B. A process is finitely dependent if it is k-dependent for some integer k.
A process X is stationary if (X;);cz and (X;41);cz are equal in law. Holroyd and Liggett [5] proved the existence of
a stationary 1-dependent 4-coloring, and a stationary 2-dependent 3-coloring. These were the first known stationary
finitely dependent colorings. The descriptions of the processes given in [5] are mysterious, and involve specifying a
consistent family of finite-dimensional distributions rather than an explicit construction on Z.

A natural way to formalize “construction on Z” is the notion of a factor of an i.i.d. process. A process X is a
factor of another process Y = (¥;);cz if it can be expressed as X = F(Y) for some deterministic function F that is
translation-equivariant, i.e. that commutes with the action of translations of Z. A factor of a stationary process is
itself stationary. The concept may be strengthened and made quantitative: a factor is finitary if for almost every y
(with respect to the law of Y) there exists ¢ < oo such that whenever y’ agrees with y on the interval {—t¢, ..., }, the
resulting values assigned to 0 agree, i.e. F(y")o = F(y)o. In that case we write T (y) for the minimum such ¢, and we
call the random variable 7 = T (Y) the coding radius of the factor. In other words, in a finitary factor, the symbol X
at the origin can be determined by examining only those variables Y; within a random, finite, but perhaps unbounded
distance T from the origin.

Our main result is that finitely dependent coloring can be done by a finitary factor.
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Theorem 1. There exists a 1-dependent 4-coloring of Z, that is a finitary factor of an i.i.d. process. The coding radius
T satisfies

P(T>t)<ct™, t>1,
for some absolute constants c, o > 0.

Our proof of Theorem 1 gives an explicit description of the finitary factor F, and our 4-coloring X is actually
the same as the one in [5] (but constructed in a different way). This explicit description is quite simple and natural,
although the reasons for 1-dependence remain somewhat mysterious. We also obtain an explicit power «, although it
is very close to 0. Refinement of our method could yield a larger «, but it would still be strictly less than 1, with T
having infinite mean. We do not know whether there exists a finitely dependent coloring that is a finitary factor of an
i.i.d. process with finite mean coding radius.

The existence of stationary finitely dependent colorings is surprising for several reasons. A block factor is a finitary
factor with bounded coding radius (so that X ; is a function of (Y;_,, ..., Y;4,) for some fixed ¢). Block factors of
i.i.d. processes provide a natural means to construct finitely dependent processes: if the coding radius is at most ¢
then the process is 2¢-dependent. Indeed, for several decades it was an open problem whether every stationary finitely
dependent process was a block factor of an i.i.d. process (see e.g. [8—10]). The first counterexample appeared in [3]
(see also [1]). Prior to the discovery of the finitely dependent coloring in [5], there was a seemingly well-supported
belief that most “natural” finitely dependent processes are block factors (see e.g. [2]). However, it turns out that no
block factor coloring exists (see e.g. [5,7,12]). Hence, the result of [5] shows that on the contrary, the very natural
task of coloring serves to distinguish between block factors and finitely dependent processes. In fact, using coloring
as a starting point, the same conclusion can be extended to every shift of finite type satisfying certain non-degeneracy
conditions. It is also interesting that a finitely dependent coloring cannot be hidden Markov. See [5] for more details.

Extensions, questions and applications

As mentioned above, [5] proves the existence of a stationary 2-dependent 3-coloring as well as a 1-dependent 4-
coloring. In fact, the two processes are defined essentially identically, except using different numbers of colors. (But
surprisingly, the same construction does not yield a finitely dependent g-coloring for any g ¢ {3, 4}.) One may attempt
to apply our method to the 2-dependent 3-coloring, but we will see that it meets a fundamental obstacle in this case.

A result of Smorodinsky [13] states that stationary finitely dependent processes of equal entropy are finitarily
isomorphic, implying that the 2-dependent 3-coloring of [5] is also a finitary factor of an i.i.d. process. Unfortunately,
[13] contains only a brief sketch of the proof, and the details of the argument do not seem to be available. In any
case, we do not know how to express the 2-dependent 3-coloring as an explicit finitary factor of an i.i.d. process,
analogously to the one we exhibit for the 4-coloring.

Very few stationary finitely dependent colorings are currently known. By a result of Schramm (see [7] or [5]), no
stationary 1-dependent 3-coloring exists. The stationary 1-dependent 4-coloring is conjectured in [5] to be unique,
although proving this is wide open, and the current construction does not appear to help. The case (k,g) = (1,4) is
shown in [5] to be a critical point in a certain sense. It is plausible that the 2-dependent 3-coloring is unique also,
although the evidence is less strong in this case. It is natural to expect that there is far more flexibility in k-dependent
q-colorings for larger k and g, although constructing examples currently appears difficult. In [6], a 1-dependent g-
coloring that is symmetric in the colors is constructed for each g > 4. Besides these colorings and the two in [5], and
straightforward embellishments thereof, no other examples are known. One such embellishment, described in [5], is
a 3-dependent 3-coloring that arises as a simple block factor of the 1-dependent 4-coloring. Since a composition of
finitary factors is finitary, Theorem 1 implies that this 3-dependent 3-coloring is a finitary factor of an i.i.d. process
also.

One natural guess is that finite mean coding radius is possible except in “critical” cases. In light of the above
observations, this would lead to the conjecture that there exists a k-dependent g-coloring that is a finitary factor of an
i.i.d. process with finite mean coding radius if and only if k > 1, ¢ > 3, and (k, q¢) ¢ {(1, 3), (2,3), (1,4)}.

Coloring on Z is a key case within a more general framework. It is proved in [5] that for every shift of finite type
S on Z that satisfies a certain non-degeneracy condition, there is a stationary finitely dependent process that lies a.s.
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in S. Additionally, in the d-dimensional hypercubic lattice Z, there exist a 1-dependent ¢-coloring and a k-dependent
4-coloring (where g and k depend on d). These facts are proved by starting from the 1-dependent 4-coloring of Z and
applying block-factors (in some cases using methods developed in [7]). Consequently, using our Theorem 1, each of
these processes is also a finitary factor of an i.i.d. process.

The question of g-coloring as a finitary factor of a i.i.d. process (without the finite dependence requirement) is
addressed in [7], including on Z?. Depending on ¢ and d, the best coding radius tail that can be achieved is either a
power law (when ¢ = 3 and d > 2) or a tower function (when g >4 andd >2,0org >3 andd = 1).

Coloring has applications in computer science. For instance, colors may represent time schedules or communi-
cation frequencies for machines in a network, where adjacent machines would conflict if they used the same color.
(More general constraints can be modeled by shifts of finite type.) Finite dependence implies a security benefit — an
adversary who gains knowledge of some colors learns nothing about the others, except within a fixed finite distance.
A finitary factor of an i.i.d. process is also desirable. It has the interpretation that the colors can be computed by the
machines themselves in distributed fashion, based on randomness generated locally, combined with communication
with machines within a finite distance. All machines follow the same protocol, and no central authority is needed. See
e.g. [11,12] for more information. Unfortunately, the finitary factor of Theorem 1 is of limited practical use because
of the heavy tail of T — the communication needed to determine the color at the origin is almost surely finite, but often
huge.

Outline of proof

As mentioned earlier, the construction in [5] involves specifying the law of the coloring restricted to a finite interval,
and proving that these laws form a consistent family. The law on an interval has a probabilistic interpretation, involving
inserting colors in a random order. However, this order is not uniform, but weighted to favor insertions at the endpoints.
The random orders themselves are therefore not consistent between different intervals. Using uniformly random orders
instead gives consistent orders but inconsistent colorings. However, we show that, in the limit of a long interval, the
choice of weight does not affect the law near the center. The key observation is that endpoint insertions are typically
few (in fact ®(logn) in an interval of length n), even under the weighting, so their effect can be neglected. In the
course of the proof we explore various properties of insertion processes that seem interesting in their own right.

To obtain a factor of an i.i.d. process, we then introduce a “graphical representation” of the insertion process
that can be extended naturally to Z. Each inserted color must itself be randomly chosen, and must differ from its
neighbors. With 4 (or more) colors, this means that there is a choice, and we use this to define special locations at
which the random color can be decoupled from its surroundings, leading to a finite coding radius. (On the other hand,
with 3 colors there is no choice — an inserted color must differ from its neighbors, which in turn differ from each other.
For this reason, our method does not enable the 2-dependent 3-coloring to be expressed as a finitary factor.)

2. The construction

Fix a number of colors g > 3. Let (U;);cz be i.i.d. random variables, with each U; uniformly distributed on the interval
[0, 1]. We interpret U; as the arrival time of the integer i. The idea will be that when an integer arrives, it chooses
a color uniformly at random from the colors that are not present among its two current neighbors (i.e. the nearest
integers to the left and to the right that arrived before it), although the situation is complicated by the need to do this
locally yet consistently throughout Z. For i € Z, define:

L@):=max{j <i:U; <U;};

R(i):=min{j >i:U; < U;}.
Let (¢;)iez be i.i.d. permutations, with each ¢; uniformly distributed on the symmetric group S, of permutations of
[¢], and with (¢;);cz independent of (U;);cz. The idea is that ¢; denotes the preference order of integer i over the g
colors, with ¢;(j) being i’s jth favorite color, for j =1,...,q.

It is natural to assign i € Z to a point with coordinates (i, U;), and to join it with directed edges to the points
corresponding to L(i) and R(i). This gives an infinite graph composed of triangles, with constant out-degree 2, as in
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Fig. 1. Part of the infinite graph obtained by joining each integer i to L(i) and R(i).

Figure 1. (Finite restrictions of this graph will appear in the later proofs.) We will use (¢;);cz to choose a random
proper coloring of this graph.
Given (U;);ez and (¢;)icz, we seek a sequence of colors (X;);ez € [¢1% that satisfies the system of equations

Xi=¢i(K), i€Z,
where K = K (i) = min{k €lgl: Xpu #¢i(k) # XR(,-)}. @)

Thus, the integer i is assigned its favorite color X; among those that have not been taken by its current neighbors at
its arrival time.

It is easy to check that any solution (X;);cz to (1) is a g-coloring: indeed, we have X ;) # X; # Xg(), but if
Uiy+1 < U; then R(i) =i + 1, and otherwise L(i + 1) =i; thus, X; # X;;+1. However, it is not immediately clear
whether there is a solution: X; is expressed by (1) in terms of X ) and X g(;), which in turn are expressed in terms
of X1.(L@i))» XR(L(i))> etc., so the computation apparently involves an infinite regress.

The resolution of this issue depends crucially on the number of colors. By a similar argument to the above, any
solution must have Xy # Xg(;) for all 7, so precisely two colors are ruled out for X; by the requirement X ;) #
X; # XR()- Therefore, if g =3 then only one color remains, so the preference order ¢; is irrelevant. On the other
hand, if g > 4 then i has a choice, therefore it will never need its 4th favorite color ¢;(4) or worse. This will allow us
to end the regress: if the favorite of i is the 4th favorite of L(i) and R(i), then we know that i will receive its favorite
color. Using this idea, we will prove the following in the next section.

Proposition 2. Fix g > 4. Let (U;)iez be i.i.d. uniform on [0, 1], and (¢;);cz i.i.d. uniform on S;, independent of
each other. Almost surely, the system of equations (1) has a unique solution (X;)icz. Moreover, (X;)icz is a finitary
factor of the i.i.d. process (Ui, ¢i))iez, with coding radius T satisfying

P(T>t)<ct™, t>0,
for some ¢, a > 0 depending only on q.

In the later sections we will prove that when g = 4, the process (X;);ez coincides with the 1-dependent 4-coloring
constructed in [5]. One might hope that our new construction would lead to a more transparent explanation for the
1-dependence phenomenon, but, so far, this has not been realized — our proof of 1-dependence ultimately relies on the
cylinder probability computations of [5]. Such an explanation would have to account for the fact that 1-dependence
holds only for ¢ = 4 colors, not for any other g (see Theorem 5).

When ¢ = 3 it is not difficult to check that a.s. the system of equations (1) has exactly 3! = 6 solutions. There
is a.s. a uniquely defined partition of Z into 3 sets, which depends on (U;);cz but not on (¢;);cz, and each solution
corresponds to an assignment of colors to the 3 sets. If this assignment is chosen to be a uniformly random permutation
in S3 conditional on (U;);cz (or, equivalently, conditional on the graph mentioned above) then the resulting process is
in fact the 2-dependent 3-coloring of [5]. (This 3-coloring is the 4-coloring conditioned not to have color 4 — see [5].)
However, such a “global assignment” step means that the construction is not a finitary factor. It is tempting to conclude
from this argument that the 2-dependent 3-coloring cannot be expressed as a finitary factor of an i.i.d. process, or at
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least that such a factor must obey some stringent lower bound on its coding radius. (And, if the postulated uniqueness
holds, such a conclusion would of course apply to every stationary 2-dependent 3-coloring!) However, it is not clear
how to make this intuition rigorous.

3. Coding radius bound

In this section we prove Proposition 2. Motivated by the discussion of the previous section, given (U;, ¢;);cz, We say
that the integer i is lucky if

OLiy(4) =i (1) = Ppri ().

(We could instead allow ¢; (1) to be equal to ¢ (i) (k), ¢y (k) for any k, k&’ > 4 here, but the above definition suffices,
and in any case our main focus is ¢ = 4.) Here is the key step.

Lemma 3. Let g > 4 and let (U;, ¢;)icz be as in Proposition 2. For any m > 0, a.s. there exist lucky integers A and
B with [—m, m] C [A, B] such that

max{UA,UB}<min{U,-:iE(A,B)}. 2)
Moreover, A and B can be chosen so that

P(max{|L(A)

R(A)

,|L(B)

RB)|}>1t)<et™, t>1, (3)

) s

for some positive constants ¢ = c¢(q, m) and « = a(q) > 0.

Proof of Proposition 2. Using Lemma 3 with m =0, let T > 1 be the (random) smallest integer for which there exist
lucky A < 0 < B satisfying (2) for which the maximum appearing in (3) is at most 7. This 7 can be determined from
the variables (U;, ¢;) for |i| < T (by examining the integers i in order of absolute value), and Lemma 3 states that it
satisfies the sought tail bound.

Since A and B are lucky, in any solution to (1) we have that X4 = ¢4 (1) and Xp = ¢pp(1). Condition (2) implies
that for all i € (A, B) we have L(i), R(i) € [A, B]. Therefore, the remaining colors (X;);c(4,p) in the interval can
be determined via (1) from ((U;, ¢;))ic[4,B], by considering them in increasing order of U;. In particular, we can
determine Xj.

By stationarity, we can similarly find an interval [A;, B;] > i corresponding to any i € Z. By applying Lemma 3
with larger m, it is easy to see that the colors (X ;) je[4;,8,] computed from different intervals are consistent with each
other and with (1). We conclude that the resulting (X;);cz is the unique solution to (1), and is a finitary factor of
(Ui, ¢i)icz with coding radius T. O

Before proving Lemma 3, we briefly discuss where the power law tail bound comes from. First note that even R (0)
has mean oo, since it is the location of the second record minimum of the i.i.d. sequence (U;);>o (the first record being
at i =0). However, the integer B of Lemma 3 is much larger than this. In addition to being a record, it must be lucky.
Consider the simplified situation in which (G;);cz are independent events of probability p, independent of (U;);cz.
Let J be the smallest positive integer for which G occurs and (U;);>0 has a record minimum at J. Then, by the
standard fact (see e.g. [4, Example 2.3.2]) that there is a record at i with probability 1/i independently for different 7,
we have

t
P(J >1) =l_[<1 — z£> :@(f”) ast — oQ.

i=1

For g = 4, the probability that an integer is lucky is 1/16, therefore at best we can expect a power o = 1/16 in our
tail bound on the coding radius. We have not attempted to optimize ¢, so the bound we prove is in fact much smaller
than this. At the expense of additional complexity, our method below could be adapted to prove a power closer to
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1/16. By refining the definition of lucky integers to encompass more complicated local patterns of preferences, the
bound could likely be increased beyond 1/16. However, any such improvement would still result in a power « strictly
less than 1, and infinite mean coding radius.

Proof of Lemma 3. To find suitable A and B we examine the integers in order of absolute value. Call i € Z
an absolute record if U; is smaller than all the terms that precede it in the sequence U;, U;,, Uj,, ..., where
(i1,i2,i3,...) =(0,1,—1,2,-2,...). Since the reordered sequence is of course still i.i.d., i; is an absolute record
with probability 1/, and the events that different integers are absolute records are independent.

Now, for n > 1, we compute the probability

P[[2", 2”“) contains exactly one absolute record, and (—2’”rl , —2"] contains no absolute records|

Ul (D)) Y e
- 2j 2j+1) & 1-1/@D)
1
> —.
=8

(The product telescopes, and the sum can be bounded via its smallest term.) Similarly, the probability that
(—2"*1, —2"] contains exactly one absolute record while [2, 2"1) contains none is also at least 1/8.
For n > 1, let E,, be the event that there exist integers a, b, c, d, e satisfying all of:

(1) 25n <a< 25n+] < b < 25n+2 <-—c< 25n+3 < —d < 25n+4 <e< 25n+5;

(i) a, b, c, d, e are the only absolute records in (—21>, =257 U [257,257+3);
(iii) ¢c(4) = Pa(1) = ¢p(4), and ¢pa(4) = Pc(1) = Pe(4).
On E,, we have L(a) =c, R(a) =b, L(c) =d, and R(c) = e; therefore, a and c are lucky; we take A =c and B =a.
We have [—2",25"] C [A, B], and (2) holds. Moreover, the maximum in (3) is at most 2313

On the other hand, the events (E,),>1 are independent. Using the previous computation, we have P(E,) >
(1/8)(1/9)*. We conclude that the claimed bound holds with @ = —log(1 —872¢~*)/(5log2). (When g = 4, this is
approximately 3 x 1078, ]

4. Weighted insertion processes

We introduce a family of random proper colorings of finite intervals, which we call weighted insertion (WI) colorings.
Throughout this section, an interval [a, b] is understood to denote the set of integers [a, b] N Z, where a, b € Z. A finite
sequence X = (X;);e[a,] 1S a coloring of [a, b] if x; # x;41 foralla <i <b.

Fix a number of colors ¢ > 3 and a real weight w > 0. For n > 1, we define the WI coloring X = X" € [¢]" of the
interval [n] = [1, n] (with parameters (w, ¢)), via an iterative constriction. Whenn =1, X Ulisa sequence of length 1
consisting of a uniformly random color from [¢]. Conditional on X" = (X1, ..., X,,), we construct X"*!! by the
following insertion procedure.

First, we choose a random insertion point I, with law that is uniform on [1, n + 1] except that the two endpoints
have bias w:

2 - j=lorn+1;
P(I:i): 2w+1n—1 -,
Swtn—1° l=4,...,n.

Then we choose a random color Z uniformly from the set

[gI\{X;—1, X1}

of colors that differ from the neighbors of the insertion point. Here, Xo and X, are taken to be co (say), so that the
above set has size ¢ — 1 if I € {1, n + 1}, and otherwise size ¢ — 2 (since X;_1 # X in a proper coloring). Finally,
we insert Z just before location / to form X" +11:

X=Xy, XL Z X X).
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For an arbitrary integer interval [a, b], we define the WI coloring X%?! = (X,, ..., X}) to be simply equal in
distribution to X" = (Xy,..., X,,) where n = b — 1 + 1. (No particular joint law is assumed between different
intervals, at present.)

For x € [¢]", let

P(x) =Pl (x) :=P(x" =)

denote the probability mass function of the WI coloring X! of length n. The above iterative description immediately
gives rise to a recurrence for P. Let X; := (x1,...,Xj—_1, Xi+1,...,X,) denote the sequence x with its ith element
deleted. Then, for n > 2, if x € [¢]" is a proper coloring,

1 w R R =
O [q — PG+ PGE)]+ mzp(xi)},

i=2

and P(x) =0 if x is not a proper coloring.
Two special choices of the weight w play an important role. The first is
-1

q—2
In this case, the mass function of the insertion point / is proportional to the number of possible colors that are available
for insertion at that point (g — 1 or ¢ — 2 according to whether or not it is an endpoint), so the insertion procedure
amounts to choosing the pair (/, Z) uniformly from the set of all its allowed values. In this case, the above recurrence
reduces to

1 n
Ph)=——— P(). 5
) n(q_z)H; ) 5)
Moreover, we have the following.

Proposition 4 (Holroyd and Liggett [5]). Let g > 3 and w = w*(g). The laws of the WI colorings on integer intervals
are consistent. That is: if [a, b] C [A, B] then the restriction X[A’B]|[a,b] is equal in law to xla.bl,

The proof of Proposition 4 in [5] is a fairly straightforward induction using (5). By the Kolmogorov extension
theorem, Proposition 4 implies that there exists a stationary coloring (X;);cz on the infinite line whose restrictions to
intervals are given by the WI model. This process has the following surprising properties. The proof given in [5] is
again by induction using (5), and is short but mysterious.

Theorem 5 (Holroyd and Liggett [5]). The stationary coloring (X;);cz that extends the WI model with weight w*
is 1-dependent when q = 4, and 2-dependent when q = 3, but not finitely dependent when q ¢ {3, 4}.

It is easy to check that the consistency property of Proposition 4 does not hold for any choice of weight other
than w*. The main purpose of this section is to prove the following proposition, which states that w* is an attracting
fixed point under restriction.

Proposition 6. Fixq >3, w > 0and m > 0. Forn > m, let X" be the WI coloring on [—n, n] with parameters (q, w).
As n — oo, the restriction X" |[—m m] of the coloring to [—m, m] converges in law to the WI coloring on [—m, m] with
parameters (q, w*).

The second important choice of weight is w = 1. To explain the significance of this case, we first observe that there
is a random total order of the interval naturally associated to the WI coloring, which records the order in which the
color insertions took place.
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To define the random order formally, it is convenient to work first on [1#] = [1, n] and iteratively construct the equiv-
alent permutation of [n], which will be denoted il Set It = (1) =id € Sy, and, given nm = (Iy, ..., I,) € S,,
let [T+ D be obtained by inserting n + 1 at the same location that the new color was inserted:

o=y, ..., O;_,n+1,0,,...,10,).

The WI order on [1, n] is the random total order < = <"l defined by setting i <1 j if and only if Hl["] < 1'15."]. The

WI model with parameters (g, w) on [1, n] specifies the joint law of the coloring X = X"l and the order <t = <"l
On an interval [a, b] with b — a + 1 = n, we similarly define the joint law of (X[“’b], Q[a’b]) by setting xla.bl = xlnl
(as before), and i <1!*?) jifand only ifi —a 41 <™ j —a+1.

On given interval, observe that the law of the order < depends on w but not on g, while the conditional law of the
coloring X given <1 depends on g but not on w. We investigate both of these laws below. First we note the following.

Lemma 7. When w = 1, the WI order on [a, b] is a uniformly random total order on [a, b]. (In particular, for
[a, b] C[A, B] we have the consistency <[A'B]|[a,b] 4 <1[“*b].)

Proof. This is immediate from the iterative description, since the insertion point / is uniformly distributed on
[1,n+1]. ]

It is easy to check that consistency of the order does not hold for any other weight. Since 1 # w*, it is interesting
that consistency cannot hold simultaneously for both the coloring and the order.

We now consider the law of the WI order in more detail. For any total order < on an interval [a, b], we define the
set of founders to be

Foy:={iela,bl:iajVj<ioriajVj>i}.

If we regard i as a point in the plane with horizontal coordinate i and vertical coordinate given by its position in the
order <, the founders are those points whose lower-left or lower-right quadrant contains no other points; see Figure 2.
(Also, F(<) is the set of indices at which the inverse of the associated permutation attains a historical minimum or
maximum.)

In the iterative description for the WI model on [1, n], the founders are the indices i at which the color X; was
inserted at an endpoint of the interval during the relevant insertion step (including the case of the first color to be
chosen). An immediate consequence is that the law of the random WI order < on [1, n] is given by

W F @
Pa=<x)=——, (6)
Z(w,n)
where < is any of the n! deterministic total orders on [1, #], and Z(w, n) is an appropriate normalizing constant.
Our next goal is to prove the following analogue of Proposition 6 for WI orders. This time, w = 1 is the attracting
fixed point.

1 30

Fig. 2. A random total order < of the interval [1, 30], with founders shown as filled discs, and other elements as unfilled discs.
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Proposition 8. Fix w > 0andm > 1. For n > m, let <" be WI order on [—n, n]. As n — 00, the restriction <" |[—pm m]
converges in law to a uniformly random total order on [—m, m].

Here is the only quantitative estimate that we need in this section.

Lemma 9. Fix w > 0 and n > 1, and let <"} be WI order with weight w on [1,n]. Ifn/3 < k < 2n/3 then

P(k e F(<")) < Ck;gn,

where c is a constant depending only on w.

Proof. Fix w, and write p, x :=P(k € F(<i!™)). By symmetry we have p, 11—k = Pn.k> and pn.1 = pp.n = 1 since
the endpoints of an interval are always founders. Considering the last step of the insertion procedure gives the recur-
rence

Pn+lk = Wk —2)puk—1 + W +n—k)pai]

2w+n—1[

for 2 < k < n. (Here the two terms on the right reflect the possibilities that the insertion is before, of after, location k;
if the insertion is at k then k is not a founder.) A straightforward induction then shows that p; x is unimodal in k:

n
Pnk = Pnk+15 k < E (7

On the other hand, writing s, := ) ; pp; = E|F (<), we obtain similarly s; = 1 and

N 2w
) =y _
n+1 n 2wtn—1
and hence
sp <c1logn (8)

for some ¢; = c1(w).
Now, if n/3 < k < 2n/3 then (8) and (7) give

[n/3] n
Cl 10gn = 8p = Z DPn,i = gpn,(n/S]y

i=1
SO pn,1ny31 < (3c1logn)/n, and the result follows from (7). (Il
Corollary 10. Fix w > 0 and m > 1. For n > m, let <" be the WI order with weight w on [—n, n]. We have
IP’(]:(<1”) N[—m,m] = @) —1 asn— oo.
Proof. This follows from Lemma 9 by a union bound. O

Lemma 11. Fix w > 0, and integer intervals [a,b] C [A, B]. Let <1 be the WI order on [A, B]. Given the event
F () Na, b] =@, the conditional law of the restriction <|(q,p] is the uniform measure on total orders of [a, b].

Proof. Consider the representation (6) of the law of <. Let <1, < be two total orders on [a, b] that differ by a single
transposition. The two events

{]:(<])m[aab]=®7<]|[a,b]=<1i}a l=172



762 A. E. Holroyd

correspond to two (disjoint) sets of total orders on [A, B]. There is an explicit bijection between these sets that
preserves the set of founders: we simply exchange the positions of the two transposed elements of [a, b] within the
order on [A, B]. O

Proof of Proposition 8. This is an immediate consequence of Corollary 10 and Lemma 11. |

We now shift our focus to the conditional law of the WI coloring given the total order. For a total order < on an
interval [a, b], define functions L = L, and R = R, on [a, b] by

L@{):=max{j <i:j«i};
)
R(@) :=min{j >i:j<i},

where min @ = max & := o0. Note that the founders of < are the elements i for which L(i) or R(i) is infinite.

By considering the insertion procedure for the WI model on [a, b], we see that the conditional law of the coloring
given the order < can be expressed as follows. We assign colors to the elements of [a, b] one by one, in the order <.
Conditional on the previous choices, the color X; assigned to i is chosen uniformly at random from the set

[gI\{XLai), Xri}-

(The set has size g at the first step, and subsequently has size ¢ — 1 if i is a founder, and otherwise g — 2. Of course,
L(i) and R(i) correspond to the neighbors of i when it was inserted.)

The above sequential coloring may be done in other orders. Specifically, consider the directed graph G = G (<)
with vertex set [a, b] and with edges from i to L (i), and from i to R(7), for each i, wherever these quantities are finite.
There is a partial order < on [a, b] generated by the set of inequalities {i > j : G has an edge from i to j}. Then the
above sequential coloring procedure may be done in any order that is a linear extension of <. The resulting conditional
law is the same for all such linear extensions.

The graph G, and a coloring, are illustrated in Figure 3. It is helpful to draw vertex i with horizontal coordinate i
and vertical coordinate given by its position in <, as before. Then G has a “lower” path composed of all the founders,

VEVOASVEVOAVOVAOVARVOEAVARGEAY

Fig. 3. Top: The directed graph G corresponding to a random total order on the interval [1, 30]. Founders are shown as filled discs. Middle:
A 4-coloring of G. Bottom: The resulting 4-coloring of the interval. Each color has a different symbol.
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with edges directed inwards along the path towards the earliest element in the order. On each edge of this path, there
is a structure built of triangles, each with its base on an existing edge (starting with the edge of the path) and its apex
above that edge.

The conditional law has the following Markovian property.

Lemma 12. Fix g > 3, and consider integer intervals [a,b] C [A, B]. Let <, <' be deterministic total orders on
[A, B, and let X, X' be random colorings on [A, B] chosen according to the respective conditional laws given <, <
under the WI model with q colors. Suppose that:

1) <1|[u,b] = <1/|[a,b]7 and
(i) F(<lia,p1) = {a, b}.

d
Then Xl[a,p) = X/|[a,b]~

Proof. The proof is illustrated in Figure 4. Let G, G’ be the directed graphs on [A, B] corresponding to <, <. Con-
dition (ii) implies that G has an edge between a and b (in some direction), and that for all i € (a, b) we have i > a
and i > b. Therefore, the subgraph of G induced by [a, b] includes all the edges of G that are incident to integers
in the interval (a, b), and no edges out of {a, b} except the edge connecting them. By symmetry under permutations
of [¢], the joint law (X,, X}) must be uniform on the set of g> — g ordered pairs of unequal colors. By (ii), all the
same observations apply to G’, and the subgraphs of G, G’ induced by [a, b] are identical. By the sequential coloring
procedure described above, the conditional law of X | 5) given (X,, X3) is thus identical to its counterpart for X',
concluding the proof. (]

Corollary 13. Fix g > 3, and consider integer intervals [a,b] C [A, B] C [A, B]. Let <, <' be deterministic total
orders on [A, B), and let X, X' be random colorings chosen according to their respective conditional laws. Suppose
that:

(i) <lfa.p1 = <l[a.B], and
(i) F(<lja,) Nla,bl=2.

d
Then X|[a,p) = X/l[a,b]-

Fig. 4. Anillustration of Lemma 12 and its proof. The directed graphs associated with two different orders on the interval are shown. The restrictions
to the highlighted subinterval agree, and the only founders of the restricted order are the endpoints. Therefore the conditional laws of the colorings
agree on the subinterval.
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Proof. Write < := <|[4,p). Define [c, d] to be the minimal interval between founders of < that contains [a, b].
That is: let ¢ := max{F(<g) N [A,a — 1]} and d := min{F(<p) N [b + 1, B]} (which must be finite because the
endpoints A, B are founders of any order on [A, B]). Then F (<) N [c, d] = {c, d}, which implies that i >¢ ¢ and
i>od foralli € (c,d), and thus F (<|[c,4]) = {c, d}. Now we can apply Lemma 12 to obtain X||¢ 4] 4 X' \tc.d7, Wwhence

d
Xlia,b) = X'l1a,b]- O
We can now prove the main result of this section.

Proof of Proposition 6. Let ¢ > 0. By Corollary 10 with weight 1, choose M = M (m) > m sufficiently large that a
uniformly random order on [—M, M] has no founders in [—m, m] with probability at least 1 — . Now, by Proposi-
tion 8, choose n = n(M) > M sufficiently large that for both set of parameters (¢, w) and (g, w*), the restriction of
the WI order on [—n, n] to [—M, M] differs from the uniform total order on [—M, M] by at most ¢ in total variation.

Let (X, <) and (X*, <*) be WI models on [—n, n] with respective parameters (g, w) and (g, w*). We will couple
them in such a way that their colorings agree on [—m, m] with high probability. First, by the choice of n, couple <1 and
<1* so that, conditional on some event E of probability at least 1 — &, we have that <|{_y m] = <*|[—m, M7, and this
restriction is conditionally uniformly random. By the choice of M, on some further event E' C E withP(E'|E) > 1 —¢
(and thus P(E’) > (1 — €)?), the restriction <|[—m,m) has no founders in [—m, m]. Now, by Corollary 13, we can

couple X and X* (with the correct conditional laws given <1 and <*) so that on E’ we have X | m] 4 X l1=m.m)-
However, the consistency property in Proposition 4 implies that X*|[_, ;] is equal in law to the WI coloring with
parameters (g, w*) on [—m, m], for all n. O

5. Proof of main result

Proof of Theorem 1. Let g = 4, let (U;, ¢;)icz be as in Proposition 2, and let X = (X;);cz be the solution to (1).
By Proposition 2, it suffices to show that (X;);cz is equal in law to the 1-dependent 4-coloring constructed in [5]. By
Proposition 4 and Theorem 5, this will follow if we can show that its restriction to the interval [—m, m] is equal in
law to the WI model with weight w*(4) = 3/2, for every m.

Let < be the total order on Z induced by (U;);cz. That is: leti < j if and only if U(i) < U(j). Let n > 1 be an
integer, let <" be the restriction <|[_, ], and define the neighbor maps L" = L 4+ and R" = R4 via (9), so that
L"(i) or R"(i) is infinite when i is a founder of <. Now define a coloring X" = (X_,, ..., X,) to be the solution
of (1), except restricted to i € [—n, n], and using L”, R" in place of L, R. We take X, := 00, so that when L" (i) or
R"(i) is infinite, the restriction involving Xy or X gn(;y in (1) is ignored. Existence and uniqueness of this solution
are clear by considering the integers i € [—m, m] in the order <.

Since the preference orders ¢; are uniformly random, X" is equal in law to the WI coloring on [—n, n] with 4
colors and weight w = 1. On the other hand, let n > m, and let G, be the event that there exist lucky integers A, B
with [-m,m] C [A, B] C [—n,n]andi > A, B forall i € (A, B). Then by the argument in the proof of Proposition 2,
X"|(=m,m) and X |[—pm ] are equal on G, (where X = (X;);c7 is the global solution to (1) mentioned earlier). Lemma 3
implies that a.s. G, occurs eventually as n — oo. Therefore X" |[_y,m] = X|[(—m,m] a.5. But Proposition 6 states that

X"|[—m,m] converges in law to the WI coloring ¥ with weight w* on [—m, m], s0 X|[—y; m] 4 Y as required. O

Open problems

(i) Does there exist a 1-dependent 4-coloring of Z that is a finitary factor of an i.i.d. process with finite mean coding
radius?
(i1) Does there exist a finitely dependent coloring of Z that is a finitary factor of an i.i.d. process with finite mean
coding radius?
(iii) Does there exist a 2-dependent 3-coloring of Z that can be expressed as an explicit finitary factor of an i.i.d.
process?
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