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Abstract. We study the typical behavior of the harmonic measure of balls in large critical Galton–Watson trees whose offspring
distribution has finite variance. The harmonic measure considered here refers to the hitting distribution of height n by simple
random walk on a critical Galton–Watson tree conditioned to have height greater than n. We prove that, with high probability, the
mass of the harmonic measure carried by a random vertex uniformly chosen from height n is approximately equal to n−λ, where
the constant λ > 1 does not depend on the offspring distribution. This universal constant λ is equal to the first moment of the
asymptotic distribution of the conductance of size-biased Galton–Watson trees minus 1.

Résumé. Nous étudions le comportement typique de la mesure harmonique au bord des boules dans les grands arbres de Galton–
Watson critiques, dont la loi de reproduction est de variance finie. On comprend par mesure harmonique la loi du premier point
d’atteinte de la hauteur n par une marche aléatoire simple sur un arbre de Galton–Watson critique conditionné à avoir une hauteur
supérieure à n. Nous prouvons que, avec une grande probabilité, la masse de la mesure harmonique portée par un sommet choisi
uniformément au hasard de la hauteur n est approximativement égale à n−λ, où la constante λ > 1 ne dépend pas de la loi de
reproduction. Cette constante universelle λ est égale au moment d’ordre 1 de la distribution asymptotique de la conductance de
l’arbre de Galton–Watson biaisé par la taille moins 1.
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1. Introduction

Let θ be a non-degenerate probability measure on Z+, and assume that θ has mean one and finite variance σ 2 > 0.
Under the probability measure P, for every integer n ≥ 0, we let T(n) be a Galton–Watson tree with offspring distri-
bution θ , conditioned on non-extinction at generation n. From our assumption that θ is critical (i.e. of mean 1), T(n)

is a.s. a finite tree. We denote by T(n)
n the set of all vertices of T(n) at generation n. The classical Yaglom’s theorem

in the theory of branching processes states that n−1#T(n)
n converges in distribution to an exponential distribution with

parameter 2/σ 2 (see e.g. Theorem 9.2 in Chapter 1 of [1]).
Conditionally on the tree T(n), we consider a simple random walk on T(n) starting from the root. Let �n be the first

hitting point of generation n by the random walk. We call the distribution of �n the harmonic measure μn at level
n, which is a random probability measure supported on the level set T(n)

n . The main result of the present work is the
following:
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Theorem 1. Let �n be a random vertex uniformly chosen from T(n)
n . There exists a universal constant λ ∈ (1,∞),

which does not depend on the offspring distribution θ , such that for every δ > 0,

lim
n→∞P

(
n−λ−δ ≤ μn(�n) ≤ n−λ+δ

) = 1. (1)

Loosely speaking, if we look at a typical vertex at level n of the conditional critical Galton–Watson tree T(n), then
as shown by (1), it carries with high probability a mass of order n−λ given by the harmonic measure μn. Recall that
the number of vertices of T(n) at generation n is of order n according to Yaglom’s theorem. Since λ > 1, our main
theorem clearly indicates that the harmonic measure μn is far from being uniformly spread over T(n)

n .
To be more precise, by the definition of �n, the convergence (1) can be rewritten as

lim
n→∞E

[
1

#T(n)
n

∑
v∈T(n)

n

1
{
μn(v) > n−λ+δ or μn(v) < n−λ−δ

}] = 0.

Using the theorem of Yaglom, it is easy to see that the preceding convergence is equivalent to

lim
n→∞

1

n
E

[ ∑
v∈T(n)

n

1
{
μn(v) > n−λ+δ or μn(v) < n−λ−δ

}] = 0. (2)

We take δ ∈ (0, λ− 1), and define An := {v ∈ T(n)
n :μn(v) > n−λ+δ}. The convergence (2) implies that for every ε > 0,

P

(
#An

n
> ε

)
−→
n→∞ 0.

On the other hand, by the definition of An, we have μn(v) ≤ n−λ+δ for any vertex v ∈ T(n)
n \ An, and it follows that

μn(T
(n)
n \ An) ≤ n−λ+δ#T(n)

n . Using again Yaglom’s theorem, we get that

P
(
μn

(
T(n)

n \ An

)
> ε

) −→
n→∞ 0.

Therefore, it holds with probability tending to 1 as n → ∞ that, up to a mass of size ε, the harmonic measure μn is
supported on a subset of T(n)

n of cardinality smaller than εn. This simple consequence of Theorem 1 has already been
observed in a recent paper of Curien and Le Gall [3], where, instead of looking at a vertex typical for the tree, they
have considered a vertex typical for the harmonic measure. In Theorem 1 of [3], they have shown the existence of
another universal constant β ∈ (0,1) independent of the offspring distribution θ , such that for every δ > 0, we have
the convergence in P-probability

μn

({
v ∈ T(n)

n :n−β−δ ≤ μn(v) ≤ n−β+δ
}) (P)−→

n→∞ 1. (3)

In other words, the typical mass given by the harmonic measure μn to a vertex at level n drawn with respect to the
harmonic measure is with high probability of order n−β with β < 1, and we can thus say that most of the harmonic
measure μn is supported on a subset of size approximately equal to nβ , which is much smaller than the size of T(n)

n .
One may think of both results, (1) and (3), as the first steps towards a complete analysis of the multifractal nature of
the harmonic measure in critical Galton–Watson trees.

As pointed out by Curien and Le Gall in [3], for studying the harmonic measure at level n on T(n)
n , we can consider

directly simple random walk on the reduced tree T∗n, which consists of all vertices of T(n) that have at least one
descendant at generation n. Moreover, if we scale the graph distances by n−1, the rescaled discrete reduced trees
n−1T∗n converge to a random compact rooted R-tree 
, whose structure is described as follows. We take a random
variable U∅ uniformly distributed over [0,1], and start with an oriented line segment of length U∅, whose origin will
be the root of 
. To the other end of this initial line segment, we attach the initial points of two new line segments with
respective lengths U1 and U2, in such a way that, conditionally given U∅, the variables U1 and U2 are independent
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Fig. 1. A large reduced tree T∗n of height n on the left, and the random tree 
0 on the right.

and uniformly distributed over [0,1 − U∅]. To the other end of the first of these 2 line segments, we attach two line
segments whose lengths are independent and uniformly distributed over [0,1 −U∅ −U1], again conditionally on U∅

and U1. We repeat this procedure independently for the second line segment with U1 replaced by U2. We continue this
construction by induction, and after an infinite number of steps we obtain a random non-compact rooted R-tree 
0

with binary branching (see Figure 1), whose completion with respect to its intrinsic metric d is called the continuous
reduced tree 
. We assume that 
 is also defined under the probability measure P. Its boundary ∂
 is the set of all
points of 
 at height 1, i.e. at distance 1 from the root.

Brownian motion on 
 starting from the root can be easily defined up to the first hitting time of ∂
. Roughly
speaking, this process behaves in the same way as a standard linear Brownian motion as long as it remains inside a
line segment. It is reflected at the root of the tree 
, and when it arrives at a branching point, it chooses each of the
three line segments incident to this point with equal probabilities. The (continuous) harmonic measure μ on ∂
 is
defined as the (quenched) distribution of the first hitting point of ∂
 by Brownian motion.

We then define another (non-compact) random rooted R-tree � with binary branching, such that each point of �

at height y ∈ [0,∞) corresponds to a point of 
0 at height 1 − e−y ∈ [0,1). The resulting new tree � is the Yule tree
which describes the genealogy of the classical Yule process, where individuals have independent exponential lifetimes
with parameter 1 and each individual has exactly two offspring. By definition, the boundary ∂� of � is the set of all
infinite geodesics in � starting from the root (these are called geodesic rays). Due to the binary branching mechanism,
both ∂
 and ∂� can be canonically identified with {1,2}N.

For every r > 0, we write �r for the level set of � at height r . By a martingale argument, one can define

W := lim
r→∞ e−r#�r,

and it is well known that W follows an exponential distribution of parameter 1. For every x ∈ �, we let H(x) denote
the height of x in �, and we write �[x] for the tree of descendants of x in �, viewed as an infinite random R-tree
rooted at x. For every r > 0, we write �r [x] for the level set at height r of the tree �[x]. If one thinks of �[x] as a
subtree of �, the set �r [x] consists of all the points of � at height r + H(x) that are descendants of x. We similarly
define

Wx := lim
r→∞ e−r#�r [x].

It is immediate to see that for every r > 0,∑
x∈�r

e−rWx =W .
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The uniform measure ω̄ on ∂� is defined as the unique random probability measure on ∂� satisfying that, for every
x ∈ � and for every geodesic ray v ∈ ∂� passing through x,

ω̄
(
B

(
v,H(x)

)) = e−H(x)Wx

W ,

where B(v,H(x)) stands for the set of all geodesic rays in � that coincide with v up to height H(x). In earlier work,
ω̄ is also named as the branching measure on the boundary of �. Recall that ∂
 can be identified with ∂� as explained
above. We let ω be the random probability measure on ∂
 induced by ω̄, which will be referred to as the uniform
measure on ∂
.

Theorem 2. With the same constant λ as in Theorem 1, we have P-a.s. ω(dv)-a.e.

lim
r↓0

logμ(Bd(v, r))

log r
= λ, (4)

lim
r↓0

logω(Bd(v, r))

log r
= 1, (5)

where Bd(v, r) stands for the closed ball of radius r centered at v in the metric space (
,d).

Remark. The Hausdorff measure of ∂
 with respect to d is a.s. equal to 1. An exact Hausdorff measure function can
be found in Duquesne and Le Gall [4, Theorem 1.3].

Corollary 3. P-a.s. the two measures μ and ω on the boundary of 
 are mutually singular.

In fact, with the same constant β as in (3), it is shown in Theorem 3 of [3] that P-a.s. μ(dv)-a.e.,

lim
r↓0

logμ(Bd(v, r))

log r
= β.

If we define

B =
{

v ∈ ∂
: lim
r↓0

logμ(Bd(v, r))

log r
= β

}
,

then P-a.s. μ(B) = 1. However, since β < 1 < λ, we get from (4) that P-a.s. ω(B) = 0, which finishes the proof of
Corollary 3.

Similar results for supercritical infinite Galton–Watson trees can be found in Theorem 3 of Liu and Rouault [7] and
in Theorem 6.3 of Lyons, Pemantle and Peres [8], where the uniform measure and the visibility measure (defined as
the law of the geodesic ray chosen by forward simple random walk) on the boundary of the infinite tree are considered.

In order to get a better understanding of the distinguished geodesic ray in the Yule tree � chosen randomly accord-
ing to the uniform measure ω̄(dv), we follow the ideas of Lyons, Pemantle and Peres [9] to construct a size-biased
version �̂ of �, which is the genealogical tree of the following branching process. Initially, there is one particle having
an exponential lifetime with parameter 2, and it reproduces two offspring simultaneously when it dies. We choose one
of them uniformly at random and the chosen one will continue as the initial ancestor, while the other offspring will
independently evolve as the classical Yule process. The size-biased Yule tree �̂ thus defined is an infinite random
R-tree with binary branching. Applying to �̂ the same transformation that relates � and 
0, we get a bounded (yet
non-compact) rooted R-tree 
̂0, which is interpreted as the size-biased version of 
0. Essentially, every point of �̂

at height y ≥ 0 corresponds to a point of 
̂0 at height 1 − e−y . The completion of 
̂0 with respect to its intrinsic
metric is denoted as 
̂, and we call 
̂ the size-biased reduced tree. Its boundary ∂
̂ is similarly defined as the set of
all points of 
̂ at height 1.

Due to the previous description of �̂, one can also construct 
̂ directly as follows. At first, the root ∅ of 
̂ has a
distinguished descendant line of length 1. Let V∅ be a random variable taking values in [0,1] with density 2(1 − x),
and we graft to the distinguished descendant line at height V∅ a subtree which is an independent copy of 
 scaled
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Fig. 2. Schematic representation of the size-biased reduced tree 
̂.

by the factor (1 − V∅). In the second step, we take V1 as an independent copy of V∅ and graft to the distinguished
descendant line at height V∅ + (1 − V∅)V1 another independent copy of 
 scaled by the factor (1 − V∅)(1 − V1).
Note that for each grafting, we choose the left-hand side or the right-hand side of the distinguished descendant line
with equal probabilities. We continue this procedure to graft more subtrees to the distinguished descendant line, with
the height of the grafting position increasing to 1. After an infinite number of steps we obtain a realization of 
̂. See
Figure 2 for an illustration. We assume as before that 
̂ is defined under the probability measure P.

The constant λ appearing in Theorems 1 and 2 can be expressed in terms of the (continuous) conductance of 
̂.
Informally, if we think of the random trees 
 and 
̂ as electric networks of resistors with unit resistance per unit
length, the effective conductances between the root and the boundary in 
 and 
̂ are continuous random variables
denoted respectively as C and Ĉ. From a probabilistic point of view, each of these conductances can be obtained as
the mass under the Brownian excursion measure in the corresponding tree for the excursion paths away from the root
that hit height 1. It is easy to see that both C and Ĉ take values in [1,∞). The law of C has been studied at length in
[3]. Following the above construction of 
̂ and the electric network interpretation, the distribution of Ĉ satisfies the
recursive distributional equation

Ĉ (d)==
(

V + 1 − V

Ĉ + C

)−1

, (6)

where in the right-hand side V,C and Ĉ are independent, and the distribution of the random variable V has density
2(1 − x) over [0,1]. Using this distributional identity (6), we prove that, similarly as the law of C, the law γ̂ of Ĉ
has finite moments of all orders, and it has a continuous density f̂ over [1,∞), which reaches its global maximum
at 3/2. The density function f̂ exhibits a singular behavior analogous to that of the density function of C (see [3,
Section 2.3]). Although f̂ is twice continuously differentiable on the interval (1,3), it is shown that f̂ is not third-
order differentiable at the point 2. A similar singular behavior is expected at all integer points n ≥ 2. See Figure 3.

Proposition 4. The distribution γ̂ of the conductance Ĉ is characterized in the class of all probability measures on
[1,∞) by the distributional equation (6). The constant λ appearing in Theorems 1 and 2 is given by

λ = E[Ĉ] − 1 ∈ (1,∞). (7)

Numerical simulations based on (6) and (7) show that λ ≈ 1.21.
It is worth pointing out that the main results of [3] have been generalized in [6] to the case where the critical

offspring distribution θ belongs to the domain of attraction of a stable distribution of index α ∈ (1,2]. We expect that
results analogous to those in the present work should hold in the general stable case. This is left to be explored in a
future work.

The remainder of this paper is structured as follows. We start by defining formally the continuous random trees 


and �. The notation of the random variables involved will be slightly different from the one used in this Introduction.
The distribution γ̂ of the conductance Ĉ is studied in Section 2.4, and the proof of Theorem 2 and of formula (7) is
given in Section 2.5. The size-biased continuous random trees 
̂ and �̂ are properly defined respectively in Section 2.6
and in Section 2.7. In Section 3, we gather some preliminaries for the discrete setting, where, for example, we prove
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Fig. 3. A histogram of the distribution γ̂ over (1,∞) obtained from the simulations based on (6). The red and the blue curves correspond respec-
tively to the explicit formulae for the density of γ̂ over [1,2] and [2,3].

the convergence of discrete conductances, and introduce a backward version of the discrete size-biased Galton–Watson
tree. The last part, Section 4, is devoted to the proof of Theorem 1.

2. The continuous setting

2.1. The continuous reduced tree 


We set

V :=
∞⋃

n=0

{1,2}n,

where {1,2}0 = {∅}. If v = (v1, . . . , vn) ∈ V , we set |v| = n (in particular |∅| = 0). If v 
= ∅, we define the parent of
v as v̄ = (v1, . . . , vn−1), and we then say that v is a child of v̄. If both u = (u1, . . . , um) and v = (v1, . . . , vn) belong
to V , their concatenation is uv := (u1, . . . , um, v1, . . . , vn). The notions of a descendant and an ancestor of an element
of V are defined in the obvious way, with the convention that a vertex v ∈ V is both an ancestor and a descendant
of itself. If v,w ∈ V , v ∧ w is the unique element of V that is an ancestor of both v and w and such that |v ∧ w| is
maximal.

We consider a collection (Uv)v∈V of independent real random variables uniformly distributed over [0,1] under the
probability measure P. We set Y∅ = U∅ and then by induction, for every v ∈ {1,2}n with n ≥ 1, we let

Yv = Yv̄ + Uv(1 − Yv̄).

Note that a.s., 0 ≤ Yv < 1 for every v ∈ V . Consider the set


0 := ({∅} × [0, Y∅]) ∪
( ⋃

v∈V\{∅}
{v} × (Yv̄, Yv]

)
.

We can define a natural metric d on 
0, so that (
0,d) is a (noncompact) R-tree and, for every x = (v, r) ∈ 
0,
d((∅,0), x) = r . To be specific, let x = (v, r) ∈ 
0 and y = (w, r ′) ∈ 
0:

• If v is a descendant of w or w is a descendant of v, we set d(x, y) = |r − r ′|.
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Fig. 4. The random tree 
0.

• Otherwise, d(x, y) = d((v ∧ w,Yv∧w), x) + d((v ∧ w,Yv∧w), y) = (r − Yv∧w) + (r ′ − Yv∧w).

See Figure 4 for an illustration of the precompact tree 
0.
We let 
 be the completion of 
0 with respect to the metric d. Then 
 = 
0 ∪ ∂
, where the boundary ∂
 :=

{x ∈ 
: d((∅,0), x) = 1} is canonically identified with {1,2}N. Note that (
,d) is now a compact R-tree. The point
(∅,0) is called the root of 
. For every x ∈ 
, we set H(x) = d((∅,0), x) and call it the height of x. We can define
a genealogical order on 
 by setting x ≺ y if and only if x belongs to the geodesic path from the root to y.

For every ε ∈ (0,1), we set 
ε := {x ∈ 
:H(x) ≤ 1 − ε}, which is also a compact R-tree for the metric d. The
leaves of 
ε are the points of the form (v,1 − ε) for all v ∈ V such that Yv̄ < 1 − ε ≤ Yv . The branching points of 
ε

are the points of the form (v,Yv) for all v ∈ V such that Yv < 1 − ε.
Conditionally on 
, we can take any ε ∈ (0,1) and define Brownian motion on 
ε starting from the root. In-

formally, this process behaves like linear Brownian motion as long as it stays on an “open interval” of the form
{v} × (Yv̄, Yv ∧ (1 − ε)), and it is reflected at the root (∅,0) and at the leaves of 
ε . When it arrives at a branching
point of the tree, it chooses each of three possible line segments ending at this point with equal probabilities. By taking
a sequence (εn = 2−n)n≥1 and then letting n go to infinity, we can construct under the same probability measure P

a Brownian motion (Bt )t≥0 on 
 starting from the root up to its first hitting time τ of ∂
. We refer the reader to [3,
Section 2.1] for the details of this construction. The harmonic measure μ is the distribution of Bτ− under P , which is
a (random) probability measure on ∂
 = {1,2}N.

2.2. The Yule tree �

To define the Yule tree, consider a collection (Iv)v∈V of independent real random variables exponentially distributed
with mean 1 under the probability measure P. We set Z∅ = I∅ and then by induction, for every v ∈ {1,2}n with
n ≥ 1, Zv = Zv̄ + Iv . The Yule tree is the set

� := ({∅} × [0,Z∅]) ∪
( ⋃

v∈V\{∅}
{v} × (Zv̄,Zv]

)
,

which is equipped with the metric d defined in the same way as d in the preceding section. For every x = (v, r) ∈ �,
d((∅,0), x) = r and we keep the notation H(x) = r for the height of the point x.

Observe that if U is uniformly distributed over [0,1], the random variable − log(1−U) is exponentially distributed
with mean 1. Hence, we may and will suppose that the collection (Iv)v∈V is constructed from (Uv)v∈V in the previous
section via the formula Iv = − log(1 − Uv), for every v ∈ V . Then the mapping � defined on 
0 by �(v, r) =
(v,− log(1 − r)), for every (v, r) ∈ 
0, is a homeomorphism from 
0 onto �.
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Using stochastic calculus, we can write, for every t ∈ [0, τ ),

�(Bt) = W

(∫ t

0

(
1 − H(Bs)

)−2 ds

)
, (8)

where (W(t))t≥0 is Brownian motion with constant drift 1/2 towards infinity on the Yule tree (this process is defined
in a similar way as Brownian motion on 
, except that it behaves like Brownian motion with drift 1/2 on every “open
interval” of the tree �). Note that W is also defined under the probability measure P . From now on, Brownian motion
on the Yule tree � or on other similar trees will always refer to Brownian motion with drift 1/2 towards infinity.

By definition, the boundary ∂� is the set of all geodesic rays in � starting from the root (∅,0). From the transience
of Brownian motion on �, there is a.s. a unique geodesic ray denoted by W∞ that is visited by (W(t), t ≥ 0) at
arbitrarily large times. The distribution of W∞ under P yields a probability measure ν on the boundary ∂�. Thanks
to (8), we have in fact ν = μ, provided we identify ∂
 and ∂� with {1,2}N and view both μ and ν as (random)
probability measures on {1,2}N.

Yule-type trees
We define T to be the set of all collections (zv)v∈V of positive real numbers such that the following properties hold:

(i) zv̄ < zv for every v ∈ V \ {∅};
(ii) for every v = (v1, v2, . . .) ∈ {1,2}N, z(v1,...,vn) → +∞ as n → ∞.

Notice that we allow the possibility that z∅ = 0. If (zv)v∈V ∈ T , we consider the associated “tree”

T := ({∅} × [0, z∅]) ∪
( ⋃

v∈V\{∅}
{v} × (zv̄, zv]

)
,

which is equipped with the distance d similarly defined as above. If x = (v, r) ∈ T , we still write H(x) = r for the
height of x. The genealogical (partial) order on T is defined as previously and will again be denoted by ≺. The set of all
geodesic rays in T is called the boundary ∂T , which is naturally identified with {1,2}N. If u = (u1, u2, . . .) ∈ {1,2}N,
and x = (v, r) ∈ T , we write x ≺ u if v = (u1, u2, . . . , uk) for some integer k ≥ 0.

We will often say that we consider a tree T ∈ T : this means that we are given a collection (zv)v∈V satisfying the
above properties, and we consider the associated tree T . In particular, the tree T has an order structure given by the
lexicographical order on V . Elements of T will be called Yule-type trees. The Yule tree � can be viewed as a random
variable taking values in T , and we write �(dT ) for its distribution.

Let us fix T ∈ T . If r > 0, the level set at height r is Tr := {x ∈ T :H(x) = r}. If x ∈ Tr , we can then consider
the subtree T [x] of descendants of x in T . Formally, we view T [x] as an element of T : We write vx for the unique
element of V such that x = (vx, r), and define T [x] as the Yule-type tree corresponding to the collection (zvxv −r)v∈V .

As we have seen in the Introduction, the limit W(T ) = limr→∞ e−r#Tr exists �(dT )-a.s., and
∫
W(T )�(dT ) = 1.

For every x ∈ T , we similarly set W(T [x]) = limr→∞ e−r#Tr [x]. If v ∈ ∂T is a geodesic ray passing through x, let
B(v,H(x)) denote the set of geodesic rays in T that coincide with v up to height H(x). Then �(dT )-a.s., the uniform
measure ω̄T on ∂T is defined as the unique probability measure on ∂T satisfying that

ω̄T

(
B

(
v,H(x)

)) = e−H(x)W(T [x])
W(T )

, for every x ∈ T and v ∈ ∂T such that x ≺ v.

On the other hand, for a fixed Yule-type tree T ∈ T , we define the harmonic measure μT on ∂T as the distribution
of the first hitting point of ∂T by Brownian motion on T (with drift 1/2 towards infinity).

2.3. The invariant measure

We write

T ∗ := T × {1,2}N
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for the set of all pairs consisting of a tree T ∈ T and a distinguished geodesic ray v. Let us define a shift transformation
S on T ∗ by shifting (T ,v) at the first branching point of T . More precisely, if T corresponds to the collection (zv)v∈V ,
we write T(1) and T(2) for the two subtrees of T obtained at the first branching point, which means, for i ∈ {1,2}, T(i)

is the tree corresponding to the collection (ziv − z∅)v∈V . For any geodesic ray v = (v1, v2, . . .) in the tree T , we set
S(T ,v) := (T(v1), ṽ), where ṽ = (v2, v3, . . .).

The following proposition is the analogue of Proposition 6.1 in [8] for the Yule tree.

Proposition 5. The probability measure W(T )�(dT )ω̄T (dv) is invariant under S.

Proof. Under �(dT ), if T corresponds to the collection (zv)v∈V , then z∅ is exponentially distributed with mean 1.
Conditionally on z∅, the branching property of the Yule tree states that T(1) and T(2) are i.i.d. of the same law �.

Let F be a bounded measurable function on T ∗. By the definition of the shift S and the preceding observation, we
have ∫

F ◦ S(T ,v)W(T )�(dT )ω̄T (dv) =
2∑

i=1

∫
F(T(i),u)

(
e−z∅W(T(i))

)
�(dT )ω̄T(i)

(du)

= 2
∫ ∞

0
e−2z dz ×

∫
F(T ,u)W(T )�(dT )ω̄T (du)

=
∫

F(T ,u)W(T )�(dT )ω̄T (du),

which completes the proof. �

2.4. The continuous conductances

For a fixed Yule-type tree T , we consider the excursion measure of Brownian motion (with drift 1/2) on T away from
the root, and define C(T ) as the mass assigned by this excursion measure to the set of trajectories that never return to
the root. Note that 1 ≤ C(T ) < ∞ for any T ∈ T . For more details on this probabilistic definition of the conductance
C(T ), we refer the reader to [3, Section 2.3].

To simplify notation, we introduce under the probability measure P a pair of random variables (W,C) that is dis-
tributed as (W(T ),C(T )) under �(dT ). In addition, we let Ĉ be a random variable defined under P that is distributed
as C(T ) under the probability measure W(T )�(dT ).

Let T be a Yule-type tree corresponding to the collection (zv)v∈V . Recall that T(1) and T(2) stand for the two
subtrees of T obtained at the first branching point. From the identity W(T ) = e−z∅(W(T(1)) + W(T(2))) for every
T ∈ T , it follows that the distribution of W satisfies the distributional equation

W (d)== (1 − U)(W1 +W2),

in which W1,W2 are two independent copies of W , and U is uniformly distributed over [0,1] and independent of
(W1,W2). Moreover, the preceding equation holds jointly with a similar distributional identity for the conductance C
(see equation (2) in [3]). To sum up, we have

(W,C)
(d)==

(
(1 − U)(W1 +W2),

(
U + 1 − U

C1 + C2

)−1)
, (9)

where U is as above, while (Wi ,Ci )i∈{1,2} are two independent copies of (W,C), and are independent of U .

Lemma 6. The random variable Ĉ satisfies the distributional identity (6).

Proof. By definition, the law of Ĉ is determined by

E
[
g(Ĉ)

] = E
[
Wg(C)

]
(10)
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for every nonnegative measurable function g. Using (9) and symmetry, we have

E
[
g(Ĉ)

] = E

[
(1 − U)(W1 +W2)g

((
U + 1 − U

C1 + C2

)−1)]

= E

[
2(1 − U)W1g

((
U + 1 − U

C1 + C2

)−1)]
.

Recall that the random variable V in (6) has density function 2(1−x) over [0,1]. The statement of the lemma therefore
follows by applying (10) in reverse order. �

The law γ of the conductance C has been discussed in great detail in [3, Proposition 6]. We can study the law γ̂ of
Ĉ by similar arguments. These properties are collected in the next proposition.

For every v ∈ (0,1), x ≥ 0 and c ≥ 1, we define

G(v,x, c) :=
(

v + 1 − v

x + c

)−1

.

Let M be the set of all probability measures on [0,∞] and let �̂:M → M map a probability measure σ to

�̂(σ ) = Law
(
G(V,X,C)

)
, (11)

where V and C are as in (6), while X is distributed according to σ , and is independent of the pair (V ,C).

Proposition 7.

(1) The distributional equation (6) characterizes the law γ̂ of Ĉ in the sense that, γ̂ is the unique fixed point of the
mapping �̂ on M, and for every σ ∈ M, the kth iterate �̂k(σ ) converges to γ̂ weakly as k → ∞.

(2) The law γ̂ has a continuous density over [1,∞), and all its moments are finite.
(3) For any monotone continuously differentiable function g: [1,∞) → R+, we have

E
[
Ĉ(Ĉ − 1)g′(Ĉ)

] + 2E
[
g(Ĉ)

] = 2E
[
g(Ĉ + C)

]
, (12)

where Ĉ and C are always assumed to be independent under the probability measure P.
(4) We define, for all � ≥ 0, the Laplace transforms ϕ(�) = E[exp(−�C/2)] and

ϕ̂(�) = E
[
exp(−�Ĉ/2)

] =
∫ ∞

1
e−�r/2γ̂ (dr).

Then ϕ̂ solves the linear differential equation

2�φ′′(�) + �φ′(�) − 2
(
1 − ϕ(�)

)
φ(�) = 0.

The proof is very similar to that of the analogous results in [3, Proposition 6]. We therefore skip the details.

Remark 1. Using assertion (1) in Proposition 7, one can approximate the law γ̂ of Ĉ by iterating the mapping �̂. An
application of the Monte-Carlo method gives E[Ĉ] ≈ 2.21.

Remark 2. Following the preceding proposition, we discuss some smoothness properties of the density of γ̂ . For every
t ≥ 1, we set F̂ (t) = P(Ĉ ≥ t), and we get from (6) that

F̂ (t) = 2

(
t − 1

t

)2 ∫ ∞

t

dx
x

(x − 1)3
P(Ĉ + C ≥ x). (13)
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Since P(Ĉ + C ≥ t) = 1 for every t ∈ [1,2], we obtain from the last display that

F̂ (t) = 4t − 2

t2
A0 − 2A0 + 1, ∀t ∈ [1,2], (14)

where

A0 := 2 −
∫ ∞

2
dx

x

(x − 1)3
P(Ĉ + C ≥ x) ∈

(
1

2
,2

)
.

Let f̂ = −F̂ ′ be the density of the law γ̂ . Then it follows from (14) that for all t ∈ [1,2],

f̂ (t) = 4A0 × t − 1

t3
and f̂ ′(t) = 4A0 × 3 − 2t

t4
.

In particular, we have f̂ (1) = 0, f̂ (2) = A0/2 and f̂ ′( 3
2 ) = 0. Numerical approximations of f̂ (2) show that A0 ≈

0.976.

For the density f of the law of C, it is shown in [3, Section 2.3] that there exists a constant K0 ∈ (1,2) such
that f (t) = K0t

−2 for t ∈ [1,2]. The explicit forms of f and f̂ over [1,2] can be used to calculate the probability
P(Ĉ+C ≥ t) for t ∈ [2,3] by convolution. The values of F̂ over [2,3] are thus determined via the ordinary differential
equation

t (t − 1)F̂ ′(t) − 2F̂ (t) = −2P(Ĉ + C ≥ t), (15)

which is a direct consequence of (13). By solving this differential equation, we are able to get an explicit, yet compli-
cated, expression of F̂ over [2,3], in terms of the two (unknown) parameters A0 and K0 (numerical approximations
of f (1) show that K0 ≈ 1.477). One can then verify that the density f̂ is continuously differentiable on (1,3). Fur-
thermore, it holds that

f̂ ′′(2−) = f̂ ′′(2+) = 0,

and that f̂ is twice continuously differentiable on (1,3). However, f̂ is not third-order differentiable at the point 2, as
one has

f̂ ′′′(2−) = 3A0

4
, while f̂ ′′′(2+) = 3A0

4
− 4A0K0.

This is similar to the singular behavior of the density f pointed out in [3, Section 2.3], where it is shown that f ′′(2−) 
=
f ′′(2+). One may conjecture that the density f̂ of γ̂ is twice continuously differentiable on the whole interval (1,∞),
but not third-order differentiable at all integers n ≥ 2.

We finally remark that 3/2 is the global maximum point for the density f̂ . In fact, we have seen that f̂ reaches it
maximum at 3/2 over the interval [1,2]. Meanwhile, it is elementary to verify, by differentiating (15), that the function
f̂ is strictly decreasing over [3/2,∞).

2.5. Proof of Theorem 2 and of Proposition 4

We have seen in Proposition 5 that the probability measure W(T )�(dT )ω̄T (dv) on T ∗ is invariant under the shift S.
Recall that W(T ) follows an exponential distribution of mean 1 under �(dT ). Taking into account that W(T ) > 0,
�(dT )-a.s., we can then verify, in a similar way as in [6, Proposition 2.6], that the shift S acting on the probabil-
ity space (T ∗,W(T )�(dT )ω̄T (dv)) is ergodic. We shall apply Birkhoff’s ergodic theorem to the three functionals
defined below.

First, let Hn(T ,v) denote the height of the nth branching point on the geodesic ray v. One immediately verifies
that, for every n ≥ 1,

Hn =
n−1∑
i=0

H1 ◦ Si,
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where Si stands for the ith iterate of the shift S. It follows thus from the ergodic theorem that W(T )�(dT )ω̄T (dv)-a.s.,

1

n
Hn −→

n→∞

∫
H1(T ,v)W(T )�(dT )ω̄T (dv). (16)

Since the density W(T ) is a.s. strictly positive, the latter convergence also holds �(dT )ω̄T (dv)-a.s. By the definition
of H1 and then the branching property of the Yule tree,∫

H1(T ,v)W(T )�(dT )ω̄T (dv) =
∫

z∅W(T )�(dT )

=
∫

z∅e−z∅
(
W(T(1)) +W(T(2))

)
�(dT )

= 2

(∫ ∞

0
ze−2z dz

)
×

∫
W(T )�(dT ) = 1

2
. (17)

Secondly, for a fixed geodesic ray v = (v1, v2, . . .) ∈ {1,2}N, we let xn,v denote the (n+1)st branching point on the
geodesic ray v, i.e. xn,v = ((v1, . . . , vn),Hn+1(T ,v)). We set, for every n ≥ 1, the functional Fn(T ,v) := log ω̄T ({u ∈
∂T : xn,v ≺ u}). In particular,

F1(T ,v) = log
W(T(v1))

W(T(1)) +W(T(2))
.

By the definition of ω̄T , one can check that

Fn =
n−1∑
i=0

F1 ◦ Si.

Using the ergodic theorem again, we have �(dT )ω̄T (dv)-a.s.,

1

n
Fn −→

n→∞

∫
F1(T ,v)W(T )�(dT )ω̄T (dv),

in which the limit can be calculated as follows:∫
F1(T ,v)W(T )�(dT )ω̄T (dv)

=
2∑

i=1

∫
e−z∅W(T(i)) log

W(T(i))

W(T(1)) +W(T(2))
�(dT )

=
2∑

i=1

∫
e−z∅W(T(i)) logW(T(i))�(dT ) −

∫ (
2∑

i=1

e−z∅W(T(i)) log
(
ez∅W(T )

))
�(dT )

= 2

(∫ ∞

0
e−2z dz

)
×

∫
W(T ) logW(T )�(dT ) −

∫
W(T ) log

(
ez∅W(T )

)
�(dT )

= −
∫

z∅W(T )�(dT ). (18)

Note that we used the fact that
∫
W(T )| logW(T )|�(dT ) < ∞ to derive the last equality. In view of (17), we see that

�(dT )ω̄T (dv)-a.s., Fn/n converges to − 1
2 whereas Hn/n converges to 1

2 . By considering the ratio Fn/Hn and taking
n → ∞, we get that �(dT )-a.s. ω̄T (dv)-a.e.,

lim
r→∞

1

r
log ω̄T

(
B(v, r)

) = −1,

from which the convergence (5) readily follows.
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Thirdly, we turn to the harmonic measure μT and set, for every n ≥ 1, the functional Gn(T ,v) := logμT ({u ∈
∂T : xn,v ≺ u}). In particular,

G1(T ,v) = log
C(T(v1))

C(T(1)) + C(T(2))
.

The flow property of the harmonic measure μT (see Lemma 2.3 in [6]) yields that

Gn =
n−1∑
i=0

G1 ◦ Si.

Similarly we have the �(dT )ω̄T (dv)-almost sure convergence

1

n
Gn −→

n→∞

∫
G1(T ,v)W(T )�(dT )ω̄T (dv), (19)

and we calculate the limit∫
G1(T ,v)W(T )�(dT )ω̄T (dv)

=
2∑

i=1

∫
e−z∅W(T(i)) log

C(T(i))

C(T(1)) + C(T(2))
�(dT )

= 2

(∫ ∞

0
e−2z dz

)
×

∫
W(T(1)) log

C(T(1))

C(T(1)) + C(T(2))
�(dT )

=
∫

W(T(1)) log
C(T(1))

C(T(1)) + C(T(2))
�(dT ).

Putting the convergence (19) together with (16) and (17), we see that �(dT )-a.s. ω̄T (dv)-a.e.,

lim
r→∞

1

r
logμT

(
B(v, r)

) = 2
∫

W(T(1)) log
C(T(1))

C(T(1)) + C(T(2))
�(dT ).

Using the branching property of the Yule tree and recalling the notation in Section 2.4, we have therefore P-a.s.
ω(dv)-a.e. that

lim
r↓0

logμ(Bd(v, r))

log r
= 2E

[
log

( Ĉ + C
Ĉ

)]
,

where Ĉ and C are supposed to be independent under the probability measure P. However, by taking g(x) = log(x) in
(12), we see that

E[Ĉ] − 1 = 2E

[
log

( Ĉ + C
Ĉ

)]
. (20)

We define λ := E[Ĉ] − 1. The proof of the convergence (4) is hence completed.
Finally, in view of Proposition 7, it only remains to verify that λ > 1. In fact, we know from the display following

(19) that

λ = 2
∫

e−z∅

(
2∑

i=1

W(T(i)) log
C(T(1)) + C(T(2))

C(T(i))

)
�(dT ).
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By concavity of the logarithm,

2∑
i=1

W(T(i))

W(T(1)) +W(T(2))
log

(W(T(1)) +W(T(2))

W(T(i))
· C(T(i))

C(T(1)) + C(T(2))

)
≤ 0,

which entails that

2∑
i=1

W(T(i)) log
C(T(1)) + C(T(2))

C(T(i))
≥

2∑
i=1

W(T(i)) log
W(T(1)) +W(T(2))

W(T(i))
.

Notice that the previous inequality is strict if and only if for i ∈ {1,2},
W(T(i))

W(T(1)) +W(T(2))

= C(T(i))

C(T(1)) + C(T(2))
.

Since the latter property holds with positive probability under �(dT ), we have

λ > 2
∫

e−z∅

(
2∑

i=1

W(T(i)) log
W(T(1)) +W(T(2))

W(T(i))

)
�(dT )

= −2
∫

F1(T ,v)W(T )�(dT )ω̄T (dv).

By (18) and (17), the right-hand side of the last display is equal to 1. We have therefore finished the proof of Theorem 2
and of Proposition 4.

2.6. The size-biased Yule tree �̂

Let (�̂, v̂) denote a random element in T ∗ distributed according to W(T )�(dT )ω̄T (dv). We give here a direct con-
struction of (�̂, v̂) ∈ T ∗ under the probability measure P. In the following description, all the random variables
involved are supposed to be defined under P.

First, we introduce a sequence (ak)k≥1 of i.i.d. random variables uniformly distributed over {1,2}, and another
sequence (Jk)k≥1 of i.i.d. real random variables exponentially distributed with mean 1/2. Let (�(k))k≥1 be a collection
of independent Yule trees, each of which corresponding respectively to the collection (Z

(k)
v )v∈V with the notation

introduced in Section 2.2. We assume that (ak)k≥1, (Jk)k≥1 and (�(k))k≥1 are independent.
For every integer n ≥ 1, we set vn = (a1, a2, . . . , an) ∈ {1,2}n and Zvn = ∑n

k=1 Jk . We write ṽn = (a1, a2, . . . ,

an−1,3 − an) ∈ {1,2}n for the unique sibling of vn in V , and define the subtree �〈̃vn〉 grafted at ṽn as

�〈̃vn〉 := ({̃vn} × (Zvn ,Zvn + Z
(n)
∅

]) ∪
( ⋃

v∈V\{∅}
{̃vnv} × (

Zvn + Z
(n)
v̄ ,Zvn + Z(n)

v

])
.

Finally, let �̂ be the following Yule-type tree

�̂ := ({∅} × [0,Zv1 ]
) ∪

(⋃
n≥1

{vn} × (Zvn ,Zvn+1 ]
)

∪
(⋃

n≥1

�〈̃vn〉
)

.

We will call �̂ the size-biased Yule tree. See Figure 5 for an illustration.

Lemma 8. The pair (�̂, v̂ = (a1, a2, . . .)) ∈ T × {1,2}N constructed above follows the required distribution
W(T )�(dT )ω̄T (dv).

The proof of this lemma is based on similar calculations carried out in the previous section. We leave the details to
the reader. Note that the analog for discrete-time Galton–Watson trees can be found in Exercise 16.9 in [10].
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Fig. 5. Schematic representation of the size-biased Yule tree �̂.

2.7. The size-biased reduced tree 
̂

Recall the bijection �: (v, r) ∈ 
0 �→ (v,− log(1 − r)) ∈ � introduced in Section 2.2. We now apply the inverse
mapping �−1(v, s) = (v,1 − e−s) to the size-biased Yule tree �̂.

We keep the notation of the preceding section. For every integer n ≥ 1, we set Vn = 1 − exp(−Jn), and then by
induction,

Ŷvn = Ŷvn−1 + (1 − Ŷvn−1)Vn.

Notice that (Vn)n≥1 are i.i.d. real random variables with density function 2(1 − x)1x∈[0,1], and that for every n ≥ 1,
Ŷvn = 1 − exp(−Zvn). Thus,

�−1(�̂) = ({∅} × [0, Ŷv1 ]
) ∪

(⋃
n≥1

{vn} × (Ŷvn , Ŷvn+1 ]
)

∪
(⋃

n≥1

�−1(�〈̃vn〉
))

.

We point out that, independently for every n ≥ 1, �−1(�〈̃vn〉) is a rescaled copy of the precompact reduced tree 
0

with the scaling factor (1 − Ŷvn). From now on we will denote �−1(�̂) by 
̂0. See Figure 6 for an illustration of 
̂0.
One can define, as for 
0, the intrinsic metric d on 
̂0 such that (
̂0,d) is a noncompact R-tree, and for every

x = (v, r) ∈ 
̂0, we have d((∅,0), x) = r . Then we let 
̂ be the completion of 
̂0 with respect to d, so that (
̂,d) is
a compact R-tree. In fact, 
̂ = 
̂0 ∪ ∂
̂, and the boundary ∂
̂ := {x ∈ 
̂: d((∅,0), x) = 1} is canonically identified
with {1,2}N. We will call 
̂ the size-biased reduced tree. We keep the same notation H(x) = d((∅,0), x) for the
height of x ∈ 
̂. For every ε ∈ (0,1), we set the truncation of 
̂ at height 1 − ε


̂ε := {
x ∈ 
̂:H(x) ≤ 1 − ε

}
.

One can think of both 
 and 
̂ as electric networks of ideal resistors with unit resistance per unit length, and define
C(
) (resp. C(
̂)) be the effective conductance between the root and the set ∂
 (resp. ∂
̂) in the corresponding net-
work. As explained in [3, Section 2.3], C(
) is identically distributed as the random variable C defined in Section 2.4.
Analogously, C(
̂) has the same distribution as Ĉ according to Lemma 8. We thus call Ĉ the continuous conductance
of the size-biased reduced tree 
̂.
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Fig. 6. Schematic representation of the random tree 
̂0.

3. The discrete setting

3.1. Notation for discrete trees

We set

U :=
∞⋃

n=0

N
n,

where N = {1,2, . . .} and N
0 = {∅} by convention. If u = (u1, . . . , un) ∈ U , |u| = n is called the generation (or height)

of u. In particular, |∅| = 0. A (rooted ordered) tree T is a subset of U such that the following holds:

(i) ∅ ∈ T ;
(ii) If u = (u1, . . . , un) ∈ T \ {∅}, then ū := (u1, . . . , un−1) ∈ T ;

(iii) For every u = (u1, . . . , un) ∈ T , there exists an integer ku(T ) ≥ 0 such that, for every j ∈N, (u1, . . . , un, j) ∈ T
if and only if 1 ≤ j ≤ ku(T ).

The notions of a child and a parent of a vertex of T are defined in an obvious way. We write ≺ for the genealogical
order on T . The quantity ku(T ) in (iii) is called the number of children of u in T . We always view a tree T as a graph
whose vertices are the elements of T and whose edges are the pairs {ū, u} for all u ∈ T \ {∅}.

If T is finite, we call it a plane tree. The set of all plane trees is denoted by Tf . For an infinite tree T , we
say it has a single infinite line of descent if there exists a unique sequence of positive integers (un)n≥1 such that
(u1, u2, . . . , un) ∈ T for all n ≥ 1. We denote by T∞ the set of all infinite trees that have a single infinite line of
descent.

The height of a tree T is written as h(T ) := sup{|u|:u ∈ T }. The set of all vertices of T at generation n is denoted
by Tn := {u ∈ T : |u| = n}. If u ∈ T , the subtree of descendants of u is T̃ [u] := {u′ ∈ T :u ≺ u′}. Note that T̃ [u] is not
a tree under our definition, but we can relabel its vertices to turn it into a tree, by setting T [u] := {w ∈ U :uw ∈ T }.

Let T be a tree of height larger than n, and consider a simple random walk X = (Xk)k≥0 on T starting from the root
∅, which is defined under the probability measure P T . We write τn := inf{k ≥ 0: |Xk| = n} for the first hitting time
of generation n by X, and we define the discrete harmonic measure μT

n supported on Tn as the law of Xτn under P T .

Critical Galton–Watson trees
Let θ be a non-degenerate probability measure on Z+, and assume that θ has mean one and finite variance σ 2 > 0. For
every integer n ≥ 0, we let T(n) be a Galton–Watson tree with offspring distribution θ , conditioned on non-extinction
at generation n, viewed as a random element in Tf . In particular, T(0) is just a Galton–Watson tree with offspring
distribution θ . We suppose that the random trees T(n) are defined under the probability measure P.
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Let T∗n be the reduced tree associated with T(n), which is the random tree composed of all vertices of T(n) that have
descendants at generation n. It is always implicitly assumed that we have relabeled the vertices of T∗n, preserving both
the lexicographical order and the genealogical order, so that T∗n becomes a plane tree in the sense of our preceding
definition.

For every n ≥ 1 we set qn := P(#T(0)
n > 0). By a standard result (see e.g. Theorem 9.1 of [1, Chapter 1]) on the

non-extinction probability up to generation n, we have

qn ∼ 2

nσ 2
, as n → ∞. (21)

Size-biased Galton–Watson tree
Let N̂ be a random variable distributed according to the size-biased distribution of θ , that is, for every k ≥ 0, P(N̂ =
k) = kθ(k). Take a sequence (N̂k)k≥1 of independent copies of N̂ defined under P. Now we follow Kesten [5] and
Lyons, Pementle and Peres [9] to construct a size-biased Galton–Watson tree T̂ defined under P. First, the root ∅ of
T̂ is given a number N̂1 of children. Choose one of these children uniformly at random, say v1. It has a number N̂2

of children, whereas the other children of the root have independently ordinary θ -Galton–Watson descendant trees.
Again, among the children of v1 we choose one uniformly at random, call it v2, and give the others independent
θ -Galton–Watson descendant trees. Meanwhile the vertex v2 has a number N̂3 of children. Since a.s. N̂ ≥ 1, we can
repeat this procedure infinitely many times. The resulting random infinite tree T̂ is called a size-biased Galton–Watson
tree (see Figure 7). It is clear by the construction that T̂ is a random element in T∞ and that its unique infinite line of
descent is (v1,v2, . . .), which we will call the spine of T̂.

Let [T̂](n) be the plane tree obtained from T̂ by keeping only its first n generations, i.e.,

[T̂](n) := {
u ∈ T̂: |u| ≤ n

}
.

It is shown in [5] and [9] that [T̂](n) is distributed in Tf according to the law of T(n) biased by #T(n)
n . Moreover,

conditionally given the first n levels of T̂, the vertex vn on the spine is uniformly distributed on the nth level of T̂.
Besides, notice that

E
[
#T(n)

n

] = E[#T(0)
n ]

qn

= 1

qn

.

All these observations are summarized in the following proposition.

Fig. 7. Schematic representation of a size-biased Galton–Watson tree T̂.
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Proposition 9. Let F(T , v) be a nonnegative measurable function defined on Tf × U . Then for every integer n ≥ 1,

E

[ ∑
v∈T(n)

n

F
(
T(n), v

)] = 1

qn

E
[
F

([T̂](n),vn

)]
.

For every integer n ≥ 1, let [T̂]n be the plane tree obtained from T̂ by erasing the (infinite) tree of descendants of
the vertex vn. By convention, the vertex vn is kept in [T̂]n. Notice that in general [T̂]n 
= [T̂](n), since the height of [T̂]n
can be strictly greater than n.

We let [T̂]∗n denote the reduced tree associated with the plane tree [T̂]n up to generation n, which consists of all
vertices of [T̂]n that have (at least) one descendant at generation n. We implicitly assume that the relabelling has been
done to turn [T̂]∗n into a tree. It is elementary to check that [T̂]∗n is also the reduced tree associated with [T̂](n) up to
generation n.

3.2. Convergence of discrete reduced trees

We briefly recall the result in [3] on the convergence of the discrete reduced trees T∗n. For every real number s ∈ [0, n],
we write the truncation of the tree T∗n at level n − �s� as

Rs

(
T∗n

) := {
u ∈ T∗n: |u| ≤ n − �s�}.

For every ε ∈ (0,1), we have set 
ε = {x ∈ 
:H(x) ≤ 1 − ε}. We know that, for every fixed ε, there is a.s. no
branching point of 
 at height 1 − ε. The skeleton of 
ε is defined as the following plane tree

Sk(
ε) := {∅} ∪ {
v ∈ V \ {∅}:Yv̄ ≤ 1 − ε

} = {∅} ∪ {
v ∈ V \ {∅}: (v̄, Yv̄) ∈ 
ε

}
.

Consider then the set Tf,bin of all plane trees in which every vertex has either 0, 1 or 2 children. For T ∈ Tf,bin
we write S(T ) for the set of all vertices of T having 0 or 2 children. Then there is a unique plane tree 〈T 〉 such
that one can find a canonical bijection u �→ wu from 〈T 〉 onto S(T ) that preserves the genealogical order and the
lexicographical order of vertices.

The following result is Proposition 16 in [3].

Proposition 10. We can construct the reduced trees T∗n and the (continuous) tree 
 on the same probability space
(�,F,P) so that the following properties hold for every fixed ε ∈ (0,1) with P-probability one.

(i) For every sufficiently large integer n, we have Rεn(T∗n) ∈ Tf,bin and 〈Rεn(T∗n)〉 = Sk(
ε).
(ii) For every sufficiently large n, such that the properties stated in (i) hold, and for every u ∈ Sk(
ε), let w

n,ε
u denote

the vertex of S(Rεn(T∗n)) corresponding to u via the canonical bijection from 〈Rεn(T∗n)〉 onto S(Rεn(T∗n)).
Then we have

lim
n→∞

1

n

∣∣wn,ε
u

∣∣ = Yu ∧ (1 − ε).

3.3. Convergence of discrete conductances

Let T ∈ Tf be a tree of height larger than n, and consider the new tree T ′ obtained by adding to the graph T an edge
between the root ∅ and an extra vertex ∂ . We define under the probability measure P T ′

a simple random walk X on
T ′ starting from the root ∅. Let τ∂ be the first hitting time of ∂ by X, and for every integer 1 ≤ i ≤ n, let τi be the first
hitting time of generation i (of the tree T ) by X. We write

Ci (T ) := P T ′
(τi < τ∂).

This notation is justified by the fact that Ci (T ) can be interpreted as the effective conductance between ∂ and genera-
tion i of T in the graph T ′, see e.g. [10, Chapter 2].
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Recall the notation that C(
) stands for the conductance between the root and the set ∂
 in the reduced tree 
.
Analogously, for every ε ∈ (0,1), C(
ε) denotes the conductance between the root and the set {x ∈ 
:H(x) = 1 − ε}
in 
. The following result is stated in [3] without a proof. We provide here the details.

Proposition 11. Suppose that the reduced trees T∗n and the tree 
 are constructed so that the properties stated in
Proposition 10 hold. Then

nCn

(
T∗n

) a.s.−→
n→∞C(
).

Proof. By definition, for every ε ∈ (0,1),

Cn−�εn�
(
T∗n

) = P (T∗n)′(τn−�εn� < τ∂) ≥ P (T∗n)′(τn < τ∂) = Cn

(
T∗n

)
.

Note that there is probability at least 1 − �εn�
n+1 that, after hitting the generation n − �εn�, the simple random walk on

(T∗n)′ will hit the generation n before moving down to the extra vertex ∂ . Hence it follows from the strong Markov
property of simple random walk that

0 ≤ Cn−�εn�
(
T∗n

) − Cn

(
T∗n

) ≤ �εn�
n + 1

Cn−�εn�
(
T∗n

)
.

By similar probabilistic arguments, we also have

0 ≤ C(
ε) − C(
) ≤ εC(
ε),

which entails particularly that C(
ε) ≤ 2C(
) if ε < 1/2.
Let n be sufficiently large so that assertions (i) and (ii) of Proposition 10 hold with ε ∈ (0, 1

2 ). By calculating the
conductances using the series law and parallel law, we see that a.s.

lim
n→∞

∣∣nCn−�εn�
(
T∗n

) − C(
ε)
∣∣ = 0.

Then, it follows from∣∣nCn

(
T∗n

) − C(
)
∣∣ ≤ ∣∣nCn

(
T∗n

) − nCn−�εn�
(
T∗n

)∣∣ + ∣∣nCn−�εn�
(
T∗n

) − C(
ε)
∣∣ + ∣∣C(
ε) − C(
)

∣∣
≤ �εn�Cn−�εn�

(
T∗n

) + ∣∣nCn−�εn�
(
T∗n

) − C(
ε)
∣∣ + εC(
ε)

that

lim sup
n→∞

∣∣nCn

(
T∗n

) − C(
)
∣∣ ≤ 2εC(
ε) ≤ 4εC(
).

Letting ε → 0, we conclude that |nCn(T∗n) − C(
)| → 0 as n → ∞. �

Let us write C(
̂ε) for the conductance between the root and the set {x ∈ 
̂:H(x) = 1 − ε} in 
̂. By the same
reasoning as in the previous proof, for every ε ∈ (0,1/2), we have

0 ≤ C(
̂ε) − C(
̂) ≤ 2εC(
̂). (22)

Remark. We can also show the convergence of the reduced trees [T̂]∗n to the (continuous) size-biased reduced tree

̂, in a sense similar to Proposition 10, which implies a size-biased analog of Proposition 11. In particular, it holds
the convergence in law

nCn

([T̂]n) (d)−→
n→∞C(
̂).

Since these results are not needed in Section 4 for proving Theorem 1, we omit the proofs.
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For future reference, we state the following result, which is Lemma 22 in [3].

Lemma 12. There exists a constant K ≥ 1 such that, for every integer n ≥ 1,

E
[(

nCn

(
T∗n

))2] ≤ K.

3.4. Backward size-biased Galton–Watson tree

We introduce in this section a new infinite random tree Ť, which originates from the inflated Galton–Watson tree
constructed by Peres and Zeitouni in [11]. It will be clear from the following descriptions that Ť is a rear-view variant
of the size-biased Galton–Watson tree T̂.

First, the random tree Ť has a unique infinite ray of vertices (u0,u1,u2, . . .), which will be referred to as its spine.
We declare that, for every n ≥ 0, the vertex un is at generation −n. This gives a genealogical order on the spine of Ť:
u1 is viewed as the parent of u0, u2 is viewed as the parent of u1, and so on.

Next, let us describe the finite subtrees in Ť branching off every node of the spine. To this end, we recall that
N̂ follows the size-biased distribution of θ , and we denote by L a random variable which, conditionally on N̂ , is
uniformly distributed on the set {0,1, . . . , N̂ − 1}. Let (Ln, N̂n)n≥1 be a sequence of i.i.d. copies of (L, N̂), and set
Rn = N̂n − Ln − 1 for every n ≥ 1. To every vertex un we give a number Ln of children to the left of the spine and a
number Rn of children to the right of the spine. Each of these children (there are N̂n − 1 in total) will independently
have an ordinary θ -Galton–Watson descendant tree (later we will say that these Galton–Watson trees are grafted at un),
and we also assume the independence of these Galton–Watson trees among all n ≥ 1. This finishes the construction
of Ť. See Figure 8 for an illustration. We remark that Ť is not a tree in the sense of Section 3.1. However, due to its
obvious tree structure, we will call Ť the backward size-biased Galton–Watson tree.

The genealogical (partial) order on Ť is defined in the following way. We simply keep the genealogical orders
inherited from the grafted Galton–Watson trees and combine them with the genealogical order on the spine. For
instance, u2 is an ancestor of any vertex in the subtrees grafted at u1. We can also define in a consistent manner the
notion of generation for every vertex in Ť. In fact, for any vertex v not on the spine, there is a unique vertex um on the
spine such that v belongs to a finite subtree grafted at um, then we say that the generation of v in Ť is equal to −m+ 1
plus the initial generation of v inside the corresponding grafted plane tree.

The vertex u0 in Ť corresponds to the root in the inflated Galton–Watson tree (abbreviated as IGW) described in
Peres and Zeitouni [11]. It is worth pointing out that, while an independent number of offspring of distribution θ is
assigned the root of IGW, the vertex u0 in Ť has no descendants. Besides, our notion of generation on Ť can also be
called as the horocycle distance from u0, if we follow the terminology in [11].

Fig. 8. Schematic representation of the backward size-biased Galton–Watson tree Ť.
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For every n ≥ 1, let [Ť]n be the plane tree obtained from Ť by only keeping the finite tree above the vertex un. We
take un as the root of [Ť]n, and the lexicographical order on the set of vertices of [Ť]n corresponds to the order of
visit when one “moves around” the finite tree [Ť]n in clockwise order, starting from the root un. A key observation
is that, viewed as a random plane tree, [Ť]n has the same distribution as the random tree [T̂]n defined in Section 3.1.
Moreover, the root un of [Ť]n corresponds to the root ∅ of [T̂]n, and the vertex u0 in [Ť]n corresponds to the vertex vn

in [T̂]n.

4. Proof of Theorem 1

Before we start the proof of Theorem 1, let us emphasize that Theorem 1 is not a straightforward consequence of
Theorem 2. In fact, we will not directly use the results (4) and (5) obtained in the continuous setting.

Recall that λ = E[Ĉ] − 1 is the constant greater than 1 that appears in the convergence (4). Let δ > 0. By applying
Proposition 9 to the indicator function

F(T , v) = 1
{
n−λ−δ ≤ P T (Xτn = v) ≤ n−λ+δ

}c
, for T ∈ Tf and v ∈ T ,

we see that

E

[ ∑
v∈T(n)

n

1
{
n−λ−δ ≤ P T(n)

(Xτn = v) ≤ n−λ+δ
}c

]
= 1

qn

P
({

n−λ−δ ≤ P [T̂](n)

(Xτn = vn) ≤ n−λ+δ
}c)

.

Notice that in the left-hand side of the last display, P T(n)
(Xτn = v) is by definition the harmonic measure μn(v) at

vertex v. By virtue of (2) and (21), the proof of convergence (1) is thus reduced to showing that for every δ > 0,

lim
n→∞P

(
n−λ−δ ≤ P [T̂](n)

(Xτn = vn) ≤ n−λ+δ
) = 1. (23)

Since the hitting distribution of generation n is the same for simple random walk on [T̂](n) and on its reduced tree
[T̂]∗n, we have the equality

P [T̂](n)

(Xτn = vn) = P [T̂]∗n

(Xτn = vn) = P [T̂]n(Xτn = vn)

under the probability measure P. Furthermore, according to the final remark in Section 3.4, the (random) probability
P [T̂]n(Xτn = vn) is distributed under P as

P [Ť]n(Xτn = u0),

by which we mean the probability that a simple random walk on [Ť]n starting from the root un hits level n (of [Ť]n)
for the first time at u0. So the convergence (23) is equivalent to

lim
n→∞P

(
n−λ−δ ≤ P [Ť]n(Xτn = u0) ≤ n−λ+δ

) = 1. (24)

In order to show the latter convergence, we denote by −M1,−M2, . . . the generations of the vertices on the spine
of Ť where there is (at least) one grafted plane tree that reaches generation 0, i.e. has a descendant of generation 0.
This sequence of negative integers (−Mk)k≥1 is listed in the strict decreasing order, and we set by convention M0 = 0.
For every k ≥ 1, we also set Lk := Mk − Mk−1 ≥ 1.

For every n ≥ 1, let kn := kn(Ť) be the index such that Mkn ≤ n < Mkn+1.

Lemma 13. We have P-a.s.

lim
n→∞

kn

2 logn
= 1.
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Proof. Recall that for every j ≥ 1, there are N̂j −1 independent Galton–Watson trees grafted at uj in Ť. Consider the
event that at least one of those plane trees grafted at uj reaches generation 0, and let εj be the corresponding indicator
function. Then,

P(εj = 0) = E
[
(1 − qj−1)

N̂j −1] = E
[
(1 − qj−1)

N̂−1].
Let gθ be the generating function of θ , i.e.

gθ (r) :=
∑
k≥0

θ(k)rk, 0 ≤ r ≤ 1.

Since θ has a finite variance σ 2,

gθ (1 − s) = 1 − s + σ 2

2
s2 + o

(
s2) as s → 0.

As the mean of N̂ − 1 is σ 2, we have E[(1 − s)N̂−1] = 1 −σ 2s + o(s) as s → 0, which, together with (21), yields that

P(εj = 0) = 1 − 2

j
+ o

(
j−1) as j → ∞. (25)

Notice that by definition, kn = ε1 + ε2 + · · · + εn. Hence,

E[kn] =
n∑

j=1

(
1 − P(εj = 0)

) ∼ 2 logn as n → ∞.

Since ε1, . . . , εn are independent, we also have var(kn) = O(logn), and the L2-convergence of kn/(2 logn) follows
immediately. The a.s. convergence is then obtained by standard monotonicity and Borel–Cantelli arguments. �

We introduce some additional notation before stating the next proposition. For every j ≥ 0, we write P Ť
j for the

(quenched) probability measure under which we consider a simple random walk X = (Xk)k≥0 on Ť starting from the

vertex uj . Under P Ť
j , we denote by S0 the hitting time of generation 0 by the simple random walk X, and for every

i ≥ 0, �i := inf{k ≥ 0:Xk = ui} denotes the hitting time of vertex ui .

Proposition 14. For every δ > 0, there exists an integer n0 ∈ N such that for every n ≥ n0, we have

P
(
P [Ť]n(Xτn = u0) ≥ n−λ+δ

) ≤ 8P
(
P Ť

Mkn
(XS0 = u0, S0 < �Mkn+1) ≥ n−λ+δ/2

)
,

and

P
(
P [Ť]n(Xτn = u0) ≤ n−λ−δ

) ≤ 8P
(
P Ť

Mkn
(XS0 = u0, S0 < �Mkn+1) ≤ n−λ−δ

)
.

Proof. We keep the notation used in the proof of Lemma 13. Observe that

P(Mkn+1 − n > n) = P(εn+j = 0 for all 1 ≤ j ≤ n) =
n∏

j=1

P(εn+j = 0)

converges to 1/4 as n → ∞ by (25). One can thus find an integer n0 such that for every n ≥ n0,

P(Mkn+1 > 2n) ≥ 1

8
. (26)
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Since Mkn+1 − n is independent of the finite tree above the vertex un in Ť,

P
(
Mkn+1 > 2n,P [Ť]n(Xτn = u0) ≥ n−λ+δ

) = P(Mkn+1 > 2n) × P
(
P [Ť]n(Xτn = u0) ≥ n−λ+δ

)
. (27)

On the other hand, it is crucial to notice that under the probability measure P, the probability P [Ť]n(Xτn = u0) has
the same distribution as the conditional probability

P Ť
n (XS0 = u0 | S0 < �Mkn+1),

which can be calculated as

P Ť
n (XS0 = u0 | S0 < �Mkn+1) = P Ť

n (XS0 = u0, S0 < �Mkn+1)

P Ť
n (S0 < �Mkn+1)

=
P Ť

n (�Mkn
< �Mkn+1) × P Ť

Mkn
(XS0 = u0, S0 < �Mkn+1)

P Ť
n (S0 < �Mkn+1)

by the strong Markov property of the random walk. Besides, simple considerations show that P Ť
n (S0 < �Mkn+1) ≥ 1/2

on the event {Mkn+1 > 2n}. Hence, we have

P
(
Mkn+1 > 2n,P [Ť]n(Xτn = u0) ≥ n−λ+δ

) = P
(
Mkn+1 > 2n,P Ť

n (XS0 = u0 | S0 < �Mkn+1) ≥ n−λ+δ
)

≤ P
(
Mkn+1 > 2n,P Ť

Mkn
(XS0 = u0, S0 < �Mkn+1) ≥ n−λ+δ/2

)
≤ P

(
P Ť

Mkn
(XS0 = u0, S0 < �Mkn+1) ≥ n−λ+δ/2

)
.

The last display, together with (26) and (27), yields the first inequality in the statement of the proposition.
We can argue in a similar manner for the second inequality stated in the proposition. Its proof is even simpler

because it suffices to use the bound

P Ť
Mkn

(XS0 = u0, S0 < �Mkn+1) ≤ P Ť
n (XS0 = u0 | S0 < �Mkn+1),

instead of the estimate P Ť
n (S0 < �Mkn+1) ≥ 1/2 used above. �

According to (24) and the preceding result, we can therefore derive Theorem 1 from the following proposition.

Proposition 15. For every δ > 0, it holds that

lim
n→∞P

(
n−λ−δ ≤ P Ť

Mkn
(XS0 = u0, S0 < �Mkn+1) ≤ n−λ+δ

) = 1. (28)

4.1. Proof of Proposition 15

Under the probability measure P, we set, for every k ≥ 1,

pk = pk(Ť) := P Ť
Mk

(XS0 = u0, S0 < �Mk+1).

By the definition of Mk , there exists at least one plane tree grafted to uMk
that reaches generation 0. The root of

this subtree is necessarily a child of uMk
distinct from uMk−1. If such a subtree is unique, we let ck = ck(Ť) be the

probability that a simple random walk starting from its root reaches generation 0 before visiting uMk
. If there is more

than one such grafted trees, we take ck to be the sum of the corresponding probabilities. This definition is justified by
the fact that ck can be interpreted as the effective conductance between uMk

and generation 0 in the graph that consists
only of the vertex uMk

and all the subtrees grafted to it.
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We also set, for every k ≥ 1,

hk = hk(Ť) := P Ť
Mk−1(S0 < �Mk

),

which is the probability that a simple random walk starting from uMk−1 reaches generation 0 before visiting uMk
.

With the notation of Section 3.3, it is clear that

hk = CMk−1
([Ť]Mk−1).

We write �k = 1/Lk = (Mk − Mk−1)
−1 for all k ≥ 1. Then simple considerations show that

p1 = �1

�1 + c1 + �2
,

and, for all k ≥ 2,

pk = �k

�k + ck + �k+1

(
pk−1 + �k

�k + ck−1 + hk−1
pk

)
. (29)

To establish the last formula, we consider the excursions of simple random walk outside of vertex uMk
, which are

independent of the same law. Under this excursion law, the random walk makes its first jump with equal probability
towards one of its neighbors, which are uMk−1, uMk+1 and the children of uMk

distinct from uMk−1. The respective
probabilities for an excursion to visit uMk−1 , to visit uMk+1 , and to reach generation 0 in one of the subtrees grafted at
uMk

, are proportional respectively to 1/Lk = �k , to 1/Lk+1 = �k+1 and to ck . So the probability for the random walk
starting from uMk

to visit uMk−1 before hitting uMk+1 or reaching generation 0 is

�k

�k + �k+1 + ck

.

Next, conditionally on the latter event, the strong Markov property leads us to consider a simple random walk that
starts from uMk−1 . With probability pk−1 it reaches generation 0 by hitting the vertex u0 before moving down to uMk

.
However, we must also add the probability that this random walk goes back down to uMk

before reaching generation
0, which is equal to

�k

�k + ck−1 + hk−1
,

multiplied by the probability pk that once returning to uMk
the random walk will eventually hit generation 0 at u0

before moving down to uMk+1 .
We derive from (29) that

pk−1 = pk

(
�k + ck + �k+1

�k

− �k

�k + ck−1 + hk−1

)
,

from which it follows that

p1 = pk ×
k∏

j=2

(
1 + cj + �j+1

�j

− �j

�j + cj−1 + hj−1

)
.

We define thus, for every j ≥ 2,

Qj = Qj(Ť) := log

(
1 + cj + �j+1

�j

− �j

�j + cj−1 + hj−1

)
.
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Lemma 16. We have

1

k

k∑
j=2

Qj
L2(P)−→
k→∞

λ

2
. (30)

The proof of this key lemma is postponed to the next section. Let us first show how it implies Proposition 15 and
thus Theorem 1. For any δ > 0, consider the event{

(λ − δ) logn ≤
kn∑

j=2

Qj ≤ (λ + δ) logn

}
.

Using Lemma 13 and Lemma 16, we see that the last event holds with P-probability tending to 1 as n → ∞. As

pkn = p1 exp

(
−

kn∑
j=2

Qj

)
,

we have

lim
n→∞P

(
p1n

−λ−δ ≤ pkn ≤ p1n
−λ+δ

) = 1.

Recalling the definition of pk , we conclude that

lim
n→∞P

(
p1n

−λ−δ ≤ P Ť
Mkn

(XS0 = u0, S0 < �Mkn+1) ≤ p1n
−λ+δ

) = 1.

Since δ is arbitrary, the required convergence (28) readily follows from the last display. Therefore, it remains to prove
Lemma 16.

4.2. Proof of Lemma 16

By the definition of Qk , we can write for every k ≥ 2,

Qk = log

(
1 + Mkck + Mk/Lk+1

Mk/Lk

− Mk/Lk

Mk/Lk + (Mk/Mk−1)(Mk−1ck−1 + Mk−1hk−1)

)
.

Lemma 17. We have(
Lk+1

Mk

,
Lk

Mk−1
,Mkck,Mk−1ck−1,Mk−1hk−1

)
(d)−→

k→∞
(
R,R′,C,C′, Ĉ

)
,

where in the limit

• R and R′ are two positive random variables with the same distribution given by

P(R > x) = (1 + x)−2 for all x ≥ 0;

• C and C′ are distributed according to the law γ ;
• Ĉ is distributed according to the law γ̂ .

Furthermore, we suppose that R,R′,C,C′, Ĉ are all defined under the probability measure P, and they are indepen-
dent.
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Proof. We first observe that (Mk−1,Lk)k≥1 is a homogeneous Markov chain on Z+ × N whose initial distribution
and transition probabilities are given as follows. Initially M0 = 0 and for every integer � ≥ 1,

P(L1 > �) =
�∏

j=1

P(εj = 0),

where {εj = 0} means as previously that none of the Galton–Watson trees grafted at uj reaches generation 0. Then
for every k ≥ 1, Mk = Mk−1 + Lk and conditionally on {Mk = m},

P(Lk+1 > � | Mk = m) =
�∏

j=1

P(εm+j = 0) =: F(m,�), for every � ≥ 1. (31)

Using (25), it is elementary to verify that for every x > 0,

F
(
m, �xm�) −→

m→∞
1

(1 + x)2
.

For every k ≥ 1, let Fk = σ(L1,L2, . . . ,Lk) be the σ -field generated by (Li,1 ≤ i ≤ k), so that (Fk)k≥1 is the natural
filtration associated with the Markov chain (Mk−1,Lk)k≥1. As Mk ≥ k, it is clear that Mk → ∞ as k → ∞. By
dominated convergence and the last display, we get that for every x, y > 0,

P

(
Lk

Mk−1
> x,

Lk+1

Mk

> y

)
= E

[
1
{

Lk

Mk−1
> x

}
P

(
Lk+1

Mk

> y

∣∣∣Fk

)]
= E

[
1
{

Lk

Mk−1
> x

}
P

(
Lk+1

Mk

> y

∣∣∣ Mk

)]
−→
k→∞

1

(1 + x)2(1 + y)2
,

which entails that(
Lk

Mk−1
,
Lk+1

Mk

)
(d)−→

k→∞
(
R′,R

)
. (32)

Note that conditionally on Mk and on the number of subtrees grafted at uMk
that hit generation 0, these subtrees are

Galton–Watson trees conditioned to have height greater than Mk − 1. Furthermore, the property E[N̂ ] = ∑
k2θ(k) <

∞ and the estimate (21) entail that a.s. for all sufficiently large k, there is a unique subtree grafted at uMk
that reaches

generation 0. Hence by Proposition 11, we obtain the convergence

(Mk−1ck−1,Mkck)
(d)−→

k→∞
(
C′,C

)
, (33)

which holds jointly with (32), provided we let (C′,C) be independent of (R′,R).
Let J ≥ 2 be a fixed integer. We can generalize the preceding arguments to show that the 2J -tuple(

Lk−1

Mk−2
,

Lk−2

Mk−3
, . . . ,

Lk−J

Mk−J−1
,Mk−2ck−2,Mk−3ck−3, . . . ,Mk−J−1ck−J−1

)
converges in distribution as k → ∞ to (R1,R2, . . . ,RJ ,C1,C2, . . . ,CJ ). These random variables appearing in the
limit are all independent, and (Rj )1≤j≤J , respectively (Cj )1≤j≤J , have the same distribution as R, resp. as C. If we

set Vj = Rj

1+Rj
for all 1 ≤ j ≤ J , then (Vj )1≤j≤J are i.i.d. with the same law of density 2(1 − x) on [0,1]. Moreover,

the previous convergence can be reformulated as(
Lk−j

Mk−j

,Mk−j−1ck−j−1

)
1≤j≤J

(d)−→
k→∞ (Vj ,Cj )1≤j≤J . (34)
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For all integers k > J and 0 ≤ j ≤ J , we can define

h
(j)
k = h

(j)
k (Ť) := P Ť

Mk−1(S0 ∧ �Mk−j −1 < �Mk
),

which is the probability that a simple random walk starting from uMk−1 reaches generation 0 or the vertex uMk−j −1

before visiting uMk
. By definition it is clear that h

(0)
k = 1. From the interpretation of h

(J )
k−1 as an electric conductance,

we obtain the formula

h
(J )
k−1 = (

Lk−1 + (
ck−2 + h

(J−1)
k−2

)−1)−1

by the series law and parallel law. It follows that

Mk−1h
(J )
k−1 =

(
Lk−1

Mk−1
+ 1 − Lk−1/Mk−1

Mk−2ck−2 + Mk−2h
(J−1)
k−2

)−1

.

The same calculation can be repeated for Mk−2h
(J−1)
k−2 ,Mk−3h

(J−2)
k−3 , . . . up until Mk−J h

(1)
k−J . By using (34) and the

fact that h
(0)
k−J−1 = 1, we see that the law of Mk−1h

(J )
k−1 converges weakly to the J th iterate �̂J (δ∞) as k → ∞, where

�̂ is the mapping defined in (11). Moreover, according to assertion (1) in Proposition 7, �̂J (δ∞) converges weakly to
γ̂ = Law(Ĉ) as J → ∞.

On the other hand,

0 ≤ h
(J )
k − hk = P Ť

Mk−1(�Mk−J −1 < �Mk
< S0).

Note that there is probability at least 1 − Mk−J −1
Mk

that, after hitting the vertex uMk−J −1, the simple random walk on Ť
will reach generation 0 before hitting uMk

. Hence, by the strong Markov property of simple random walk, we have

h
(J )
k − hk ≤ P Ť

Mk−1(�Mk−J −1 < S0 ∧ �Mk
) × Mk−J − 1

Mk

.

By similar reasoning,

P Ť
Mk−1(�Mk−J −1 < S0 ∧ �Mk

) ≤ 1

Mk − Mk−J + 1
,

and it follows that

Mkh
(J )
k − Mkhk ≤ Mk−J − 1

Mk − Mk−J + 1
.

Thus, for any η > 0,

P
(∣∣Mk−1hk−1 − Mk−1h

(J )
k−1

∣∣ ≥ η
) ≤ P

(
Mk−J−1 − 1

Mk−1 − Mk−J−1 + 1
≥ η

)
.

But due to the previous discussions, it is clear that

lim
J→∞ lim sup

k→∞
P

(
Mk−J−1 − 1

Mk−1 − Mk−J−1 + 1
≥ η

)
= 0.

So we obtain, for any η > 0, that

lim
J→∞ lim sup

k→∞
P
(∣∣Mk−1hk−1 − Mk−1h

(J )
k−1

∣∣ ≥ η
) = 0.
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Finally, by applying [2, Theorem 3.2] we get that

Mk−1hk−1
(d)−→

k→∞ Ĉ. (35)

Notice that hk−1 only depends on Mk−1 and the finite tree strictly above the vertex uMk−1 in Ť. So conditionally on
Mk−1, the latter quantity hk−1 is independent of (Lk,Lk+1, ck−1, ck). In consequence, the convergence (35) holds
jointly with (32) and (33), if we take Ĉ to be independent of (R,R′,C,C′). The proof of Lemma 17 is therefore
complete. �

Lemma 18. It holds that

sup
k≥1

E
[
(Mkhk)

2] < ∞.

Proof. From the interpretation of hk as a conductance, we know by the series law and parallel law that

hk = (
Lk + (ck−1 + hk−1)

−1)−1
.

It follows that

Mkhk = Mk−1ck−1 + Mk−1hk−1

(Lk/Mk)(Mk−1ck−1 + Mk−1hk−1) + 1 − Lk/Mk

.

Again from the interpretation of ck−1 and hk−1 as conductances, it is elementary to see that Mk−1ck−1 ≥ 1 and
Mk−1hk−1 ≥ 1. Hence,

Mkhk ≤ Mk−1ck−1 + Mk−1hk−1

2Lk/Mk + 1 − Lk/Mk

≤ Mk−1ck−1 + Mk−1hk−1

1 + Lk/Mk

.

For any η > 0, one can take C(η) > 1 + 1
η

so that (a + b)2 ≤ C(η)a2 + (1 + η)b2 for every a, b > 0. Applying this
inequality to the last display, we obtain

E
[
(Mkhk)

2] ≤ C(η)E
[
(Mk−1ck−1)

2] + (1 + η)E

[(
Mk−1hk−1

1 + Lk/Mk

)2]
. (36)

Now notice that

E

[(
Mk−1hk−1

1 + Lk/Mk

)2]
= E

[ ∞∑
�=1

P(Lk = � | Mk−1)
(Mk−1hk−1)

2

(1 + �/(Mk−1 + �))2

]
.

According to (31), there exists a constant c > 0 such that, a.s. for all integers k ≥ 2, we have P(Lk ≥ Mk−1 | Mk−1) ≥
c. It follows that∑

�≥1

P(Lk = � | Mk−1)
(Mk−1hk−1)

2

(1 + �/(Mk−1 + �))2

≤
(

2

3

)2 ∑
�≥Mk−1

P(Lk = � | Mk−1)(Mk−1hk−1)
2 +

∑
�<Mk−1

P(Lk = � | Mk−1)(Mk−1hk−1)
2

≤
(

1 − 5

9
c

)
(Mk−1hk−1)

2,

and thus

E

[(
Mk−1hk−1

1 + Lk/Mk

)2]
≤

(
1 − 5

9
c

)
E

[
(Mk−1hk−1)

2].
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Together with (36), the last display entails that

E
[
(Mkhk)

2] ≤ C(η)E
[
(Mk−1ck−1)

2] + (1 + η)

(
1 − 5

9
c

)
E

[
(Mk−1hk−1)

2].
Recall that by Lemma 12, E[(Mk−1ck−1)

2] is uniformly bounded with respect to k. So by choosing η sufficiently
small so that (1 + η)(1 − 5

9c) < 1, we see that there exist positive constants C < ∞ and ρ < 1, both independent of k,
such that for all k ≥ 2,

E
[
(Mkhk)

2] ≤ C + ρE
[
(Mk−1hk−1)

2].
The sequence (E[(Mkhk)

2])k≥1 is therefore bounded. �

With the notation of Lemma 17, we set

Q∞ := log

(
1 + C + 1/R

(1 +R′)/R′ − 1

1 +R′(C′ + Ĉ)

)
.

Lemma 19.

(i) We have limk→∞ E[Qk] = E[Q∞].
(ii) We have the equality E[Q∞] = λ/2.

(iii) It holds that

sup
i,j≥1

E
[|QiQj |

]
< ∞ and sup

i,j≥1
E

[
(QiQj )

2] < ∞.

Proof. (i) On the one hand, since Mk

Lk
> 1,

Qk ≤ log

(
1 + Mkck + Mk/Lk+1

Mk/Lk

)
≤ log

(
1 + Mkck + Mk

Lk+1

)
.

On the other hand,

Qk ≥ log

(
1 − Mk/Lk

Mk/Lk + (Mk/Mk−1)(Mk−1ck−1 + Mk−1hk−1)

)
= − log

(
1 + Mk/Lk

(Mk/Mk−1)(Mk−1ck−1 + Mk−1hk−1)

)
= − log

(
1 + Mk−1/Lk

Mk−1ck−1 + Mk−1hk−1

)
.

Using the facts that Mk−1ck−1 ≥ 1 and Mk−1hk−1 ≥ 1, we arrive at

|Qk| ≤ max

{
log

(
1 + Mkck + Mk

Lk+1

)
, log

(
1 + Mk−1

2Lk

)}
.

One can find A > 0 such that log(1 + x) ≤ A + x1/2 for every x > 0. It follows that

|Qk| ≤ A +
(

Mkck + Mk

Lk+1

)1/2

+
(

Mk−1

Lk

)1/2

≤ A + (Mkck)
1/2 +

(
Mk

Lk+1

)1/2

+
(

Mk−1

Lk

)1/2

. (37)

Recall the convergence in distribution Mkck
(d)→ C shown in Lemma 17. By Lemma 12, it follows that

E[Mkck] −→
k→∞ E[C]. (38)
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In particular, supk E[Mkck] < ∞. Meanwhile, using (25) and (31), it is not difficult to verify that there exists a positive
constant K such that for every x > 0,

sup
k≥1

P

(
Mk

Lk+1
> x

)
≤ K

1 + x
.

So using the formula

E

[(
Mk

Lk+1

)α]
=

∫ ∞

0
αxα−1

P

(
Mk

Lk+1
> x

)
dx,

we get the existence of a constant α ∈ ( 1
2 ,1) such that

sup
k≥1

E

[(
Mk

Lk+1

)α]
< ∞. (39)

Hence, it follows from (37) that (Qk)k≥2 is bounded in Lp with some p > 1. The sequence (Qk)k≥2 is thus uniformly
integrable. However, according to Lemma 17, Qk converges in distribution to Q∞. Therefore, Qk → Q∞ in L1 and
we have

lim
k→∞E[Qk] = E[Q∞].

(ii) Recall that V = R
1+R and V ′ = R′

1+R′ are independent with the same law of density 2(1 − x) on [0,1]. Noting
that

log

(
1 + C + 1/R

(1 +R′)/R′ − 1

1 +R′(C′ + Ĉ)

)
= log

((
C + 1

R

)
V ′ + V ′(C′ + Ĉ)

1 − V ′ + V ′(C′ + Ĉ)

)

= logV ′ + log

(
C + 1

R +
(

V ′ + 1 − V ′

C′ + Ĉ

)−1)
,

we can use the distributional identity (6) to obtain

E[Q∞] = E
[
logV ′] +E

[
log

(
C + 1

R + Ĉ
)]

.

Since R= V
1−V

, it follows that

log

(
C + 1

R + Ĉ
)

= log
(
1 − V + V (C + Ĉ)

) − logV,

which yields E[Q∞] = E[log(1 − V + V (C + Ĉ))]. To complete the proof of assertion (ii), we apply (6) again to see
that

E
[
log

(
1 − V + V (C + Ĉ)

)] = E
[
log(Ĉ + C)

] −E
[
log(Ĉ)

] = E

[
log

( Ĉ + C
Ĉ

)]
,

which is equal to λ/2 according to (20).
(iii) There exists a constant Ã > 0 such that log(1 + x) ≤ Ã + x1/4 for every x > 0. It follows then from the same

arguments as in the proof of assertion (i) that

|QiQj | ≤
(

log

(
1 + Mici + Mi

Li+1

)
+ log

(
1 + Mi−1

2Li

))(
log

(
1 + Mjcj + Mj

Lj+1

)
+ log

(
1 + Mj−1

2Lj

))

≤
(

2Ã +
(

Mici + Mi

Li+1

)1/4

+
(

Mi−1

Li

)1/4)(
2Ã +

(
Mjcj + Mj

Lj+1

)1/4

+
(

Mj−1

Lj

)1/4)
.
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In order to prove that supi,j E[|QiQj |] < ∞, it is enough to develop the product in the last line of the preceding
display, and to show that the expectation of each term is uniformly bounded with respect to i and j . In fact, by the
Cauchy–Schwarz inequality,

E

[(
Mi−1

Li

)1/4(Mj−1

Lj

)1/4]
≤ E

[(
Mi−1

Li

)1/2]1/2

E

[(
Mj−1

Lj

)1/2]1/2

,

in which the right-hand side is uniformly bounded according to (39). Moreover, as

E

[(
Mici + Mi

Li+1

)1/4(
Mjcj + Mj

Lj+1

)1/4]
≤ E

[(
(Mici)

1/4 +
(

Mi

Li+1

)1/4)(
(Mjcj )

1/4 +
(

Mj

Lj+1

)1/4)]
,

we can develop the right-hand side and similarly use (38) and (39) to show that it is uniformly bounded. All the other
terms can be treated in an analogous way. By similar arguments, one can also prove that supi,j E[(QiQj )

2] < ∞.
This finishes the proof of assertion (iii). �

Using assertions (i) and (ii) of Lemma 19, we have thus

lim
k→∞E

[
1

k

k∑
j=2

Qj

]
= lim

k→∞
1

k

k∑
j=2

E[Qj ] = E[Q∞] = λ

2
. (40)

Lemma 20. We have

lim sup
k→∞

E

[(
1

k

k∑
j=2

Qj

)2]
≤ (

E[Q∞])2 = λ2

4
. (41)

Proof. We first note that for every δ ∈ (0,1/2),∣∣∣∣E[ ∑
2≤i,j≤k

QiQj

]
−E

[ ∑
δk≤i,j≤k

|i−j |>δk

QiQj

]∣∣∣∣ ≤ 4δk2 × sup
i,j

E
[|QiQj |

]
.

In view of Lemma 19(iii), the estimate (41) will be proved if we can show for arbitrarily small δ ∈ (0,1/2) that

lim sup
k→∞

1

k2
E

[ ∑
δk≤i,j≤k

|i−j |>δk

QiQj

]
≤ (

E[Q∞])2
. (42)

We thus fix δ ∈ (0,1/2) in the following arguments. By symmetry, we can further restrict our attention to the indices
i and j such that δk ≤ i, j ≤ k and j − i > δk.

Notice that by the Cauchy–Schwarz inequality,∣∣∣∣ 1

k2
E

[ ∑
δk≤i,j≤k

j−i>δk

QiQj 1{Mi+1≥εMj−1}
]∣∣∣∣ ≤ 1

k2

∑
δk≤i,j≤k

j−i>δk

P(Mi+1 ≥ εMj−1)
1/2

E
[
(QiQj )

2]1/2

≤ sup
δk≤i,j≤k

j−i>δk

P(Mi+1 ≥ εMj−1)
1/2 × sup

i,j

E
[
(QiQj )

2]1/2
. (43)

However, observe that Lemma 13 can be reformulated as

logMk

k

P-a.s.−→
k→∞

1

2
,
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and it follows that for all ε ∈ (0,1),

lim
k→∞P

(
there exist i, j ∈ [δk, k] with j − i > δk such that Mi+1 ≥ εMj−1

) = 0. (44)

Together with Lemma 19(iii), the latter display implies that the right-hand side of (43) converges to 0 as k → ∞. The
proof of (42) is thus reduced to showing that for fixed δ,

lim sup
ε→0

(
lim sup
k→∞

2

k2
E

[ ∑
δk≤i,j≤k

j−i>δk

QiQj 1{Mi+1<εMj−1}
])

≤ (
E[Q∞])2

. (45)

To this end, we take ε ∈ (0,1/2) and define, for every k ≥ 2,

hε
k = hε

k(Ť) := CMk−1−�εMk�
([Ť]∗(Mk−1)

)
,

where [Ť]∗(Mk−1) stands for the reduced tree associated with [Ť]Mk−1 up to height Mk − 1. In other words, hε
k is

the probability that a simple random walk on Ť starting from uMk−1 hits a point of generation −�εMk� that has a
descendant at generation 0 before hitting uMk

. Comparing with the definition of hk , it is clear that hε
k ≥ hk . On the

other hand, by similar arguments as in the proof of Proposition 11, we obtain

hε
k − hk ≤ �εMk�

Mk

hε
k,

which entails that

Mkh
ε
k − Mkhk ≤ �εMk�hε

k ≤ 2εMkhk. (46)

We set

Qε
k = Qε

k(Ť) := log

(
1 + Mkck + Mk/Lk+1

Mk/Lk

− Mk/Lk

Mk/Lk + (Mk/Mk−1)(Mk−1ck−1 + Mk−1h
ε
k−1)

)
≥ Qk.

Using the elementary inequality 0 ≤ logx − logy ≤ x−y
y

for x ≥ y > 0, we see that

Qε
k − Qk ≤ Mk/Lk

Mkck + Mk/Lk+1

(
Mk/Lk

Mk/Lk + (Mk/Mk−1)(Mk−1ck−1 + Mk−1hk−1)

− Mk/Lk

Mk/Lk + (Mk/Mk−1)(Mk−1ck−1 + Mk−1h
ε
k−1)

)

≤ (Mk/Lk)
2

Mkck + Mk/Lk+1
· (Mk/Mk−1)(Mk−1h

ε
k−1 − Mk−1hk−1)

(Mk/Lk + (Mk/Mk−1)(Mk−1ck−1 + Mk−1hk−1))2
.

Taking account of the easy facts that Mkck ≥ 1 and Mk = Mk−1 + Lk , we obtain

Qε
k − Qk ≤ (Mk/Lk)

2(Mk/Mk−1)(Mk−1h
ε
k−1 − Mk−1hk−1)

(Mk/Lk + Mk/Mk−1)2

≤ Mk−1h
ε
k−1 − Mk−1hk−1,

which, together with (46), implies that

Qε
k − Qk ≤ 2εMk−1hk−1.
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This allows us to approximate E[QiQj 1{Mi+1<εMj−1}] by E[QiQ
ε
j 1{Mi+1<εMj−1}], because∣∣E[QiQj 1{Mi+1<εMj−1}] −E

[
QiQ

ε
j 1{Mi+1<εMj−1}

]∣∣ ≤ E
[∣∣Qi

(
Qε

j − Qj

)∣∣]
≤ E

[(
Qε

j − Qj

)2]1/2 ×E
[
(Qi)

2]1/2

≤ 2εE
[
(Mj−1hj−1)

2]1/2 ×E
[
(Qi)

2]1/2
,

and the right-hand side converges to 0 uniformly with respect to i, j and k when ε → 0, according to Lemma 18 and
assertion (iii) of Lemma 19.

Let us return to the indices i, j such that δk ≤ i, j ≤ k and j − i > δk, and let F̃i be the σ -field generated by the
variable Mi+1 and the finite part of Ť above the vertex uMi+1 . Informally, one can think of it as the σ -field generated
by [Ť]Mi+1 . Then Qi is F̃i -measurable and

E
[
QiQ

ε
j 1{Mi+1<εMj−1}

] = E
[
QiE

[
Qε

j 1{Mi+1<εMj−1} | F̃i

]]
. (47)

At this point, we observe that

E
[
Qε

j 1{Mi+1<εMj−1} | F̃i

] = E
[
Qε

j 1{Mi+1<εMj−1} | Mi+1
]
. (48)

On the other hand, one can generalize the proof of Lemma 17 to show that(
Lj+1

Mj

,
Lj

Mj−1
,Mjcj ,Mj−1cj−1,Mj−1h

ε
j−1

)
(d)−→

j→∞
(
R,R′,C,C′, Ĉε

)
, (49)

where in the limit, the first four random variables R,R′,C,C′ are the same as in Lemma 17, whereas Ĉε is distributed
as C(
̂ε). It is assumed in addition that R,R′,C,C′, Ĉε are independent under P. Furthermore, we can verify that the
convergence (49) is still valid if, instead of the distribution of(

Lj+1

Mj

,
Lj

Mj−1
,Mjcj ,Mj−1cj−1,Mj−1h

ε
j−1

)
,

we consider the conditional distribution of the same random 5-tuple given Mi+1, and let i and j tend to infinity
satisfying that j − i > δj .

We define thus

Qε∞ := log

(
1 + C + 1/R

(1 +R′)/R′ − 1

1 +R′(C′ + Ĉε)

)
,

which has the limiting distribution of the sequence (Qε
j ) conditioned on Mi+1. By similar arguments used in the proof

of assertion (i) of Lemma 19, we know that there exists some p > 1 such that

sup
�:P(Mi+1=�)>0

E
[(

Qε
j

)p | Mi+1 = �
]

is uniformly bounded for all i, j satisfying that j − i > δj , and that

lim
i,j→∞
j−i>δj

(
sup

�:P(Mi+1=�)>0

∣∣E[
Qε

j | Mi+1 = �
] −E

[
Qε∞

]∣∣) = 0.

In view of (44) and (48), it follows that a.s.

lim
i,j→∞
j−i>δj

∣∣E[
Qε

j 1{Mi+1<εMj−1} | F̃i

] −E
[
Qε∞

]∣∣ = 0.
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Hence, we get from (47) and Lemma 19(i) that

lim
k→∞

(
sup

i,j∈[δk,k]
j−i>δk

E
[
QiQ

ε
j 1{Mi+1<εMj−1}

]) ≤ E[Q∞]E[
Qε∞

]
.

Finally, it remains to estimate the difference between E[Qε∞] and E[Q∞]. To do this, we use a coupling argument
by defining both Ĉε and Ĉ from a common reduced tree 
̂, independent of (R,R′,C,C′), so that Ĉ = C(
̂) and
Ĉε = C(
̂ε). Since C ≥ 1 and Ĉε ≥ Ĉ ≥ 1, one can proceed in the same way as we did for bounding Qε

k − Qk , and
arrive at

0 ≤ Qε∞ − Q∞ ≤ 1 + 1/R′

C + 1/R
R′(Ĉε − Ĉ)

(1 +R′(C′ + Ĉ))2
≤

(
1 + 1

R′

)R′(Ĉε − Ĉ)

(1 +R′)2
≤ Ĉε − Ĉ.

Taking account of (22), the last display gives |E[Qε∞] −E[Q∞]| ≤ 2εE[Ĉ], and the right-hand side converges to 0 as
ε → 0.

According to the previous discussions, we conclude that

lim sup
ε→0

(
lim sup
k→∞

2

k2
E

[ ∑
δk≤i,j≤k

j−i>δk

QiQj 1{Mi+1<εMj−1}
])

= lim sup
ε→0

(
lim sup
k→∞

2

k2
E

[ ∑
δk≤i,j≤k

j−i>δk

QiQ
ε
j 1{Mi+1<εMj−1}

])

≤ lim sup
ε→0

E[Q∞]E[
Qε∞

] = (
E[Q∞])2

,

which finishes the proof of (45). The proof of Lemma 20 is therefore completed. �

Proof of Lemma 16. By combining (40) and (41), we have

lim sup
k→∞

E

[(
1

k

k∑
j=2

Qj − λ

2

)2]
≤

(
lim sup
k→∞

E

[(
1

k

k∑
j=2

Qj

)2])
− λ lim

k→∞E

[
1

k

k∑
j=2

Qj

]
+ λ2

4
≤ 0,

which gives the desired result. �
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