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Abstract. We give a general inequality for the total variation distance between a Poisson distributed random variable and a first
order stochastic integral with respect to a point process with stochastic intensity, constructed by embedding in a bivariate Poisson
process. We apply this general inequality to first order stochastic integrals with respect to a class of nonlinear Hawkes processes,
which is of interest in queueing theory, providing explicit bounds for the Poisson approximation, a quantitative Poisson limit
theorem, confidence intervals and asymptotic estimates of the moments.

Résumé. Nous donnons une inégalité générale pour la distance en variation totale entre une variable de Poisson aléatoire et une in-
tégrale stochastique par rapport à un processus ponctuel avec une intensité stochastique, construite par plongement dans un proces-
sus de Poisson bivarié. Nous appliquons cette inégalité générale aux intégrales stochastiques par rapport à une classe de processus
de Hawkes non linéaires, ce qui a un intérêt en théorie des files d’attente, en fournissant des bornes explicites pour l’approximation
Possonienne, ainsi qu’un théorème limite Poissonien quantitatif et des intervalles de confiance et estimatées asymptotiques des
moments.
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1. Introduction

The aim of this paper is to estimate the error when approximating, by a Poisson random variable, a first order stochas-
tic integral with respect to a point process with stochastic intensity. We accomplish this task for first order stochastic
integrals with respect to a point process constructed by embedding in a bivariate Poisson process (see e.g. Lemmas 2
and 3 in [9]; see also Lemma 2.1), combining the Chen–Stein method (see e.g. [3]) with a Clark–Ocone type repre-
sentation formula for functionals of the Poisson process (see Theorem 1.1 in [23]; see also Lemma 2.2).

One of our achievements is a general inequality (see Theorem 3.1) assessing the total variation distance between a
Poisson distributed random variable and a first order stochastic integral with respect to a point process with stochastic
intensity, constructed by embedding in a bivariate Poisson process.

The present work is a natural continuation of the findings contained in [37] where the author combined Stein’s
method (see e.g. [15]) with a Clark–Ocone type representation formula for functionals of the Poisson process in order
to compute explicit bounds for the Gaussian approximation of the first chaos (or innovation) of a point process with
stochastic intensity (still constructed by embedding in a bivariate Poisson process).

We apply the general inequality for the Poisson approximation to a class of stationary nonlinear Hawkes processes
which is of interest in queueing theory, since it encompasses the input process to the Erlang loss system (see Sec-
tion 5), and in neuroscience, since it may be interpreted as a neuron firing model (see [9,26]). Particularly, we provide
an explicit bound for the total variation distance between a Poisson distributed random variable and a first order
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stochastic integral with respect to a stationary nonlinear Hawkes process with bounded and Lipschitz dynamics (see
Theorem 4.1). For such class of first order stochastic integrals, we provide also a quantitative Poisson limit theorem,
confidence intervals and asymptotic estimates of the moments (see Theorem 4.4, Corollary 4.5 and Corollary 4.7,
respectively).

Historically, the work [22] was the first on the subject of nonlinear Hawkes processes. In [9] the authors studied
the stability properties of these processes such as stationarity and convergence to stationarity, and described nonlinear
Hawkes processes as natural extensions of the so-called self-exciting point processes studied in [20,21]. Various
generalizations of the results in [9] are provided in [26]. The rate of convergence to equilibrium of nonlinear Hawkes
processes is investigated in [11,36], central limit theorems and large deviation principles are given in [7,39–41], mean
field limits are provided in [19].

Our general inequality for the Poisson approximation extends the bound of Theorem 3.1 in [32] specialized to
first order Poisson stochastic integrals. In [32] the author combines the Chen–Stein method with the integration by
parts formula of the Malliavin calculus on the Poisson space (see e.g. [29]) to deduce explicit bounds for the Poisson
approximation of functionals of the Poisson process. Here we combine the Chen–Stein method with a Clark–Ocone
type representation formula for functionals of the Poisson process in order to get bounds on the total variation distance
between a Poisson distributed random variable and a first order stochastic integral with respect to a point process with
stochastic intensity (constructed by embedding in a bivariate Poisson process). Our general bound differs in many
respects from the bound in Theorem 3.7 of [4], which refers to the Poisson approximation in total variation distance
of the number of points on a finite interval of a point process with compensator.

The ideas in this article are inspired by the seminal papers [27] and [31], where the Stein method and the Malliavin
calculus are combined in order to study Gaussian approximations of functionals on the Wiener and Poisson spaces,
respectively. The works [27,31] have been indeed the seeds of many generalizations and refinements, we cite the
papers [24,34,35] and the monograph [28], among others.

The paper is organized as follows. In Section 2 we give some preliminaries on point processes, including the
notion of stochastic intensity, the Poisson embedding construction and a Clark–Ocone type representation formula
for functionals of the Poisson process. In Section 3 we present a general bound for the Poisson approximation of
first order stochastic integrals with respect to point processes with stochastic intensity, constructed by embedding in
a bivariate Poisson process. The application of the general inequality to first order stochastic integrals with respect
to nonlinear Hawkes processes with bounded and Lipschitz dynamics is provided in Section 4, including explicit
bounds, a quantitative Poisson limit theorem, confidence intervals and asymptotic estimates of the moments. Finally, in
Section 5, as an illustrative example, we give a quantitative Poisson limit theorem, confidence intervals and asymptotic
estimates of the moments for the input process to the M/D/K/0 queue or Erlang loss system (see e.g. [2]).

2. Preliminaries on point processes

In this section we give some preliminaries on point processes, and refer the reader to the books [8,16,17] for more
insight into this subject.

Let {Tn}n∈Z be a sequence of random variables defined on a probability space (�,A,P ) with values in R. Given
a Borel set A ∈ B(R), we define

N(A) :=
∑
n∈Z

1A(Tn)

and we call N := {N(A)}A∈B(R) the point process with times {Tn}n∈Z. We suppose that N has the following properties,
which hold almost surely (a.s.):

T0 ≤ 0 < T1 and Tn < Tn+1, n ∈ Z,

N(A) < ∞, for all bounded A.

These conditions guarantee that N is simple, i.e. N({a}) ≤ 1 for any a ∈ R, and locally finite.
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Given a sequence {Zn}n∈Z of random variables on � with values in some measurable space (E,E), we define

N(C) :=
∑
n∈Z

1C(Tn,Zn), C ∈ B(R) ⊗ E

and ∫
C

ψ(t, z)N(dt × dz) :=
∑
n∈Z

ψ(Tn,Zn)1C(Tn,Zn)

for a measurable function ψ : R× E → R for which the infinite sum is well defined.

2.1. Point processes with stochastic intensity

Let F := {Ft }t∈R ⊂ A be a filtration such that Ft ⊇ FN
t for any t ∈R, where FN := {FN

t }t∈R is the natural filtration
of the point process N , i.e.

FN
t := σ

{
N(A) : A ∈ B(R),A ⊆ (−∞, t]}.

Let {λ(t)}t∈R be a non-negative stochastic process defined on (�,A,P ) which is F -adapted, i.e. λ(t) is Ft -
measurable for any t ∈R, and such that∫ b

a

λ(t)dt < ∞, a.s., for all a, b ∈ R.

We call {λ(t)}t∈R F -stochastic intensity of N if, for any a, b ∈R,

E
[
N

(
(a, b])|Fa

] = E

[∫ b

a

λ(t)dt |Fa

]
, a.s.

Given a filtration G := {Gt }t∈R ⊂ A, we define the σ -field P(G) on R× � by

P(G) := σ
{
(a, b] × A : a, b ∈R,A ∈ Ga

}
.

We call P(G) the G-predictable σ -field, and say that a real-valued stochastic process {X(t)}t∈R is G-predictable if
the mapping X : R × � → R is P(G)-measurable. A typical G-predictable process is a G-adapted process with left-
continuous trajectories.

Given a point process N on R with F -stochastic intensity {λ(t)}t∈R and a measurable function u : R → R, we
shall consider the random variables

N(u) :=
∫
R

u(t)N(dt), �(u) :=
∫
R

u(t)λ(t)dt, δ(u) := N(u) − �(u),

any time these quantities are well-defined.

2.2. Point processes constructed by embedding in a bivariate Poisson process

Hereafter, N denotes a Poisson process on R× [0,∞) defined on a probability space (�,A,P ), with mean measure
dt dz. We denote by FN := {FN

t }t∈R the natural filtration of N , i.e.

FN
t := σ

{
N(A × B) : A ∈ B(R),B ∈ B

([0,∞)
)
,A ⊆ (−∞, t]}.

Point processes with stochastic intensity may be constructed by embedding in a bivariate Poisson process as follows.
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Lemma 2.1. Let f,g : R× � → [0,∞) be two non-negative, P(FN)-measurable mappings such that∫ b

a

∣∣f (t) − g(t)
∣∣dt < ∞, a.s., for all a, b ∈R

and define the point process on R

N(dt) := N
(
dt × (

min
{
f (t), g(t)

}
,max

{
f (t), g(t)

}])
, t ∈ R.

Then N has FN -stochastic intensity {|f (t) − g(t)|}t∈R.

This result is an extension of the method proposed in [25] for the simulation of non-homogeneous Poisson processes
and was used e.g. in [9] and [26] to study the stability of various classes of point processes, including Hawkes pro-
cesses.

Throughout this paper we consider point processes N on R defined by

N(dt) := N
(
dt × (

0, λ(t)
])

, (1)

where {λ(t)}t∈R is a non-negative stochastic process of the form

λ(t) := ϕ(t,N |(−∞,t)) (2)

such that∫ b

a

λ(s)ds < ∞, a.s., for all a, b ∈R. (3)

Here, ϕ : R × N → [0,∞) is a measurable functional, N denotes the space of simple and locally finite counting
measures on R × [0,∞) endowed with the vague topology (see e.g. [17]) and, for simplicity, with a little abuse of
notation, we denote by N |(−∞,t) the restriction of N to (−∞, t) × [0,∞). Let C ∈ B(R) ⊗ B([0,∞)) be arbitrarily

fixed. Since the process {N |(−∞,t)(C)}t∈R is FN -adapted and left-continuous, the mapping

(t,ω) → N |(−∞,t)(C)

is P(FN)-measurable. Therefore, {λ(t)}t∈R is FN -predictable (see e.g. Remark 1 in [26]). Consequently, by
Lemma 2.1 we deduce that N defined by (1), (2) and (3) has FN -stochastic intensity {λ(t)}t∈R.

As we shall see more in detail later on, Hawkes processes may be constructed by embedding in a bivariate Poisson
process, see [9].

2.3. The finite difference operator on the Poisson space and a Clark–Ocone type representation formula

Given a measurable functional ψ : N →R, we define the finite difference operator D by

D(t,z)ψ(N) := ψ(N + ε(t,z)) − ψ(N),

where ε(t,z) denotes the Dirac measure at (t, z) ∈R× [0,∞). We also define the σ -field

FN
t− := σ

{
N(A × B) : A ∈ B(R),B ∈ B

([0,∞)
)
,A ⊆ (−∞, t)

}
, t ∈R.

The following Clark–Ocone type representation formula holds, see Theorem 1.1 in [23] (see also Lemma 1.3 in [38]).

Lemma 2.2. For any measurable functional ψ : N →R such that ψ(N) ∈ L2(�,dP), we have

ψ(N) − E
[
ψ(N)

] =
∫
R×[0,∞)

g(t, z)
(
N(dt × dz) − dt dz

)
,

where g(t, z) denotes a P(FN) ⊗B([0,∞))-measurable version of E[D(t,z)ψ(N)|FN
t−].
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3. Poisson approximation of first order stochastic integrals with respect to point processes with stochastic
intensity

Given a function f :N →R, N := {0,1,2, . . .}, we define the operators

�f (k) := f (k + 1) − f (k)

and �2f := �(�f ). Let Po(θ) be a Poisson random variable with mean θ > 0 and A ⊆ N. It turns out that there
exists a unique function fA :N→ R such that

1A(k) − P
(
Po(θ) ∈ A

) = θfA(k + 1) − kfA(k), k ∈ N (4)

verifying the boundary condition fA(0) = 0. The above equation is called Chen–Stein’s equation (see e.g. [3]).
Throughout this section, given f : N → R, we set ‖f ‖∞ := supk∈N |f (k)|. The following bounds for the solution
of the Chen–Stein equation hold (see Lemma 1.1.1 and Remark 1.1.2 in [3]):

‖fA‖∞ ≤ min

(
1,

√
2

θe

)
, ‖�fA‖∞ ≤ 1 − e−θ

θ
. (5)

In addition, by the latter inequality in (5) and the relation ‖�2fA‖∞ ≤ 2‖�fA‖∞ (which is a straightforward conse-
quence of the triangle inequality), we deduce

‖�2fA‖∞ ≤ 2(1 − e−θ )

θ
. (6)

We finally recall that the total variation distance between (the laws of) the random variables Xi , i = 1,2, with values
on N and defined respectively on the probability spaces (�i,Ai , Pi), is defined by

dTV(X1,X2) := sup
A⊆N

∣∣P1(X1 ∈ A) − P2(X2 ∈ A)
∣∣.

Of course, the topology induced by dTV on the class of probability measures on N is strictly stronger than the topology
induced by the convergence in distribution.

The following general inequalities hold.

Theorem 3.1. Assume that u : R→N is a measurable function such that∫
R

u(t)2E
[
λ(t)

]
dt < ∞, (7)∫

R×R+

(∫ ∞

t

u(s)2E
[∣∣D(t,z)λ(s)

∣∣]ds

)
dt dz < ∞, (8)

and ∫
R×R+

E

[(∫ ∞

t

u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2]
dt dz < ∞. (9)

Moreover, suppose that

For Lebesgue almost all (t, z) ∈R×R+, the (random) function s �→ ∣∣D(t,z)λ(s)
∣∣

is locally integrable on (t,∞), almost surely. (10)

Then

dTV
(
N(u),Po(θ)

) ≤ 1 − e−θ

θ
G+ min

(
1,

√
2

θe

)
E
[∣∣�(u) − θ

∣∣], (11)
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where

G :=
∫
R

u(t)
(
u(t)2 − 1

)
E
[
λ(t)

]
dt +

∫
R×R+

u(t)

(∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

)
dt dz

+
∫
R×R+

u(t)E

[(∫ ∞

t

1(0,λ(t)](z)u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2]
dt dz

+ 2
∫
R×R+

u(t)

√∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]dsE

[(∫ ∞

t

1(0,λ(t)](z)u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2]
dt dz

+ 2
∫
R×R+

u(t)2
(∫ ∞

t

u(s)E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

)
dt dz.

Corollary 3.2. Assume that u : R→N is a measurable function such that u ∈ L1(R,dx), (7), (8) and (10) hold, and∫
R×R+

(∫ ∞

t

u(s)E
[∣∣D(t,z)λ(s)

∣∣2]ds

)
dt dz < ∞. (12)

Then

dTV
(
N(u),Po(θ)

) ≤ 1 − e−θ

θ
G′ + min

(
1,

√
2

θe

)
E
[∣∣�(u) − θ

∣∣],
where

G′ :=
∫
R

u(t)
(
u(t)2 − 1

)
E
[
λ(t)

]
dt +

∫
R×R+

u(t)

(∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

)
dt dz

+ ‖u‖L1(R,dx)

∫
R×R+

u(t)

(∫ ∞

t

u(s)E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣2]ds

)
dt dz

+ 2‖u‖1/2
L1(R,dx)

×
∫
R×R+

u(t)

√∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

∫ ∞

t

u(s)E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣2]ds dt dz

+ 2
∫
R×R+

u(t)2
(∫ ∞

t

u(s)E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

)
dt dz.

Remark 3.3. If N is a Poisson process on R with mean measure f (t)dt and u :R→ N is a function such that∫
R

u(t)f (t)dt > 0 and
∫
R

u(t)2f (t)dt < ∞,

then by Theorem 3.1 (with θ := ‖uf ‖L1(R,dx), λ(t) = f (t), t ∈ R, and therefore D(t,z)λ(s) = 0, for any s, t ∈ R and
z ∈ R+) we have

dTV

(
N(u),Po

(∫
R

u(t)f (t)dt

))
≤ 1 − e− ∫

R
u(t)f (t)dt∫

R
u(t)f (t)dt

∫
R

u(t)
(
u(t)2 − 1

)
f (t)dt. (13)

As expected, the right-hand side of the inequality (13) is equal to zero if we take u(t) := 1A(t), for a Borel set A ⊆ R

such that
∫
A

f (t)dt ∈ (0,∞).
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Remark 3.4. The bound (11) has the classical structure of the error estimates in the Poisson approximation by the
total variation distance, see the seminal papers [4,5] and [14]. Indeed, the bound (11) consists of the sum of two terms

involving the magic Stein’s factors 1−e−θ

θ
and min(1,

√
2
θe ).

Proof of Theorem 3.1. We divide the proof in 4 steps. In the first step we give a Taylor expansion for the discrete
Malliavin derivative of fA(N(u)); in the second step we apply the Chen–Stein method; in the third step we conclude
the proof; in the fourth step we check the technical condition (20) below.

Step 1: a Taylor expansion for D(t,z)fA(N(u)). As shown in the proof of Theorem 3.1 in [32], for any f : N → R

and any k, a ∈N,

∣∣f (k) − f (a) − �f (a)(k − a)
∣∣ ≤ ‖�2f ‖∞

2

∣∣(k − a)(k − a − 1)
∣∣. (14)

For any (t, z) ∈ R×R+, define

R(t,z)(u) := D(t,z)fA

(
N(u)

) − �fA

(
N(u)

)
D(t,z)N(u). (15)

We have

D(t,z)fA

(
N(u)

) = D(t,z)fA

(∫
R×R+

u(s)1(0,λ(s)](v)N(ds × dv)

)
= fA

(∫
R×R+

u(s)1(0,ϕ(s,(N+ε(t,z))|(−∞,s))](v)(N + ε(t,z))(ds × dv)

)
− fA

(∫
R×R+

u(s)1(0,ϕ(s,N |(−∞,s))](v)N(ds × dv)

)
= fA(k) − fA(a)

and D(t,z)N(u) = k − a, where

k :=
∫
R×R+

u(s)1(0,ϕ(s,(N+ε(t,z))|(−∞,s))](v)N(ds × dv) + u(t)1(0,ϕ(t,N |(−∞,t))](z) (16)

and

a := N(u) =
∫
R×R+

u(s)1(0,ϕ(s,N |(−∞,s))](v)N(ds × dv). (17)

Therefore, R(t,z)(u) = fA(a) − fA(k) − �fA(a)(k − a) and so by (14) we deduce

∣∣R(t,z)(u)
∣∣ ≤ ‖�2fA‖∞

2

∣∣D(t,z)N(u)
(
D(t,z)N(u) − 1

)∣∣. (18)

Step 2: application of the Chen–Stein method. By the Chen–Stein equation (4), for any A ⊆N, we have

P
(
Po(θ) ∈ A

) − P
(
N(u) ∈ A

) = E
[
N(u)fA

(
N(u)

) − θfA

(
N(u) + 1

)]
= E

[(
N(u) − �(u)

)
fA

(
N(u)

) − �(u)
(
fA

(
N(u) + 1

) − fA

(
N(u)

))]
+ E

[(
�(u) − θ

)
fA

(
N(u) + 1

)]
= E

[
δ(u)fA

(
N(u)

) − �(u)�fA

(
N(u)

)]
+ E

[(
�(u) − θ

)
fA

(
N(u) + 1

)]
. (19)
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Note that, due to (1)–(2), fA(N(u)) is of the form ψ(N) for some functional ψ and that fA(N(u)) ∈ L2(�,dP) since
fA is bounded. So by Lemma 2.2 we deduce

fA

(
N(u)

) − E
[
fA

(
N(u)

)] =
∫
R×[0,∞)

g(t, z)
(
N(dt × dz) − dt dz

)
,

where g(t,ω, z) is a P(FN) ⊗B([0,∞))-measurable version of E[D(t,z)fA(N(u))|FN
t−](ω). We shall check later on

(see Step 4) that

g is integrable and square integrable with respect to the measure dt dz dP(ω). (20)

Note that the mapping (t,ω, z) �→ u(t)1(0,λ(t)](z) is P(FN) ⊗ B(R+)-measurable and, due to assumption (7) and
the inequality u(t) ≤ u(t)2, t ∈ R (which holds since the function u takes values on N), it is integrable and square
integrable with respect to the measure dt dz dP(ω). So by Theorem 3 in [10] (see formulas (19) and (20) therein), the
fact that {λ(t)}t∈R is adapted with respect to the filtration {FN

t−}t∈R and (15), we have

E
[
δ(u)fA

(
N(u)

)] = E
[
δ(u)

(
fA

(
N(u)

) − E
[
fA

(
N(u)

)])]
= E

[(∫
R×[0,∞)

u(t)1(0,λ(t)](z)
(
N(dt × dz) − dt dz

))
×

(∫
R×[0,∞)

g(t, z)
(
N(dt × dz) − dt dz

))]
= E

[∫
R×R+

u(t)1(0,λ(t)](z)g(t, z)dt dz

]
= E

[∫
R×R+

u(t)1(0,λ(t)](z)D(t,z)fA

(
N(u)

)
dt dz

]
= E

[∫
R×R+

u(t)1(0,λ(t)](z)
(
�fA

(
N(u)

)
D(t,z)N(u) + R(t,z)(u)

)
dt dz

]
.

Combining this relation with (19), we deduce

P
(
Po(θ) ∈ A

) − P
(
N(u) ∈ A

) = E

[∫
R×R+

u(t)1(0,λ(t)](z)
(
�fA

(
N(u)

)
D(t,z)N(u) + R(t,z)(u)

)
dt dz

− �(u)�fA

(
N(u)

)] + E
[(

�(u) − θ
)
fA

(
N(u) + 1

)]
= E

[
�fA

(
N(u)

)(∫
R×R+

u(t)1(0,λ(t)](z)D(t,z)N(u)dt dz − �(u)

)]
+ E

[∫
R×R+

u(t)1(0,λ(t)](z)R(t,z)(u)dt dz

]
+ E

[(
�(u) − θ

)
fA

(
N(u) + 1

)]
.

By taking absolute values on both sides, as well as by applying the estimates (5), (6) and (18) we have

dTV
(
N(u),Po(θ)

) ≤ 1 − e−θ

θ

(
E

[∣∣∣∣∫
R×R+

u(t)1(0,λ(t)](z)
(
D(t,z)N(u) − 1

)
dt dz

∣∣∣∣]
+ E

[∫
R×R+

u(t)1(0,λ(t)](z)
∣∣D(t,z)N(u)

(
D(t,z)N(u) − 1

)∣∣dt dz

])

+ min

(
1,

√
2

θe

)
E
[∣∣�(u) − θ

∣∣]. (21)
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Step 3: conclusion of the proof. For (t, z) ∈R×R+, we have

D(t,z)N(u) = u(t)1(0,ϕ(t,N |(−∞,t))](z)

+
∫
R×R+

u(s)
(
1(0,ϕ(s,(N+ε(t,z))|(−∞,s))](v) − 1(0,ϕ(s,N |(−∞,s))](v)

)
N(ds × dv)

= u(t)1(0,ϕ(t,N |(−∞,t))](z)

+
∫
R×R+

1t<su(s)
(
1(0,ϕ(s,(N+ε(t,z))|(−∞,s))](v) − 1(0,ϕ(s,N |(−∞,s))](v)

)
N(ds × dv)

+
∫
R×R+

1t≥su(s)
(
1(0,ϕ(s,(N+ε(t,z))|(−∞,s))](v) − 1(0,ϕ(s,N |(−∞,s))](v)

)
N(ds × dv)

= u(t)1(0,ϕ(t,N |(−∞,t))](z)

+
∫
R×R+

1t<su(s)
(
1(0,ϕ(s,N |(−∞,s)+ε(t,z))](v) − 1(0,ϕ(s,N |(−∞,s))](v)

)
N(ds × dv)

= u(t)1(0,ϕ(t,N |(−∞,t))](z) +
∫

(t,∞)

u(t,z)(s)N(t,z)(ds), (22)

where

u(t,z)(s) := u(s) sign
(
ϕ(s,N |(−∞,s) + ε(t,z)) − ϕ(s,N |(−∞,s))

)
, s > t

and

N(t,z)(ds)

:= N
(
ds × (

ϕ(s,N |(−∞,s) + ε(t,z)) ∧ ϕ(s,N |(−∞,s)), ϕ(s,N |(−∞,s) + ε(t,z)) ∨ ϕ(s,N |(−∞,s))
])

, s > t.

Here, for a, b ∈R, a ∧ b and a ∨ b denote the minimum and the maximum between a and b. For any (t, z) ∈R×R+,
the processes {ϕ(s,N |(−∞,s) + ε(t,z))}s>t and {ϕ(s,N |(−∞,s))}s>t are P({FN

s }s>t )-measurable. So by Lemma 2.1
(which may be applied due to condition (10)), for Lebesgue almost all (t, z) ∈ R × R+, the point process N(t,z) has

{FN
s }s>t -stochastic intensity {|D(t,z)λ(s)|}s>t . By (22) we have

u(t)1(0,λ(t)](z)
(
D(t,z)N(u) − 1

)
= u(t)

(
u(t) − 1

)
1(0,λ(t)](z)

+ u(t)

∫
(t,∞)

u(t,z)(s) sign
(
ϕ(s,N |(−∞,s) + ε(t,z)) − ϕ(s,N |(−∞,s))

)
N(t,z)(ds), (23)

where

u(t,z)(s) := u(s)1(0,λ(t)](z).

For any (t, z) ∈ R × R+, the process {u(t,z)(s)}s>t is {FN
s }s>t -predictable, and therefore by e.g. Theorem 2 in [10],

for Lebesgue almost all (t, z) ∈ R×R+, we have

E

[∫
(t,∞)

u(t,z)(s)N(t,z)(ds)

]
=

∫ ∞

t

u(s)E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds. (24)

Consequently,

E

[∣∣∣∣∫
R×R+

u(t)1(0,λ(t)](z)
(
D(t,z)N(u) − 1

)
dt dz

∣∣∣∣] ≤G1, (25)
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where

G1 :=
∫
R

u(t)
(
u(t) − 1

)
E
[
λ(t)

]
dt +

∫
R×R+

u(t)

(∫ ∞

t

u(s)E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

)
dt dz.

By (22) and (23) we have, respectively,

1(0,λ(t)](z)
∣∣D(t,z)N(u)

∣∣ ≤ u(t) +
∫

(t,∞)

u(t,z)(s)N(t,z)(ds)

and

u(t)1(0,λ(t)](z)
∣∣D(t,z)N(u) − 1

∣∣ ≤ u(t)
(
u(t) − 1

)
1(0,λ(t)](z) + u(t)

∫
(t,∞)

u(t,z)(s)N(t,z)(ds).

Therefore

u(t)1(0,λ(t)](z)
∣∣D(t,z)N(u)

(
D(t,z)N(u) − 1

)∣∣
≤ u(t)2(u(t) − 1

)
1(0,λ(t)](z) + u(t)

(∫
(t,∞)

u(t,z)(s)N(t,z)(ds)

)2

+ u(t)
(
2u(t) − 1

)∫
(t,∞)

u(t,z)(s)N(t,z)(ds).

Setting δ(t,z)(ds) := N(t,z)(ds) − |D(t,z)λ(s)|ds, we have(∫
(t,∞)

u(t,z)(s)N(t,z)(ds)

)2

=
(∫

(t,∞)

u(t,z)(s)δ(t,z)(ds) +
∫ ∞

t

u(t,z)(s)
∣∣D(t,z)λ(s)

∣∣ds

)2

=
(∫

(t,∞)

u(t,z)(s)δ(t,z)(ds)

)2

+
(∫ ∞

t

u(t,z)(s)
∣∣D(t,z)λ(s)

∣∣ds

)2

+ 2
∫

(t,∞)

u(t,z)(s)δ(t,z)(ds)

∫ ∞

t

u(t,z)(s)
∣∣D(t,z)λ(s)

∣∣ds.

Taking the expectation, by formula (20) in [10] (which may be applied due to (8)) and the Cauchy–Schwarz inequality,
for Lebesgue almost all (t, z) ∈ R×R+, we have

E

[(∫
(t,∞)

u(t,z)(s)N(t,z)(ds)

)2]

≤
∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds + E

[(∫ ∞

t

1(0,λ(t)](z)u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2]

+ 2

√∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

√
E

[(∫ ∞

t

1(0,λ(t)](z)u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2]
.

Therefore, employing (24) we deduce

E

[∫
R×R+

u(t)1(0,λ(t)](z)
∣∣D(t,z)N(u)

(
D(t,z)N(u) − 1

)∣∣dt dz

]
≤ G2, (26)

where

G2 :=
∫
R

u(t)2(u(t) − 1
)
E
[
λ(t)

]
dt +

∫
R×R+

u(t)

(∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

)
d tdz

+
∫
R×R+

u(t)E

[(∫ ∞

t

1(0,λ(t)](z)u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2]
dt dz
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+ 2
∫
R×R+

u(t)

√∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]dsE

[(∫ ∞

t

1(0,λ(t)](z)u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2]
dt dz

+
∫
R×R+

u(t)
(
2u(t) − 1

)(∫ ∞

t

u(s)E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

)
dt dz.

The claim follows by (21), (25), (26) and noticing that G =G1 +G2.
Step 4: proof of (20). Let k and a be the non-negative and integer-valued random variables defined by (16) and

(17). For all (t, z) ∈R×R+, if k ≥ a we have

D(t,z)fA

(
N(u)

) = fA(k) − fA(a) =
k∑

i=a+1

(
fA(i) − fA(i − 1)

) =
k∑

i=a+1

�fA(i − 1)

and if k < a we have

D(t,z)fA

(
N(u)

) = fA(k) − fA(a) = −(
fA(a) − fA(k)

) = −
a∑

i=k+1

�fA(i − 1).

Therefore, using the second inequality in (5) we deduce |D(t,z)fA(N(u))| ≤ |k − a| = |D(t,z)N(u)|. So (20) follows
if we show∫

R×R+
E
[∣∣D(t,z)N(u)

∣∣2]dt dz < ∞ (27)

(indeed |D(t,z)N(u)| takes values on N and so |D(t,z)N(u)| ≤ |D(t,z)N(u)|2). We have∫
R×R+

E
[∣∣D(t,z)N(u)

∣∣2]dt dz ≤ 2
∫
R

u(t)2E
[
λ(t)

]
dt + 2

∫
R×R+

E

[(∫
(t,∞)

u(t,z)(s)N(t,z)(ds)

)2]
dt dz (28)

≤ 2
∫
R

u(t)2E
[
λ(t)

]
dt + 4

∫
R×R+

E

[(∫
(t,∞)

u(s)δ(t,z)(ds)

)2]
dt dz

+ 4
∫
R×R+

E

[(∫ ∞

t

u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2]
dt dz (29)

= 2
∫
R

u(t)2E
[
λ(t)

]
dt + 4

∫
R×R+

(∫ ∞

t

u(s)2E
[∣∣D(t,z)λ(s)

∣∣]ds

)
dt dz

+ 4
∫
R×R+

E

[(∫ ∞

t

u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2]
dt dz, (30)

and this latter term is finite due to assumptions (7), (8) and (9). Here, (28) follows by (22) and the elementary inequality
(b + c)2 ≤ 2b2 + 2c2, b, c ∈R; (29) is a consequence of the relation(∫

(t,∞)

u(t,z)(s)N(t,z)(ds)

)2

≤
(∫

(t,∞)

u(s)N(t,z)(ds)

)2

=
(∫

(t,∞)

u(s)δ(t,z)(ds) +
∫ ∞

t

u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2

≤ 2

(∫
(t,∞)

u(s)δ(t,z)(ds)

)2

+ 2

(∫ ∞

t

u(s)
∣∣D(t,z)λ(s)

∣∣ds

)2

;

finally, (30) follows applying formula (20) in [10]. �
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Proof of Corollary 3.2. By Jensen’s inequality, for any non-negative stochastic process {Z(s)}s≥0, we have

E

[(∫ ∞

t

u(s)Z(s)ds

)2]
= ‖u‖2

L1(R,dx)
E

[(∫ ∞

0
1(t,∞)(s)Z(s)

(
u(s)/‖u‖L1(R,dx)

)
ds

)2]
≤ ‖u‖2

L1(R,dx)
E

[∫ ∞

0
1(t,∞)(s)Z(s)2(u(s)/‖u‖L1(R,dx)

)
ds

]
= ‖u‖L1(R,dx)

∫ ∞

t

u(s)E
[
Z(s)2]ds. (31)

Setting Z(s) := |D(t,z)λ(s)| in (31) we have that condition (9) is guaranteed by the integrability of u and condi-
tion (12). Furthermore, setting Z(s) := 1(0,λ(t)](z)|D(t,z)λ(s)| in (31) we easily have G ≤ G′, and so the claim follows
by Theorem 3.1. �

4. Poisson approximation of stationary nonlinear Hawkes processes with bounded and Lipschitz dynamics

A nonlinear Hawkes process with parameters (φ,h) is a point process N on R with FN -stochastic intensity of the
form

t �→ φ

(∫
(−∞,t)

h(t − s)N(ds)

)
, t ∈ R, (32)

where φ : R → [0,∞) and h : (0,∞) → R are measurable functions. A particular case is the self-exciting process
(or linear Hawkes process) with parameters (ν,h), for which φ(x) := ν + x, for some constant ν > 0, and h is non-
negative.

In the seminal paper [9], the authors proved that if φ is Lipschitz continuous with φ(0) > 0 and Lipschitz constant
α such that αμ < 1, where μ := ‖h‖L1(R+,dx), then there exists a unique stationary distribution of N with dynamics
(32) and finite intensity λ := E[N((0,1])].

The stationary solution is constructed by embedding in a bivariate Poisson process, i.e. it turns out

N(dt) = N
(
dt × (

0, λ(t)
])

, λ(t) = φ

(∫
(−∞,t)

h(t − s)N(ds)

)
, t ∈ R

λ ∈ (0,∞) and λ(t) = ϕ(t,N |(−∞,t)), t ∈R, for some measurable functional ϕ :R×N → [0,∞).

4.1. Poisson bounds

The following theorem, whose proof is given below, provides a bound for the total variation distance between a
first order stochastic integral, with respect to a stationary and nonlinear Hawkes process with bounded and Lipschitz
dynamics, and a Poisson random variable having the same mean of the stochastic integral.

Theorem 4.1. Assume that φ : R → [0,∞), φ(0) > 0, is bounded and Lipschitz continuous with Lipschitz constant
α and that h : [0,∞) → R is measurable and such that αμ < 1. Let N be the stationary nonlinear Hawkes process
with parameters (φ,h) and finite intensity λ ∈ (0,∞). If u : R→N, ‖u‖L1(R,dx) > 0 and u ∈ L2(R,dx), then

dTV
(
N(u),Po

(
λ‖u‖L1(R,dx)

)) ≤ 1 − e−λ‖u‖
L1(R,dx)

‖u‖L1(R,dx)

D1 + min

(
1,

√
2

λ‖u‖L1(R,dx)e

)
D2, (33)

where

D1 := ‖u‖3
L3(R,dx)

− ‖u‖L1(R,dx)

+ 3 min

{
‖φ‖∞‖u‖L1(R,dx)‖u‖2

L2(R,dx)
,
αμ‖u‖L2(R,dx)‖u‖2

L4(R,dx)

1 − αμ

}



Poisson approximation 691

+ min

{
‖φ‖2∞‖u‖3

L1(R,dx)
,
αμ‖φ‖∞‖u‖L1(R,dx)‖u‖2

L2(R,dx)

1 − αμ

}
+ 2‖u‖1/2

L1(R,dx)
min

{
‖φ‖2∞‖u‖L1(R,dx)‖u‖2

L2(R,dx)
,
αμ‖φ‖∞
1 − αμ

‖u‖L2(R,dx)‖u‖2
L4(R,dx)

}
and

D2 := ‖u‖L1(R,dx) min
{‖φ‖∞, λαμ + ∣∣φ(0) − λ

∣∣}.
Remark 4.2. Relation (33) depends explicitly on the function u, the constants α, μ, ‖φ‖∞ and φ(0), which are
known given the parameters (φ,h), and the intensity λ, which is in general unknown. However, λ may be estimated
by Monte-Carlo simulation as follows. By the results in [9], under the assumptions of Theorem 4.1 there exists a
nonlinear Hawkes process on R+ with parameters (φ,h), i.e. a point process N ′ on R+ with stochastic intensity

t �→ φ

(∫
(0,t)

h(t − s)N ′(ds)

)
, t ∈R+.

We note that, due to the boundedness of the stochastic intensity, N ′ may be simulated over finite intervals by using
the algorithms in [25] and [30], see also Lemma 2 in [9]. Moreover, by the stability results in [9] we have that, for
any t > 0, N ′((s, s + t]) → N((0, t]) in law, as s → ∞ (as usual, we denote by N the stationary nonlinear Hawkes
process with parameters (φ,h)). Consequently,

lim
n→∞ lim

s→∞ E
[
min

{
N ′((s, s + 1]), n}] = lim

n→∞ E
[
min

{
N

(
(0,1]), n}] = λ.

We also note that, under the assumptions of Theorem 4.1, we have

λ ∈ [
φ(0)/(1 + αμ),min

{
φ(0)/(1 − αμ),‖φ‖∞

}]
.

Indeed, we clearly have λ ≤ ‖φ‖∞. Moreover, by the Lipschitz property of φ∣∣λ(t) − φ(0)
∣∣ ≤ α

∫
(−∞,t)

∣∣h(t − s)
∣∣N(ds),

and therefore

φ(0) − α

∫
(−∞,t)

∣∣h(t − s)
∣∣N(ds) ≤ λ(t) ≤ φ(0) + α

∫
(−∞,t)

∣∣h(t − s)
∣∣N(ds).

Taking the mean, from the first inequality we deduce λ ≥ φ(0)/(1 + αμ) and from the second inequality we get
λ ≤ φ(0)/(1 − αμ).

Letting λ̂ ∈ [φ(0)/(1 + αμ),min{φ(0)/(1 − αμ),‖φ‖∞}] denote an estimate of λ (see Remark 4.2 above), we
have the following explicit Poisson bound, whose proof is provided below.

Theorem 4.3. Under assumptions and notation of Theorem 4.1, we have

dTV
(
N(u),Po

(̂
λ‖u‖L1(R,dx)

)) ≤ 1 − e−̂λ‖u‖
L1(R,dx)

λ̂‖u‖L1(R,dx)

min
{
φ(0)/(1 − αμ),‖φ‖∞

}
D1

+ min

(
1,

√
2

λ̂‖u‖L1(R,dx)e

)
D3, (34)

where D1 is defined as in the statement of Theorem 4.1 and

D3 := ‖u‖L1(R,dx) min
{‖φ‖∞,min

{
φ(0)/(1 − αμ),‖φ‖∞

}
αμ + ∣∣φ(0) − λ̂

∣∣}.
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Proof of Theorem 4.1. We apply Corollary 3.2. For the sake of readability, we divide the proof in 3 steps.
Step 1: preliminary inequalities. In this step we derive 4 inequalities (see relations (35), (38), (39) and (41)) which

will be used later on. By the embedding construction, for s, t ∈ R, we have

λ(s) = ϕ(s,N |(−∞,s)) = φ

(∫
(−∞,s)×R+

h(s − u)1(0,ϕ(u,N |(−∞,u))](v)N(du × dv)

)
= φ

(∫
(−∞,s)×R+

1u≤t h(s − u)1(0,ϕ(u,N |(−∞,u))](v)N(du × dv)

+
∫

(−∞,s)×R+
1u>th(s − u)1(0,ϕ(u,N |(−∞,u))](v)N(du × dv)

)
.

Consequently, for s, t ∈R, z ∈R+,∣∣D(t,z)λ(s)
∣∣ ≤ ‖φ‖∞ (35)

and by the Lipschitz continuity of φ∣∣D(t,z)λ(s)
∣∣ ≤ α

∣∣∣∣∫
(−∞,s)×R+

1u≤t h(s − u)1(0,ϕ(u,N |(−∞,u))](v)(N + ε(t,z))(du × dv)

+
∫

(−∞,s)×R+
1u>th(s − u)1(0,ϕ(u,N |(−∞,u)+ε(t,z))](v)(N + ε(t,z))(du × dv)

−
∫

(−∞,s)×R+
1u≤t h(s − u)1(0,ϕ(u,N |(−∞,u))](v)N(du × dv)

−
∫

(−∞,s)×R+
1u>th(s − u)1(0,ϕ(u,N |(−∞,u))](v)N(du × dv)

∣∣∣∣
= α

∣∣∣∣h(s − t)1(0,ϕ(t,N |(−∞,t))](z)

+
∫

(−∞,s)×R+
1u>th(s − u)1(0,ϕ(u,N |(−∞,u)+ε(t,z))](v)N(du × dv)

−
∫

(−∞,s)×R+
1u>th(s − u)1(0,ϕ(u,N |(−∞,u))](v)N(du × dv)

∣∣∣∣
≤ α

(∣∣h(s − t)
∣∣1(0,ϕ(t,N |(−∞,t))](z)

+
∫

(t,s)×R+

∣∣h(s − u)
∣∣∣∣1(0,ϕ(u,N |(−∞,u)+ε(t,z))](v) − 1(0,ϕ(u,N |(−∞,u))](v)

∣∣N(du × dv)

)
≤ α

(∣∣h(s − t)
∣∣1(0,ϕ(t,N |(−∞,t))](z) +

∫
(t,s)×R+

∣∣h(s − u)
∣∣

× 1(ϕ(u,N |(−∞,u))∧ϕ(u,N |(−∞,u)+ε(t,z)),ϕ(u,N |(−∞,u))∨ϕ(u,N |(−∞,u)+ε(t,z))](v)N(du × dv)

)
= α

(∣∣h(s − t)
∣∣1(0,ϕ(t,N |(−∞,t))](z) +

∫
(t,s)

∣∣h(s − u)
∣∣N(t,z)(du)

)
, (36)

where for a, b ∈ R we denote by a ∧ b and a ∨ b the minimum and the maximum of a and b, respectively, and N(t,z)

is the point process on (t,∞) defined by

N(t,z)(du) := N
(
du × (

ϕ(u,N |(−∞,u)) ∧ ϕ(u,N |(−∞,u) + ε(t,z)), ϕ(u,N |(−∞,u)) ∨ ϕ(u,N |(−∞,u) + ε(t,z))
])

.
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The processes {ϕ(u,N |(−∞,u) + ε(t,z))}u>t and {ϕ(u,N |(−∞,u))}u>t are {FN
u }u>t -predictable and bounded, therefore

by Lemma 2.1 the point process N(t,z) has {FN
u }u>t -stochastic intensity {|D(t,z)λ(u)|}u>t . Taking the mean in (36),

we deduce

E
[∣∣D(t,z)λ(s)

∣∣] ≤ α

(∣∣h(s − t)
∣∣P (

λ(t) ≥ z
) +

∫ s

t

∣∣h(s − u)
∣∣E[∣∣D(t,z)λ(u)

∣∣]du

)
.

Extending the definition of h for nonpositive times by setting h(t) = 0, t ≤ 0, from the above inequality we have

q(t,z)(s) ≤ p(t,z)(s) + r ∗ q(t,z)(s), s, t ∈ R, z ∈R+,

where for ease of notation we set q(t,z)(s) := E[|D(t,z)λ(s)|]1s>t , p(t,z)(s) := α|h(s − t)|P(λ(t) ≥ z), r(s) := α|h(s)|
and ∗ denotes the convolution product between functions. Iterating this inequality, we deduce, for n ≥ 1,

q(t,z)(s) ≤
n−1∑
i=0

p(t,z) ∗ r∗i (s) + q(t,z) ∗ r∗n(s), s, t ∈ R, z ∈R+,

where r∗0 is by definition the Dirac delta function. By (35) and the stability condition αμ < 1 it follows

q(t,z) ∗ r∗n(s) =
∫
R

r∗n(s − u)q(t,z)(u)du ≤ ‖φ‖∞
∫
R

r∗n(s − u)du

≤ ‖φ‖∞(αμ)n → 0, n → ∞,

where the latter inequality follows by a standard property of convolutions, see e.g. Theorem IV.15 in [12]. Therefore,

q(t,z)(s) ≤
∑
i≥0

p(t,z) ∗ r∗i (s) = P
(
λ(t) ≥ z

)∑
i≥0

αi+1
∫
R

∣∣h(s − u − t)
∣∣|h|∗i (u)du

= P
(
λ(t) ≥ z

)∑
i≥1

αi |h|∗i (s − t), s, t ∈ R, z ∈R+. (37)

Consequently, for any measurable f , we have∫
R×R+

(∫ +∞

t

∣∣f (s)
∣∣E[

1(0,λ(t)](z)
∣∣D(t,z)λ(s)

∣∣]ds

)
dt dz ≤

∫
R×R+

(∫ +∞

t

∣∣f (s)
∣∣E[∣∣D(t,z)λ(s)

∣∣]ds

)
dt dz

≤ ‖f ‖L1(R,dx)

λαμ

1 − αμ
(38)

and, for any f and g integrable, we have∫
R×R+

∣∣f (t)
∣∣(∫ +∞

t

∣∣g(s)
∣∣E[

1(0,λ(t)](z)
∣∣D(t,z)λ(s)

∣∣]ds

)
dt dz

≤
∫
R×R+

∣∣f (t)
∣∣(∫ +∞

t

∣∣g(s)
∣∣E[∣∣D(t,z)λ(s)

∣∣]ds

)
dt dz

≤ ‖f ‖L2(R,dx)‖g‖L2(R,dx)

λαμ

1 − αμ
. (39)

Here, we only check this latter inequality, the previous one may be checked similarly. Assume that f and g integrable
and square integrable (note that if f or/and g are not square integrable, then the inequality is trivially true). Defining
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f̃ (x) := f (−x), by (37), the stationarity of the nonlinear Hawkes process, the finiteness of its intensity λ, the Cauchy–
Schwarz inequality and the properties of the convolution product (see again Theorem IV.15 in [12]), we have∫

R×R+

∣∣f (t)
∣∣(∫ +∞

t

∣∣g(s)
∣∣E[

1(0,λ(t)](z)
∣∣D(t,z)λ(s)

∣∣]ds

)
dt dz

≤
∫
R×R+

∣∣f (t)
∣∣(∫ +∞

t

∣∣g(s)
∣∣E[∣∣D(t,z)λ(s)

∣∣]ds

)
dt dz

≤ λ
∑
i≥1

αi

∫
R

∣∣f (t)
∣∣(|̃h|∗i ∗ |g|)(t)dt

≤ λ‖f ‖L2(R,dx)

∑
i≥1

αi
∥∥|̃h|∗i ∗ |g|∥∥

L2(R,dx)

≤ λ‖f ‖L2(R,dx)‖g‖L2(R,dx)

∑
i≥1

αi
∥∥|̃h|∗i

∥∥
L1(R,dx)

≤ λ‖f ‖L2(R,dx)‖g‖L2(R,dx)

∑
i≥1

αiμi = ‖f ‖L2(R,dx)‖g‖L2(R,dx)

λαμ

1 − αμ
.

Finally, we also have

∫
R×R+

u(t)

√∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds

∫ ∞

t

u(s)E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣2]ds dt dz

≤ ‖φ‖∞
∫
R×R+

u(t)

∫ ∞

t

u(s)2E
[
1(0,λ(t)](z)

∣∣D(t,z)λ(s)
∣∣]ds dt dz (40)

≤ min

{
λ‖φ‖2∞‖u‖L1(R,dx)‖u‖2

L2(R,dx)
,
λαμ‖φ‖∞

1 − αμ
‖u‖L2(R,dx)‖u‖2

L4(R,dx)

}
, (41)

where (40) follows by (35) and u ≤ u2 (recall that u is N-valued), and (41) is a consequence of (39) and again (35).
Step 2: checking conditions (7), (8) and (12). Condition (7) is an immediate consequence of the square integrability

of u, the stationarity of the nonlinear Hawkes process and the finiteness of its intensity λ. As far as conditions (8) and
(12), note that, due to (35) and the inequality u ≤ u2, it suffices to check (8). For this, by (38) with f = u2, we have∫

R×R+

(∫ ∞

t

u(s)2E
[∣∣D(t,z)λ(s)

∣∣]ds

)
dt dz ≤ ‖u‖2

L2(R,dx)

λαμ

1 − αμ
< ∞.

So the assumptions of Corollary 3.2 are satisfied.
Step 3: conclusion of the proof. By the Lipschitz property of φ, for any t ∈R, we have∣∣λ(t) − λ

∣∣ ≤ min
{‖φ‖∞,

∣∣λ(t) − φ(0) + φ(0) − λ
∣∣}

≤ min
{‖φ‖∞,

∣∣λ(t) − φ(0)
∣∣ + ∣∣φ(0) − λ

∣∣}
≤ min

{
‖φ‖∞, α

∫
(−∞,t)

∣∣h(t − s)
∣∣N(ds) + ∣∣φ(0) − λ

∣∣},

and so by the stationarity of N

E
[∣∣λ(t) − λ

∣∣] ≤ min
{‖φ‖∞, λαμ + ∣∣φ(0) − λ

∣∣}.
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Therefore

min

(
1,

√
2

λe‖u‖L1(R,dx)

)
E
[∣∣�(u) − λ‖u‖L1(R,dx)

∣∣] ≤ min

(
1,

√
2

λe‖u‖L1(R,dx)

)∫
R

u(t)E
[∣∣λ(t) − λ

∣∣]dt

≤ min

(
1,

√
2

λe‖u‖L1(R,dx)

)
D2. (42)

By the stationarity of N , (35), (39) and (41) we have

G′/λ ≤D1. (43)

The claim easily follows by the bound in Corollary 3.2, with θ := λ‖u‖L1(R,dx), and the inequalities (42) and (43). �

Proof of Theorem 4.3. We only sketch the proof since it is quite similar to the proof of Theorem 4.1. Conditions (7),
(8) and (12) and the inequality (43) may be checked exactly as in the proof of Theorem 4.1. The claim follows by
first applying the bound in Corollary 3.2 with θ := λ̂‖u‖L1(R,dx), and then using the inequalities (43), λ ≤ min{φ(0)/

(1 − αμ),‖φ‖∞} and

E
[∣∣λ(t) − λ̂

∣∣] ≤ min
{‖φ‖∞, λαμ + ∣∣φ(0) − λ̂

∣∣}
≤ min

{‖φ‖∞,min
{
φ(0)/(1 − αμ),‖φ‖∞

}
αμ + ∣∣φ(0) − λ̂

∣∣}. �

4.2. A quantitative Poisson limit theorem, construction of confidence intervals and asymptotic estimates of the
moments

The following quantitative Poisson limit theorem holds.

Theorem 4.4. For n ≥ 1, assume that φn : R → [0,∞), φn(0) > 0, is bounded and Lipschitz continuous with Lips-
chitz constant αn and that hn : [0,∞) →R is measurable and such that αnμn < 1, where μn := ‖hn‖L1(R+,dx). Let Nn

be the stationary nonlinear Hawkes process with parameters (φn,hn) and finite intensity λn ∈ (0,∞). If un : R→N,
‖un‖L1(R,dx) > 0 and un ∈ L2(R,dx), then

dTV
(
Nn(un),Po(γ )

) ≤ U
(n)
1 ≤ U

(n)
2 , n ≥ 1. (44)

Here γ > 0 is a positive constant,

U
(n)
1 := 1 − e−λ̂n‖un‖

L1(R,dx)

λ̂n‖un‖L1(R,dx)

min
{
φn(0)/(1 − αnμn),‖φn‖∞

}
D

(n)
1

+ min

(
1,

√
2

λ̂n‖un‖L1(R,dx)e

)
D

(n)
3 + ∣∣̂λn‖un‖L1(R,dx) − γ

∣∣, (45)

λ̂n ∈ [
φn(0)/(1 + αnμn),min

{
φn(0)/(1 − αnμn),‖φn‖∞

}]
(46)

is an estimate of λn, D(n)
i , i = 1,3, is defined as Di in the statements of Theorems 4.1 and 4.3, with un, φn, αn, μn

and λ̂n in place of u, φ, α, μ and λ̂, respectively, and

U
(n)
2 := (1 + αnμn)min{φn(0)/(1 − αnμn),‖φn‖∞}(1 − e−min{φn(0)/(1−αnμn),‖φn‖∞}‖un‖

L1(R,dx) )

φn(0)‖un‖L1(R,dx)

D
(n)
1

+ ‖un‖L1(R,dx) min

(
1,

√
2(1 + αnμn)

φn(0)‖un‖L1(R,dx)e

)
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× min
{‖φn‖∞,min

{
φn(0)/(1 − αnμn),‖φn‖∞

}
αnμn

+ max
{(

φn(0)αnμn

)
/(1 + αnμn),

∣∣φn(0) − min
{
φn(0)/(1 − αnμn),‖φn‖∞

}∣∣}}
+ max

{∣∣(φn(0)/(1 + αnμn)
)‖un‖L1(R,dx) − γ

∣∣,∣∣min
{
φn(0)/(1 − αnμn),‖φn‖∞

}‖un‖L1(R,dx) − γ
∣∣}.

If moreover

lim
n→∞αnμn max

{
1,‖φn‖∞‖un‖2

L2(R,dx)
,‖un‖L2(R,dx)‖un‖2

L4(R,dx)
max{1,‖φn‖∞}} = 0, (47)

lim
n→∞φn(0) = γ1 > 0, (48)

lim
n→∞‖un‖L1(R,dx) = lim

n→∞‖un‖3
L3(R,dx)

= γ2 > 0 (49)

and

γ = γ1γ2, (50)

then U
(n)
2 → 0. In particular, Nn(un) → Po(γ1γ2) in distribution, as n → ∞.

Proof. By e.g. Corollary 3.1 in [1] we have

dTV
(
Po(b),Po

(
b′)) ≤ ∣∣b − b′∣∣, b, b′ > 0. (51)

Combining this inequality with the triangular inequality we deduce

dTV
(
Nn(un),Po(γ )

) ≤ dTV
(
Nn(un),Po(̂λn‖un‖L1(R,dx))

) + ∣∣̂λn‖un‖L1(R,dx) − γ
∣∣.

The first inequality in (44) then follows by Theorem 4.3. The second inequality in (44) follows by bounding the term
U

(n)
1 using (46). Finally, the convergence to zero of U(n)

2 is a simple consequence of the assumptions (47), (48), (49)
and (50). �

Theorem 4.4 may be used to construct confidence intervals for some classes of N-valued first order stochastic
integrals of nonlinear Hawkes processes.

Corollary 4.5. For n ≥ 1, let Nn be the stationary nonlinear Hawkes process considered in Theorem 4.4 with param-
eters (φn,hn) such that φn(0) > 0, αnμn < 1 and let un : R → N be such that ‖un‖L1(R,dx) > 0 and un ∈ L2(R,dx).

Moreover, let β ∈ (0,1) be arbitrarily fixed and let k
(1)
β , k

(2)
β ∈N be such that k

(1)
β ≤ k

(2)
β and

e−γ

k
(2)
β∑

k=k
(1)
β

γ k

k! > 1 − β

2
.

Then: 1

(i) If n ∈ Iβ := {k : U(k)
2 < β/4}, then

P
(
k
(1)
β ≤ Nn(un) ≤ k

(2)
β

)
> 1 − β,

i.e. [k(1)
β , k

(2)
β ] is a confidence interval of Nn(un) at level 1 − β .

(ii) If in addition (47), (48), (49) and (50) hold, then there exists nβ ≥ 1 such that for any n ≥ nβ we have n ∈ Iβ

(and so, in particular, Iβ �=∅).
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Remark 4.6. Let β ∈ (0,1) and n ≥ 1 be arbitrarily fixed. Since the term U
(n)
2 is explicitly known in terms of the

data, i.e. the parameters (φn,hn) of the nonlinear Hawkes process and the function un, one can always determine if
n belongs to Iβ or not.

The exact computation of the moments of stochastic integrals with respect to point processes is in general a difficult
task. To the best of our knowledge, closed (but complicated) formulas exist for the moments of stochastic integrals
with respect to point processes with Papangelou conditional intensity, see [33] for the Poisson case and [18] for the
general case. Theorem 4.4 may be used also to provide asymptotic estimates of the moments (and, in particular, of the
variance) of some classes of N-valued first order stochastic integrals of nonlinear Hawkes processes.

Recall that, for r ∈ N and λ > 0, E[Po(λ)r ] = Tr(λ) where Tr(λ) is the Touchard polynomial of order r , defined
by T0(λ) := 1 and the recurrence relation

Tr+1(λ) = λ

r∑
k=0

(
r

k

)
Tk(λ), r ∈N.

The Touchard polynomials are also called exponential polynomials, see e.g. [13]. The following corollary holds.

Corollary 4.7. Let the notation and the assumptions of Corollary 4.5(ii) prevail. Then, for any r ∈ N,

E
[
Nn(un)

r
] → Tr(γ1γ2), as n → ∞.

Proof of Corollary 4.5. Proof of (i). For n ∈ Iβ , by Theorem 4.4 we have

dTV
(
Nn(un),Po(γ )

) ≤ U
(n)
2 < β/4

and so∣∣P (
Nn(un) ∈ A

) − P
(
Po(γ ) ∈ A

)∣∣ < β/4, for any A ⊆N.

Therefore

P
(
k

(1)
β ≤ Nn(un) ≤ k

(2)
β

) = P
(
Nn(un) ≤ k

(2)
β

) − P
(
Nn(un) < k

(1)
β

)
= (

P
(
Nn(un) ≤ k

(2)
β

) − P
(
Po(γ ) ≤ k

(2)
β

)) + (
P

(
Po(γ ) < k

(1)
β

) − P
(
Nn(un) < k

(1)
β

))
+ (

P
(
Po(γ ) ≤ k

(2)
β

) − P
(
Po(γ ) < k

(1)
β

))
> −β/4 − β/4 + 1 − β/2 = 1 − β.

Proof of (ii). The claim follows by Theorem 4.4 which guarantees that U(n)
2 → ∞, as n → ∞. �

Proof of Corollary 4.7. By Theorem 4.4 we have that Nn(un) converges to Po(γ1γ2) in distribution. Moreover, the
random variables Nn(un), n ≥ 1, and Po(γ1γ2) are non-negative and

E
[
Nn(un)

] = λn

∫
R

un(t)dt → γ1γ2 = E
[
Po(γ1γ2)

]
, as n → ∞.

So, by e.g. (the second part of) Theorem 5.4, p. 32 in [6], we have that the random variables Nn(un), n ≥ 1, are
uniformly integrable and the proof is completed (see again Theorem 5.4, p. 32, and the comments on p. 33 of [6]). �

Example 4.8. For n ≥ 1, assume that φn : R → R+, φn(0) > 0, is bounded and Lipschitz continuous with Lipschitz
constant αn and that hn : [0,∞) → R is measurable and such that αnμn < 1, where μn := ‖hn‖L1(R+,dx). Let Nn

be the stationary nonlinear Hawkes process with parameters (φn,hn) and finite intensity λn ∈ (0,∞). For a bounded
Borel set B ⊂R with positive Lebesgue measure, we define un(t) := 1B(t), n ≥ 1, t ∈ R. Then by Theorem 4.4 we have
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dTV(Nn(1B),Po(γ )) ≤ U
(n)
2 where γ > 0 is a positive constant and U

(n)
2 is defined as in the statement of Theorem 4.4

with

‖un‖L1(R,dx) = �(B), ‖un‖L2(R,dx) = �(B)1/2, ‖un‖L3(R,dx) = �(B)1/3, ‖un‖L4(R,dx) = �(B)1/4,

where �(B) denotes the Lebesgue measure of B .
Assume moreover (48) and

lim
n→∞αnμn max

{
1,‖φn‖∞

} = 0, (52)

and take γ := γ1�(B). Then: (i) by Theorem 4.4 we have that U(n)
2 → 0, and so Nn(1B) → Po(γ1�(B)) in distribution,

as n → ∞; (ii) by Corollary 4.5 it follows that, for any arbitrarily fixed β ∈ (0,1), the set [k(1)
β , k

(2)
β ] with k

(1)
β , k

(2)
β ∈N

chosen in such a way that k
(1)
β ≤ k

(2)
β and

e−γ1�(B)

k
(2)
β∑

k=k
(1)
β

(γ1�(B))k

k! > 1 − β/2,

is a confidence interval at level 1 − β of Nn(1B), for all n such that U(n)
2 < β/4; (iii) by Corollary 4.7 we have that,

for any r ≥ 1, E[Nn(1B)r ] → Tr(γ1�(B)), as n → ∞.

5. An illustrative example: Poisson bounds for the input process to the M/D/K/0 queue

The M/D/K/0 queue or Erlang loss system is described as follows (see e.g. [2]). The system is formed by K servers
and customer n, arrived at time Sn, is accepted in the system if and only if she/he finds a not busy server, i.e. the
number of busy servers is less than or equal to K − 1. Customer k brings a service request z ∈ R+, which means that
the server will need z units of time for processing the request of customer k. A server attends one customer at time
and do not remain idle as long as there is at least one customer in the system. Once the service is started it can not
be interrupted before completion and, at the end of the service, the server chooses his next customer at the head of
the line. Assuming {Sk}k∈Z to be a stationary Poisson process on the line with intensity α > 0, then the input process
N = {Tk}k∈Z to the Erlang loss system described above is a nonlinear Hawkes process with parameters (φ,h) given
by

φ(x) := α1[0,K)(x), h(t) := 1(0,z](t).

Since we are indeed interested to the values of φ at the points

x =
∫

(−∞,t)

h(t − s)N(ds) =
∑
k∈Z

1(0,z](t − Tk)1(−∞,t)(Tk),

which are integer-valued random variables, we can replace the indicator function 1[0,K)(x) with a Lipschitz continuous
function f with Lipschitz constant 1 which is equal to zero for x ≥ K and equal to 1 for x ∈ [0,K −1] (we can choose
for instance f (x) := min{max{K − x,0},1}).

For n ≥ 1, let Nn = {T (n)
k }k∈Z be the input process to the Erlang loss system with exogenous arrivals according to

a Poisson process with intensity αn > 0, Kn ∈ N \ {0} servers and service request zn > 0, and set un(t) := 1(0,τn](t),
τn > 0. If the service request zn is such that zn < α−1

n , then by Theorem 4.4 we have

dTV
(
Nn(1(0,τn]),Po(γ )

) ≤ U
(n)
2 ,
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where γ > 0 is a positive constant and

U
(n)
2 := (

1 − e−αnτn
)
(1 + αnzn)

(
3αn + α2

nτn + 2α2
nτ

1/2
n

)
min

{
τn,

zn

1 − αnzn

}

+ αnτn min

(
1,

√
2(1 + αnzn)

αnτne

)
min

{
1, αnzn

(
1 + (1 + αnzn)

−1)}
+ max

{∣∣(αn/(1 + αnzn)
)
τn − γ

∣∣, |αnτn − γ |}.
Assume moreover that αn → γ1 > 0, τn → γ2 > 0, zn → 0, as n → ∞, and take γ := γ1γ2. Then: (i) by Theorem 4.4
we have that U(n)

2 → 0, and so Nn(1(0,τn]) → Po(γ1γ2) in distribution, as n → ∞; (ii) by Corollary 4.5 it follows that,

for any arbitrarily fixed β ∈ (0,1), the set [k(1)
β , k

(2)
β ] with k

(1)
β , k

(2)
β ∈ N chosen in such a way that k

(1)
β ≤ k

(2)
β and

e−γ1γ2

k
(2)
β∑

k=k
(1)
β

(γ1γ2)
k

k! > 1 − β/2,

is a confidence interval at level 1 −β of Nn(1(0,τn]), for all n such that U(n)
2 < β/4; (iii) by Corollary 4.7 we have that,

for any r ≥ 1, E[Nn(1(0,τn])r ] → Tr(γ1γ2), as n → ∞.
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