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Abstract. A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps
with n vertices suitably rescaled by a factor 1/

√
n converge in the Gromov–Hausdorff sense to 7

√
2/9 times Aldous’ Brownian

tree. The proof uses the bijection of Bonichon, Gavoille and Hanusse (J. Graph Algorithms Appl. 9 (2005) 185–204).

Résumé. Une carte planaire est dite outerplanaire si tous ses sommets appartiennent à la même face. Nous montrons que les
cartes outerplanaires aléatoires uniformes à n sommets, multipliées par le facteur d’échelle 1/

√
n, convergent au sens de Gromov–

Hausdorff vers 7
√

2/9 fois l’arbre Brownien d’Aldous. La preuve utilise la bijection de Bonichon, Gavoille et Hanusse (J. Graph
Algorithms Appl. 9 (2005) 185–204).
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1. Introduction

Since the early 90’s a lot of effort has gone into the study of scaling limits for large combinatorial structures. The
most emblematic result is, of course, the construction of the continuum random tree (CRT) by Aldous [3–5] as the
scaling limit of various classes of oriented trees. The CRT has since been shown to be a universal object: see e.g.
[1,2,10,12,14] and references therein, as well as the recent work [19]. In this work we shall establish that the CRT is
also the scaling limit of uniform random large outerplanar maps.

Recall that a planar map is a proper embedding of a finite connected graph into the plane (or the sphere), considered
up to continuous deformations. A recent breakthrough was achieved by Le Gall and Miermont [15,18], who showed
that several classes of random planar maps admit the so-called Brownian map as scaling limit. It has been observed,
however, that – for some particular regimes – random planar maps with a unique macroscopic large face have a tree-
like structure and admit the CRT as scaling limit; see [6,8,13,19]. Our main result consists in a confirmation of this
phenomenon for the case of outerplanar maps.

A map is outerplanar if all of its vertices are adjacent to the same face, which is dubbed the outerface and usually
drawn as the infinite face in a planar embedding (see Figure 1). Outerplanar maps constitute a well-studied combina-
torial structure; in particular, they have a simple characterisation in terms of minors (a graph is outerplanar if and only
if it does not contain K2,3 nor K4 as a minor [9]). See [20] for more characterisations of outerplanar graphs. In this
work we shall restrict ourselves to simple outerplanar maps, with no loops or multiple edges. As usual all of the maps
considered here are rooted, that is endowed with a distinguished oriented edge such that the outerface is lying on its
left. The tail of the root edge will be called the root vertex. Our main result is the following:
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Fig. 1. A rooted, simple outerplanar map.

Theorem 1.1. Let Mn be a random uniform rooted simple outerplanar map with n vertices, and denote by dgr the
graph distance on the set of its vertices V (Mn). We have the following convergence in distribution for the Gromov–
Hausdorff topology:

(
V (Mn),

dgr√
n

)
(d)−→

n→∞

(
Te,

7
√

2

9
d

)
,

where (Te, d) is the Brownian CRT of Aldous. We adopt here the normalisation of Le Gall [14] by considering Te as
constructed from a normalised Brownian excursion.

The first ingredient in our proof is a way to relate outerplanar maps to plane trees; this will be done using the
bijection of Bonichon, Gavoille and Hanusse [7] between the set of (simple and rooted) outerplanar maps with n

vertices and a special class of bicoloured plane trees with n vertices which is described in Section 2. The plan of the
proof then partially follows that of [10], in which Curien, Haas and Kortchemski prove the convergence of random
dissections to a scalar multiple of the CRT. More specifically, we will show that the distances on an outerplanar map
are roughly proportional to the distances on the associated tree. To this end, we describe throughout Section 4 an
algorithm that, given a bicoloured tree and a vertex v, yields the length of a geodesic path from v to the root vertex
in the associated outerplanar map. When applied to the model of a bicoloured Galton–Watson tree conditioned to
survive (presented in Section 5) this algorithm yields a Markov chain whose mean increment (under the stationary
distribution) gives the asymptotic proportionality constant between the metric on a large outerplanar map and that of
its associated tree. The distances between arbitrary pairs of points are finally controlled by a large deviations estimate,
see Sections 6 and 7.

2. Outerplanar maps and plane trees

As mentioned earlier, the first ingredient needed for our discussion is a bijection found in [7], which enables the
coding of outerplanar maps as bicoloured trees of a certain class. More specifically:
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Fig. 2. Figure (a) shows a well bicoloured tree. Vertices u and v are unrelated. Vertex w is the target of v. Figure (b) represents its image via the
map Ψ .

Definition 2.1. We say that a rooted plane tree τ is bicoloured if each of its vertices is coloured either black or white;
we shall say that τ is well bicoloured if it is bicoloured and all of the vertices in its rightmost branch are coloured
white (see Figure 2(a)). We shall henceforth simply write well bicoloured tree when referring to a well bicoloured
rooted plane tree.

Some working knowledge of the explicit bijection is needed in the sections that follow, and thus part of the con-
struction is included for future reference. We adopt notation consistent with that of [7]: given two distinct vertices in
a plane tree, we call them unrelated if neither is an ancestor of the other.

Let now τ be a well bicoloured tree. For each black vertex v of τ define the target of v to be its next unrelated
vertex in a clockwise contour of τ . Define Ψ (τ) as the rooted map obtained by joining each black vertex of τ to its
target (via an edge that leaves the rightmost corner of the black vertex and enters the target from the leftmost corner
available); root the map on the edge joining the former root of the tree to its leftmost child, oriented in such a way that
the former root is the tail, and forget the colouring of τ (see Figure 2(b) for an example).

Notice that the order in which the additional edges are drawn is not relevant, and that the root edge will have
the infinite face on its left side. The map Ψ (τ) is easily seen to be outerplanar. Moreover, the inverse of Ψ can
be constructed explicitly, but we refer the reader to [7] for the details and proof, since all that we will need is the
following:

Theorem 2.1 (Bonichon, Gavoille and Hanusse [7]). The map Ψ is a bijection between well bicoloured trees with
n vertices and simple rooted outerplanar maps with n vertices.

Such a bijection, together with the fact that the scaling limit for uniform random plane trees is the CRT, constitutes
the basis for our future discussion; notice that, however, it is not at all clear how the colouring affects the metric
in the switch from tree to map: distances between corresponding vertices are, in general, smaller when computed
on the map (if two vertices are adjacent in the tree then they are in the corresponding map, but not vice-versa).
This means we cannot easily employ the result for plane trees to make deductions on outerplanar maps. Most of the
following sections will develop ways to control the outerplanar map metric via easily readable information about its
corresponding tree.

3. Rough localisation of geodesics

We delve now into the central problem of the rather unclear relationship between distances on an outerplanar map
and distances on its corresponding plane tree: given a well bicoloured tree τ , we wish to compute distances on the
map Ψ (τ). We restrict ourselves, in this section and many of the subsequent ones, to distances from the root vertex;
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Fig. 3. (v,w) is a separating pair for u (also, it is a separating pair for r(u), t (u), p(u), or indeed for any of the circled vertices).

in Section 7, before the proof of Theorem 1.1, we will give a way to bound distances between arbitrary vertices of an
outerplanar map with a function of distances from the root. In what follows, geodesics to the root in Ψ (τ) are built in
a step-by-step manner, using local information about the tree structure of τ and its colouring.

We shall refer to geodesics of Ψ (τ) as map-geodesics; since τ and Ψ (τ) have the same vertex set, any path in
Ψ (τ) can be interpreted as a sequence of vertices v0 · · ·vn of τ , where for each i between 0 and n − 1 vertices vi and
vi+1 are either neighbours in τ (parent and child, in any order), or a black vertex and its target (again, a priori, in any
order).

We need some additional notation: for each vertex u of τ , if u is not the root, we write p(u) for its parent; if u has
children in τ , we call r(u) its rightmost child; finally, if u is a black vertex, we write t (u) for its target. Also, given
three distinct vertices u, v and w of τ , we say that (v,w) is a separating pair for u (from the root of the tree) if v is
an ancestor of u and w is a child of v lying to the right of u; see Figure 3.

We write dM(u, v) for the graph distance between vertices u and v in the map Ψ (τ), and simply write dM(u) for
dM(u,∅), where ∅ is the root of τ . We are ready to prove the following:

Proposition 3.1. In a well bicoloured tree τ , let (v,w) be a separating pair for u. Then any map-geodesic from u

to the root of τ will pass through v or w (possibly both). Consequently, any map-geodesic from u to the root can be
constructed by starting from u and iteratively applying one of the maps t , r or p, so that r or p are applied to white
vertices, and p or t are applied to black vertices.

Proof. Let S be the set of (strict) descendants of v that lie strictly to the left of w, and u0u1 · · ·un a map-geodesic
such that u = u0 and un = ∅ is the root of the tree. Clearly, u ∈ S and un /∈ S; take the minimum i such that ui /∈ S,
and consider its relation to ui−1. Children of elements in S are in S, and for any pair (x, t (x)) in the tree (where x is
a black vertex), either both vertices belong to S or neither does, except for the case where x ∈ S and t (x) = w. Hence
either ui is the parent of ui−1 (therefore ui = v) or ui is the target of ui−1, which can only be the case if ui = w, and
thus the first part of the proposition is established.

Let us consider what this implies in term of distances: if (v,w) is a separating pair for u, then dM(u) > dM(v) or
dM(u) > dM(w); that is, since |dM(v) − dM(w)| ≤ 1, dM(u) ≥ max{dM(v), dM(w)}. Now, consider a map-geodesic
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from u to the root. If x is a child of u distinct from r(u), then such a geodesic does not go through x, because
(u, r(u)) is a separating pair for x, and thus dM(x) ≥ dM(u) (whereas, if there were a geodesic from u to the root
that involved x, we would have dM(x) < dM(u)). If u is the target of some y, then consider p(u), which must be
an ancestor of y: (p(u),u) is a separating pair for y, and thus dM(y) ≥ dM(u), so a map-geodesic from u to the
root does not go through y. Only three possibilities remain: either the geodesic moves from u to p(u), or to t (u), or
to r(u).

Clearly, a white vertex u in a map-geodesic to the root will be followed by either r(u) or p(u), since it is not
directly connected to any target in the map. Suppose, on the other hand, that u is a black vertex; it will be followed in
a map-geodesic to the root by p(u) or t (u), never by a child: this is because (p(t (u)), t (u)) is a separating pair for u;
if the map-geodesic does not move from u to t (u), then it passes through p(t (u)), which has map-distance at most 2
from u, and at least 2 from any child of u (it cannot be the target of one, since children of u have t (u) or other children
of u as targets, and is not connected to strict descendants of u in the tree); as a consequence, the map-geodesic does
not go through r(u). �

4. An algorithm to compute map-distances

Suppose we have a well bicoloured tree τ and a vertex x of τ of height n; we know that dM(x), the map-distance
between x and the root of τ , is no more than n. From now on, we write d(τ, x) for the map distance dM(x) between
x and the root of τ . We propose to compute d(τ, x) via a recursive algorithm which takes the pair (τ, x) as input and
outputs a pair (τ ′, x′), where x′ is a vertex of τ ′ such that d(τ ′, x′) = d(τ, x) − 1; this way the number of iterations
needed for the algorithm to output a pair consisting of a well bicoloured tree and its root is equal to the length of a
geodesic path from x to the root in τ .

Given (τ, x), consider the path in the tree leading from x to the root; thanks to Proposition 3.1 we know that a
map-geodesic from x to the root cannot involve any of the vertices that lie strictly to the left of this path (parents,
targets and rightmost children of vertices that are part of the path or lie to the right of it cannot lie to its left). We may
thus safely erase all such vertices from τ , and we will always output pairs (τ ′, x′) such that no vertices lie strictly to
the left of the tree path leading from x′ to the root of τ ′.

In what follows, given a tree τ and a vertex x, we will write τx for the subtree of τ formed by x and its descendants;
given a tree τ and a subtree τ̃ (which does not include the root of τ ), we will write τ \ τ̃ for the rooted plane tree
obtained from τ by erasing all vertices of τ̃ and any edges adjacent to those vertices. We will also write |x| for the
height of x in τ , whenever the tree τ can be inferred from the context.

The description of the algorithm follows.

[w0] Suppose x is a white leaf of τ ; then a map-geodesic to the root necessarily moves from x

to p(x) (hence d(τ,p(x)) = d(τ, x) − 1). Consider the tree τ ′ = τ \ x and the pair (τ ′,p(x))

(where we still write p(x) for the obvious image of the original vertex of τ in τ ′); it is clear
that d(τ ′,p(x)) = d(τ,p(x)) (because the only vertex removed is x, which was further from
the root than p(x)) and so it equals d(τ, x) − 1.

[w>0] If x is a white vertex of τ and has offspring, the matter is more complicated. Propo-
sition 3.1 ensures that a geodesic to the root moves to either r(x) or p(x), but it is not clear
which: we need to distinguish two cases.

[w>0.1] Suppose that x 	= r(p(x)), that is x has some right siblings; then (p(x), r(p(x)))

is a separating pair for r(x), and thus d(τ,p(x)) ≤ d(τ, r(x)); hence there is a geodesic
moving from x to p(x), and d(τ,p(x)) = d(τ, x)−1. We choose to follow such a geodesic
and define τ ′ to be τ \ τx , and output (τ ′,p(x)) so that, as before, we have d(τ ′,p(x)) =
d(τ, x) − 1.
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[w>0.2] Suppose now that x = r(p(x)). We build the new tree τ ′ by erasing τx from the
original tree and rerooting the subtree τ r(x) onto p(x), by identifying p(x) with r(x), thus
merging them into a single vertex y; the colour of y is set to white if and only if both p(x)

and r(x) were white in τ . We need to show that d(τ ′, y) = d(τ, x)− 1: there is an obvious
map sending vertices of τ that are not in τx \ τ r(x) to vertices of τ ′; the map is 1-on-1
with the exceptions of p(x) and r(x), which are both sent to y. Neighbours in τ are sent
to neighbours in τ ′, and (since x = r(p(x)) in τ ) the target of a vertex in τ becomes the
target of its image in τ ′: hence d(τ ′, y) ≤ min{d(τ,p(x)), d(τ, r(x))}. On the other hand,
any map-path in τ ′ can be lifted to a map-path in τ (by appropriately selecting a pre-image
for y as first step of the path), which gives equality.

[b] If x is a black vertex of τ , then the new option of jumping to t (x) presents itself. As by
Proposition 3.1, a geodesic will either move to p(x) or to t (x). We need to deal with three
separate cases:

[b.1] Suppose x, t (x) and r(p(x)) are distinct: that is to say, x has at least two right
siblings; in this case, (p(x), r(p(x))) is a separating pair for t (x), hence there is a geodesic
moving from x to p(x); we thus set τ ′ to be τ \ τx , and output (τ ′,p(x)).

[b.2] Suppose now that x has only one right sibling, which is therefore t (x) as well as
r(p(x)). We build the new tree τ ′ by simply erasing τx and identifying vertices p(x) and
t (x), merging them into a single vertex y to be coloured white if and only if both of the
original vertices were white in τ , and output (τ ′, y). We have d(τ ′, y) = d(τ, x) − 1 by
roughly the same argument as previously.

[b.3] The last case is that of x being the rightmost child of its parent; in this case
(p(t (x)), t (x)) is a separating pair for p(x), so d(τ, t (x)) ≤ d(τ,p(x)), and we may as-
sume a geodesic to the root does jump from x to its target. We can thus build τ ′ by erasing
all that lies left of t (x), and output (τ ′, t (x)).

Notice that, in all cases listed except for the very last one, the output vertex x′ has height |x| − 1 in τ ′, whereas
the jump made in the last case (the one marked [b.3]) may lead to a vertex x′ of arbitrarily smaller height. Also,
the information on τ that the algorithm uses to select the appropriate τ ′ is entirely local (child structure of x and its
parent) with the exception of the last case, which requires to make changes to parts of τ that are, a priori, arbitrarily
far from x.

In the spirit of making each step by the algorithm entirely determined by local information, which will in turn entail
valuable independence properties as soon as we switch to a random setting, we add extra data to inputs and outputs:
we let the algorithm run on triples of the form (τ, x, s), where s is one of four states, and output a triple (τ ′, x′, s′).

Three of the states simply mimic the cases listed above: we call them w0, w>0 and b; a fourth state, labelled j

for jump, is devised to deal specifically with situations that fall under case [b.3]: the idea is that, instead of simply
outputting an entirely different tree paired with the target of the jump, the algorithm goes into a jump state; it proceeds
modifying the tree a little at a time until it reaches the original target, at which point it ‘lands’ in one of the three
non-jump states.

We propose to re-define outputs according to the state of the input triple, keeping in mind that they mostly adhere to
the preceding description for pairs; if the output state in the triple (τ ′, x′, s′) is known not to be j , then it is determined
by (τ ′, x′). The initial state, in particular, is not jump: given τ and a vertex x, it can be determined as being

◦ w0, if x is a white leaf of τ ;
◦ w>0, if x is white and it is not a leaf in τ ;
• b, if x is black.
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The behaviour of the algorithm for an input triple of the form (τ, x,w0) or (τ, x,w>0), and for input triples (τ, x, b)

with x having one or more right siblings, is exactly that described in cases [w0], [w>0.1], [w>0.2], [b.2] and [b.1].
Namely, the tree τ ′ and a vertex x′ are produced, and the state s′ is selected again among the three non-jump states
(w0, w>0, b) according to the colour and degree of the output vertex x′ (white leaf, white non-leaf, black).

We now describe the behaviour of the algorithm when the input is of the form (τ, x, b), and x is the rightmost child
of its parent. As explained earlier (case [b.3]), the next vertex in a map-geodesic to the root would be (without loss of
generality) t (x). We distinguish yet two subcases.

[b.3.1] If t (x) has height |x| − 1 (that is, if p(x) has a right sibling: again, a local property)
then define τ ′ by erasing τp(x) from τ and output (τ ′, t (x), s′), where s′ is – again – one of
w0, w>0, b, according to properties of t (x) in τ ′.

[b.3.2] If, however, p(x) has no right siblings, then it is time to finally put the jump state j to
use. We define τ ′ to be τ \ τx and output (τ ′,p(x), j). Notice that now p(x) has height |x|− 1
in τ ′, and that the identity of t (x) can still be recovered in τ ′ (even though vertex x has been
erased) by the sole knowledge of p(x): if p(x) were black, t (x) would be the target of p(x).

We finally give instructions for the algorithm to follow when confronted with a jump state. Suppose we have an input
(τ, x, j);

[j.1] if p(x) has no right siblings, then output (τ \ τx,p(x), j); this way, the vertex on which
the geodesic should land is still the target of p(x) (or would be if p(x) were black) and its
map-distance from the root remains unchanged;

[j.2] if p(x) has right siblings, then the leftmost one (call it x′) is the (image of the) vertex the
geodesic was supposed to land on; output (τ \ τp(x), x′, s′), with s′ being appropriately chosen
among the three non-jump states.

We now summarise the key properties of the algorithm as just described: given a well bicoloured tree τ and a vertex
x of height n, we can generate a sequence of n + 1 triples (τi, xi, si), with i ranging from 0 to n, where

• for each i, τi is a well bicoloured tree, xi is a vertex of τ and si is one of four states (w0, w>0, b, or j );
• τ0 is the tree τ deprived of all that lies left of the (tree) path from the root to x, and x0 = x;
• (τi+1, xi+1, si+1) is obtained from (τi, xi, si) as described, with changes of a ‘local’ nature;
• for each i, the height of xi in τi is n − i; consequently, xn is the root of τn;
• for each i between 0 and n − 1 such that si 	= j , d(τi+1, xi+1) = d(τi, xi) − 1; therefore,

d(τ, x) =
∑

0≤i<n|si 	=j

1 = n − ∣∣{0 ≤ i < n|si = j}∣∣; (�)

that is, the distance d(τ, x) is the number of non-jump states appearing in the input triples on which the algorithm
runs (indeed, it is also the number of non-jump states appearing in the n output triples, because sn cannot be j and
neither can s0). We will make frequent use of this fact in what follows.

The time has come to run our algorithm on a random tree. Ideally, one would run the algorithm on a uniformly ran-
dom well bicoloured tree with n vertices; notice that the measure induced on plane trees with n vertices by forgetting
the bicolouring of such a tree, however, is not the uniform measure. We shall see that, in fact, we may run a version
of the algorithm on random vertices of height n in a critical geometric Galton–Watson tree, uniformly bicoloured,
slightly altered so as to give it a white rightmost branch. In order to do this effectively, an especially useful tool is
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the standard construction of the geometric Galton–Watson tree conditioned to survive, which will provide us with a
way of unifying results given by the algorithm for vertices of arbitrary height into a single random variable. The next
section is an introduction to this tool and to some of the notation needed for further progress.

5. The Galton–Watson tree conditioned to survive

In this section we briefly introduce the critical Galton–Watson tree conditioned to survive for a geometric offspring
distribution; for a more general definition and further details see Section 12 of [16].

We build a random infinite tree, called T∞, in the following way: consider an infinite path v0v1 · · ·vn · · · , called
the spine; let (λi)i≥0 be a sequence of independent critical geometric Galton–Watson trees (that is, with offspring
distribution μ, where μ(k) = 2−k−1 for all natural numbers k), and let (ρi)i≥0 be another such sequence, independent
of the first; we consider the Galton–Watson trees as random rooted plane trees and, for each i ≥ 0, attach λi to the
spine by identifying its root and vi , so that λi lies to the left of the spine; similarly, attach each ρi so that its root is
identified with vi and all of its vertices lie to the right of the spine (see Figure 4(a)); finally, root the random infinite
tree thus obtained in v0.

The relevance of critical geometric Galton–Watson trees lies in the fact that, if θ is one such tree and θn is the
random tree obtained by conditioning θ on having exactly n vertices, then θn is uniformly distributed over plane trees
with n vertices; as a result, the tree T∞ itself has much to do with random plane trees, as we shall now see.

We write cutn(T∞) for the pair (τ, vn), where τ is the (finite plane rooted) tree obtained from T∞ by erasing every
descendant of vn which lies strictly to the left of vn+1, together with vn+1 itself and all of its descendants: that is, τ

consists of the path v0 · · ·vn, with trees ρ0, . . . , ρn attached to the right and trees λ0, . . . , λn−1 attached to the left.
Then we have the following standard result.

Lemma 5.1. Let F be a non-negative real valued function defined on pairs (τ, u), where τ is a finite rooted plane tree
and u is a vertex in τ ; let θ be a Galton–Watson tree with critical geometric offspring distribution. Then for all n ≥ 0

E
[
F

(
cutn(T∞)

)] = E

[ ∑
u∈θ

|u|=n

F (θ,u)

]
.

Proof. For the left hand side we have

E
[
F

(
cutn(T∞)

)] =
∑
(τ,u)

F (τ,u)P
(
cutn(T∞) = (τ, u)

) =
∑
τ

∑
u∈τ

|u|=n

F (τ,u)P
(
cutn(T∞) = (τ, u)

)
,

where (τ, u) ranges among all pairs formed by a finite (rooted plane) tree and a vertex u of height n in the tree.

Fig. 4. Figure (a) represents the critical geometric Galton–Watson tree conditioned to survive; trees ρ1, . . . , ρn, . . . and λ1, . . . , λn, . . . are inde-
pendent geometric Galton–Watson trees. Figure (b) represents cut2(T∞).



The scaling limit of random outerplanar maps 1675

Thus it is enough to show that, for all such pairs (τ, u),

P
(
cutn(T∞) = (τ, u)

) = P(θ = τ).

But the probability P(cutn(T∞) = (τ, u)) is easy to compute: consider the set formed by u and its ancestors in τ ;
order them according to height, and label them u0, . . . , un, so that |ui | = i (u0 is the root and un is u). For i =
0, . . . , n − 1, let τ i

l be the subtree of τ formed by ui and its descendants lying strictly to the left of ui+1. Similarly, let
τ i
r be the subtree of τ formed by ui and its descendants lying strictly to the right of ui+1. Then

P
(
cutn(T∞) = (τ, u)

) =
(

n−1∏
i=0

P
(
λi = τ i

l

)
P
(
ρi = τ i

r

)) · P(
ρn = τu

)

=
(

n−1∏
i=0

P
(
θ = τ i

l

)
P
(
θ = τ i

r

)) · P(
θ = τu

)
.

Now, for each vertex x in τ , let c(x) be the number of children of x in τ ; clearly,

P(θ = τ) =
∏
x∈τ

2−c(x)−1

by definition of θ .
On the other hand, for each vertex in tree τ i

l (i between 1 and n − 1) call cl(x) the number of its children in τ i
l ;

similarly, call cr(x) the number of children of x in τ i
r , if x belongs to such a tree. Then

P
(
cutn(T∞) = (τ, u)

) =
n−1∏
i=0

{∏
x∈τ i

l

2−cl(x)−1
∏
x∈τ i

r

2−cr (x)−1
}

·
∏
x∈τu

2−c(x)−1.

Consider any vertex x of τ such that x /∈ {u0, . . . , un−1}; then x appears only once in the expression above, as part
of some tree τ

j
l or τ

j
r , or possibly of τu. Furthermore, the number of children of x in its subtree (cl(x) or cr(x) or

c(x)) is exactly the same as the number of children c(x) that x has in τ . Now, for i = 0, . . . , n − 1, consider ui ; it
appears inside two of the products, as part of tree τ i

l and tree τ i
r , therefore it contributes to P(cutn(T∞) = (τ, u)) with a

factor 2−cl(ui )−12−cr (ui )−1; on the other hand, ui has c(ui) = cl(ui)+ cr (ui)+ 1 children in τ , so that its contribution
to P(θ = τ) is a factor 2−c(ui )−1 = 2−cl(ui )−cr (ui )−2.

Consequently, we have P(cutn(T∞) = (τ, u)) = P(θ = τ), as wanted. �

In order to adapt the notion of the critical geometric Galton–Watson tree conditioned to survive to our prior setting,
we need to endow it with a random bicolouring. We do this by simply choosing the colour for each vertex of T∞
uniformly at random with probability 1/2. In what follows, since the context will determine whether or not trees are
bicoloured, we will still write T∞ for the object just introduced, namely the critical geometric Galton–Watson tree
conditioned to survive, uniformly bicoloured.

Similarly, if τ is a (random) finite tree, it can be uniformly bicoloured by choosing a colour for each of its vertices
independently and uniformly at random, conditionally on τ itself. This applies in particular when τ is a critical
geometric Galton–Watson tree.

Finally, we remark that a bicoloured critical geometric Galton–Watson tree is not necessarily well bicoloured;
given a finite bicoloured tree τ , we define the new tree τ ◦ as the one obtained by adding a white leaf as rightmost
child of the root of τ and recolouring the root white, so that τ ◦ is well bicoloured; we will always think of τ as being
embedded in τ ◦ in the obvious way. One may of course consider map-distances on τ ◦: given a vertex u in τ , we
write d◦(τ, u) = d(τ ◦, u) for the map distance between vertex u and the root in τ ◦. Analogously, we may consider
d◦(cutn(T∞)), which, if cutn(T∞) = (τ, u), we take to mean d(τ ◦, u).
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6. The algorithm running on the infinite bicoloured tree

Let T∞ be the critical geometric Galton–Watson tree conditioned to survive, uniformly bicoloured; call v0, . . . , vn, . . .

the vertices on its spine (v0 being the root). The distance d◦(cutn(T∞)) is, for each positive integer n, a random
variable which we wish to estimate (at least asymptotically in n).

We have described in Section 4 an algorithm that can now be started on (τ ◦, x, s), where (τ, x) = cutn(T∞) and
s depends on the colour and offspring of x in τ (therefore on T∞ and n); this will yield a sequence of n states
s0, . . . , sn−1, each a random variable taking values in the space of states Σ = {w0,w>0, b, j}, such that

d◦(cutn(T∞)
) = n − ∣∣{0 ≤ i < n|si = j}∣∣.

This sequence (si)0≤i<n is ‘almost’ a Markov Chain, in the sense clarified by the following fundamental proposi-
tion:

Proposition 6.1. Fix n > 0; take the random infinite tree T∞ and consider the sequence s0, . . . , sn−2 of the first n − 1
inputs for the algorithm from Section 4, started on (τ ◦, x, s0), where (τ, x) = cutn(T∞). Then such a sequence has the
same law as (the first n − 1 steps of) a Markov chain (Xi)i≥0 with transition matrix

M =

⎛
⎜⎜⎜⎜⎝

� w0 w>0 b j

w0 1/4 1/4 1/2 0
w>0 1/16 5/16 5/8 0
b 3/32 7/32 7/16 1/4
j 1/8 1/8 1/4 1/2

⎞
⎟⎟⎟⎟⎠

and a random initial state distributed as (1/4,1/4,1/2,0).

This proposition plays a key role in finally establishing Theorem 1.1; it is, in fact, the motivation that led to the
algorithm as described in Section 4, and its proof is nothing but a careful observation of how the various steps of the
algorithm interact with the random element: in particular, some key independence properties are always preserved,
mainly thanks to the Galton–Watson structure of subtrees and the nature of the geometric law.

In order to prove Proposition 6.1, we highlight those exact independence properties in a separate lemma, for which
some additional notation is needed. Suppose the algorithm is started on a triple (τ0, x0, s0), where x0 has height n

in τ0; we write pj for the j th iteration of the parent function, so that p0(x0) = x0 and pj (x0) has height n − j (in
particular, pn(x0) is the root of τ0). We call ρ

j

0 the subtree of τ0 consisting of pn−j (x0) and its descendants lying

strictly to the right of pn−j−1(x0) (so that the tree ρ
j

0 is rooted in a vertex of height j in τ0); ρn
0 is simply τ

x0
0 .

We repeat the same construction for all subsequent triples (τi, xi, si): xi has height n − i; we write ρ
j
i for the

subtree of τi consisting of pn−i−j (xi) and its descendants lying strictly to the right of pn−i−j−1(xi) (see Figure 5);
as before, the root of ρ

j
i has height j in τi , and ρn−i

i = τ
xi

i .
We wish to prove the following:

Lemma 6.2. Fix n > 0 and consider the (random) triples (τi, xi, si) obtained from T∞ through the algorithm for i

between 0 and n − 2. Then for each i,

• if si = w0 or si = b, then ρ
j
i , for j = 1, . . . , n − i − 1, is a sequence of independent uniformly bicoloured Galton–

Watson trees;
• if si = w>0, then ρ

j
i , for j = 1, . . . , n − i − 1, is a sequence of independent uniformly bicoloured Galton–Watson

trees; also, τ
r(xi )
i is a uniformly bicoloured Galton–Watson tree independent of the block of the ρ

j
i ’s;

• if si = j , then ρ
j
i , for j = 1, . . . , n− i −2, is a sequence of independent uniformly bicoloured Galton–Watson trees,

whilst ρn−i−1
i = {p(xi)} and ρn−i

i = {xi}.

Proof. We proceed by induction on i; for i = 0, all assertions are trivial by definition of T∞ (more precisely, by the
random structure of cutn(T∞)): with the exception of ρ0

0 , whose root is recoloured white and has a white leaf attached
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Fig. 5. Structure of τi .

as a rightmost child, ρ
j

0 = ρj : all right trees attached to the spine of T∞ are uniformly bicoloured Galton–Watson
trees.

We loosely follow the original presentation of the algorithm and deal separately with each case.
Suppose si = w0, and consider (τi+1, xi+1, si+1); we have ρ

j

i+1 = ρ
j
i for j = 1, . . . , n − i − 1, since all the algo-

rithm does is erase xi (that is, ρn−i
i ), and the claim follows by the induction hypothesis.

If si = w>0, then the output of the algorithm depends on whether ρn−i−1
i consists of only p(xi) or not. If si+1 = b

or si+1 = w0, then ρ
j

i+1 = ρ
j
i for j = 1, . . . , n− i−2, which is all that is required. The same is true for si+1 = w>0, but

we also need to show that τ
r(xi+1)

i+1 is Galton–Watson and independent of the ρ
j

i+1’s. The subtree ρn−i−1
i+1 is determined

by the algorithm as follows. If ρn−i−1
i = {p(xi)} then it is isomorphic to τ

r(xi )
i (we are interested only in the case of

r(xi) and p(xi) being white), which has the required properties by the induction hypothesis. Otherwise we simply
have ρn−i−1

i+1 = ρn−i−1
i , and we are done.

If si = b, then we need to deal with a few cases separately. The most straightforward one is that of si+1 = j ; what
the algorithm does in this case is merely erase τ

xi

i : conditions on trees ρ
j

i+1 are automatic (including the fact that

ρn−i−2
i+1 = {p(xi+1)} and ρn−i−1

i+1 = {xi+1}, or we would not have switched to jump state). If si+1 = w0, this may be
for one of two reasons:

• xi has only one right sibling in τi , which is a white leaf, and p(xi) is white (case [b.2]); there is nothing to prove
here, since ρ

j

i+1 = ρ
j
i for j = 1, . . . , n − i − 2;

• xi has no right sibling in τi , but p(xi) does, and its next sibling is a white leaf (case [b.3.1]); in this case, while
trees ρ

j
i remain unchanged for j ≤ n − i − 3, ρn−i−2

i+1 is ρn−i−2
i with its leftmost branch erased; on the other hand,

what we have done is precisely condition such a tree on having a leftmost branch made up of a white leaf, and then
remove it, which leaves nothing but a Galton–Watson tree.

The case of si+1 = b presents no added difficulties apart for the need for more casework. One needs to deal
separately with cases [b.2], [b.3.1] (same as above, with a weaker condition to check) and [b.1], which is again
trivial. Finally, one has to go through essentially the same for si+1 = w>0, but with the added requirement to show
that τ

r(xi+1)

i+1 is Galton–Watson and independent of the ρ
j

i+1’s. This is true in case [b.1] (τ r(xi+1)

i+1 = τ
r(p(xi ))
i ), [b.2]

(τ r(xi+1)

i+1 = τ
r(r(p(xi)))
i , where r(r(p(xi))) does exist in τi , or we would not go to state w>0), and [b.3.1] (τ r(xi+1)

i+1 =
τ

r(r(p(p(xi))))
i ).

The very last possibility is for si to be j ; if si+1 is j as well, there is hardly anything to prove; all other cases
require arguments that are exactly the same as those used for si = b, and that we shall not repeat.

This concludes the proof by induction. �
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Given Lemma 6.2, Proposition 6.1 is only a matter of computing transition probabilities. We refer the reader to
Table 1, which covers all of the cases described in Section 4. For the reader’s convenience, we briefly interpret the
table for one of the states, as an example.

Example 6.1 (Transition probabilities from w>0). Consider the case where si = w>0; if p(xi) is black, which hap-
pens with probability 1/2, then, regardless of whether we are in case [w>0.1] or [w>0.2], si+1 = b, as represented by
the last panel in the first row. The panels in the second row represent all possible outcomes for si+1 when p(xi) is
white: if r(p(xi)) 	= xi (case [w>0.1]) then xi+1 = p(xi) and si+1 = w>0; if xi = r(p(xi)) (case [w>0.2]) then si+1
depends on the colour and offspring of r(xi), as represented by the last three panels of the second row. One can infer
that the transition probabilities from w>0 are as follows:

• 1/16 for w0 (probability that p(xi) is white, r(p(xi)) = xi and τ r(xi ) = {r(xi)});
• 5/16 for w>0 (probability that p(xi) is white and that either r(p(xi)) 	= xi , or r(p(xi)) = xi , r(xi) is white and

τ r(xi ) 	= {r(xi)});
• 5/8 for b (probability that p(xi) is black, or that r(p(xi)) = xi and r(xi) is black);
• 0 for j : one can not jump from a white vertex.

Notice that the initial state of the Markov chain is not important for our purposes (since the chain is recurrent and
we are only interested in asymptotics); however, one is sure to have s0 	= j ; moreover, s0 = b if the (n + 1)th vertex
on the spine of T∞ (which was called x0) is black (which has probability 1/2, since n > 0), and s0 = w0 if x0 is
white and ρn

0 only consists of x0 (probability 1/4); hence the initial distribution (1/4,1/4,1/2,0) in the statement of
Proposition 6.1.

The purpose of the algorithm was, since the very beginning, to give estimates for the map-distance of vertices from
the root; we are now in a position to easily obtain asymptotics for the distance d◦(cutn(T∞)). Namely, we have

Proposition 6.3. Let T∞ be the geometric Galton–Watson tree conditioned to survive, uniformly bicoloured; then

lim
n→∞

d◦(cutn(T∞))

n
= 7/9,

where the convergence is almost sure. More specifically, one has the following Large Deviation result: for all ε > 0
there exist positive nε,C such that, for all n ≥ nε ,

P

(∣∣∣∣d◦(cutn(T∞))

n
− 7

9

∣∣∣∣ ≥ ε

)
≤ e−Cn.

Proof. We know that, for each n > 1, the sequence of random states s0, . . . , sn−2 (from the first n − 1 triples that act
as input for the algorithm when started on cutn(T∞)◦) has the distribution described in Proposition 6.1. Since we have
d◦(cutn(T∞)) = |{0 ≤ i < n|si 	= j}|, we also have |d◦(cutn(T∞)) − |{0 ≤ i ≤ n − 2|si 	= j}|| ≤ 1.

On the other hand,

lim
n→∞

1

n

∣∣{0 ≤ i ≤ n − 2|si 	= j}∣∣
is a constant by the law of large numbers and is easily computed via the limit distribution for a Markov chain with
transition matrix M , which is π = 1

9 (1,2,4,2).
As a consequence, we have

lim
n→∞

1

n
d◦(cutn(T∞)

) = lim
n→∞

1

n

∣∣{0 ≤ i ≤ n − 2|si 	= j}∣∣ = 7/9.

The second part of the proposition is a direct consequence of classical results of Large Deviation Theory about
Markov chains with a finite state space, see for example Chapter 3 of [11]. The statement is true if we substitute
Sn = |{0 ≤ i ≤ n − 2|si 	= j}| for d◦(cutn(T∞)), because s0, . . . , sn−2 is a (recurrent) Markov chain with finite state
space.
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Table 1
Transitions from states w0, w>0, b and j . Vertices enclosed within a red region get identified by the algorithm
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The inequality |d◦(cutn(T∞)) − Sn| ≤ 1 implies that P(d◦(cutn(T∞)) = d) ≤ P(|Sn − d| ≤ 1) for any natural
number d , and thus

P

(∣∣∣∣d◦(cutn(T∞))

n
− 7

9

∣∣∣∣ ≥ ε

)
≤ P

(∣∣∣∣Sn

n
− 7

9

∣∣∣∣ ≥ ε − 1

n

)

which establishes the result for d◦(cutn(T∞)). �

7. Final proofs

The final technical steps follow [10], but we need to bypass the rerooting argument exploited there by establishing a
more practical control on all map-distances (not only map-distances from the root, as we have done so far). We will
start, however, with a proposition dealing only with map-distances from the root, in order to extend the statement as
soon as all of the necessary lemmas are in place.

Before we start, let us introduce a little notation: suppose (xn)n≥1 is a sequence of real numbers; we write xn =
oexp(n) to mean that xn ≤ C1e

−C2n
a

for some positive C1, C2, a. Also, in the following proposition and proof, we will
write c for the constant 7

9 , which we obtained in Section 6, and d for the usual graph distance on the outerplanar map
obtained from a tree via the bijection Ψ , with d(u) being the graph distance of u from the root vertex.

Proposition 7.1. Let τn be a uniformly random well bicoloured tree with n vertices, and let Δ(τn) be its (random)
diameter; then for all ε > 0

pn = P
(∃u ∈ τn s.t.

∣∣d(τn,u) − c|u|∣∣ ≥ ε max
{
Δ(τn),

√
n
}) = oexp(n).

Proof. For any positive integer k, we call τ k
n a random well bicoloured tree with n vertices conditioned on having a

rightmost branch of length exactly k. We claim that the probability of τn having a rightmost branch of length greater
than ε

√
n/4 is oexp(n); we shall need a more general result before the end of this section, and we postpone the proof

of this claim, in a stronger form, until the end of the proof (see Lemma 7.2). Given the claim, we have that pn is
oexp(n) if and only if the same is true for

(ε/4)
√

n∑
k=1

qn,kP
(∃u ∈ τ k

n s.t.
∣∣d(

τ k
n , u

) − c|u|∣∣ ≥ ε max
{
Δ

(
τ k
n

)
,
√

n
})

,

where qn,k is the probability that τn has a rightmost branch of length exactly k.
Let us consider a single term of the sum. Notice that, for each k, τ k

n can be seen as a random forest of k ordered
trees, with n − 1 vertices between them, such that the trees are linked by the roots with a path going from left to right,
and a single extra vertex is linked to the root of the rightmost tree; each of the trees is bicoloured (not necessarily well
bicoloured) with the only condition of having a white root; the rightmost vertex is white.

The number of such forests, if we ignore the bicolouring, is well known to be the generalised Catalan number
Cat(n − 1 − k, k) (see for example [7]), where

Cat(n, k) = k

n + k

(
2n + k − 1

n

)
,

whereas the number of (rooted plane) trees with n + 1 vertices is Cat(n) = Cat(n,1).
We label the k (random) trees in the forest τ k

n , ordered from left to right, τ k
n (1), . . . , τ k

n (k); if, for each i between 1
and k, we condition τ k

n (i) on having a certain number ni of vertices (with ni ≥ 1 and n1 + · · · + nk = n − 1), then
τ k
n (i) simply becomes a random plane tree with ni vertices (uniformly bicoloured but with a white root), which we

call θni
.

Notice now that, for any vertex u in τ k
n (i), |d(τ k

n , u) − d◦(τ k
n (i), u)| ≤ k; also, the height of u in τ k

n (i) differs from
the height of u in τ k

n by at most k, and we have the obvious inequality Δ(τk
n (i)) ≤ Δ(τk

n ) between diameters. As a
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consequence,

P
(∃u ∈ τ k

n s.t.
∣∣d(

τ k
n , u

) − c|u|∣∣ ≥ ε max
{
Δ

(
τ k
n

)
,
√

n
})

≤
k∑

i=1

P
(∃u ∈ τ k

n (i) s.t.
∣∣d◦(τ k

n (i), u
) − c|u|∣∣ ≥ ε max

{
Δ

(
τ k
n (i)

)
,
√

n
} − 2k

)
,

where in the second expression we still write |u| for the height of the vertex in τ k
n (i).

Hence the probability above is no more than

max
n1,...,nk>0

n1+···+nk=n−1

k∑
i=1

P
(∃u ∈ θni

s.t.
∣∣d◦(θni

, u) − c|u|∣∣ ≥ ε max
{
Δ(θni

),
√

n
} − 2k

)
.

Now, we know that k ≤ ε
4

√
n, and therefore we can reduce to evaluating the expression

ε

4

√
n max

0<m<n
P

(
∃u ∈ θm s.t.

∣∣d◦(θm,u) − c|u|∣∣ ≥ ε

2
max

{
Δ(θm),

√
n
})

.

Let θ be a uniformly bicoloured Galton–Watson tree (see Section 5); the probability that θ has m vertices is
2−2m−1 Cat(m − 1), which is asymptotic to m−3/2; we can therefore find a constant C1 such that, for any m,
2−2m−1 Cat(m − 1) ≥ C1m

−3/2. This guarantees that, for any positive integer m less than n,

P

(
∃u ∈ θm s.t.

∣∣d◦(θm,u) − c|u|∣∣ ≥ ε

2
max

{
Δ(θm),

√
n
})

≤ 1

C1
m3/2 · P

(
∃u ∈ θ s.t.

∣∣d◦(θ, u) − c|u|∣∣ ≥ ε

2
max

{
Δ(θ),

√
n
})

.

If we write qn for the probability appearing in the above expression, then (since m ≤ n) proving qn = oexp(n)

would guarantee that the above – and therefore pn – is oexp(n). We shall now turn to the former endeavour.
It is clear that

qn ≤ E

[∑
u∈θ

1

(∣∣d◦(θ, u) − c|u|∣∣ ≥ ε

2
max

{
Δ(θ),

√
n
})]

and, grouping vertices together according to height, the latter can be rewritten as

E

[∑
j≥1

∑
u∈θ

|u|=j

1

(∣∣d◦(θ, u) − cj
∣∣ ≥ ε

2
max

{
Δ(θ),

√
n
})]

≤
∑
j≥1

E

[ ∑
u∈θ

|u|=j

1

(∣∣d◦(θ, u) − cj
∣∣ ≥ ε

2
max{j,√n}

)]
,

where we have used the fact that, for each u in the sum, we have d(θ) ≥ |u|.
We can now use Lemma 5.1 to turn the expression above into

∑
j≥1

P

(∣∣d◦(cutj (T∞)
) − cj

∣∣ ≥ ε

2
max{j,√n}

)
,

where T∞ is the critical geometric Galton–Watson tree conditioned to survive, randomly bicoloured, as presented in
Section 5.

We split the sum into two parts, which we will deal with separately: the sum for j ≤ n1/4 and that of the terms with
j > n1/4.
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Suppose that j ≤ n1/4; clearly, d◦(cutj (T∞)) ≤ j , and max{j,√n} = √
n. This gives |d◦(cutj (T∞)) − cj | ≤

d◦(cutj (T∞)) + cj ≤ (1 + c)j ≤ (1 + c)n1/4. Thus it is enough to choose n so that (1 + c)n1/4 < ε
2

√
n, that is

n1/4 > 2+2c
ε

, to obtain that

�n1/4
∑
j=1

P

(∣∣d◦(cutj (T∞)
) − cj

∣∣ ≥ ε

2
max{j,√n}

)
= 0.

As for the sum with j > n1/4, we have

P

(∣∣d◦(cutj (T∞)
) − cj

∣∣ ≥ ε

2
max{j,√n}

)
≤ P

(∣∣∣∣d◦(cutj (T∞))

j
− c

∣∣∣∣ ≥ ε

2

)

which, by choosing n appropriately according to Proposition 6.3, can be bounded by e−Cn.
This gives, for n suitably big, the bound∑

j>n1/4

e−Cj = oexp(n),

which is our aim. �

We now prove the claim from the beginning of the proof, in the form of the following lemma:

Lemma 7.2. Let τn be a random well bicoloured plane tree with n vertices, and let α, ε > 0 be positive real numbers;
we call a path in τn an ancestor path if it is of the form x0 · · ·xl , with xi = p(xi−1) for all integers i such that 1 ≤ i ≤ l.
Then

P
(
τn has an ancestor path of length at least αnε entirely made up of white vertices

) = oexp(n);
in particular, the probability that τn has a rightmost branch of length at least αnε is oexp(n).

Proof. We start by showing the last, more specific assertion: that the probability of τn having a rightmost branch of
length at least αnε is oexp(n).

For any d > 0, the number of bicoloured trees with n vertices and a rightmost branch of length d , as seen within
the proof of Proposition 7.1, is

2n−1−d Cat(n − 1 − d, d) = 2n−1−d d

2n − 2 − d

(
2n − 2 − d

n − 1 − d

)
,

that is the number of plane trees with n vertices and a rightmost branch of length d (or, equivalently, of sequences of
d plane trees with n − 1 vertices in total, see Figure 6), multiplied by the number of possible bicolourings (2n−1−d ,
since d + 1 out of the n vertices belong to the rightmost branch of the tree).

The total number of outerplanar maps with n vertices is asymptotic (up to a multiplicative constant) to 23nn−3/2, as
can be easily obtained from Stirling estimates for the above formula (see, for detailed analogous computations, [7]);
on the other hand,

∑
αnε<d<n

2n−1−d Cat(n − 1 − d, d) ≤
∑

αnε<d<n

2n−1−d

(
2n − 2 − d

n − 1 − d

)
,

which in turn is less than

23np(n)
∑

αnε<d<n

2−2d,
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Fig. 6. The tree τk
n seen as a forest of k linked rooted plane trees.

where p(n) a polynomial in n. As a consequence, the above expression divided by the total number of outerplanar
maps with n vertices is oexp(n).

It is now very easy to extend the result to general ancestor paths. Since the probability that τn has a rightmost branch
of length at least α

2 nε we have shown to be oexp(n), we may assume τn is conditioned on having a rightmost branch of
length less than α

2 nε . For each vertex v of height at least αnε in τn consider the path Pv = vp(v) · · ·pi(v) · · ·p�αnε�(v).
No more than 1

2αnε of its vertices belong to the rightmost branch of τn, and thus the probability of Pv being entirely
white is at most 2−(α/2)nε

. Hence

P

(
τn has an ancestor path of length αnε entirely made up of white vertices

and the rightmost branch of τn is shorter than
α

2
nε

)
< n · 2−(α/2)nε

which is oexp(n) as wanted. �

Proposition 7.1 is a substantial step toward being able to bound the Gromov–Hausdorff distance between a
(rescaled) tree and its corresponding planar map, but dealing with distances from the root is not enough: we need
a way to derive results of the same kind about distances between generic vertices.

To this end, we will rewrite the map-distance between two vertices in terms of the distances between each vertex
and the root. This is easily done when the vertices in question are related, and the one of smaller height is black; this
basic case we will use as a stepping stone, together with Lemma 7.2, to establish the required general result.

Lemma 7.3. Let τ be a bicoloured tree and v a vertex in τ ; let w be a black ancestor of v in τ , ∅ the root of τ ; call
dM the map-distance on τ and (as in Section 3) write dM(u) for dM(u,∅). Then |dM(v,w) − dM(v) + dM(w)| ≤ 2.

Proof. Consider a map-geodesic from v to the root; if this path goes through w, then dM(v) = dM(v,w) + dM(w). If
it does not, then at some point it jumps from a descendant s of w onto a target t ‘below’ w, which must be the child
of an ancestor of w, thus also the target of w. We have

dM(v, s) ≤ dM(v,w) ≤ dM(v, s) + 2,

dM(v) = dM(v, s) + 1 + dM(t),

dM(t) ≤ dM(w) ≤ dM(t) + 1

hence |dM(v) − dM(v,w) − dM(w)| ≤ 2 as wanted.
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�

Here is a general statement analogous to Proposition 7.1, where we write dT (u, v) for the distance of two vertices
in the tree, and dM for the map distance (again, with dM(u) being the map distance from the root).

Corollary 7.4. Let τn be a random well bicoloured tree with n vertices, and let Δ(τn) be its (random) diameter; then
for all ε > 0

P
(∃u,v ∈ τn s.t.

∣∣dM(u, v) − cdT (u, v)
∣∣ ≥ ε max

{
Δ(τn),

√
n
}) = oexp(n).

Proof. Thanks to Lemma 7.2 (by choosing α = ε
8 ) we may restrict ourselves to the event of τn having no white

ancestor path of length ε
8

√
n or greater.

Consider, given u and v vertices of τn, their first common ancestor w. Either |w| > ε
8

√
n, in which case there is a

black ancestor z of w such that dT (w, z) ≤ ε
8

√
n (otherwise there would be a long white ancestor path), or |w| < ε

8

√
n,

in which case we just set z to be the root of τn.
Suppose without loss of generality that u lies to the left of v and let w′ be the child of w that is also an ancestor

of v; then a map-geodesic from u to v goes through at least one of w and w′, thanks to an argument very similar to
that employed in Proposition 3.1. This yields that |dM(u, v) − dM(u,w) − dM(w,v)| ≤ 2 (this is trivial if the map-
geodesic passes through w; if it goes through w′ then we have |dM(u, v) − dM(u,w) − dM(w,v)| = |dM(u,w′) +
dM(w′, v) − dM(u,w) − dM(w,v)| ≤ |dM(u,w′) − dM(u,w)| + |dM(w′, v) − dM(w,v)| ≤ 2).

Also notice that we have |dM(u,w)−dM(u, z)| ≤ dM(w, z) ≤ ε
8

√
n, and the same inequality is true if we substitute

v for u.
Now, if z is black, then |dM(u, z) − dM(u) + dM(z)| ≤ 2 and |dM(v, z) − dM(v) + dM(z)| ≤ 2 by Lemma 7.3;

otherwise z is the root of τn, and the same assertions are trivial (since dM(u, z) = dM(u) and dM(z) = 0).
All of the above observations combined yield∣∣dM(u, v) − cdT (u, v)

∣∣ = ∣∣dM(u, v) − c
(|u| + |v| − 2|w|)∣∣

≤ ε

2

√
n + 6 + ∣∣dM(u) − c|u|∣∣ + ∣∣dM(v) − c|v|∣∣ + 2

∣∣dM(z) − c|z|∣∣.
Hence

P
(∃u,v ∈ τn s.t.

∣∣dM(u, v) − cdT (u, v)
∣∣ ≥ ε max

{
Δ(τn),

√
n
})

≤ P

(
∃u,v, z ∈ τn

s.t.
ε

2

√
n + 6 + ∣∣dM(u) − c|u|∣∣ + ∣∣dM(v) − c|v|∣∣ + 2

∣∣dM(z) − c|z|∣∣ ≥ ε max
{
Δ(τn),

√
n
})

≤ P

(
∃u,v, z ∈ τn s.t.

∣∣dM(u) − c|u|∣∣ + ∣∣dM(v) − c|v|∣∣ + 2
∣∣dM(z) − c|z|∣∣ ≥ ε

4
max

{
Δ(τn),

√
n
})

≤ P

(
∃u ∈ τn s.t.

∣∣dM(u) − c|u|∣∣ ≥ ε

16
max

{
Δ(τn),

√
n
})

which we show to be oexp(n) by invoking Proposition 7.1. �
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The time has come for the proof of our main theorem, which is now quite straightforward:

Proof of Theorem 1.1. Corollary 7.4 yields that, given a random well bicoloured tree with n vertices τn,

P
(
dGH

(
Ψ (τn), cτn

) ≥ ε max
{√

n,Δ(τn)
}) = oexp(n),

where Ψ (τn) in this context is seen as the metric space made up of the vertices of τ equipped with the map-distance,
and cτn is the set of vertices in τn, equipped with the graph distance of τn rescaled by a factor c = 7

9 .
This is because

dGH
(
Ψ (τn), cτn

) ≤ 1

2

(
sup

u,v∈τn

∣∣dM(u, v) − cdT (u, v)
∣∣),

as seen by considering the trivial correspondence between the vertices of τn and those of Ψ (τn).
Thus we have established that

lim
n→∞dGH

(
Ψ (τn)

max{√n,Δ(τn)} ,
cτn

max{√n,Δ(τn)}
)

= 0

in probability, where τn is a random rooted well bicoloured plane tree with n vertices, and – given a graph G and a
real number k – we take kG to denote the rescaled metric space (V (G), k · dgr).

We now claim that

lim
n→∞

(
τn,

dgr√
2n

)
= (Te, d)

in distribution for the Gromov–Hausdorff distance, with (Te, d) being the CRT.
This result is a consequence of a famous theorem of Aldous [5] and would be immediate if τn were replaced by a

uniform plane tree with n vertices or, equivalently, by a critical geometric Galton–Watson tree conditioned on having
n vertices. Even though this is not the case, τn is not very far from the latter: indeed, we saw in Lemma 7.2 that the
length Ln of the rightmost branch of τn remains tight (it even converges in distribution) as n → ∞, and furthermore
that, conditionally on Ln = k, the k subtrees grafted onto the rightmost branch form a forest τ k

n (1), τ k
n (2), . . . , τ k

n (k)

whose total number of vertices is n − 1. It is known that such a forest has, as n → ∞, a unique macroscopic tree τ̃n

of size sn = n − o(n), which is uniformly distributed over all plane trees of size sn. The scaling limit of τn is thus the
same as that of τ̃n, which is that of a random uniform plane tree of size n. See Section 3.3 of [17] for details.

But then the random variable

max{√n,Δ(τn)}√
n

also converges in distribution, and to an almost surely positive random variable. That is, if we multiply by max{√n,d(τn)}√
n

we can in fact deduce that

lim
n→∞dGH

(
Ψ (τn)√

n
,
cτn√

n

)
= 0.

Now remember that, thanks to Theorem 2.1, Ψ (τn) is a random rooted simple outerplanar map with n vertices, that
is it has the same distribution as Mn. This finally gives

lim
n→∞

(
Mn,

dgr√
n

)
= lim

n→∞

(
τn,

7dgr

9
√

n

)
=

(
Te,

7
√

2

9
d

)
. �

Remark 7.1. As suggested by the referees, on might be able to extend the result to Galton–Watson trees with a more
general offspring distribution, and with a non-uniform bicolouring.
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Notice, however, that there is no immediate way of adapting Proposition 6.1 to offspring distributions more general
than the geometric law. Within the proof of Lemma 6.2, we have heavily relied upon a peculiar property of geometric
Galton–Watson trees: if one conditions the root x of a geometric Galton–Watson tree θ on having at least one child
and then erases the whole tree θr(x), one obtains again a geometric Galton–Watson tree. This is only true because the
offspring distribution is geometric.

On the other hand, the proof should not change substantially (if not for the transition probabilities of the Markov
chain and the final constant) if a generic probability 0 ≤ p ≤ 1 is assigned to the event that a vertex that does not lie
on the rightmost branch is white.
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