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ANALYSIS OF LARGE UNRELIABLE STOCHASTIC NETWORKS

BY WEN SUN∗,1, MATHIEU FEUILLET† AND PHILIPPE ROBERT∗

INRIA Paris—Rocquencourt∗ and ANSSI†

In this paper, a stochastic model of a large distributed system where
users’ files are duplicated on unreliable data servers is investigated. Due to
a server breakdown, a copy of a file can be lost, it can be retrieved if another
copy of the same file is stored on other servers. In the case where no other
copy of a given file is present in the network, it is definitively lost. In order
to have multiple copies of a given file, it is assumed that each server can de-
vote a fraction of its processing capacity to duplicate files on other servers to
enhance the durability of the system.

A simplified stochastic model of this network is analyzed. It is assumed
that a copy of a given file is lost at some fixed rate and that the initial state
is optimal: each file has the maximum number d of copies located on the
servers of the network. The capacity of duplication policy is used by the files
with the lowest number of copies. Due to random losses, the state of the
network is transient and all files will be eventually lost. As a consequence,
a transient d-dimensional Markov process (X(t)) with a unique absorbing
state describes the evolution this network. By taking a scaling parameter N

related to the number of nodes of the network, a scaling analysis of this pro-
cess is developed. The asymptotic behavior of (X(t)) is analyzed on time
scales of the type t �→ Npt for 0 ≤ p ≤ d − 1. The paper derives asymptotic
results on the decay of the network: Under a stability assumption, the main
results state that the critical time scale for the decay of the system is given
by t �→ Nd−1t . In particular, the duration of time after which a fixed fraction
of files are lost is of the order of Nd−1. When the stability condition is not
satisfied, that is, when it is initially overloaded, it is shown that the state of the
network converges to an interesting local equilibrium which is investigated.
As a consequence, it sheds some light on the role of the key parameters λ, the
duplication rate and d, the maximal number of copies, in the design of these
systems. The techniques used involve careful stochastic calculus for Poisson
processes, technical estimates and the proof of a stochastic averaging princi-
ple.

1. Introduction.

1.1. Large distributed systems. In this paper, the problem of reliability of large
distributed system is analyzed via mathematical models. A typical framework is a
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cloud computing environment where users’ files are duplicated on several data
servers. When a server breaks down, all copies of files stored on this server are
lost but they can be retrieved if copies of the same files are stored on other servers.
In the case where no other copy of a given file is present in the network, it is
definitively lost. Failures of disks occur naturally in this context, these events are
quite rare but, given the large number of nodes of these large systems, this is not a
negligible phenomenon at all at network scale. For example, in a data center with
200,000 servers, in average five disks fail every day. See the extensive study Pin-
heiro et al. [16] in this domain at Google. A natural consequence of these failures
is the potential loss of some files if several servers holding copies of these files fail
during a small time interval. For this reason, this is a critical issue for companies
deploying these large data centers.

Duplication policies. In order to maintain copies on distant servers, a fraction
λ of the bandwidth of each server has to be devoted to the duplication mechanism
of its files to other servers. If, for a short period of time, several of the servers
break down, it may happen that files will be lost for good just because all the
available copies were on these servers and because a recovery procedure was not
completed before the last copy disappeared. A second parameter of importance is
d the maximal number of copies of a given file in different servers. The general
problem can then be presented as follows: On the one hand, d should be sufficiently
large, so that any file has a copy available on at least one server at any time. On
the other hand, the maximum number of copies for a given should not be too large,
otherwise the necessary fraction of the server capacity for maintaining the number
of copies would be very large and could impact other functions of the server.

1.2. Mathematical models. The natural critical parameters of such a dis-
tributed system with N servers are the failure rate μ of servers, the bandwidth λ

allocated to duplication and the total number of files FN . To design such a system,
it is therefore desirable to have a duplication policy which maximizes the average
number of files β = FN/N per server and the first instant TN(δ) when a fraction
δ ∈ (0,1) of files is lost. The main goal of this paper is to give some insight on the
role of these parameters through a simplified stochastic model.

A lot of work has been done in computer science concerning the implementa-
tion of duplication algorithms. These systems are known as distributed hash tables
(DHT). They play an important role in the development of some large scale dis-
tributed systems; see Rhea et al. [20] and Rowstron and Druschel [22] for example.

Curiously, except extensive simulations, little has been done to evaluate the per-
formances of these algorithms. Simplified models using birth and death processes
have been used. See Chun et al. [5], Picconi et al. [15] and Ramabhadran and
Pasquale [18]. In Feuillet and Robert [9], a mathematical model of the case of
d = 2 copies has been investigated. In [9], the main stochastic process of interest
lives in dimension 1 which simplifies somewhat the analysis. As it will be seen, in
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our case, one has to investigate the more challenging problem of estimating some
transient characteristics of a d − 1-dimensional Markov process.

To the best of our knowledge, there has not been any mathematical study inves-
tigating the dependence of the decay of the network, represented by the variable
TN(δ), with respect to the maximal number of copies d and β the average number
of files per server. As it will be seen, even with a simplified model of the paper,
the problem is already quite challenging. One has to derive estimates of transient
characteristics of a transient d-dimensional Markov process on N

d with a reflec-
tion mechanism on the boundary of the state space.

A possible mathematical model. Without simplifying assumptions, a mathe-
matical model could use a state descriptor (Yj (t),1 ≤ j ≤ FN), where Yj (t) is the
subset of {1, . . . ,N} of servers having a copy of file j at time t . Note that the car-
dinality of Yi(t) is at most d and that file i is lost if Yi(t) = ∅. The transitions can
be described as follows:

(1) Loss: If, for 1 ≤ i ≤ N , node i breaks down in state (Yj ) then the value of
Yj does not change if i /∈ Yj and, otherwise, Yj �→ Yj\{i}.

(2) Duplication: if 1 ≤ i1 �= i2 ≤ N and 1 ≤ j ≤ FN are such that |Yj | < d ,
i1 ∈ Yj and i2 /∈ Yj , if the duplication policy at node i1 does a copy of j at i2,
then Yj �→ Yj ∪ {i2} and the other coordinates are not affected by this change.
Depending on the duplication policy at node i1, the choice of the node i2 and of
file j to copy may depend in a complicated way of the current state (Yj ).

As it can be seen, the state space is quite complicated and, moreover, its dimension
is growing with N which is a difficulty to investigate the asymptotics for N large.
It does not seem to lead to a tractable mathematical model to study, for example,
the first instant when a fraction δ ∈ (0,1) of files are lost,

inf

{
t ≥ 0 :

FN∑
1

1{Yj (t)=∅} ≥ δFN

}
.

Simplifying assumptions. We present the mathematical model to be studied.
The model has been chosen so that the role of the parameter d on the decay of the
network can be investigated. To keep mathematics tractable, simplifications for
some of the other aspects of these systems have been done. We review the main
features of our model and the assumptions we have done.

(1) Capacity for duplication. If there are N servers and each of them has an
available bandwidth λ to duplicate files, then the maximal capacity for duplication
is λN . One will assume that the duplication capacity can be used globally, that is,
the rate at which copies are created is λN .

(2) Duplication policy. Moreover, the duplication capacity is used on the files
with the lowest number of copies. The duplication capacity is in fact used at best,
on the files that, potentially, are the most likely to be lost.
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(3) Failures. Any copy of a given file is lost at rate μ. With this assumption,
failures are more frequent but only a copy is lost at each event. In a more realistic
setting, when a server breaks down, copies of several different files are lost at the
same time.

(4) Topological aspects. In practice, in DHT, servers are located on a logical
ring and, in order to limit the communication overhead, the location of copies of a
file owned by a given server i are done at random on a fixed subset Ai of nodes,
the leaf set of i. In our model, we assume that Ai is the whole set of servers.

(5) Statistical assumptions. For mathematical convenience, the random vari-
ables used for the duration between two breakdowns of a server or of a duplication
of a file are assumed to be exponentially distributed.

For this simplified model, the use of the total capacity of duplication is optimal;
see items (1) and (2) below. Our results gives therefore an upper bound on the
efficiency of duplication mechanisms in a general context.

The corresponding Markovian model. With our assumptions, the state space
can be embedded in a fixed state space of dimension d + 1. If, for 0 ≤ i ≤ d

and t ≥ 0, XN
i (t) is the number of files with i copies, then the vector XN(t) =

(XN
0 (t),XN

1 (t), . . . ,XN
d (t)) is a Markov process on N

d+1.

Transitions. The model starts initially with FN files, each of them having a
maximal number of copies d , that is, XN(0) = (0,0, . . . ,0,FN). If XN(t) is in
state x = (xi) ∈ N

d+1 and, for 0 ≤ i ≤ d , ei is the ith unit vector, there are two
types of transitions for the Markov process. See Figure 1.

(1) Loss: for 1 ≤ i ≤ d , x → x + ei−1 − ei . A copy of a file with i copies is lost
at rate ixiμ.

(2) Duplication: for 1 ≤ i < d , x → x − ei + ei+1, 1 ≤ i < d . It occurs at rate
λN under the condition x1 = x2 = · · · = xi−1 = 0, which means that there are no
files with between 1 and i copies.

Clearly enough, this system is transient, due to the random losses, all files are
eventually lost, the state ∅ = (FN,0, . . . ,0) is an absorbing state. The aim of this
paper is to describe the decay of the network, that is, how the number XN

0 (t) of
lost files is increasing with respect to time.

For fixed FN and N , this problem is related to the analysis of the transient be-
havior of a multi-dimensional Markov process. In our case, because of reflection
on boundaries of Nd+1 due to the duplication mechanism, the distribution of the
evolution of the Markov process (Xk(t)) is not easy to study. For this reason, a
scaling approach is used, with N converging to infinity and FN being kept propor-
tional to N .

It will be assumed that the average number of files per server FN/N converges
to some β > 0. For δ > 0, the decay of the system can be represented by the
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FIG. 1. Jump rates for transfers of one unit between the coordinates of the Markov process (XN(t))

in state (x0, x1, . . . , xd).

random variable

TN(δ) = inf
{
t ≥ 0 : XN

0 (t)

N
≥ δβ

}

the time it take to have a fraction δ of the files lost.

1.3. Related mathematical models.

Ehrenfest urn models. The Markov process (X(t)) can be seen as a particle
system with d + 1 boxes and any particle in box 1 ≤ i ≤ d moves to box i − 1 at
rate μ. Box with index 0 is a cemetery for particles. A “pushing” process moves
the particle the further on the left (box 0 excluded) to the next box on its right at a
high rate λN . The model can be seen as a variation of the classical Ehrenfest urn
model, see Karlin and McGregor [11] and Diaconis et al. [7] for example.

Polymerization processes in biology. It turns out that this model has some sim-
ilarities with stochastic processes representing polymerization processes of some
biological models. The simplest model starts with a set of monomers (some pro-
teins) that can aggregate to form polymers. Due to random fluctuations within the
cell, a polymer of size i and a monomer can produce a polymer of size i + 1 at
some fixed rate. In this context, as long as the size i of the polymer is below some
constant i0, the polymer is not stable, it will lose monomers very quickly, at a high
rate, it breaks into a polymer of size i − 1 and a monomer. When the size is greater
or equal to i0 (nucleation phase) the polymer is much more stable, it is assumed
that it remains in this state. Again due to the random fluctuations, all particles will
end up in polymers of sizer greater than i0. These “large” polymers correspond to
our box 0 for the duplication process and the monomers are the equivalent of files
with d copies. The lag time is the first instant when a positive fraction (half say) of
the monomers have been consumed into stable polymers. Note that it is analogous
to our TN(1/2). In this framework, the fluctuations of the lag time have important
consequences on biological processes. See Prigent et al. [17], Xue et al. [27] and
Szavits-Nossan et al. [25] for example.
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1.4. Presentation of the results. The model starts with FN ∼ βN files, all of
them with the maximum number of copies d . The loss rate of a copy is μ and the
duplication rate is λN but only for the files with the minimum number of copies.
For 0 ≤ i ≤ d , XN

i (t) denotes the number of files with i copies.
It is first shown in Theorem 1 that, as N gets large, for the convergence of

stochastic process

lim
N→+∞

(
XN

k (t)

N
,0 ≤ k ≤ d

)
= (

xk(t),0 ≤ k ≤ d
)
.(1)

The limit (xk(t),0 ≤ k ≤ d) can be expressed as the solution of a deterministic
generalized Skorohod problem. See Section 3 for the definition.

Stable case: λ > dμβ . With the resolution of the generalized Skorohod prob-
lem, Proposition 1 of Section 3, one proves that if λ > dμβ then the network is
stable in the sense that the limiting process (xk(t),0 ≤ k ≤ d) is constant and equal
to (0, . . . ,0, β). In other words, on the normal time scale, the fraction of lost files
is zero and, at the fluid level, all files have the maximal number of copies d .

The key results of the stable case are Theorem 2 of Section 4 and Theorem 3
of Section 5. These quite technical and delicate results rely on careful stochastic
calculus and various technical estimates related to the flows between coordinates
of the process (XN

k (t)). They are proved in several propositions of Section 4, the
important Proposition 4 in particular. A stochastic averaging result completes the
proof of these difficult convergence results.

Theorem 2 shows that the network is in fact beginning to lose files only on the
time scale t �→ Nd−1t , that is, the convergence in distribution

lim
N→+∞

(
XN

0 (Nd−1t)

N

)
= (

�(t)
)
,(2)

where �(t) is the unique solution y ∈ [0, β] of the equation(
1 − y

β

)ρ/d

ey = exp
(
−λ

(d − 1)!
ρd−1 t

)
.

On this time scale, the fluid state of the network evolves from (0, . . . ,0, β) to the
absorbing state: �(0) = 0 and �(t) converges to β as t goes to infinity.

The second order fluctuations are described by the convergence in distribution

lim
N→+∞

(
XN

0 (Nd−1t) − N�(t)√
N

)
= (

W(t)
)
,

where �(t) is the solution of equation (31) and the process (W(t)) is the solution
of a stochastic differential equation, relation (34).

Overloaded case: pμβ < λ < (p + 1)μβ for some 2 ≤ p ≤ d − 1. In this case,
the limiting process (xk(t),0 ≤ k ≤ d) of relation (1) is not trivial, that is, different
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from its initial state (0,0, . . . ,0, β). Its explicit expression is given in Proposi-
tion 1. Moreover, it is shown that

lim
t→+∞

(
xp(t), xp+1(t)

) =
(
(p + 1)β − λ

μ
,
λ

μ
− pβ

)
.

This can be interpreted as follows: In the limit, on the normal time scale, at the
fluid level all files have either p or p + 1 copies. The network exhibits therefore
an interesting property of local equilibrium.

If one starts from this local equilibrium, it is shown that the system begins to
lose files only the time scale t �→ Np−1t . A result analogous to relation (2) is
proved by Theorem 4, for the convergence in distribution,

lim
N→+∞

(
XN

0 (Np−1t)

N
,
XN

p (Np−1t)

N
,
XN

p+1(N
p−1t)

N

)
= (

�0(t),�p(t),�p+1(t)
)

holds, where (�0(t),�p(t),�p+1(t)) is deterministic, with the property that

lim
t→+∞

(
�0(t),�p(t),�p+1(t)

) =
(
β − ρ

p + 1
,0,

ρ

p + 1

)
,

that is, asymptotically all files are either lost or have p + 1 copies.
These results give the main phenomena concerning the evolution of a stable

network toward the absorbing state. It should be noted that we do not consider the
special cases when the parameters satisfy the relation λ = dμβ for the following
reason. When λ < dμβ , the analysis involves a stochastic averaging principle with
an underlying ergodic Markov process. See Section 4.2 below. With equality λ =
dμβ , the corresponding Markov process is in fact null recurrent and proving a
stochastic averaging principle in this context turns out to be more delicate. There
are few examples in this domain to the best of our knowledge. See Khasminskii and
Krylov [12] in the case of diffusions. The same remark applies to similar identities,
like λ = pμβ for 1 ≤ p ≤ d .

Choice of parameters. As a consequence, the parameters β and d should be
chosen so that λ/(βμ) > 2 and d = 
λ/(βμ)� to maximize the time of decay of the
network and at the same time to preserve the stability of the network. For δ ∈ (0,1)

the variable TN(δ), the first instant when a fraction δ of files is lost, is then of the
order of Nd−1.

Outline of the paper. Section 2 introduces the main notation and the stochastic
evolution equations of the network. Section 3 shows that the Markov process can
be expressed as the solution of a generalized Skorohod problem, presented in Ap-
pendix. A convergence result on the evolution of the network on the normal time
scale is established and an explicit expression for the limiting process is provided.
Section 4 investigates the decay of the network on the time scale t �→ Nd−1t in the
stable case. A central limit theorem on this time scale is established in Section 5.
The overloaded case is analyzed in Section 6, the asymptotic evolution of the local
equilibrium is studied on several time scales.
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2. The stochastic model. In this section, we introduce the notation used
throughout this paper as well as the statistical assumptions. The stochastic dif-
ferential equations describing the evolution of the network are introduced. It is
shown that, via a change of coordinates, the state descriptor of the process can be
expressed as the solution of a generalized Skorohod problem. See Section 6. The
convergence results at the normal time scale t �→ t proved in the next section use
this key property.

A given file has a maximum of d copies and each of them vanishes after an
independent exponential time with rate μ. A file with 0 copy is lost for good. The
recovery policy works as follows. The total capacity λN of the network is allocated
to the files with the minimum number of copies. Consequently, if at a given time all
nonlost files present have at least k ≥ 1 copies and there are xk files with k copies,
then each of these is duplicated after an independent exponential time with rate
λN/xk . Initially, it is assumed that there are FN files and that the network starts
from the optimal state where each file has d copies.

For 0 ≤ k ≤ d , XN
k (t) denotes the number of files with k copies at time t . The

quantity XN
0 (t) is the number of lost files at time t , the function t �→ XN

0 (t) is in
particular nondecreasing.

The conservation relation XN
0 (t) + XN

1 (t) + · · · + XN
d (t) = FN gives that the

stochastic process (XN
0 (t),XN

1 (t), . . . ,XN
d−1(t)) on N

d has the Markov property.
Its Q-matrix QN = (qN(·, ·)) is given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qN(x, x − ek + ek−1) = μkxk, 1 ≤ k ≤ d − 1,

qN(x, x + ed−1) = μd(FN − x0 − x1 − · · · − xd−1),

qN(x, x + ek − ek−1) = λN1{xk−1>0,xi=0,1≤i<k−1}, 2 ≤ k ≤ d − 1,

qN(x, x − ed−1) = λN1{xd−1>0,xi=0,1≤i<d−1},

(3)

where ek is the kth unit vector of Nd . The first two relations come from the inde-
pendence of losses of various copies of files, note that FN − x0 − x1 − · · · − xd−1
is the number of files with d copies. The last two equations are a consequence of
the fact that the capacity is devoted to the smallest index k ≥ 1 such that xk �= 0.
The coordinate XN

d (t) is of course given by

XN
d (t) = FN − XN

0 (t) − XN
1 (t) − · · · − XN

d−1(t),

XN
d (t) is the number of files with the maximal number d of copies at time t . The

initial condition is such that XN
k (0) = 0 for 0 ≤ k ≤ d − 1 and XN

d (0) = FN ∈ N.

Scaling condition. It is assumed that there exist some β > 0 and γ ≥ 0 such
that

lim
N→∞

FN − Nβ√
N

= γ.(4)
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Equations of evolution. To analyze the asymptotic behavior of the process
(XN(t)), it is convenient to introduce the processes (SN(t)) = ((SN

k (t),1≤k ≤
d − 1)) and (RN(t)) = ((RN

k (t),1 ≤ k ≤ d − 1)). For 1 ≤ k ≤ d − 1 and t ≥ 0,
SN

k (t) is the number of files with no more than k copies at time t and RN
k (t) is the

local time at 0 of the process (SN
k (t)),

SN
k (t) =

k∑
i=1

XN
i (t) and

RN
k (t) =

∫ t

0
1{SN

k (u)=0} du.

For any function h ∈ D(R+,R+), that is, h is continuous on the right and has left
limits on R+, one denotes by Nh denotes a point process on R+ defined as follows:

Nh

([0, t]) =
∫ t

0
P
([

0, h(u−)
]× du

)
,(5)

where h(u−) is the left limit of h at u and P is a Poisson process in R
2+ whose

intensity is the Lebesgue measure on R
2+. In particular, if h is deterministic, then

Nh is a Poisson process with intensity (h(t−)). When several such processes Nh

are used as below in the evolution equations, then the corresponding Poisson pro-
cesses P used are assumed to be independent. The equations of evolution can then
be written as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dSN

d−1(t) = Ndμ(FN−SN
d−1−XN

0 )(dt) −NμSN
1
(dt)

− 1{SN
d−2(t−)=0,SN

d−1(t−)>0}NλN(dt),

dSN
k (t) = N(k+1)μXN

k+1
(dt) −NμSN

1
(dt) − 1{SN

k−1(t−)=0,SN
k (t−)>0}NλN(dt),

for 1 ≤ k ≤ d −2, with the convention that (SN
0 (t)) ≡ 0 is the null process and also

that (R0(t)) = (t). By integrating and compensating these equations, one gets that

SN
k (t) = ZN

k (t) − λN
(
RN

k−1(t) − RN
k (t)

)
, 1 ≤ k ≤ d − 1,(6)

and the first coordinates (XN
0 (t)) satisfies the relation

XN
0 (t) = μ

∫ t

0
SN

1 (u)du + UN
0 (t),(7)

with

ZN
d−1(t) = dμ

∫ t

0

[
FN − SN

d−1(u) − XN
0 (u)

]
du − μ

∫ t

0
SN

1 (u)du + UN
d−1(t),

ZN
k (t) = (k + 1)μ

∫ t

0

(
SN

k+1(u) − SN
k (u)

)
du − μ

∫ t

0
SN

1 (u)du + UN
k (t),
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for 1 ≤ k ≤ d−2, where the (UN(t)) = (UN
k (t),1 ≤ k ≤ d−1) are the martingales

associated to the jumps of these processes, for 1 ≤ k ≤ d − 2,

UN
k (t) =

∫ t

0

[
Nμ(k+1)XN

k+1
(du) − μ(k + 1)XN

k+1(u)du
]

−
∫ t

0

[
NμXN

1
(du) − μXN

1 (u)du
]

−
∫ t

0
1{SN

k−1(u−)=0,SN
k (u−)>0}

[
NλN(du) − λN du

]
,

and its increasing process is given by〈
UN

k

〉
(t) = μ(k + 1)

∫ t

0
XN

k+1(u)du + μ

∫ t

0
XN

1 (u)du

(8)
+ λN

∫ t

0
1{SN

k−1(u)=0,SN
k (u)>0} du.

The martingales (UN
0 (t)) and (UN

d−1(t)) have similar expressions,

UN
d−1(t) =

∫ t

0

[
Ndμ(FN−SN

d−1−XN
0 )(du) − dμ

(
FN − SN

d−1(u) − XN
0 (u)

)
du

]

−
∫ t

0

[
NμXN

1
(du) − μXN

1 (u)du
]

−
∫ t

0
1{SN

d−2(u−)=0,SN
d−1(u−)>0}

[
NλN(du) − λN du

]
,

with 〈
UN

d−1
〉
(t) = dμ

∫ t

0

(
FN − SN

d−1(u) − XN
0 (u)

)
du

+
∫ t

0
μXN

1 (u)du + λN

∫ t

0
1{SN

d−2(u−)=0,SN
d−1(u−)>0} du,

and

UN
0 (t) =

∫ t

0

[
NμSN

1
(du) − μSN

1 (u)
]
du with

〈
UN

0
〉
(t) = μ

∫ t

0
SN

1 (u)du.

A generalized Skorohod problem representation. For h = (hi) an element of
D(R+,Rd−1), η > 0 and F ∈ N, denote⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1(h,F,η)(t) = μ

∫ t

0

(
2h2(u) − 3h1(u)

)
du − ηt,

Gk(h,F,η)(t) = μ

∫ t

0

(
(k + 1)hk+1 − (k + 1)hk(u) − h1(u)

)
du,

1 < k < d − 1,

Gd−1(h,F,η)(t)

= dμ

∫ t

0

[
F − hd−1(u) − μ

∫ u

0
h1(v)dv

]
du − μ

∫ t

0
h1(u)du,

(9)
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and G(h,F,η) = (Gk(h,F,η),1 ≤ k ≤ d − 1). Equations (6) and (7) give the
relations

SN(t) = G
(
SN,FN,λN

)
(t) + UN(t)

(10)

− dμ

∫ t

0
UN

0 (u)du · ed−1 + λN(I − P)RN(t),

where P is the matrix P = (Pij ,1 ≤ i, j ≤ d − 1) whose nonzero coefficients are
the Pi,i−1 = 1 for 2 ≤ i ≤ d − 1.

In other words, for a fixed N , the couple (SN,λNRN) is the solution of the
generalized Skorohod problem associated to the matrix P and the functional

G : h → G(h,FN,λN) + UN − dμ

∫ ·
0

UN
0 (u)du · ed−1.(11)

See the Appendix for the definition and a result of existence and uniqueness.

3. First-order asymptotic behavior. In this section, the asymptotic behavior
of the sequence of processes (XN

k (t)/N) at the “normal” time scale is investigated.
As a consequence, it is shown that if λ > βdμ then the network is stable at the fluid
level, that is, the fraction of lost files is 0 at any time. Otherwise, a positive fraction
of files is lost, an explicit expression for this quantity is provided.

More precisely, the convergence of the sequence of stochastic processes(
XN

k (t)

N
,0 ≤ k ≤ d

)
,

is investigated. One first shows that this sequence is tight and the limit is identi-
fied as the solution of a deterministic generalized Skorohod problem. An explicit
computation of this limit concludes the section.

Tightness. Due to assumption (4), there exists some constant C0 such that the
relation FN ≤ C0N holds for all N . Since 0 ≤ XN

k (t) ≤ FN for any 0 ≤ k ≤ d − 1
and t ≥ 0, relation (8) gives the existence of a constant C1 such that

E
(
UN

k (t)2) = E
(〈
UN

k

〉
(t)

) ≤ C1Nt, ∀1 ≤ k < d − 1 and t ≥ 0,(12)

with Doob’s inequality one gets that, for 1 ≤ k ≤ d − 1 and ε > 0,

P

(
sup

0≤s≤t

UN
k (s)

N
≥ ε

)
≤ 1

(εN)2E
(
UN

k (t)2) ≤ C1t

ε2N

shows that, for 0 ≤ k ≤ d − 1, the martingale (UN
k (t)/N) converges in distribution

to 0 uniformly on compact sets.
For T > 0, δ > 0 and for Z a function in the space D(R+,R) of càdlàg func-

tions, that is, right-continuous functions on R+ with left limits at every point, de-
fine wZ(δ) as the modulus of continuity of the process (Z(t)) on the interval [0, T ],

wZ(δ) = sup
0≤s≤t≤T ,|t−s|≤δ

∣∣Z(t) − Z(s)
∣∣.(13)
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By using again the relation XN
k (t) ≤ C0N for all N ∈ N, 1 ≤ k ≤ d − 1 and t ≥ 0,

the above equations and the convergence of the martingales to 0 give that, for any
ε > 0 and η > 0, there exists δ > 0 such that

P
(
wSN

k /N(δ) ≥ η
) ≤ ε, P

(
wXN

0 /N(δ) ≥ η
) ≤ ε, ∀N and 1 ≤ k ≤ d − 1.

This implies that the sequence of stochastic processes(
XN

0 (t)

N
,
SN(t)

N

)
=

(
XN

0 (t)

N
,
SN

k (t)

N
,1 ≤ k ≤ d − 1

)

is tight and that any of its limiting points is almost surely a continuous processes.
See Billingsley [3] for example.

Convergence. Let (x0(t), (sk(t),1 ≤ k ≤ d − 1)) denote a limiting point of

the sequence (X
Np

0 (t)/Np,SNp(t)/Np) associated to some nondecreasing subse-
quence (Np). By choosing an appropriate probability space, it can be assumed that
the convergence holds almost surely. By equation (7), one gets that

x0(t) = μ

∫ t

0
s1(u)du.

From definition (11) of the functional G and by convergence of the sequence of

processes (X
Np

0 (t)/Np,SNp(t)/Np) and of the martingale (MNp/Np) to 0, one
gets that the convergence

lim
p→+∞

1

Np

G
(
SNp,FNp,λNp

) = G(S,β,λ)

holds uniformly on compact sets, where G is defined by relation (9). As it has
been seen in the previous section, equation (10), the couple (SN/N,RN/N) is the
solution of a classical Skorohod problem associated to the matrix P introduced
in equation (10) and the free process (G(SNp,FNp,λNp)/Np). By continuity of
the solutions of a classical Skorohod problem (see Proposition 5.11 of Robert [21]
for example), one concludes that (SN/N,RN) converges to the solution (S,R)

of the Skorohod problem associated to P and h �→ G(h,β,λ). Hence, (S,R) is
the unique solution of the generalized Skorohod problem for the matrix P and the
functional h → G(h,β,λ). The convergence of the sequence (SN/N,XN

0 /N) has
been therefore established.

THEOREM 1. If S(t) = (sk(t),1 ≤ k ≤ d − 1) is the unique solution of the
generalized Skorohod problem associated to the matrix P = (1{(i,j)=(i,i−1)},1 ≤
i, j ≤ d − 1) and the functional h �→ G(h,β,λ) defined by equation (9), then the
sequence of processes (

XN
k (t)

N
,0 ≤ k ≤ d

)
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converges in distribution uniformly on compact sets to (xk(t)) defined by

x0(t) = μ

∫ t

0
s1(u)du, x1(t) = s1(t),

xk(t) = sk(t) − sk−1(t), 2 ≤ k ≤ d − 1,

xd(t) = β − sd−1(t) − x0(t).

If the limiting processes is uniquely determined as the solution of a Skorohod
problem, it is not always easy to have an explicit representation of the solution of
a Skorohod problem. The classical example of Jackson networks (see Chen and
Mandelbaum [4]) shows that this is not always easy to have an explicit expression
for the solutions of these problems in dimension greater than 2. The linear topology
of the network simplifies this question as the following proposition shows.

PROPOSITION 1 (Characterization of fluid limits). (1) 2μβ < λ < dμβ . Let
p = 
ρ/β� with ρ = λ/μ. the fluid limits (s(t)) = (s1(t), . . . , sd(t)) of Theorem 1
are defined as follows. There exist a sequence (tk),

0 = td < td−1 < · · · < tp+1 < tp = ∞,

such that, for all l = d − 1, . . . , p and for tl+1 ≤ t ≤ tl ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sk(t) = 0, 1 ≤ k ≤ l − 1,

sl(t) = (l + 1)β − ρ + ξl,1e
−μt +

d∑
i=l+2

ξl,ie
−μit ,

sk(t) = β

(
1 −

d∑
i=k+1

αk,ie
−iμt

)
, l + 1 ≤ k ≤ d,

where αd,d = 1 and, for j > l + 1

αl,j = l + 1

l + 1 − j
αl+1,j , αl,l+1 = e(l+1)μtl

(
1 − ρ

lβ
−

d∑
k=l+2

αl,ke
−kμtl

)
,

ξl,j = β(l + 1)

j − 1
αl+1,j , ξl,1 = −

(
(l + 1)β − ρ +

d∑
j=l+2

ξl,j e
−μ(j−1)tl+1

)
,

with αl,l = 0 and tl is the unique solution of sl(t) = λ/(lμ).
(2) λ > dμβ . For all t ≥ 0, (x1(t), . . . , xd(t)) = (0, . . . ,0, β).

PROOF. The vector (sk(t)) is solution of the following equation:

sk(t) = μ(k + 1)

∫ t

0

(
sk+1(u) − sk(u)

)
du − μ

∫ t

0
s1(u)du − λ

(
rk−1(t) − rk(t)

)
,

sd(t) = β −
∫ t

0
μs1(u)du,
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where the (rk(t)) are the reflection processes such that∫ t

0
sk(u)drk(u) = 0.

By uniqueness of the solution of a generalized Skorohod problem given by
Proposition 8 of the Appendix, it is enough to exhibit a solution to the above equa-
tions.

We assume the conditions of the case (1) of the proposition. We will prove in
fact that there exists td = 0 < td−1 < td−2 < · · · < tp < tp−1 = +∞ such that, for
all p ≤ l ≤ d − 1 and tl+1 < t < tl , the sk and the tk have the following equations:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sk(t) = 0, rk(t) = t, 1 ≤ k ≤ l − 2,

sl−1(t) = 0, ṙl−1(t) = 1 − lμ/λsl(t),

ṡl(t) = μ(l + 1)sl+1(t) − μsl(t) − λ, ṙl(t) = 0,

ṡk(t) = μ(k + 1)
(
sk+1(t) − sk(t)

)
, ṙk(t) = 0, l + 1 ≤ k ≤ d − 1,

sd(t) = β, rd(t) = 0.

(14)

The tk are defined such that sk(tk) = λ/(μk).
We start with the case d − 1. It is easy to check that ((sk), (rk)) defined by the

following equations is the solution of the generalized Skorohod problem,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sk(t) = 0, rk(t) = t, for 1 ≤ k ≤ d − 3,

sd−2 = 0, rd−2(t) = t − (d − 1)μ

λ

∫ t

0
sd−1(u)du,

sd−1(t) = (dβ − λ/μ)
(
1 − e−μt ), rd−1(t) = 0.

This is valid for all 0 ≤ t < td−1 with

td−1 = 1

μ
log

(
dβ − ρ

dβ − dρ/(d − 1)

)
.

Now, we proceed by using a recursion. Assume that there exists l > p such that
the system of equation (14) is verified until tl . Moreover, we assume that, for all
k ≥ l and tk ≤ t ≤ tk−1,

sk(t) = β

(
1 −

d∑
i=k+1

αk,ie
−μit

)
;

and

sk−1(t) = kβ − ρ + ξk−1,1e
−μt +

d∑
i=k+1

ξk−1,ie
−μit ;

and tk−1 is the only solution of

sk−1(tk−1) = λ

(k − 1)μ
.
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We define

αl,i = l + 1

l + 1 − i
αl+1,i , for d ≥ i > l + 1,

αl,l+1 = e(l+1)μtl

(
1 − ρ

lβ
−

d∑
k=l+2

αl,ke
−kμtl

)
,

ξl−1,i = βl

i − 1
αl,i, for d ≥ i > l + 1,

and

ξl−1,1 = −
(
lβ − ρ +

d∑
i=l+1

ξl−1,ie
−μ(i−1)tl

)
.

It is easy to check that sl is then solution of the equation

ṡl = μ(l + 1)
(
sl+1(t) − sl(t)

)
,

when t ≥ tl and sl−1 is the solution of the equation

ṡl−1(t) = μlsl(t) − μsl−1(t) − λ,

when tl−1 ≥ t ≥ tl , tl−1 is the solution of the equation

sl−1(tl−1) = λ

(l − 1)μ
.

The recursion is proved and therefore the assertion of case (1) of the proposition.
Concerning the case (2), one has only to check that the couple⎧⎨

⎩
(
x1(t), . . . , xd(t)

) def.= (0, . . . ,0, β),(
r1(t), . . . , rd−2(t), rd−1(t), rd(t)

) def.= (
t, . . . , t, (1 − dμβ/λ)t,0

)
is indeed the solution of the generalized Skorohod problem. �

The following corollary shows that in the overloaded cases, asymptotically,
there is an equilibrium where most of files will have either p or p + 1 copies
for some convenient p. This situation is investigated in Section 6.

COROLLARY 1 (Stable fluid state of the overloaded system). In the case (1)
of Proposition 1, then

lim
t→+∞

(
xp(t), xp+1(t)

) = (
(p + 1)β − ρ,ρ − pβ

)
,

and xk(t) → 0 as t → +∞ for all 1 ≤ k ≤ d , k /∈ {p,p + 1}.
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FIG. 2. Fluid limits of an overloaded network, 2βμ < λ < 3βμ with d = 4, μ = 0.1, λ = 0.22,
β = 1. In this case, t3 = 5.23.

EXAMPLE. To illustrate the results of Proposition 1, one considers the case
d = 4 and with the condition 2βμ < λ < 3βμ. One easily gets that

t3 = 1

μ
log

(
3

4
· 4β − ρ

3β − ρ

)

and

s3(t) =
⎧⎪⎨
⎪⎩

(4β − ρ)
(
1 − e−μt ), if t ≤ t3,

β − 27

256

(4β − ρ)4

(3β − ρ)3 e−4μt , if t ≥ t3,

and for t < t3, s2(t) = 0 and if t > t3,

s2(t) = (3β − ρ) − (4β − ρ)e−μt − 27

256

(ρ − 4β)4

(ρ − 3β)3 e−4μt .

Finally, s1(t) = x0(t) = 0, for all t ≥ 0. Figure 2 presents a case with d = 4 and
where, asymptotically, a local equilibrium holds: files have either 2 or 3 copies as
t goes to infinity.

4. Evolution of stable network. In this section, the asymptotic properties of
the sequence of processes(

XN(t)
) = (

XN
0 (t),XN

1 (t), . . . ,XN
d−1(t)

)
are investigated under the condition ρ = λ/μ > dβ and with the initial state
XN(0) = (0, . . . ,0,FN). Section 3 has shown that, in this case, the system is sta-
ble at the first order, that is, that the fraction of lost files is 0. This does not change
the fact that the system is transient with one absorbing state (FN,0, . . . ,0). The
purpose of this section is of showing that the decay of this networks occurs on the
time scale t �→ Nd−1t .



ANALYSIS OF LARGE UNRELIABLE STOCHASTIC NETWORKS 2975

The section is organized as follows, preliminary results, Lemma 2 and Proposi-
tion 1 partially based on couplings show that the coordinates in the middle, that is,
with index between 1 and d −1, cannot be very large on any time scale. In a second
step, Proposition 3 and Proposition 4 show that the flows between the coordinates
of the Markov process are “small.” Proposition 4 is the crucial technical result of
this section. Finally, the asymptotic study of a random measure on N × R+ gives
the last element to establish the main result, Theorem 2, on the evolution of the
network on the time scale t �→ Nd−1t .

Stochastic differential equations. The SDE satisfied by the process (XN
k (t))

are recalled. As before, if 1 ≤ k ≤ d , SN
k (t) = XN

1 (t) + · · · + XN
k (t) and the con-

vention that SN
0 ≡ 0 and SN−1 ≡ −1, then

XN
0 (t) = μ

∫ t

0
XN

1 (u)du + MN
0 (t),(15)

XN
k (t) = μ(k + 1)

∫ t

0
XN

k+1(u)du − μk

∫ t

0
XN

k (u)du

+ λN

∫ t

0
1{SN

k−2(u)=0,XN
k−1(u)>0} du

(16)

− λN

∫ t

0
1{SN

k−1(u)=0,XN
k (u)>0} du

+ MN
k (t), for 1 ≤ k ≤ d − 1,

where, for 0 ≤ k ≤ d − 1, (MN
k (t)) is a square integrable martingale whose previs-

ible increasing process is given by

〈
MN

0
〉
(t) = μ

∫ t

0
XN

1 (u)du,(17)

〈
MN

k

〉
(t) = μ(k + 1)

∫ t

0
XN

k+1(u)du + μk

∫ t

0
XN

k (u)du

+ λN

∫ t

0
1{SN

k−2(u)=0,XN
k−1(u)>0} du(18)

+ λN

∫ t

0
1{SN

k−1(u)=0,XN
k (u)>0} du.

4.1. Some technical results. We start with two preliminary results on a cou-
pling of the network.

LEMMA 1. If (L(t)) is the process of the number of customer of an M/M/1
queue with arrival rate α and service rate γ > α and with initial condition L(0) =
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x0 ∈ N then, for the convergence in distribution of continuous processes,

lim
N→+∞

(
1

N

∫ Nt

0
L(u)du

)
=

(
α

γ − α
t

)
.

PROOF. The proof is standard; see the end of the proof of Proposition 9.14,
page 272 of Robert [21] for example. �

The next proposition presents an important property of the network. Roughly
speaking, it states that the FN files have either 0 or d copies on the time scale
t �→ Nd−1t . Coordinates with index between 1 and d − 1 of the vector (XN(t))

remain small.

PROPOSITION 2 (Coupling). Under the condition dβμ < λ and with the ini-
tial state XN(0) = (0, . . . ,0,FN), one can find a probabilistic space so that the
relation

(d − 1)XN
1 (t) + (d − 2)XN

2 (t) + · · · + XN
d−1(t) ≤ L0(Nt), ∀t > 0,

holds, where the vector (XN
k (t),1 ≤ k ≤ d − 1) has the same distribution as the

state of our network and (L0(t)) is the process of the number of customers of
an M/M/1 queue with arrival rate dμβ0 and service rate λ and with the initial
condition L0(0) = 0 for some β0 satisfying dμβ0 < λ.

For all i = 1, 2, . . . , d − 1 and α > 0 then, for the convergence in distribution
of continuous processes, the relation

lim
N→∞

(
XN

i (Nd−1t)

Nα

)
= 0(19)

holds.

PROOF. The existence of N0 and β0 such that dμβ0 < λ and FN ≤ β0N for
N ≥ N0 is clear. Define

ZN(t) = (d − 1)XN
1 (t) + (d − 2)XN

2 (t) + · · · + XN
d−1(t),

then the possible jumps of (ZN(t)) are either 1, −1 or −(d − 1). If XN(t) = (xk),
jumps of size 1 occur at rate μ[2x2 +· · ·+ (d −1)xd−1 +dxd ] ≤ μdFN ≤ μdβ0N .
Similarly, jumps of size −1 occurs at rate λN provided that ZN(t) �= 0. A simple
coupling gives therefore that (ZN(t)) is upper bounded by an M/M/1 queue with
service rate λN and arrival rate μdβ0N . The first part of the proposition is proved.

By ergodicity of the M/M/1 process (L0(t)), one has, for the convergence in
distribution,

lim
N→+∞

(
L0(N

κt)

Nα

)
= 0(20)
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for all κ > 0 and α > 0. Indeed, if

TK = inf
{
s ≥ 0 : L0(s) ≥ K

}
,

then, if δ = dμβ0/λ, the random variable δKTK is converging in distribution to an
exponential random variable as K goes to infinity. See Proposition 5.11, page 119
of Robert [21] for example.

For T > 0 and ε > 0, one has

P

(
sup

0≤s≤T

L0(N
κt)

Nα
≥ ε

)
= P

(
T�εNα� ≤ NκT

)

and since δ < 1, this last term is converging to 0 as N goes to infinity. Conver-
gence (20) has therefore been proved. One concludes that the sequence of pro-
cesses (ZN(Nd−1t)/Nα) converges in distribution to 0. The proposition is proved.

�

PROPOSITION 3. Under the condition dβμ < λ and if XN(0) = (0, . . . ,0,

FN), then, for 1 ≤ k ≤ d − 1 and any γ > 0. one has

lim
N→∞

(
1

Nk+γ

∫ Nd−1t

0
XN

k (u)du

)
= 0,(21)

for the convergence in distribution of continuous processes, and, for any t ≥ 0,

lim
N→∞

1

Nk+γ

∫ Nd−1t

0
E
(
XN

k (u)
)

du = 0.(22)

PROOF. One proceeds by induction on 1 ≤ k ≤ d − 1. Let k = 1, if t ≥ 0,
equation (15) gives the relation

μ
1

N1+γ

∫ Nd−1t

0
XN

1 (u)du = XN
0 (Nd−1t)

N1+γ
− MN

0 (Nd−1t)

N1+γ
,(23)

by Doob’s inequality and equation (17), for ε > 0,

P

(
sup

0≤u≤t

|MN
0 (Nd−1u)|
N1+γ

≥ ε

)

≤ 1

ε2 μ
1

N2+2γ
E

(∫ Nd−1t

0
XN

1
(
Nd−1u

)
du

)
= 1

ε2E

(
XN

0 (Nd−1t)

N2+2γ

)

by using again equation (23). The variable XN
0 being upper bounded by FN , the

last equality shows that convergence (22) holds in this case. Additionally one gets
that the martingale term of equation (23) vanishes at infinity. The convergence (21)
is therefore proved. Induction assumption is thus true for k = 1.
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Assume by that induction assumption holds up to index k < d −1. Equation (16)
gives

μ(k + 1)

Nk+1+γ

∫ Nd−1t

0
XN

k+1(u)du

= XN
k (Nd−1t)

Nk+1+γ
+ μk

Nk+1+γ

∫ Nd−1t

0
XN

k (u)du

(24)

− λ

Nk+γ

∫ Nd−1t

0
1{SN

k−2(u)=0,XN
k−1(u)>0} du

+ λ

Nk+γ

∫ Nd−1t

0
1{SN

k−1(u)=0,XN
k (u)>0} du − MN

k (Nd−1t)

Nk+1+γ
.

Note that, for i = k − 1, k,

λ

Nk+γ

∫ Nd−1t

0
1{SN

i−1(u)=0,XN
i (u)>0} du ≤ λ

Nk+γ

∫ Nd−1t

0
XN

i (u)du.

By integrating equation (24) and using the induction assumption, one obtains that
convergence (22) holds for k + 1. Back to equation (24), by induction again, the
first four terms of the right-hand side of equation (24) converges to 0 and the mar-
tingale term vanishes since the expected value of its previsible increasing process is
converging to 0 by relation (18) and convergence (22) which has been established.

�

PROPOSITION 4. Under the condition dβμ < λ and if XN(0) = (0, . . . ,0,

FN), then the relations, for 1 ≤ k ≤ d − 2,

lim
N→∞

(
1

Nk+1/2

∫ Nd−1t

0

[
(k + 1)μXN

k+1(u) − λNXN
k (u)

]
du

)
= 0(25)

holds for the convergence in distribution of continuous processes.

PROOF. One proves convergence (25) for 1 ≤ k ≤ d − 2. With the evolution
equation (16) and the same notation (5) as in Section 2 for the Poisson processes,
for any function f :N→R+, one has

f
(
XN

k (t)
) = f

(
XN

k (0)
)+

∫ t

0

[
f
(
XN

k (u−) + 1
)− f

(
XN

k (u−)
)]
Nμ(k+1)XN

k+1
(du)

+
∫ t

0

[
f
(
XN

k (u−) − 1
)− f

(
XN

k (u−)
)]
NμkXN

k
(du)

+
∫ t

0

[
f
(
XN

k (u−) + 1
)− f

(
XN

k (u−)
)]

× 1{SN
k−2(u−)=0,XN

k−1(u−)>0}NλN(du)
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+
∫ t

0

[
f
(
XN

k (u−) − 1
)− f

(
XN

k (u−)
)]

× 1{SN
k−1(u−)=0,XN

k (u−)>0}NλN(du).

By taking f (x) = x2 and by compensating the Poisson processes, one gets the
relation

XN
k

(
Nd−1t

)2 = μ(k + 1)

∫ Nd−1t

0

(
2XN

k (u) + 1
)
XN

k+1(u)du

+ μk

∫ Nd−1t

0

(−2XN
k (u) + 1

)
XN

k (u)du

(26)

+ λN

∫ Nd−1t

0

(
2XN

k (u) + 1
)
1{SN

k−2(u)=0,XN
k−1(u)>0} du

+ λN

∫ Nd−1t

0

(−2XN
k (u) + 1

)
1{SN

k−1(u)=0,XN
k (u)>0} du + MN

k,2(t).

The process (MN
k,2(t)) is a martingale with a previsible increasing process given

by

〈
MN

k,2
〉
(t) = μ(k + 1)

∫ Nd−1t

0

(
2XN

k (u) + 1
)2

XN
k+1(u)du

+ μk

∫ Nd−1t

0

(−2XN
k+1(u) + 1

)2
XN

k (u)du

(27)

+ λN

∫ Nd−1t

0

(
2XN

k (u) + 1
)21{SN

k−2(u)=0,XN
k−1(u)>0} du

+ λN

∫ Nd−1t

0

(−2XN
k (u) + 1

)21{SN
k−1(u)=0,XN

k (u)>0} du.

By adding up equations (16) and (26), after some straightforward calculations, one
gets

XN
k

(
Nd−1t

)+ XN
k

(
Nd−1t

)2

= 2
∫ Nd−1t

0

[
μ(k + 1)XN

k+1(u) − λNXN
k (u)

]
du

+ 2μ(k + 1)

∫ Nd−1t

0
XN

k (u)XN
k+1(u)du − 2μk

∫ Nd−1

0
XN

k (u)2 du(28)

+ 2λN

∫ Nd−1t

0

(
XN

k (u) + 1
)
1{SN

k−2(u)=0,XN
k−1(u)>0} du

+ 2λN

∫ Nd−1t

0
XN

k (u)1{SN
k−1(u)>0,XN

k (u)>0} du + MN
k (t) + MN

k,2(t).
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It will be shown that, when this relation is scaled by the factor Nk+1/2, except the
first integral in the right-hand side, all terms of this identity vanish as N gets large.
The proposition will be then proved.

For the terms of the left-hand side this is clear. For 1 ≤ k ≤ d − 2 and j∈{k, k +
1}, the relation

1

Nk+1/2

∫ Nd−1t

0
XN

k (u)XN
j (u)du

≤ sup
0≤u≤t

(XN
j (Nd−1u)

N1/4

)
1

Nk+1/4

∫ Nd−1t

0
XN

k (u)du,

and Propositions 2 and 3 show that the second term of the right-hand side of equa-
tion (28) scaled by Nk+1/2 vanishes for the convergence of processes when N gets
large. By using the inequalities∫ Nd−1t

0
XN

k (u)1{SN
k−2(u)=0,XN

k−1(u)>0} du ≤
∫ Nd−1t

0
XN

k (u)XN
k−1(u)du,

and ∫ Nd−1t

0
XN

k (u)1{SN
k−1(u)>0,XN

k (u)>0} du ≤
k−1∑
i=1

∫ Nd−1t

0
XN

i (u)XN
k (u)du,

the same property can be established in a similar way for the third, fourth and fifth
terms.

By using equations (18) and (27) and similar methods, one gets that for any
t ≥ 0,

lim
N→+∞

E(〈MN
k 〉(Nd−1t))

N2k+1 = 0, lim
N→+∞

E(〈MN
k,2〉(Nd−1t))

N2k+1 = 0.

Doob’s inequality shows that the martingale terms of relation (28) scaled by
Nk+1/2 vanish for the convergence of processes when N gets large. The propo-
sition is proved. �

PROPOSITION 5. Under the condition dβμ < λ and if XN(0) = (0, . . . ,0,

FN) then, for the convergence in distribution of continuous processes, the relations

lim
N→+∞

(√
N

(
μ

N

∫ Nd−1t

0
XN

1 (u)du − λ
(d − 1)!
ρd−1

∫ t

0
XN

d−1
(
Nd−1u

)
du

))
= 0(29)

and

lim
N→+∞

(
XN

0 (Nd−1t)

N
− λ

(d − 1)!
ρd−1

∫ t

0
XN

d−1
(
Nd−1u

)
du

)
= 0(30)

hold.
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PROOF. By relation (25), one gets that, for the convergence in distribution of
continuous processes,

lim
N→+∞

(√
N

(∫ Nd−1t

0

[
μ(k + 1)

XN
k+1(u)

Nk+1 − λ
XN

k (u)

Nk

]
du

))
= 0,

holds for 1 ≤ k ≤ d − 2 and, therefore, that

lim
N→+∞

(√
N

(∫ Nd−1t

0

[
(k + 1)!
ρk+1

XN
k+1(u)

Nk+1 − k!
ρk

XN
k (u)

Nk

]
du

))
= 0.

By summing up these relations, one finally gets that

lim
N→+∞

(√
N

(
(d − 1)!
ρd−1

1

Nd−1

∫ Nd−1t

0
XN

d−1(u)du − μ

λ

∫ Nd−1t

0

XN
1 (u)

N
du

))
= 0.

Relation (29) is proved.
SDE (15) for (XN

0 (t)) gives the relation

XN
0 (Nd−1t)

N
= MN

0 (Nd−1t)

N
+ μ

N

∫ Nd−1t

0
XN

1 (u)du,

where (MN
0 (Nd−1t)/N) is a martingale whose previsible increasing process is

given by (〈
MN

0

N

〉
(t)

)
=

(
μ

1

N2

∫ Nd−1t

0
XN

1 (u)du

)
,

it is converging in distribution to 0 by Proposition 3, one concludes that the mar-
tingale is also converging to 0. The proposition is thus proved. �

We now turn to the proof of an averaging principle. It relies on the martingale
characterization of Markov processes as used in Papanicolau et al. [14] in a Brow-
nian setting; see also Kurtz [13].

4.2. Convergence of occupation measures. For x ∈ N and N ≥ 1, the random
measure 
N

x on R+ is defined as, for a measurable function g : R+ →R+,

〈

N

x ,g
〉 = ∫

R+
g(t)1{XN

d−1(N
d−1t)=x} dt.

Clearly, 
N
x is the random Radon measure associated with the local time of

(XN
d−1(t)) at x. For a given x, the sequence (
N

x ) of random Radon measures
on R+ is tight. See Dawson [6], Lemma 3.28, page 44, for example. Note that the
null measure can be a possible limit of this sequence. By using a diagonal argu-
ment, one can fix (Nk) such that, for any x ∈ N, (
Nk

x ) is a converging subsequence
whose limit is νx .
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Since, for N ≥ 1, 
N
x is absolutely continuous with respect to the Lebesgue

measure on R+, the same property holds for a possible limiting measure νx . Let
(x, t) → πt(x) denote its (random) density. It should be remarked that, one can
choose a version of πt(x) such that the map (ω, x, t) → πt(x)(ω) on the product
of the probability space and N × R+ is measurable by taking πt(x) as a limit of
measurable maps,

πt(x) = lim sup
s→0

1

s
νx

([t, t + s]).
See Chapter 8 of Rudin [23] for example. See also Lemma 1.4 of Kurtz [13]. One
denotes by πt the measure on N defined by the sequence (πt (x), x ∈N).

PROPOSITION 6. For any function f : N → R+ such that the sequence
(f (x)/x) is bounded then, with the subsequence (Nk) defined above, for the con-
vergence in distribution of continuous processes,

lim
k→+∞

(
1

Nd−1
k

∫ Nd−1
k t

0
f
(
X

Nk

d−1(u)
)

du

)
=

(∫ t

0
〈πu,f 〉du

)
.

In particular, almost surely, for all t ≥ 0,∑
x≥0

∫ t

0
πu(x)du =

∫ t

0
πu(N)du = t.

PROOF. Denote K = sup{f (x)/x : x ≥ 1} and

�N
f (t) = 1

Nd−1

∫ Nd−1t

0
f
(
XN

d−1(u)
)

du,

the stochastic domination results of Proposition 2 gives that, for any 0 ≤ s ≤ t ,

�N
f (t) − �N

f (s) ≤ K
1

Nd

∫ Ndt

Nds
L0(u)du,

where (L0(t)) is the process of the number of customers of an M/M/1 queue with
arrival rate dμβ0 and service rate λ for some convenient β0 such that dμβ0 < λ and
with the initial condition L0(0) = 0. The convergence result of Lemma 1 implies
then that the sequence of processes (�N

f (t)) is tight by the criteria of the modulus
of continuity.

For C ≥ 1 and t > 0,

1

Nd−1

∫ Nd−1t

0
f
(
XN

d−1(u)
)
1{XN

d−1(u)≥C} du

≤ K

Nd−1

∫ Nd−1t

0
XN

d−1(u)1{XN
d−1(u)≥C} du

≤ K

Nd

∫ Ndt

0
L0(u)1{L0(u)≥C} du.
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The last term is converging in distribution to KtE(L̄0)1{L̄0≥C}), where L̄0 is a
random variable with geometric distribution with parameter dμβ0/λ, the invariant
distribution of the process (L0(t)). In particular for T > 0, if C is sufficiently large,
this term can be made arbitrarily small uniformly for t ≤ T .

By using the fact that, for x ∈ N,

1

Nd−1

∫ Nd−1t

0
f
(
XN

d−1(u)
)
1{XN

d−1(u)=x} du = f (x)
〈

N

x ,1[0,t]
〉
,

one gets the desired convergence in distribution. �

4.3. The decay of the network occurs on the time scale t �→ Nd−1t . We have
all the necessary technical results to prove the main result concerning the behavior
of the system on the time scale t �→ Nd−1t .

THEOREM 2 (Rate of decay of the network). Under the condition dβμ < λ

and if XN(0) = (0, . . . ,0,FN), then the sequence of processes (XN
0 (Nd−1t)/N)

converges in distribution to (�(t)) where, for t ≥ 0, �(t) is the unique solution
y ∈ [0, β] of the equation(

1 − y

β

)ρ/d

ey = exp
(
−λ

(d − 1)!
ρd−1 t

)
.(31)

PROOF. Let f be a function on N with finite support, then the SDE (16) asso-
ciated to the evolution equations give

f (XN
d−1(N

d−1t)) − f (0) − MN
f (Nd−1t)

Nd

=
∫ t

0
�+(f )

(
XN

d−1
(
Nd−1u

))

×
(
dμ

XN
d (Nd−1u)

N
+ λ1{SN

d−3=0,XN
d−2(N

d−1u)>0}
)

du

+
∫ t

0
�−(f )

(
XN

d−1
(
Nd−1u

))

×
(
(d − 1)μ

XN
d−1(N

d−1u)

N
+ λ1{SN

d−2=0,XN
d−1(N

d−1u)>0}
)

du,

where �+(f )(x) = f (x + 1) − f (x) and �−(f )(x) = f (x − 1) − f (x). The
convergence of the various components of this identity are now examined.

Clearly enough, f being bounded, the process ([f (XN
d−1(N

d−1t))−f (0)]/Nd)

is converging in distribution to 0 as N gets large. By calculating the previsible
increasing process of the martingale (MN

f (Nd−1t)/Nd), it is not difficult to show
that this process vanishes at infinity.
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Note that∣∣∣∣
∫ t

0
�+(f )

(
XN

d−1
(
Nd−1u

))
1{SN

d−3=0,XN
d−2(N

d−1u)>0} du

∣∣∣∣
≤ 2‖f ‖∞

∫ t

0
XN

d−2
(
Nd−1u

)
du = 2‖f ‖∞

1

Nd−1

∫ Nd−1t

0
XN

d−2(u)du,

the process associated to the last term is converging in distribution to 0 by Propo-
sition 3. Similarly,∣∣∣∣

∫ t

0
�−(f )

(
XN

d−1
(
Nd−1u

))
1{SN

d−2>0,XN
d−1(N

d−1u)>0} du

∣∣∣∣
≤ 2‖f ‖∞

d−2∑
k=1

∫ t

0
Xk

(
Nd−1u

)
du

and the last term is also converging to 0 in distribution. In the same way,∣∣∣∣
∫ t

0
�−(f )

(
XN

d−1
(
Nd−1u

))XN
d−1(N

d−1u)

N
du

∣∣∣∣ ≤ 2‖f ‖∞
∫ t

0

XN
d−1(N

d−1u)

N
du

which converges to 0 by the last assertion of Proposition 2.
To summarize, we have proved that the following convergence in distribution:

lim
N→+∞

(∫ t

0
�+(f )

(
XN

d−1
(
Nd−1u

))
dμ

XN
d (Nd−1u)

N
du

(32)

+
∫ t

0
�−(f )

(
XN

d−1
(
Nd−1u

))
λ1{XN

d−1(N
d−1u)>0} du

)
= 0.

By using again Propositions 5 and 6, one gets that the convergence of the se-
quence of processes is converging to a continuous process (�(t)) such that

(
�(t)

) def.= lim
N→+∞

(
X

Nk

0 (Nd−1
k t)

Nk

)
=

(
λ
(d − 1)!
ρd−1

∫ t

0
〈πu, I 〉du

)
,

where I (x) = x for x ≥ 0. By the Skorohod representation theorem, one can take
a convenient probability space such that, for all x ∈ N, this convergence also holds
almost surely as well as the convergence of the processes (〈
Nk

x ,1[0,t]〉). The iden-
tity

XN
d (Nd−1t)

N
= FN

N
− X0(N

d−1t)

N
−

d−1∑
k=1

XN
k (Nd−1t)

N
,

and equation (32) give that the relation∫ t

0

∑
x∈N

πu(x)
[
dμ

(
β − �(u)

)
�+(f )(x) + λ1{x>0}�−(f )(x)

]
du = 0
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holds almost surely for all t ≥ 0 and all functions f = fk , k ≥ 0 with fk(x) =
1k(x) for x ∈ N. One concludes from this relation and Proposition 6, for u ∈ R+
outside a set S negligible for the Lebesgue measure, one has for all k ≥ 0∑

x∈N
πu(x)

[
dμ

(
β − �(u)

)
�+(fk)(x) + λ1{x>0}�−(fk)(x)

] = 0

and πu(N) = 1. Hence, if u ∈ S , (πu(x)) is a geometric distribution, the invariant
distribution of an M/M/1 queue with arrival rate dμ(β −�(u)) and service rate λ.
The definition of �(t) gives therefore the fixed-point equation, for all t ≥ 0,

�(t) = λ
(d − 1)!
ρd−1

∫ t

0

dμ(β − �(u))

λ − dμ(β − �(u))
du,(33)

one gets the relation

(
1 − �(t)

β

)ρ/d

e�(t) = exp
(
−λ

(d − 1)!
ρd−1 t

)
.

The theorem is proved. �

One concludes this section with the asymptotic of the first instant when the
network has lost a fraction δ ∈ (0,1) of its file. It generalizes Corollary 1 of Feuillet
and Robert [9]. This is a direct consequence of the above theorem.

COROLLARY 2. If, for δ ∈ (0,1),

TN(δ) = inf
{
t ≥ 0 : XN

0 (t)

N
≥ δβ

}

then, under the condition λ > dβμ, the relation

lim
N→+∞

TN(δ)

Nd−1 = ρd−1

λ(d − 1)!
(
−ρ

d
log(1 − δ) − βδ

)

holds for the convergence in distribution.

5. Second-order asymptotics in the stable case. This section is devoted to
the study of the second-order fluctuations associated to the law of large numbers
proved in Theorem 2. As it will be seen, the proof relies on careful stochastic
calculus, technical estimates and Proposition 4 proved in Section 4.

Notation. If (YN(t)) and (ZN(t)) are sequences of stochastic process, with a
slight abuse of notation, we will write ZN(t) = YN(t)+Od(1) when the sequence
(ZN(t) − YN(t)) converges in distribution to 0 when N goes to infinity.
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LEMMA 2. Let

YN
d−1(t)

def.= 1√
N

∫ t

0

[(
XN

d−1
(
Nd−1u

)+ 1
)
dμXN

d

(
Nd−1u

)− λNXN
d−1

(
Nd−1u

)]
du

then (YN
d−1(t)) converges in distribution to 0 as N goes to infinity.

PROOF. By using the SDE satisfied by the process (XN
d−1(t)), as in the proof

in Proposition 4, one gets

XN
d−1(N

d−1t)

Nd−1/2 + XN
d−1(N

d−1t)2

Nd−1/2

= MN
d−1(t)

Nd−1/2 + MN
d−1,2(t)

Nd−1/2

+ 2

Nd−1/2

∫ Nd−1t

0

[(
XN

d−1(u) + 1
)
λN1{SN

d−3(u)=0,XN
d−2(u)>0}

− XN
d−1(u)

(
(d − 1)XN

d−1(u) − λN1{SN
d−2(u)>0}

)]
du

+ 2

Nd−1/2

∫ Nd−1t

0

[(
XN

d−1(u) + 1
)
dμXN

d (u) − λNXN
d−1(u)

]
du,

where (MN
d−1(t)) and (MN

d−1,2(t)) are the associated local martingales. The pro-
cesses of left-hand side of this relation vanishes as N gets large due to Proposi-
tion 2. With similar arguments as in the proof of Proposition 4, one obtains that
the martingale terms and the first integral of the right-hand side vanish also. This
is again a consequence of Propositions 2 and 3.

Therefore, the last term(
1

Nd−1/2

∫ Nd−1t

0

[(
XN

d−1(u) + 1
)
dμXN

d (u) − λNXN
d−1(u)

]
du

)
converges to 0 in distribution when N gets large. The lemma is proved. �

THEOREM 3 (Central limit theorem). If dβμ < λ and if condition (4) holds
and the initial state is XN(0) = (0, . . . ,0,FN), then the following convergence in
distribution holds:

lim
N→+∞

(
XN

0 (Nd−1t) − N�(t)√
N

)
= (

W(t)
)
,

where �(t) is the solution of equation (31) and the process (W(t)) is the solution
of the stochastic differential equation

dW(t) = √
�′(t)dB(t) − λ2μd!

ρd−1

W(t) − γ

(λ − dμ(β − �(t)))2 dt,(34)

with W0(0) = 0, where (B(t)) is a standard Brownian motion and �(t) is the
unique solution of equation (31).
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PROOF. We denote by

WN
0 (t) = XN

0 (Nd−1t) − N�(t)√
N

and WN
d (t) = XN

d (Nd−1t) − N(β − �(t))√
N

.

The strategy of the proof consists in starting from the convergence proved in the
above lemma to write an integral equation for the process (WN

0 (t)), this is equa-
tion (37) below. Technical results of Section 4 are used repeatedly in the proof
of this identity. The last part of the proof consists in proving the tightness and
identifying the possible limits of this sequence.

The total sum of the coordinates of (XN
k (t)) being FN , scaling condition (4) and

relation (19) of Proposition 2 give the identity

WN
d (t) = XN

d (Nd−1u) − N(β − �(t))√
N

= FN − Nβ√
N

−
d−1∑
k=1

XN
k (Nd−1u)√

N
− XN

0 (Nd−1u) − N�(t)√
N

(35)

= −WN
0 (t) + γ +Od(1).

The SDE (15) gives the relation

XN
0
(
Nd−1t

) = μ

∫ t

0
XN

1
(
Nd−1u

)
Nd−1 du + MN

0
(
Nd−1t

)
.

The previsible increasing process of the martingale (MN
0 (Nd−1t)/

√
N) is given

by (〈
MN

0√
N

〉(
Nd−1t

)) =
(
μ

1

N

∫ Nd−1t

0
XN

1 (u)du

)
,

and it is converging in distribution to (�(t)), see the proof of Proposition 5. Con-
sequently, by using Theorem 1.4, page 339 of Ethier and Kurtz [8], for example,
for the convergence in distribution of processes, one has

lim
N→+∞

(
MN

0√
N

)
=

(∫ t

0

√
�′(u)dB(u)

)
dist.= (

B
(
�(t)

))
,

where (B(t)) is a standard Brownian motion on R.
Let

HN(t) =
∫ t

0
XN

d−1
(
Nd−1u

)
du.

Relation (29) of Proposition 5 shows that

λ(d − 1)!
ρd−1

√
NHN(t) = √

Nμ

∫ Nd−1t

0

XN
1 (u)

N
du +Od(1)
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holds and SDE (15) gives

μ

∫ Nd−1t

0
XN

1 (u)du = XN
0
(
Nd−1t

)− MN
0
(
Nd−1t

)
= N�(t) + √

NWN
0 (t) − MN

0
(
Nd−1t

)
.

One obtains, therefore, the following expansion for (
√

NHN(t)):

√
N

(
λ(d − 1)!

ρd−1 HN(t) − �(t)

)
= WN

0 (t) − MN
0 (Nd−1t)√

N
+Od(1).(36)

Lemma 2 gives the relation

1√
N

∫ t

0

[(
XN

d−1
(
Nd−1u

)+ 1
)
dμXN

d

(
Nd−1u

)− λNXN
d−1

(
Nd−1u

)]
du = Od(1),

which can be rewritten as

dμ
√

N

∫ t

0
XN

d−1
(
Nd−1u

)(XN
d (Nd−1u)

N
− (

β − �(u)
))

du

+ √
N

∫ t

0
XN

d−1
(
Nd−1u

)(
dμ

(
β − �(u)

)− λ
)

du

+ dμ
√

N

∫ t

0

(
β − �(u)

)
du + dμ

1√
N

∫ t

0

(
XN

d

(
Nd−1u

)− N
(
β − �(u)

))
du

= Od(1).

If one plugs the integration by part∫ t

0
XN

d−1
(
Nd−1u

)[
λ − dμ

(
β − �(u)

)]
du

= HN(t)
[
λ − dμ

(
β − �(t)

)]− dμ

∫ t

0
HN(u)�′(u)du,

into this identity, this gives the relation

dμ

∫ t

0
XN

d−1
(
Nd−1u

)
WN

d (u)du

− √
NHN(t)

[
λ − dμ

(
β − �(t)

)]+ dμ

∫ t

0

√
NHN(u)�′(u)du

+ dμ
√

N

∫ t

0

(
β − �(u)

)
du + dμ

∫ t

0
WN

d (u)du

=Od(1).
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The expansion (36) for (
√

NHN(t)) yields

dμ

∫ t

0
XN

d−1
(
Nd−1u

)
WN

d (u)du + √
N�N(t)

− ρd−1

λ(d − 1)!
(
WN

0 (t) − MN
0 (Nd−1t)√

N

)[
λ − dμ

(
β − �(t)

)]

+ dμ
ρd−1

λ(d − 1)!
∫ t

0

(
WN

0 (u) − MN
0 (Nd−1u)√

N

)
�′(u)du

+ dμ

∫ t

0
WN

d (u)du

=Od(1)

with

�N(t) = ρd−1

λ(d − 1)!
(
−�(t)

[
λ − dμ

(
β − �(t)

)]+ dμ

∫ t

0
�(u)�′(u)du

)

+ dμ

∫ t

0

(
β − �(u)

)
du

= − ρd−1

λ(d − 1)!
∫ t

0

[
λ − dμ

(
β − �(u)

)]
�′(u)du + dμ

∫ t

0

(
β − �(u)

)
du

= 0,

by relation (33). By using equation (35), one gets finally the relation

−dμ

∫ t

0
XN

d−1
(
Nd−1u

)
WN

0 (u)du + dμγ

∫ t

0
XN

d−1
(
Nd−1u

)
du

− ρd−1

λ(d − 1)!
(
WN

0 (t) − MN
0 (Nd−1t)√

N

)[
λ − dμ

(
β − �(t)

)]

+ dμ
ρd−1

λ(d − 1)!
∫ t

0

(
WN

0 (u) − MN
0 (Nd−1u)√

N

)
�′(u)du(37)

− dμ

∫ t

0
WN

0 (u)du + dμγ t

= Od(1).

Starting from the above equation, one can now complete the proof of the theorem
in four steps:

(1) Local boundedness. By using the convergence in distribution of
(MN

0 (Nd−1u)/
√

N) and Gronwall’s inequality, one gets that, for ε > 0 and T > 0,
there exists some K > 0 and N0 such that if N ≥ N0, then

P

(
sup

0≤s≤T

∣∣WN
0 (s)

∣∣ ≥ K
)

≤ ε.(38)



2990 W. SUN, M. FEUILLET AND P. ROBERT

(2) Tightness. One first note that the two sequences of processes(∫ t

0
XN

d−1
(
Nd−1u

)
du

)
and

(∫ t

0
XN

d−1
(
Nd−1u

)
WN

0 (u)du

)
satisfy the criterion of the modulus of continuity: for the first sequence this is a
consequence of Proposition 5 and Theorem 2. Relation (38) and the fact that, for
0 ≤ s ≤ t ≤ T ,∣∣∣∣

∫ t

s
XN

d−1
(
Nd−1u

)
WN

0 (u)du

∣∣∣∣ ≤ (
sup

0≤u≤T

∣∣WN
0 (u)

∣∣) ∫ t

s
XN

d−1
(
Nd−1u

)
du,

give this property for the second sequence. As it has been seen this is also the case
for (MN

0 (Nd−1u)/
√

N). Relation (37) can thus be rewritten as

WN
0 (t) +

∫ t

0
WN

0 (u)F (u)du = HN(t),(39)

where (F (t)) is a deterministic continuous function and (HN(t)) is a sequence
of processes which satisfies the criterion of the modulus of continuity. As before,
See relation (13), denote wZ as the modulus of continuity of the process (Z(t)) on
[0, T ], relation (39) gives the inequality

wWN
0

≤ wHN + δ‖F‖∞ sup
0≤s≤T

∣∣WN
0 (s)

∣∣
with ‖F‖∞ = sup(|F(s)|,0 ≤ s ≤ T ). One deduces the tightness of (WN

0 (t)) by
the criterion of the modulus of continuity. In particular, any limiting point is a
continuous process.

(3) Convergence of the first term of equation (37). Let (W(t)) be a limit of some
subsequence (W

Nk

0 (t)). By Skorohod’s representation theorem, on can assume that
the convergence

lim
k→+∞

(∫ t

0
X

Nk

d−1

(
Nd−1

k u
)

du,W
Nk

0 (t)

)
=

(
ρd−1

λ(d − 1)!�(t),W(t)

)

holds almost surely for the uniform norm on compact sets of R+. If f is a C1(R+)

function, by integration by parts, one has the convergence

lim
k→+∞

(∫ t

0
X

Nk

d−1

(
Nd−1

k u
)
f (u)du

)
=

(
ρd−1

λ(d − 1)!
∫ t

0
�′(u)f (u)du

)
,

which can be extended to any arbitrary continuous function f by a regularization
procedure. Since

lim
k→+∞

(∫ t

0
X

Nk

d−1

(
Nd−1

k u
)(

W
Nk

0 (u) − W(u)
)

du

)
= 0,

one finally gets the convergence

lim
k→+∞

(∫ t

0
X

Nk

d−1

(
Nd−1

k u
)
W

Nk

0 (u)du

)
=

(
ρd−1

λ(d − 1)!
∫ t

0
�′(u)W(u)du

)
,
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(4) Identification of the limit. A possible limit (W(t)) satisfies, therefore, the
integral equation

−dμ

∫ t

0

(
ρd−1

λ(d − 1)!�
′(u) + 1

)
W(u)du + dγ

ρd−2

(d − 1)!�(t)

− ρd−1

λ(d − 1)!
(
W(t) − B

(
�(t)

))[
λ − dμ

(
β − �(t)

)]

+ dμ
ρd−1

λ(d − 1)!
∫ t

0

(
W(u) − B

(
�(u)

))
�′(u)du + dμγ t

= 0,

and, with relation (33), it can be rewritten as

−λdμ

∫ t

0

W(u)

λ − (β − �(u))
du + dγ

ρd−2

(d − 1)!�(t) + dμγ t

− ρd−1

λ(d − 1)!
∫ t

0

[
λ − dμ

(
β − �(u)

)](
dW(u) −√

�′(u)dB(u)
)

= 0.

The theorem is proved. �

6. A local equilibrium in the overloaded case. We have seen in Corollary 1
that if for some 2 ≤ p < d , one has pβ ≤ ρ < (p + 1)β and if the initial state is
XN(0) = (0, . . . ,0,FN) then one has the convergence in distribution

lim
N→+∞

1

N

(
XN

p (t),XN
p+1(t)

) = (
xp(t), xp+1(t)

)
and

lim
t→+∞

(
xp(t), xp+1(t)

) = (
(p + 1)β − ρ,ρ − pβ

)
.

The system started with ∼βN files with d copies and it ends up, on the normal
time scale, in a state where there are still βN files but with either p or p + 1
copies.

In this section, we start from this “equilibrium,” Proposition 7 shows that this
fluid state does not change on the time scale t �→ Np−2t . Theorem 4 proves that,
on the time scale t �→ Np−1t , a positive fraction of files are lost. It is also shown
that the number of files with p copies decreases to end up in a state where, for the
fluid state, there are only files with p + 1 copies. See Figure 3.

One starts with an elementary result concerning the M/M/∞ queue.
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FIG. 3. Stable asymptotic fluid state in an overloaded network with pβμ < λ < (p + 1)βμ for
some 1 < p < d .

LEMMA 3. If (LN(t)) is the Markov process associated to an M/M/∞ queue
with arrival rate λN and service rate μ, and initial condition such that

lim
N→+∞

LN(0)

N
= λ

μ
,

then, for any � ∈ N, the convergence in distribution

lim
N→+∞

(
LN(N�t)

N

)
= λ

μ

holds.

PROOF. For ε > 0, by bounding the rate of jumps −1 of the process, a cou-
pling can be constructed such that

LN(t) ≤ (ρ + ε)N + L̄N(Nt)

holds for all t ≥ 0, where (L̄N(t)) is an M/M/1 queue with input rate λ and
service rate λ + με, with initial condition L̄N(0) = 0. If τN = inf{t ≥ 0 : L̄N(t) ≥
εN} then Proposition 5.11, page 119 of Robert [21], gives that for any � ≥ 1 and
x > 0,

lim
N→+∞P

(
τN ≤ N�x

) = 0.

This proves that, for any T > 0,

lim
N→+∞P

(
sup

0≤t≤T

LN(N�t)

N
≤ ρ + 2ε

)
= 1.

With a similar argument for a lower bound one gets finally the convergence in
distribution, for any � ≥ 0,

lim
N→+∞

LN(N�t)

N
= ρ.

The lemma is proved. �

One shows in the next proposition that the fluid state of the network does not
change on the time scale t �→ Np−2t .



ANALYSIS OF LARGE UNRELIABLE STOCHASTIC NETWORKS 2993

PROPOSITION 7 (Stability of local equilibrium on the time scale t �→ Np−2t).
If for some 2 ≤ p < d , one has pβ < ρ < (p + 1)β , and the initial state XN(0) is
such that XN

i (0) = 0 for 1 ≤ i ≤ d , i /∈ {p,p + 1} and

lim
N→+∞

(
XN

p (0)

N
,
XN

p+1(0)

N

)
= (

(p + 1)β − ρ,ρ − pβ
)

then for any q ≤ p − 2, for the convergence in distribution,

lim
N→+∞

(
XN

p (Nqt)

N
,
XN

p+1(N
qt)

N

)
= (

(p + 1)β − ρ,ρ − pβ
)
.

PROOF. Clearly it is enough to show the proposition for q = p − 2. Let

ZN(t) =
p−1∑
k=1

(p − k)XN
k (t),

then, if ZN(t) = z, there is a jump of size +1 for ZN at rate

μ

p∑
k=2

kXN
k (t) ≤ pμβN,

and of size −1 at rate λN if z > 0. In the same way as in the proof of Proposition 2,
one can construct a coupling, for which

ZN(t) ≤ L0(Nt),

where (L0(t)) is a stable M/M/1 queue with input rate pμβ and output rate λ. In
particular, the convergence in distribution

lim
N→+∞

(
XN

i (Np−2t)

N

)
= 0, 1 ≤ i ≤ p − 1,(40)

holds.
Because of relation pμβ < λ, one can extend the results of Propositions 3 and 5

to get that, for 1 ≤ k ≤ p − 2,

lim
N→∞

(∫ Np−2t

0

[
(k + 1)!
ρk+1

XN
k+1(u)

Nk+1 − k!
ρk

XN
k (u)

Nk

]
du

)
= 0

holds for the convergence in distribution. By summing up all these relations for
1 ≤ k ≤ p − 2, one gets

lim
N→+∞

(
(p − 1)!
ρp−1

1

Np−1

∫ Np−2t

0
XN

p−1(u)du − μ

λ

∫ Np−2t

0

XN
1 (u)

N
du

)
= 0.

Relation (40) gives the convergence in distribution

lim
N→+∞

(∫ Np−2t

0

XN
1 (u)

N
du

)
= 0,
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consequently

lim
N→+∞

(
XN

0 (Np−2t)

N

)
= 0,

by using the SDE associated to (XN
0 (t)) as in the proof of Proposition 5.

One concludes that

lim
N→+∞

(
1

N

d∑
k=p

XN
k

(
Np−2t

)) = β.(41)

Let

YN(t) =
d∑

k=1

kXN
k (t),

then, if YN(t) = y, there is a jump of size −1 for YN at rate μy, and of size +1
at rate λN if XN

1 (t) + · · · + (d − 1)XN
d−1(t) > 0. Hence, in the same way as in the

proof of Proposition 2, a coupling can be constructed such that the process (YN(t))

is dominated by the process (LN(t)) of the number of customers in an M/M/∞
queue with arrival rate λN and service rate λ, and with initial condition such that

lim
N→+∞

LN(0)

N
= p

(
(p + 1)β − ρ

)+ (p + 1)(ρ − pβ) = ρ.

By using the relation

p−1∑
k=1

kXN
k (t) + pXN

p (t) + (p + 1)

(
d∑

k=p

XN
k (t) − XN

p (t)

)
≤ YN(t) ≤ LN(t),

equations (40), (41) and the above lemma, one gets that, for any ε > 0 and T > 0,

lim
N→+∞P

(
inf

0≤t≤T

XN
p (Np−2t)

N
≥ (p + 1)β − ρ − ε

)
= 1.

Relation λ < (p + 1)βμ, gives that (XN
p (Np−2t)) is strictly positive on any finite

interval with high probability. Consequently,

lim
N→+∞P

(
inf

0≤t≤T
XN

1
(
Np−2t

)+ · · · + (d − 1)XN
d−1

(
Np−2t

)
> 1

)
= 1

this implies that the two processes (YN(Np−2t)) and (LN(Np−2t)) are identical
with probability close to 1 when N is large. Second, since the duplication capacity
cannot be used at any node with index greater than p + 1, for any p + 2 ≤ k ≤ d ,
for the convergence in distribution, the relation

lim
N→+∞

(
XN

k (Np−2t)

N

)
= 0
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holds. One deduces therefore the convergence in distribution

lim
N→+∞

(pXN
p (Np−2t) + (p + 1)XN

p+1(N
p−2t)

N

)
= ρ

lim
N→+∞

(XN
p (Np−2t) + XN

p+1(N
p−2t)

N

)
= β.

The proposition is proved. �

We can now state the main result of this section.

THEOREM 4 (Evolution of the local equilibrium). If for some 2 ≤ p < d , one
has pβ < ρ < (p + 1)β , and the initial state XN(0) is such that XN

i (0) = 0 for
1 ≤ i ≤ d , i /∈ {p,p + 1} and

lim
N→+∞

(
XN

p (0)

N
,
XN

p+1(0)

N

)
= (

(p + 1)β − ρ,ρ − pβ
)

then, for the convergence in distribution,

lim
N→+∞

(
XN

0 (Np−1t)

N
,
XN

p (Np−1t)

N
,
XN

p+1(N
p−1t)

N

)
= (

�0(t),�p(t),�p+1(t)
)
,

where, for t ≥ 0,

�p(t) = (p + 1)
(
β − �0(t)

)− ρ and �p+1(t) = ρ − p
(
β − �0(t)

)
and �0(t) is the unique solution y of the fixed-point equation(

1 − y

β − ρ/(p + 1)

)ρ/(p(p+1))

ey = exp
(
−λ

(p − 1)!
ρp−1 t

)
.(42)

In particular,

lim
t→+∞

(
�0(t),�p(t),�p+1(t)

) =
(
β − ρ

p + 1
,0,

ρ

p + 1

)
.(43)

REMARK. Relation (43) shows that a fraction β −ρ/(p+1) of the files is lost
asymptotically on the time scale t �→ Np−1t . The corresponding asymptotic state
consists then of files which are either lost and, at the first order in N , ρ/(p +1) ·N
files with p + 1 copies. This suggests that β is changed to β ′ = ρ/(p + 1) and p

replaced by p′ = p + 1. Unfortunately, this is the case of equality β ′ = p′ρ which
is not covered by our theorem. This suggests nevertheless the following evolution
on the time scale t �→ Nqt , p − 1 ≤ q ≤ d − 2, for t going to infinity, there remain
ρ/(q + 2)N files alive with q + 2. Some of the files are therefore lost and the
number of copies of the remaining files is increasing, until the maximum number
of copies is reached which is the framework of Section 4.
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PROOF. The proofs use the same arguments as in the proof of Theorem 2 and
of the above proposition. We give a quick overview of it. By using again the results
of Propositions 3 and 5 and relation (25), one gets that, for 1 ≤ k ≤ p − 2,

lim
N→∞

(∫ Np−1t

0

[
(k + 1)!
ρk+1

XN
k+1(u)

Nk+1 − k!
ρk

XN
k (u)

Nk

]
du

)
= 0

holds for the convergence in distribution. By summing up all these relations for
1 ≤ k ≤ p − 2, one gets

lim
N→+∞

(
(p − 1)!
ρp−1

1

Np−1

∫ Np−1t

0
XN

p−1(u)du − μ

λ

∫ Np−1t

0

XN
1 (u)

N
du

)
= 0.

From there, one gets that

lim
N→+∞

(
XN

0 (u)

N
− (p − 1)!

ρp−1

λ

Np−1

∫ Np−1t

0
XN

p−1(u)du

)
= 0.

As in the proof of Proposition 6, one can define a similar (�N
f (t)) and prove

the same stochastic averaging property associated to the coordinate (XN
p (t)). The

rest of the proof is then similar to the proof of the last proposition with β re-
placed by β − φ(t) where (φ(t)) is the limit of some converging subsequence of
(XN

0 (Np−1t)/N). The convergence follows from the uniqueness of the fixed-point
equation satisfied by (φ(t)). �

APPENDIX: GENERALIZED SKOROHOD PROBLEMS

For the sake of self-containedness, this section presents quickly the more or
less classical material necessary to state and prove the convergence results used
in this paper. The general theme concerns the rigorous definition of a solution of
a stochastic differential equation constrained to stay in some domain and also the
proof of the existence and uniqueness and regularity properties of such a solution.
See Skorohod [24], Anderson and Orey [1], Chaleyat-Maurel and El Karoui [2]
and, in a multi-dimensional context, Harrison and Reiman [10] and Taylor and
Williams [26] and, in a more general context, Ramanan [19]. See Appendix D of
Robert [21] for a brief account.

We first recall the classical definition of Skorohod problem in dimension K .
If z = (zk) ∈ R

K , one denotes ‖z‖ = |z1| + |z2| + · · · + |zk|. If (Z(t)) = (Zk(t))

is some function of the set D(R+,RK) of càdlàg functions defined on R+ and
P is a K × K nonnegative matrix, the couple of functions [(X(t)), (R(t))] =
[((Xk(t))), ((Rk(t)))] is said to be a solution of the Skorohod problem associated
to (Z(t)) and P whenever:

(1) X(t) = Z(t) + (I − P) · R(t), for all t ≥ 0,
(2) Xk(t) ≥ 0, for all t ≥ 0 and 1 ≤ k ≤ d ,
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(3) for 1 ≤ k ≤ K , t → Rk(t) is nondecreasing, Rk(0) = 0 and∫
R+

Xk(t)dRk(t) = 0.

In the important case of dimension 1, conditions (1) and (3) are

(1) X(t) = Z(t) + R(t), for all t ≥ 0,
(3) t → R(t) is nondecreasing, R(0) = 0 and∫

R+
X(t)dR(t) = 0.

See Chaleyat-Maurel and El Karoui [2] and, in a multi-dimensional context, Harri-
son and Reiman [10] and Taylor and Williams [26]. See Appendix D of Robert [21]
for a brief account. The generalization used in this paper corresponds to the case
when (Z(t)) depends on (X(t)).

DEFINITION 1 (Generalized Skorohod problem). If G : D(R+,RK) →
D(R+,RK) is a Borelian function and P a nonnegative K × K matrix, ((X(t)),

(R(t))) is a solution of the generalized Skorohod problem (GSP) associated to G

and P if ((X(t)), (R(t))) is the solution of the Skorohod problem associated to
G(X) and P , in particular, for all t ≥ 0,

X(t) = G(X)(t) + (I − P) · R(t),

and ∫
R+

Xk(t)dRk(t) = 0, 1 ≤ k ≤ K.

The classical Skorohod problem described above corresponds to the case when
the functional G is constant and equal to (Z(t)). In dimension one, if one takes

G(x)(t) =
∫ t

0
σ
(
x(u)

)
dB(u) +

∫ t

0
m
(
x(u)

)
du,

where (B(t)) is a standard Brownian motion and σ and m are Lipschitz functions
on R. The first coordinate (X(t)) of a possible solution to the corresponding GSP
can be described as the solution of the SDE

dX(t) = σ
(
X(t)

)
dB(t) + m

(
X(t)

)
dt

reflected at 0.

PROPOSITION 8. If G : D(R+,R) → D(R+,R) is such that, for any T > 0,
there exists a constant CT such that, for all (x(t)) ∈ D(R+,R) and 0 ≤ t ≤ T ,

sup
0≤s≤t

∥∥G(x)(s) − G(y)(s)
∥∥ ≤ CT

∫ t

0

∥∥x(u) − y(u)
∥∥du(44)

and if the matrix P is nilpotent, then there exists a unique solution to the general-
ized Skorohod problem associated to the functional G and the matrix P .
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PROOF. Define the sequence (XN(t)) by induction (X0(t),R0(t)) = 0 and,
for N ≥ 1, (XN+1,RN+1) is the solution of the Skorohod problem (SP) associated
to G(XN), in particular,

XN+1(t) = F
(
XN )

(t) + RN+1(t) and
∫
R+

XN+1(u)dRN+1(u) = 0.

The existence of such a solution is a consequence of a result of Harrison and
Reiman [10]. Fix T > 0. The Lipschitz property of the solutions of a classical Sko-
rohod problem (see Proposition D.4 of Robert [21]) gives the existence of some
constant KT such that, for all N ≥ 1 and 0 ≤ t ≤ T ,∥∥XN+1 − XN

∥∥∞,t ≤ KT

∥∥F (
XN )− F

(
XN−1)∥∥∞,t ,

where ‖h‖∞,T = sup{‖h(s)‖ : 0 ≤ s ≤ T }. From relation (44), this implies that

∥∥XN+1 − XN
∥∥∞,t ≤ α

∫ t

0

∥∥XN − XN−1∥∥∞,u du,

with α = KT CT . The iteration of the last relation yields the inequality

∥∥XN+1 − XN
∥∥∞,t ≤ (αt)N

N !
∫ t

0

∥∥X1∥∥∞,u du, 0 ≤ t ≤ T .

One concludes that the sequence (XN(t)) is converging uniformly on compact sets
and consequently the same is true for the sequence (RN(t)). Let (X(t)) and (R(t))

be the limit of these sequences. By continuity of the SP, the couple ((X(t)), (R(t)))

is the solution of the SP associated to G(X), and hence a solution of the GSP
associated to F .

Uniqueness. If (Y (t)) is another solution of the GSF associated to F . In the
same way as before, one gets by induction, for 0 ≤ t ≤ T ,

‖X − Y‖∞,t ≤ (αt)N

N !
∫ t

0
‖X − Y‖∞,u du,

and by letting N go to infinity, one concludes that X = Y . The proposition is
proved. �
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