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APPROXIMATIONS OF STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

BY GIULIA DI NUNNO AND TUSHENG ZHANG
University of Oslo and University of Manchester

In this paper, we show that solutions of stochastic partial differential
equations driven by Brownian motion can be approximated by stochastic par-
tial differential equations forced by pure jump noise/random kicks. Applica-
tions to stochastic Burgers equations are discussed.

1. Introduction. Stochastic evolution equations and stochastic partial differ-
ential equations (SPDEs) are of great interest to many people. There exists a large
amount of literature on the subject; see, for example, the monographs [5, 7, 8].

In this paper, we consider the following stochastic evolution equation:

m

(1.1) dY, = —AY,dt + [bi(Y)) + ba(Y))]dt + ) 0i(Y) d B,
i=1

(1.2) Yo=heH,

in the framework of a Gelfand triple:

(1.3) VCHZ=ZH"CV*

where H,V are Hilbert spaces, H*, V* stand for the dual spaces of H and V,
A is the infinitesimal generator of a strongly continuous semigroup, by, 0j,i =
1,...,m are measurable mappings from H into H, b, is a measurable mappings
from V into V*, B, = (Btl, ..., B"),t > 01is a m-dimensional Brownian motion.
The solutions are considered to be weak solutions (in the PDE sense) in the space
V and not as mild solutions in H. The stochastic evolution equations of this type
driven by Wiener processes were first studied in [20] and subsequently in [18]. For
stochastic equations with general Hilbert space valued semimartingales replacing
the Brownian motion, we refer the reader to [12—14, 22] and also [1].

The aim of this paper is to study the approximations of stochastic evolution
equations of the above type by solutions of stochastic evolution equations driven
by pure jump processes, namely forced by random kicks. One of the motivations
is to shine some light on numerical simulations of SPDEs driven by pure jump
noise. To include interesting applications, the drift of equation (1.1) will consist of
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a “good” part by and a “bad” part b,. The crucial step of obtaining the approxi-
mation is to establish the tightness of the approximating equations in the space of
Hilbert space-valued right continuous paths with left limits. This is tricky because
of the nature of the infinite dimensions and the weak assumptions on the drift 5.
We first obtain the approximations assuming that the diffusion coefficients o; take
values in the smaller space V and then remove this restriction by another layer of
approximations. As far as we are aware of, this is the first paper to consider such
approximations for SPDEs. The approximations of infinite activity Lévy processes
were considered in [2]. Robustness of solutions of stochastic differential equations
replacing the infinite activity of Lévy processes by Brownian motion was discussed
in [3] and [6], and for the backward case in [9].

The rest of the paper is organized as follows. In Section 2, we lay down the
precise framework. The main part is Section 3, where the approximations are es-
tablished and the applications to stochastic Burgers equations are discussed.

2. Framework. Let V and H be two separable Hilbert spaces such that V is
continuously, densely imbedded in H. Identifying H with its dual, we have

2.1 VCHZH"CV*,

where V* stands for the topological dual of V. We assume that the imbedding V C
H is compact. Let A be a self-adjoint operator on the Hilbert space H satisfying
the following coercivity hypothesis: There exist constants og > 0, o1 > 0 and 1o >
0 such that

(2.2) aollull} <2(Au,u) +roluly; <arlull},  forallueV.

(Au, u) = Au(u) denotes the action of Au e V*onueV.
We remark that A is generally not bounded as an operator from H into H.
Let (€2, F, P) be a probability space equipped with a filtration {F;};>¢ satisfy-
ing the usual conditions. Let {B; = (Btl, ..., B™),t > 0} be a m-dimensional F;-
Brownian motion, v(dx) a o -finite measure on the measurable space (Ro, B(Rp)),
where Rp = R \ {0}. We assume 0 < f|x|§1x2v(dx) < o00. Let p; = (pi(1)),t €
Dp,,i =1, ..., m be mutually independent stationary J;-Poisson point processes
on Ry with characteristic measure v. Here, D), represents a countable (ran-
dom) subset of (0, c0). See [15] for the details on Poisson point processes. De-
note by N;(dt,dx) the Poisson counting measure associated with p;, that is,
N;(t, A) = Zseri,sst I4(pi(s)). Let N;(dt,dx) := N;(dt,dx) — dt v(dx) be the
compensated Poisson random measure. Let by, o;,i = 1,...,m be measurable
mappings from H into H, and by(-) a measurable mapping from V into V*. De-
note by D([0, T'], H) the space of all cadlag paths from [0, 7] into H equipped
with the Skorohod topology. Consider the stochastic evolution equation:
m

(2.3) dX,=—AX,dt + [b1(X;) + ba(Xp)]dt + ) oi(X,)dB],
i=1

2.4) Xo=heH.
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Let us introduce the following conditions:

(H.1) b1(-),0;(-) : H— H are globally Lipschitz maps, that is, there exists a
constant C < oo such that

m
2 2
b1(y1) — b1 (3| + Y loi () — 0i ()| < Clyi =yl
=
2.5) ’
for all y;, y» € H.
(H.2) by(-) is a mapping from V into V* that satisfies:

1) (br(u),u)=0forueV,
(ii) there exist constants Cq, 8 < % such that

(b2(y1) = b2 (32), y1 — »2)
(2.6) < Baollyr — y213 + Cilyt — yal% (Iy1 11 + 1213
forall y;,y2 €V,

where « is the constant appeared in (2.2).

(iii) There exists a constant 0 < y < 1 such that [|by(u)||v+ < Calul5 ” [lull}
forueV.

DEFINITION 2.1. A continuous H-valued (F;)-adapted process X = (X;);>0
is said to be a solution to equation (2.3) if forany 7 > 0, X € L2([0, T] x ; dt x
P,V)and P-a.s.

t t m ot .
Xo=h= [ AXods+ [ (01X +bax)]ds + 3 [ o) dBL.
i=1

Under the assumptions (H.1) and (H.2), it is known that equations (2.3) admits
a unique solution (see, e.g., [19]).
We finish this section with two examples.

EXAMPLE 2.2. Let D be a bounded domain in R?. Set H = L%(D). Let
V = HOI’Z(D) denote the Sobolev space of order one with homogenous bound-
ary conditions. Denote by a(x) = (a;;(x)) a symmetric matrix-valued function on
D satisfying the uniform ellipticity condition:

;Idxd <a(x) <clgxa for some constant ¢ € (0, 00).
Define
Au = —div(a(x)Vu(x)).
Then (2.2) is fulfilled for (H, V, A).
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EXAMPLE 2.3. Let A = —A,, where A, denotes the generator of a sym-
metric «-stable process in R?,0 <& < 2.1t is known that Ay = —(—A)*/2, the
fractional power of the Laplacian operator. The Dirichlet form associated with A,
in L?(R?) is given by

_ (u(x) —u(y)(vx) —v(y))
€(u,v)_K(d,a)'//RdXRd i — y|dta dxdy,
_ 2
D(€) = {u e L*(R%): //;ed ” %dxdy < oo},

where K (d, @) = 237 ~@+D/25in () (L5 (%). The domain D(E) can be
identified as the fractional Sobolev space H @/2.2 See, for example, [11] for details
about the fractional Laplace operator. To study equation (2.3), we choose H =
L?(R%), and V = D(E) with the inner product (u,v) = E(u, v) + (u, V) 12(Rd)-
Then (2.2) is fulfilled for (H, V, A).

3. Approximations of SPDEs by pure jump type SPDEs. Set, fore € (0, 1),

1/2
_ 2
a(e) = (/{|x|§€}x v(dx)) .

Consider the following SPDE driven by pure jump noise:

t t
Xf:h—/ Ax;‘ds+/ [61(X5) + ba(X5)] ds

oz(e) //lm XE_)xN;(ds, dx).

DEFINITION 3.1. A H-valued (F;)-adapted process X° = (X7);>0 is said to
be a solution to equation (3.1) if:

(i) forany T >0, X¢ € D([0, T], H)NL3*([0, T] x Q;dt x P, V),
(ii) for every ¢ > 0, (3.1) holds P-almost surely.

3.1)

The existence and uniqueness of the solution of equation (3.1) under the as-
sumptions (H.1) and (H.2) can be found in [18, 19, 22]. Recall that X is the solu-
tion to the SPDE (2.3):

t t
X,:h—/ AXsds—i-/ [b1(Xy) + ba(Xy)] ds
0 0

m t .
+ Z/O 0i(Xy)dBL.
i=1

Denote by 1., i, respectively, the laws of X¢ and X on the spaces D([0, T], H)
and C([0, T'], H) cf. Definitions 2.1 and 3.1. Consider the following conditions:

(3.2)
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(H.3) Foreveryi < m, there exists a sequence of mappings cr,;' () : H— V such
that:

() Ia,;' (1) — a,;' ()| <c|y1 — y2|u, where c is a constant independent of #,
(i1) |a,€ (y) — 0;(¥)|g — 0 uniformly on bounded subsets of H as n — oo.

REMARK 3.2. In most of the cases, one simply chooses o/ to be the finite-
dimensional projections of o; into the subspaces of V.

(H.3)" The maps o;(-),i = 1,...,m take the space V into itself and satisfy
lloi(M v <c( + | y]ly) for some constant c.

(H.4) There exists an orthonormal basis {ex, k > 1} of H such that Ae; = Arer
and 0 <A <A <--- <Ay, —>00asn— o0.

We first prepare some preliminary results needed for the proofs of the main
theorems.
The following estimate holds for {X¢, ¢ > 0}.

LEMMA 3.3. Let X® be the solution of equation (3.1). If ﬁ
constant Cq, then we have for p > 2,

(3.3) sgp{E[ sup |Xf|£,] + E[(/(.)T”Xf H%,ds)p/zi“ < 00.

0<t<T

< Cy for some

PROOF. We prove the lemma for p = 4. Other cases are similar. In view of
assumption (H.2), by Itd6’s formula, we have

t
|X5|§1=Ih|%—2/(X§,AX8 ds+2/ £ by (XE))

DN (P

S)X

a(e)

H

3.4 1 )
+2<X ,a(e)a,-(Xs_)x»Ni(ds,dx)
2
Z/ /x<8 ma, S )x Hds v(dx).
Let
2
M= Z/ /x|<€( ae)’ (%) H

£ 1 £ N7
(3.5) +2<X . a(E)G(XS_)x>>Nl (ds, dx)

m
= ZM’
i=1
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By Burkholder’s inequality, for ¢+ < T', and a positive constant C, we have

[sup M, |H]<CZE[ sup ]M’|H]<CZE M, Mi]]

O0<u<t 0<

U Lo

<X§ ,%o,(X _)x >> N;(ds, dx)]

—ex el ],
+ 2<X§, %m (Xﬁ)x>>2 ds v(dx)]

§CE[/OZ(1+}X§]2)ds],

where the linear growth condition on o; and the fact ﬁ < Cp have been used.
Use first (2.2) and then square both sides of the resulting inequality to obtain from

(3.4) that
x| + t X¢|% d ’
} t’H 0” s”V $

t
<Crlhl} + CT/O (1+|x2[3,) ds + CrM?>.

2
:C

X)x|

a(e)

iMs 1

[\

+

(3.6) s

(X5)x

— o
a(e)

3.7

Take supremum over the interval [0, 7] in (3.7), use (3.6) to get

el sup il [ ([ sl as) ]

t
<C|hl}y +CEUO (1+ IXili,)ds]

Applying Gronwall’s inequality proves the lemma. [J

(3.8)

PROPOSITION 3.4. Assume (H.1), (H.2), (H.3), (H.4) and %~ (E) < Cy for some
constant Cg. Then the family {X?, & > 0} is tight on the space D([0, T], H).

PROOF. Write
. 1 m t . _
39 Y=—E// oi(X:_)xN;(ds,dx),
3-9) ! a(e) = Jo Jixj<e (X5 )i )

and set Z7 = X7 — Y. It suffices to prove that both {Y*, ¢ > 0} and {Z®, ¢ > 0}
are tight. This is done in two steps.
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Step 1. Prove that {Y?, ¢ > 0} is tight.

In view of the assumption (H.3) on o;, we have Y¢ € D([0, T'], V). Since the
imbedding V C H is compact, according to Theorem 3.1 in [16], it is sufficient to
show that for every e € H, {{Y?, e >, £)0} is tight in D([0, T'], R). Note that

sup E[ sup (Y7, e)z]

€ 0<t<T

§supE[ sup |Yf|12L1]
& 0<t<T

(3.10)

<Csup (G)ZZE[/ /x|< loi (X9)| Hx v(dx)ds}

T
=CZsupE[/ |0,-(X§)|12qu] < 00,
0

i=1 ¢
and for any stopping times 7. < T and any positive constants 5. — 0 we have

EllYz €)= oo, ell]
1 e (vEY|2 L2
- “<€>2,§E[L [l v(dx) ds|

< C$, sgp E[(l —i—O;JET]Xﬂi,)] -0,

(3.11)

as ¢ — 0. By Theorem 3.1 in [16] (see also [4]), (3.10) and (3.11) yield the tight-
ness of (Y4, ¢e), e > 0.

Step 2. Prove that {Z¢, & > 0} is tight.
It is easy to see that Z? satisfies the equation:
t t
Z;=h —/ AZids —/ AY; ds
0 0
(3.12) . .
+ [ bz ve)ds+ [ ba(zE+v0)ds
0 0

Recall {ex, k > 1} is the orthonormal basis of H consisting of eigenvectors of A
[see (H.4)]. We have

(ZF, ex)=(h, ex) — Mk /(;I<Zs€,ek)ds — Ak ‘/()t(Kf,ek)ds
(3.13) . .
+ [ {on(Z 4 ¥) en)ds + [ {ba(Z: + 7). e
By Corollary 5.2 in [16], to obtain the tightness of {Z?, ¢ > 0} we need to show:
(1) {(Z%, ex), e > 0} is tight in D([0, T'], R) for every k,
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(i1) for any § > 0,

(3.14) lim supP( sup RE (1) >3) —0,
N—>oo ¢ 0<t<T
where
> 2
Ry ()= (Z] ex)”.
k=N

The proof of (i) is similar to that of the tightness of (Y¢, e), ¢ > 0. It is omitted.
Let us prove (ii). By the chain rule, it follows that

t t
(Z8, er) = (h, ex)? — 2xk/ (Z8, ex) ds — 2xkf (YE, ex)(ZE, ex)ds
0 0
t
(3.15) + 2/0 (b1(Z8 + Y?), e 22, ex)ds
t
2 [ (ba(Z2 + Y5 ex) 25 ) s
By the variation of constants formula, we have

t
(28, ex) = e (h, e)? — 25 / e PHUTINYE o) ZE, er)ds
0

t
(3.16) + 2/ e MU= (Z8 4 YE), e ) ZE, ex)ds
0

t
+2 / PRy (78 4 Y9), e)(ZE, ex) ds.
0

Hence,
o0
Ry = Y (Z¢ e
k=N
o0
= Z e MR er)? f Z Ape 2= ”(Y ex)Zs, ex)ds
k=N
t 00
(3.17) +2 /0 Z e MU= (ZE 4 YE), e ) ZE, ex)ds

+2 ) Ze—”k“ Nbo(ZE + YE), ex)ZE, ex)ds
k=N

=10+ 120+ 100 + 15 0.
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Obviously,
o
(3.18) V@0 <Y (he)? =0,
k=N
as N — oo. For the third term on the right-hand side of (3.17), we have

|1(3)(t)|<2/ TEN(S) len (ZE +Y7). er)\ZE ex) ds
k=N

t
(3.19) 52/ TN ds(sup [Z¢],)( sup [bi(ZE +YE)]y)
0 0<s<T

0<s<T

1
<C—<1—|— sup |Z8|H+ sup |Y8|H>
AN

0<s<
Hence,
supE[ sup |I(3)(t)|]
0<t<T
1
(3.20) <C—(1+supE[ sup \ZE|H]+supE[ sup \Ye\ ])
AN 0<s<T 0<
—0 as N — oo.

Let us turn to / 1(\,2 ) (¢). By Holder’s inequality,

172
<2 (Ze W= (78, ek)> (AYE, Ye)) * ds
0 \k=n

sC( sup |5 )

0<s<

(3.21)

! 1
<C ye 7 / —anG=s) 1y
=c( sop [¥1y)( swp 1Z:1s) | e =
1

(= [ ez an) (s IE)( sop [2E]).
— \JAny Jo u ozs=r " Nozg=r
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In view of the assumption (H.2), the last term on the right-hand side of (3.17) can
be estimated as follows:

1(4)(l‘)| = ‘f Z —2h (1= S)<b2(XS) ek)(Zﬁ,ek>ds

/ Z —2hi(t— S)\/)»()+)»k((A+)»01) l/zbz(Xs) ek)(ZY,ek>d
0

k=N

o0 1/2
<C (Z e (A 4 00T 2by (XE), ek>)
0 \k=n

. 1/2
(3.22) x (Z (ho + A)(Z¢, ek>2) ds

k=N

12

t o

=cf 1z ||Ve‘”N("‘)(Z<<A+xof>-“2bz<x5>,ek>2) s
k=N

t
= [ 1Zeye D b))y ds
< [z 1y e I X XL s
This yields

1wz sw Xl / |22 ], e~ =) X2 ds

<C sup [XE[ [T PR + XYL ds
0<s<T 0

s (1-9)/2

<C sup |X§|HV(/ e—(4/(1—y>>AN<r—s)ds>
0<s<T 0

(3.23)

1 2/(1
([ xR as

1\ -2
<cl—
- <)»N>

(
1 2/(1
s [ (I + e, as)

0<s<

)(1+V)/2

1+y)/2
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Hence,
supE[ sup |I,(V4)(t)|]
£ 0<t<T
1\ (=12
sc(i) T swE] s [xif ([ axey
)MN & 0<s<
14+y)/2
2/(1
IR )Y as) ]
(3.24)

)\‘N

. T o2 12 (I4+y)/2
s B[ swp 1557 ([ (€l +elviyas) |

0<s<T
—0 as N — oo,

where we used the fact that

1 1
jabl < C(lal” +1b9),  —+—=1.
P q

Putting together (3.17)—(3.24) and applying the Chebyshev inequality, we ob-
tain (3.14). 0O

Let D denote the class of functions f € C 2 (H) that satisfy (i) V f(z) € D(A)
and |AV f(2)|lg < C(1 + |z|g) for some constant C, where V f(z) stands for
the gradient of f at z, (ii) f”(z), f”/(z) are bounded, where f”, f”" denote the
operators/multi-linear functionals associated with the second and the third deriva-
tives of f.

For f € D, define

L f(z) = —(AV f(2),2)+ (b1(2), Vf(2)) + (b2(2), V f(2))
2 — 5 _
(3.25) +Zﬂw[<+()@o~m)

<f(Z) ()ol<z>x> v(dx),
and
L) = —(AV£(). 2)+ b12). V£ @) + (b2(2). V £ (2))
1
5

(3.26) .
Z (f"(2)0i(2), 0i(2)).
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LEMMA 3.5. Assume limg_,q ﬁ = 0. Then for f € D, it holds that

(3.27) Lff(z) > Lf(2) uniformly on bounded subsets of H

as ¢ — 0.
PROOF. Note that for any f € D we have
1 o
SO+ w) = ) = (Vo) w)= [ da [+ pwyw, w)dp.

Thus, for every z € H,

L*f(z) — Lf(2)
Sl Ll s

1 o p
(3.28) X (x( ) o (2)x, (e )0,(Z)x>v(dx) / da/ d,B(f (z)ai(z),ai(z)>}

= i v [ e ] dﬂZR (e pgenos)

X 0i(2), 0 (z)> ()01 (). 0 (z))].

Hence, for z € By ={z € H; |z|g < N} we have
|L®f(z) — Lf(2)]

<

_Ca(i)z /|x|<£x v(dx)/ doz/ dpg Blx|— ( )

x 3 (07 @) yloi @)

i=1

(3.29)

e
<Cny———0,

uniformly on By as ¢ — 0, where we have used the local Lipschitz continuity of

f"(. O

THEOREM 3.6. Suppose (H.1), (H.2), (H.3)', (H.4) hold and lim,_, ¢ ﬁ =0.
Then, for any T > 0, u. converges weakly to u, for ¢ — 0, on the space
D([0, T1, H) equipped with the Skorohod topology.

PROOF. Since the mappings o; take values in the space V, by Proposition 3.4,
the family {u., € > 0} is tight. Let ;g be the weak limit of any convergent sequence
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{1e,} on the canonical space (2 = D([0,T], H), F) as &, — 0. We will show
that ;o = . Denote by X, (w) = w(t), w € 2 the coordinate process. Set J(X) =
supg<s<7 |Xs — Xs—|n. Since

EX[J(X)] = E[J(X7)]

(3.30) s—= i [OiugT\m ]
< Caf )(1 + E[oilfff'Xe‘H]) -0,

as ¢ — 0, it follows from Theorem 13.4 in [4] that pg is supported on the
C([0,T], H), the space of H-valued continuous functions on [0, T]. As a con-
sequence, the finite-dimensional distributions of 1., converge to that of 1.

Let us fix f € D. Then by I1t6’s formula,

P = r = [ (x5 ds

_ ; fo ’ /MSE{ f(Xf_ n %m (xg_)x) - f(Xf_)}I\?i (ds. dx)

is a martingale. Such an It6 formula for stochastic evolution equations/SPDEs
driven by continuous martingales can be found in [20] (Theorem 3.2, page 147).
In our pure jump case, due to the strong assumptions on the function f this It6
formula can be obtained by an approximation argument as follows. For n > 1,
consider the finite-dimensional projection:

(3.31)

n

X0 =3 (XE eiler,

i=l

where ¢;,i > 1 are the eigenvectors of A [see (H.4)]. We first apply It6’s for-
mula to the finite-dimensional process Y?’s and the function F,,(x1,...,x,) =
f(O-F_ | xie;), and then take the limit as n — oo to get (3.31).

By the martingale property, for any sop <s; <--- <s, <s <t and fo, f1,...,
fn € Cp(H) it holds that

t
630 B[ (00 = X0 = [ L7 (X du) F X+ £ (X, =
For any positive constant M > 0, by Lemma 3.5 we have

t
(3.33)  lim EFe [/ |L* f(X,) — Lf(X,)|du, sup |XM|H§M}=0.
n—o00 s 0<u<T
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On the other hand, in view of the assumptions on f we have

t
SUPEMS”[/ |L*" f(Xu) — Lf (Xy)|du, sup |Xu|H>M]
n s

O<u<T

(3.34) < Ci supE"g"[ sup |Xu|3H]

M o 0<u<T

< C/i.

- M
Combining (3.33) with (3.34), we arrive at

t

(3.35) lingoE“gn [/ |L8"f(Xu)—Lf(Xu)‘du] =0.

n— s

By the weak convergence of u,, and the convergence of finite distributions, it
follows from (3.32) and (3.35) that

t
E’“’[(f(Xt) — f(Xy) —/ Lf(Xu)du)f(Xso)"'f(Xsn)]

= Jim 2o (7000 = 1000 = [ Lr G ) £ £ )]

n—oo

(3.36)

t
Jim £ (£00) = 00 = [ L7 (X du) £ (X £ (X))
=0.
Since sg < §1 < --- < s, <s§ <t are arbitrary, (3.36) implies that for any f € D,
t
Ml = r = fo = [ Lrxods. 10
is a martingale under 1o. In particular, let f(z) = (ex, z) and f(z) = (ex, 2) (e}, 2),

respectively, to obtain that under pq

k t t
M = (ek,X,)—(ek,h)—i-fO (Aek,Xs)ds—/o (b1(Xy), ex)ds

(3.37) .
— ]O <b2(Xs), ek)ds

and

M;k’j 1= {ew, Xe){ej, Xi) — (ex, h){ej, h)

t
+/0 ((Aex, Xs){ej. Xs) + (Aej, X;) ex. X)) ds

t
(3.38) - /O (b1(Xy), exle;, Xs) +ejlex, X)) ds
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t
—/wx&mm%xnmm%xmw
0

m . ot
=3 [0 exlfor (X0, e5)ds
i=1
are martingales. This together with It6’s formula yields that
. mooet
(3.39) (M5, M), =) /O (0:(Xy), ex)oi (Xs), e)ds,
i=1

where (M*, M7) stands for the sharp bracket of the two martingales. Now by
Theorem 18.12 in [17] (or Theorem 7.1” in [15]), there exists a probability space
(€', F', P') with a filtration F, such that on the standard extension

(Qx Q,FxF, F xF/,uox P’

of (2, F, F;, P) there exists a m-dimensional Brownian motion B; = (Btl, e
B"),t > 0 such that

m t )
(3.40) Mf=>" /O (0:(Xy), ex)dBL,
i=1
namely,
(e, Xi) — (ex, h)
t t t
(3.41) =—/O (Aek,XS)ds—i—/(; (bl(Xs),ek)ds+/0 (b2(Xy), ex)ds
m t ;
+;A@aamws

for any £ > 1. Thus, under g, X;, t > 0 is a weak solution (both in the probabilis-
tic and in PDE sense) of the SPDE

t t t m t .
Xt=h—/ AXsds+/ bl(Xs)ds+/ bg(Xs)ds+E /ai(Xs)dB;.
0 0 0 : 0
i=1

By the uniqueness of the above equation, we conclude that g = © completing the
proof of the theorem. [l

THEOREM 3.7. Suppose (H.1), (H.2), (H.3) and (H.4) hold and lim,_, ﬁ =
0. Then, for any T > 0, u, converges weakly to u, for ¢ — 0, on the space
D([0, T, H) equipped with the Skorohod topology.
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PROOF. Let a,i(-) be the mappings specified in (H.3). Let X%, X" be the
solutions of the SPDEs

ne—h /AX”EdS-I-f b] ds-i—/bz ds
X" xN;(ds,d
a(e) //|x<e Xy )xNi(ds. dx).
t
:h—/ Axgds+/ bl(xg)ds+/ by(X7) ds
0 0 0

m t . .
+Zf ol (X")dB..
i=170

We claim that for any § > 0,

(3.42)

(3.43)

(3.44) Jim_sup P( sup [X[* = Xf| > 8) =0,
0<t<T
. n 2 _
(3.45) im_ P(O;JET]X, - X,[* > 8) =o0.

Let us only prove (3.44). The proof of (3.45) is simpler. As the proof of (3.3), we
can show that

(3.46) supsup{E[ sup |X”8|H +E[/ |\X”£||Vds“<oo
n & 0<t<T

(3.47) sgp{ [ sup |Xn|H]+E[/OT||xg||zvds“ < 0.

0<t<T

Applying Itd’s formula first to |X;*® — X¢|3, and then applying the integration by
parts formula, we obtain

n,e2 &
e —y JoUIXE AN+ XE IIV)dS|X"8 X8|H

=y [ 7 BRI b e e (e ]+ X517 ds
t N n,e 3
_ 2/0 oV BOUXEIGHIXER) dugxyne _ e 4 (xme — X)) ds
t S n,e &
+2f oV BAXT RAHIXGI du ne _ e b (x7€) — by (XE))ds

+2/ e BUXE AR dugyne _ xe b (xme) _ by (X9))ds

(3.48) +Z//|< oV S UXEE IR HIXE ) du
X &€
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1 i n,e . € \x
(o o (XD )x —ai (X5 )x)

n §— N

H

)

+ 2<(xg~8 —X) 25 X = (Xf_)x)>) Ni(ds. dx)

m et
X €12 2
+Z/f o= S UXES B+ X5 1) du
= Jo Jixi=e

2
dsv(dx)
H

1 i(yvhEN, _ ~ (Ve
m(an(x )x 0j (Xs—)x)

§—
6
=Y I"°).
k=1

1t6’s formula for | X;"* — X?¢ |%1 in the continuous setting can be found in [18], The-
orem 3.1, or in [21], Theorem 4.2.5. In the current pure jump case, It6’s formula
can be seen through finite-dimensional projections of X;** — X¢ and a limiting
procedure. The expression in (3.48) is a result of further use of the integration by

X

parts formula for the real-valued semimartingales e¢~" fé(uxg”gu%,+||x§|\%,)ds7[ >0
and | X}"* — X¢12,,t > 0.
In view of assumption (2.6), we see that
IO+ 1)+ 15 (1)
(3.49) .
<—(- 2'8)%/0 oV BUX G410 du xne _ xe |2 g,
if y > 2Cy, where C is the constant appeared in (2.6).

Similar to the proofs of (3.6), (3.8), using Burkhélder’s inequality, we obtain
from (3.48), (3.49) that for¢t < T,

E[ sup e 7 B UX I HIXGIT) du| yme Xfﬁf]
0<s<t

! S n,e e
+E[/0 e~V Jo(IXu ||%/+||Xu||%/)duHX;z,g_XiH%/dsiI

1 S n,e &
< ZE[ sup e 7 B UXE I HIXGIT) du) yme Xfm
0<s<t

Ly RAXEE IR HIXES) d 2
+CB[ [ ey BN Rt e xe P as]
0

m
+CZEU’/ o= B X I +IXE ) du
i—1 0 Jix|<e

2

! ds v(a’x)}
H

(3.50) X @

(0 (X{%)x — 0, (X7)x)




1460 G. DINUNNO AND T. ZHANG

§ n.e2 &2
e E[/ / o7 S NXEE IR+ IXE ) du
Z |x|<e

2

5~ (x|

o(€)

X

ds v(dx):|

< E[ sup e 7 S UXa I HIXLIT) du) yne X8|H:|

1
4 0<s<t

+CE[f e Vfo(IIX{f8||2+||X§||V)du‘xn8 X8|Hds]

S ne 2 €112
ic EU / o7 TS UXEE IR+ X 1) du
Z |x|<e

2

ds v(dx)},

1 & &
<oy —a(x)|

where the uniform Lipschitz constant of o, in (H.3)(i) has been used. Applying
the Gronwall’s inequality, we obtain

E[ sup e_yf()(”XZ€|‘2+||X€Hv)du|Xn8 X5|H]

0<s<t

t n,e &
(3.51) +E[./0 o7 X By +IXEIR du yone _ X?”%/dS}

< g U o) (XE) — X8)|Hds]

For any M > 0, we have
m
ZEU o (X¢) — X€)|Hds]
m T 2
=3[ [ ot x0) — i)y s, sup (7], = ]
e 0 0<s<T

(3.52) +ZE|:/ |O' XS X8)|Hds Osup |X5|H>M]

<TZ sup |0 (z) — UZ(Z)|H+CT ! (l‘f‘E[ sup ‘Xﬁﬁ*{])

i=11zI=M 0<s<T

<TZ sup |o}(z) — al(z)\H—i-CT

i= 1|Z|<
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where (3.3) has been used. Since M can be chosen as large as we wish, together
with (3.51) and (H.3)(ii) we deduce that

i —y JSUXEEN HIXEND) du | yne _ ye|2
Jim sup E[ sup ¢ P e - e ]
(3.53) -
=0.

For any given 61 > 0, in view of (3.46), (3.47), we can choose a positive constant
M such that

T
sup P sup | = X, = 8. [ (X2 + xS ds > )

n,e 0<t<T
(3.54)
T n,e |2 g2 81
ssupP| | (X3 +|X5[y)ds > M) < =
n,e 0 2
On the other hand,

T
sup P sup [ X7 = X[y = 6. [ (e 41X ds < o))

3 0<t<T

(3.55)  <sup P( sup ¢~V RUXETIGHIXGIG) du| ne _ xe2 > p=yM 62)

3 0<s<T

1 L SO XE |2 €2 2
< eVMl = sup E[ sup e Vfo(”xu ||v+||Xullv)d’4|X;l58 _ X§|H:|
5 e 0<s<T

It follows from (3.53) and (3.55) that there exists N > 0 such that forn > N,

T
sup P sup [X7 = X7, = o, [ (1X° 1} + X013 ds < b1 )
n,e 0<t<T 0
(3.56)
1
< —.
-2
Combining (3.54) and (3.56) together yields (3.44).
Finally, we prove that u® converges to u. Let uy, i, denote, respectively, the
laws of X™¢ and X". Let G be a bounded, uniformly continuous function on E :=
D([0,T], H). For any n > 1, we write

fGWMHmoijmmuw
E E
= [ Gt @w - [ Gaw@w + [ Gaw@w)
E E E
(3.57) —LGwmmw+éwwwwm—memw>

=E[G(X®)—G(X"®)]+ (./;5 G(w)u; (dw) — [E G(w)un(dw))

+ E[G(X") — G(X)].
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Give any § > 0. Since G is uniformly continuous, there exists §; > 0 such that

(3.58) E[(G(x*) = G(x"™*)), sup [x}" = X!, < 51]] <2
0<s<T
foralln > 1, & > 0. In view of (3.44) and (3.45), there exists N,
sup|E[(G(X*) = G(x)). sup [XM% — Xz|,, > 81]]
& 0<s<T
(3.59)

1)
< CsupP( sup |XNf — x¢|, > 51) <-
3 0<s<T 4
and
)
360 E[(G(x") - Goo)) =2,

On the other hand, by Theorem 3.6, there exists £; > 0 such that for ¢ < ¢,
)
(3.61) | G @)~ [ Gy, <dw>‘ <2

Putting (3.57)—(3.60) together we obtain that for ¢ < &1,

[ Gt @w - [ G <s.
E E
Since § > 0 is arbitrarily small, we deduce that

lim fE G W) (dw) = fE Gw)p(dw)

completing the proof of the theorem. [
EXAMPLE 3.8. Approximations of stochastic Burgers equations.

Consider the stochastic Burgers equations on [0, 1]:

32 19 ;
(3.62)  du(t, &)= aszu( g)dz+5£[ 2(1,8) dt—i-;a, u(t, €))dB!,
(3.63) u(t,0)=u(,1)=0, >0,
3.64) duf(t —82 t,€)dt 19 u)? (1 dt
(3.64) du’(1,€) = 52”( £) +5£[( )", 8)]
(3.65) a(e) Z /WS ue (1—, €))x Vi (dt, d),
(3.66) uft,0)=u(,1)=0, t>0,

where 0;(-),i = 1,...,m is a Lipschitz continuous functions with ¢;(0) =0
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LetV = HO1 (0, 1) with the norm

loly = (/Ol(a”g—f))zds)l/z Sy

Let H := L%(0, 1) be the L2-space with inner product (-).
Set
32
Au = 8§2u(§) Yu e D(A)=H*©0,1)NV.
Define for k > 1,
ex(§) = V2sinGkrg),  §€[0,1].

Then ex, k > 1 are eigenvectors of the operator A with eigenvalues Ay = 7
which forms an orthonormal basis of the Hilbert space H. For u € V, define

2k2

Bu): —u(é)gu(é) o) :=ou®)).

Here, B(u) € H because ||u|| >~ < oo for u € V. By the Lipschitz continuity of o;,
it is easily seen that

(3.67) loi]y < C(+lully),  i=1,....m.

hence (H.3) holds. Now let us show that B(u) satisfies condition (H.2). First,
(H.2)(4),(B(u), u) =0, is well known (see, e.g., [8]). Note that ¢; = \/%_kek, k>1

forms an orthonomal basis of V. Recall that any element / € V* can be identified
through the Riesz representation theorem as an element / in V, and moreover,

3 = 1013 = (e = (1@w)’.
k=1 k=1

Thus, for u € V, we have

|Ba|7- = Z(B(u)@))2

=,§(sz e ek(S)ds)z
(3.68) =g( 2(§)£€k(5)d5>2
:i( u(g)zfcos(lms)ds>

>~
—_

< /O (s, 6)* d = Clul’s,
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where we have used the fact that {«/i cos(km&); k > 1} also forms an orthonormal
system of L2(0, 1). By the Sobolev embedding theorem (see, e.g., Theorem 6,
Chapter 5 in [10]), we have

L*0,1) c H*0, 1),

where H'/4(0, 1) is the usual Sobolev space of order %. Combing the above em-
bedding theorem with the following well-known interpolation inequality (see, e.g.,
Section 4.3 in [23])

(3.69) el s < Clul 0 ully/?,
we obtain from (3.68) that
3/2 1/2
|B@)|y- < Clul}llully/

proving (H.2)(iii) with y = % Finally, we will check (H.2)(ii). Let u,v € V. We
have

1 r1 o
(B) = B(v),u—v)=7 / 5[#(5) — (&) (E) — v(©)) dE

1
= ( 2(8) — 2(5)) () —v(§))de

2 9E

< %fol(%(u@—v@))) d

(3.70) 1
e fo (u(®) — v(E))* () + v(E)) dt

—

< ~lu—vl|? + Clu —vl4 (Jull + v]1%)

— N

< —fu—vl} +Clu—v(lul} + VI3,

[\

which is (H.2)(ii).
Now we can apply Theorem 3.7 to obtain the following convergence of the
solutions of stochastic Burgers equations.

THEOREM 3.9. Let u®,u be solutions to the stochastic Burgers equations
(3.64) and (3.62). Then u® converges weakly to u in the space D([0, T]; H).

Acknowledgement. We thank the referees for the very useful suggestions and
comments.
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