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QUANTITATIVE PROPAGATION OF CHAOS FOR
GENERALIZED KAC PARTICLE SYSTEMS

BY ROBERTO CORTEZ1 AND JOAQUIN FONTBONA2

Universidad de Chile

We study a class of one-dimensional particle systems with true (Bird
type) binary interactions, which includes Kac’s model of the Boltzmann equa-
tion and nonlinear equations for the evolution of wealth distribution arising
in kinetic economic models. We obtain explicit rates of convergence for the
Wasserstein distance between the law of the particles and their limiting law,
which are linear in time and depend in a mild polynomial manner on the num-
ber of particles. The proof is based on a novel coupling between the particle
system and a suitable system of nonindependent nonlinear processes, as well
as on recent sharp estimates for empirical measures.

1. Introduction and main result.

1.1. The kinetic equation. We consider the collection (Pt )t≥0 of probability
measures on R, solution of the following nonlinear kinetic-type equation:

∂tPt = −Pt +Q+(Pt ).(1)

Here, Q+ is a generalized Wild convolution, which associates with every measure
μ on R a new measure Q+(μ) given by∫

φ(u)Q+(μ)(du) =
∫∫ 1

2
E

(
φ(Lu + Rv) + φ(L̃v + R̃u)

)
μ(dv)μ(du),(2)

for all bounded measurable functions φ, where (L,R, L̃, R̃) is a given random
vector in R

4 (with known distribution) and E denotes the expectation with respect
to it.

Equations (1)–(2) describe the behavior of an infinite number of objects or
“particles” subjected to binary interactions. The state of each particle is charac-
terized by a scalar u ∈ R, and Pt(du) represents the proportion of particles in state
u at time t ≥ 0. The microscopic binary interactions, which occur randomly at con-
stant rate, are heuristically described as follows: when a particle at state u interacts
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with a particle at state v, their states change according to the rule

(u, v) �→ (Lu + Rv, L̃v + R̃u).(3)

This model is a generalization of Kac’s one-dimensional simplification of the
(more realistic) Boltzmann equation for a spatially homogeneous dilute gas in R

3,
in which the interacting objects represent actual physical particles. Specifically, in
Kac’s model introduced in Kac (1956), the state of a particle is its one-dimensional
velocity, and the interactions correspond to random exchanges of velocities that
occur at binary collisions that preserve kinetic energy, so that L = cos θ = L̃,
R = − sin θ = −R̃, with θ randomly chosen in [0,2π). We refer the reader to
Mischler and Mouhot (2013) and the references therein for historical background
on Kac and Boltzmann’s equations.

A further source of models of the type described by equations (1)–(2) is the
kinetic description of the evolution of the wealth distribution in a simplified econ-
omy, studied, for instance, in Matthes and Toscani (2008) (see also the references
therein). In that setting, the state of a particle represents the wealth of an economic
agent, and the binary interactions correspond to trades or economic exchanges be-
tween them. Early versions of that model assumed

|L|p + |R̃|p = 1 a.s., |L̃|p + |R|p = 1 a.s.,(4)

for some p ≥ 1 [notice that in Kac’s model (4) is satisfied with p = 2]. In the
case p = 1, for nonnegative L, R, L̃ and R̃, condition (4) can be seen as exact
conservation of total wealth in each interaction. The weaker condition

E
(|L|p + |R̃|p) = 1, E

(|L̃|p + |R|p) = 1,(5)

interpreted as conservation of wealth only in the mean (so that risky trades with
possible gain or loss of total wealth in each interaction are allowed), has also been
considered in order to obtain wider classes of equilibrium distributions for the
nonlinear dynamics [see Matthes and Toscani (2008), Bassetti, Ladelli and Matthes
(2011)].

1.2. Particle system and propagation of chaos. In order to rigorously justify
the interpretation of the model (1)–(2) as representing the evolution of an infinite
number of interacting particles or agents, one considers a finite system of N of such
particles, which we denote Xt = (X1

t , . . . ,X
N
t ), starting independently with com-

mon law P0 and such that, at each binary interaction, the states of both involved
particles are modified according to the rule (3). In the terminology of particle ap-
proximations of the Boltzmann equation, a particle system with such (true) binary
interactions is called of Bird type, as opposed to particle systems of Nanbu type, in
which only one particle changes its state after interaction with some other.

Specifically, the particle system X has infinitesimal generator

ANφ(x) = 1

2(N − 1)

∑
i �=j

∫
R4

[
φ

(
x + aij

(
η, xi, xj )) − φ(x)

]
�(dη)(6)
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for all x = (x1, . . . , xN) ∈ R
N and every test function φ on R

N , where η =
(ξ, ζ, ξ̃ , ζ̃ ) denotes a generic point in R

4, � is the joint law of (L,R, L̃, R̃) and
aij (η,u, v) is the vector of RN whose ith and j th components are (ξ − 1)u + ζv

and (ξ̃ − 1)v + ζ̃ u, respectively, and which is equal to 0 in the other components.
Convergence of such a particle system, more precisely of its empirical mea-

sures 1
N

∑N
i=1 δXi

t
toward the unique solution (Pt )t≥0 of the nonlinear evolution

(1) as N goes to infinity, has been studied in more general frameworks and from
several points of view; see, for instance, Graham and Méléard (1997), Mischler
and Mouhot (2013) and the references therein [in particular, well posedness of (1)
is by now standard]. Since the particles are exchangeable, the convergence of the
empirical measure to Pt for large N , as a random variable in the space of probabil-
ity measures in R endowed with the weak topology, is equivalent to the property
of propagation of chaos of Xt with respect to Pt [see Sznitman (1991) for back-
ground]: for every fixed k ∈ N, the joint law of X1

t , . . . ,X
k
t converges weakly to

P ⊗k
t as N goes to ∞. That is, when N is large, any fixed number of particles of

the system behaves at time t approximately like independent random variables of
law Pt . This property was introduced and first established by Kac himself in Kac
(1956) for the particle system bearing his name, and is nowadays known to hold
for a large class of particle models, under general mild assumptions.

1.3. Main result. Typically, weak convergence results are not sufficiently in-
formative, and one looks for more quantitative statements. In this article, we will
study the Bird-type N -particle system X = (X1, . . . ,XN) and its propagation of
chaos property, in the cases p = 1 and p = 2. Our main goal is to obtain rates of
convergence, as N → ∞, for the Wasserstein distance between the empirical mea-
sure of the particle system at time t and its limiting law Pt , with explicit estimates
on N and t that grow reasonably fast as functions of t .

Let p ∈ {1,2} be fixed. In the case p = 2, we will assume the additional condi-
tion E(LR + L̃R̃) = 0, which is certainly satisfied in Kac’s model. As a general-
ization of (5), we will work under the assumption

1
2E

(|L|p + |R|p + |L̃|p + |R̃|p) ≤ 1.(7)

With some abuse of language, for each value of p ∈ {1,2} we will say that the
model is inelastic if the latter inequality is strict. In that case, the interaction
between particles produce an average loss of energy when p = 2 [see, e.g., the
inelastic Kac model in Pulvirenti and Toscani (2004)] or of “wealth” [in the con-
text of Matthes and Toscani (2008)] when p = 1. Also, to avoid trivial situa-
tions, in all what follows we will assume that the model is nondegenerate, that
is, E(|R| + |R̃|) > 0; this means that the system produces at least some effective
interactions.

Let us fix some notation. P(E) denotes the space of probability measures on the
metric space E. For x ∈ R

N and any i = 1, . . . ,N we define the empirical mea-
sures x̄ = 1

N

∑
j δxj and x̄i = 1

N−1
∑

j �=i δxj , both being elements of P(R). Define
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Mq(μ) = ∫ |u|qμ(du) the absolute q-moment of μ ∈ P(R). Given a random vec-
tor Z on R

N , we denote its law by L(Z) ∈ P(RN), and the joint law of its first k

components by Lk(Z) ∈ P(Rk).
Recall that for μ,ν ∈ P(Rk) their p-Wasserstein distance Wp(μ, ν) is defined

to be the cost of the optimal transfer plan between μ and ν, that is,

Wp(μ, ν) =
(

inf
π

∫
Rk×Rk

dk,p(x,y)pπ(dx, dy)

)1/p

=
(

inf
θ,ϑ

Edk,p(θ,ϑ)p
)1/p

,

where the first infimum is taken over all measures π on R
k × R

k with marginals
μ and ν, and the second infimum is taken over all pairs of random vectors θ and
ϑ such that L(θ) = μ and L(ϑ) = ν [see, e.g., Villani (2009) for background on
Wasserstein distances]. We will use the normalized distance dk,p on R

k given by

dk,p(x,y) =
(

1

k

k∑
i=1

∣∣xi − yi
∣∣p)1/p

,(8)

which is natural when one cares about the dependence on the dimension.
In order to obtain good rates of convergence in N which moreover are well

behaved with respect to t , it is convenient to introduce the concave function

αq = 1 − 1
2E

(|L|q + |R|q + |L̃|q + |R̃|q) ∀q ≥ 0.

We also define

q∗ = sup
{
q :Mq(P0) < ∞, αq > 0

}
.

These objects play an important role in Matthes and Toscani (2008), since when
p = 1 and q∗ is nontrivial (i.e., 1 < q∗ < ∞), q∗ corresponds to the Pareto index
of the stationary distribution of Pt . More importantly, in the present context, the
moments of order q < q∗ of Pt can be controlled uniformly in time (see Lemma 5
below). Assuming (7) and Mp(P0) < ∞, the concavity of αq implies that either
q∗ ∈ [p,∞] or q∗ = −∞. Also, define for all q ∈ {p} ∪ (p, q∗)

ᾱp,q = inf
p≤r≤q

αr = min(αp,αq).

Note that if αp = 0, then ᾱp,q = 0 for all such q , so this function is meaningful
only in the case αp > 0, in which case it will be useful to obtain uniform (in time)
estimates.

We are now ready to state our main theorem (see also Corollary 8 for a trajec-
torial result).

THEOREM 1. Let (Pt )t≥0 be the unique solution of (1) and let X be the par-
ticle system starting with law P ⊗N

0 and with generator (6). For p = 1 or p = 2,
assume αp ≥ 0 and Mp(P0) < ∞. If p = 2, assume also that E(LR + L̃R̃) = 0
and q∗ > 2. Then:
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• for any q ∈ {1} ∪ (1, q∗) and any γ < (2 + 1/q)−1 in the case p = 1, or
• for any q ∈ (2, q∗), q �= 4 and for γ = min(1/3,

q−2
2q−2) in the case p = 2,

there exists a constant C, depending on p, q , γ and some moments of P0 and
(L,R, L̃, R̃) of order at most q , such that:

(i) for all k ≤ N and for all t ≥ 0,

Wp
p

(
Lk(Xt ),P

⊗k
t

) ≤ C

(
t (1 + t)p−1e−(p/q)ᾱp,q t

Nγ
+ 1k �=1

k min(1, t)e−αpt

N

)
,

(ii) for all t ≥ 0,

EWp
p (X̄t , Pt ) ≤ C(1 + t)pe−(p/q)ᾱp,q t

Nγ
.

REMARK 2. • The power γ in Theorem 1 is a consequence of using recently
established sharp quantitative estimates in Wasserstein distance for the empirical
measures of exchangeable or i.i.d. collections of random variables [which improve
or extend a classical result in Rachev and Rüschendorf (1998)]. More specifically,
the rate N−γ with γ < (2 + 1/q)−1 in the case p = 1 comes from Theorem 1.2
of Hauray and Mischler (2014), whereas the value γ = min(1/3,

q−2
2q−2) in the case

p = 2 comes from Theorem 1 of Fournier and Guillin (2013). On the other hand,
the dependence on t results from our estimates, which rely on Gronwall’s lemma.

• The restriction q �= 4 in the case p = 2 comes from Theorem 1 of Fournier and
Guillin (2013). As those authors mention, the case q = 4 would produce additional
logarithmic terms, which in our case translate into a rate of order N−1/3 times a
logarithmic function of N .

• In the elastic case (i.e., αp = 0 = ᾱp,q ), (i) and (ii) give estimates that grow
linearly with time (in the case p = 2 both sides are squared). In the inelastic case,
which corresponds to αp, ᾱp,q > 0, all estimates are uniform in time.

• From a physical point of view, it is interesting to consider models where in-
finitely many particles interact over finite time intervals, such as the Kac equa-
tion without cutoff. The techniques used in the proof of Theorem 1 can also
be applied to cutoffed approximations of that equation and, in the case that [in
the notation of Desvillettes, Graham and Méléard (1999)] the classical condition∫ π

0 θ2β(θ) dθ < ∞ on the cross-section function β : [−π,π ] → R+ is satisfied,
they yield a constant that does not depend on the cutoff parameter; see Remark 9.

1.4. Particular cases and comparison with known results.

1.4.1. The Kac equation. Note that if the stronger condition (4) is satisfied
(or holds with ≤ instead of equality), then |L|, |R|, |L̃| and |R̃| are all ≤ 1 a.s.,
which implies that αq is strictly increasing with q . Thus, ᾱp,q = αp for q ≥ p and
the value of q∗ will depend only on the finiteness of the moments of P0. In Kac’s
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model, since (4) is satisfied for p = 2, if P0 has finite moment of order 4 + ε, then
q∗ > 4 and Theorem 1 gives

EW2
2 (X̄t , Pt ) ≤ C(1 + t)2

N1/3 .

Several similar results can be found in the literature. The closest one corresponds
to quantitative rates for the Nanbu system associated with Kac’s model, which
are found, for instance, in the proof of Proposition 6.2 of Fournier and Godinho
(2012). The authors state there a W2

2 convergence rate that also depends quadrat-
ically on t and is optimal on N , in the sense that it is equal to the W2

2 rate of
convergence of the empirical measure of an i.i.d. sample toward their common
law. The latter is of order N−1/2, according to Theorem 1 of Fournier and Guillin
(2013). Thus, the Bird-type particle system seems to produce a slower rate of con-
vergence than the corresponding Nanbu-type system. An interesting question is
whether this difference is a mere consequence of the techniques used in our proof
(more specifically, some order is lost when one uses Lemma 7) or is intrinsically
related to the type of binary interactions (Bird or Nanbu) in the system.

A similar result as the one of Fournier and Godinho (2012) can be found in
Fournier and Mischler (2014) where, motivated by the numerical approximation
of the Boltzmann equation for hard spheres, hard potentials and Maxwellian gases,
a pathwise coupling argument was developed for Nanbu particle systems, which
extends a coupling construction based on optimal transport developed in Fontbona,
Guérin and Méléard (2009). That pathwise approach, however, does not readily ex-
tend to the particle systems of Bird type we are interested in, which in turn provide
a physically more transparent description of the relevant interaction phenomena.

As for the Bird particle system, in Graham and Méléard (1997) the authors ob-
tain an explicit rate in total variation distance on the path space, between the law
of one particle and the law of the nonlinear process (to be introduced later). How-
ever, due to the generality of their hypotheses and the strong pathwise distance they
use, the convergence rate depends exponentially on the length of the time interval
that is considered. Similarly, in Theorem 4.3 of Desvillettes, Graham and Méléard
(1999) the authors state a propagation of chaos result in W2 for the law at time t of
one particle in the system with cutoff, toward the law Pt of the nonlinear dynamics
without cutoff. Since some relations between N and the cutoff parameter must be
satisfied when removing the latter, that result gives estimates that are logarithmic
in N and grow exponentially with t .

On the other hand, the general theory developed in Mischler and Mouhot (2013)
provides a framework and a methodology to establish quantitative (in t and N )
propagation of chaos estimates which can be applied in the present framework.
For instance, in their Theorem 5.2, a W1 estimate for the Boltzmann equation in
the Maxwell molecules case is obtained, which is uniform in time and decays with
N in a polynomial way [see also step 3 of the proof of Theorem 8 in Carrapatoso
(2014a) for results in W2 distance]; we expect that similar bounds can be obtained
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with their techniques for the Kac model. The actual dependence on N they give
seems however hard to trace in general, and we have not been able to deduce
with their techniques an estimate in Wasserstein distance as sharp as ours in terms
of N . Also, their approach does not provide any information on the way in which
trajectories of particles get closer to those of the limiting processes. On the other
side, unfortunately our techniques (ultimately relying on Gronwall’s lemma) do
not seem to yield uniform in time estimates for the elastic Kac equation, even if
P0 were compactly supported.

Finally, we observe that for the inelastic Kac model, ᾱ2,q = α2 > 0 for all q ,
hence Theorem 1 does give a uniform-in-time rate in that case:

EW2
2 (X̄t , Pt ) ≤ Ce−(α2/(2+ε))t

N1/3 ,

if P0 is again assumed to have finite moment of order q > 4. This exponential
decay is not surprising: when P0 has finite moment of order 2 it is known that
M2(Pt ) decays exponentially fast; see Pulvirenti and Toscani (2004). Nevertheless,
to our knowledge, our quantitative (in N ) propagation of chaos result is new for
the inelastic Kac model.

1.4.2. Models for economic exchanges and wealth distribution. Working with
p = 1 as in Matthes and Toscani (2008) and assuming only that the first moment of
P0 is finite, Theorem 1 gives in the elastic case a propagation of chaos result for W1
of order almost N−1/3, with estimates growing linearly with time. Any additional
finite q-moment of P0 (with q < q∗) can be used to improve the rate in N , up to
almost N−1/(2+1/q∗). In the case of exact conservation of wealth [condition (4)]
we have q∗ = ∞ and we obtain a rate of N−(1/2−ε), which is almost optimal
according to Theorem 1 of Fournier and Guillin (2013). To our knowledge, this is
the first quantitative propagation of chaos result for kinetic equations modeling the
evolution of wealth distribution.

1.5. The nonlinear process and idea of the proof. Following ideas pioneered
by Tanaka in the case of the Boltzmann equation [see Tanaka (1978) and Tanaka
(1978/1979)], it is also possible to establish the convergence of the pathwise
law of a particle, to the law of some process obtained by the following con-
struction: consider a Poisson point measure M on R+ × R

2 × R with intensity
dt�̄(dξ, dζ )Pt (dv), where �̄ = 1

2(L(L,R) + L(L̃, R̃)), and let (Vt )t≥0 be the
jump process on R defined as the unique solution starting with law P0 of the
stochastic equation

dVt =
∫
R2

∫
R

[
(ξ − 1)Vt− + ζv

]
M(dt, dξ, dζ, dv).(9)

It is not hard to see that such a jump process V exists, it is uniquely defined and
it satisfies L(Vt ) = Pt for all t ≥ 0. We call P the pathwise law of V , and any
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process with law P is called a nonlinear process; it represents the trajectory of
any fixed particle in the (infinite) population subjected to the random interactions
described above in (3).

To prove our results, we will couple the Bird particle system Xt with a system
Ut = (U1

t , . . . ,UN
t ) where each Ui is a copy of the nonlinear process V , con-

structed in such a way that it remains close to Xi . To achieve this, we will use
techniques of optimal coupling inspired by those used in Fontbona, Guérin and
Méléard (2009) and Fournier and Mischler (2014), in order to carefully choose the
jumps of the nonlinear process Ui as similar as possible to those of the particle Xi .
However, contrary to those papers which deal with Nanbu-type particle systems (in
which each randomness source acts on the trajectory of only one of the particles),
ensuring closeness of Xi and Ui simultaneously for all i = 1, . . . ,N will imply
that the processes U1, . . . ,UN are not independent. Therefore, to obtain the de-
sired estimates we will need, in a second step, to “decouple” the system Ut as N

goes to infinity, which we will be able to do with estimates that are uniform in
time; see Lemma 6 below.

Let us point out that the coupling construction we will introduce can in prin-
ciple be replicated in higher dimensions, and with more general interaction rules,
which is why we preferred to avoid the use of specific one-dimensional features in
its construction; see, for instance, Remark 10. We thus expect these techniques to
be applicable in physically more relevant situations, hopefully including (at least
some instances of) the Boltzmann equation. Also, we think it should be possi-
ble to adapt this coupling construction in order to quantitatively study “Bird-type”
Brownian particle approximations of a certain Gaussian white-noise driven nonlin-
ear process, associated with the Landau equation arising in the grazing collisions
limit of the Boltzmann equation. Such a process was studied in Funaki (1984) and
Guérin (2003), and a particle approximation result with a “Nanbu type” Brownian
particle system was proved in Fontbona, Guérin and Méléard (2009), by means
of a coupling construction based on optimal transport. The corresponding particle
system of Bird-type is studied in Carrapatoso (2014b) using the functional tools
developed in Mischler and Mouhot (2013), but there seems to be so far no suitable
coupling argument available in order to deal with such class of particle systems.3

1.6. Plan of the paper. In Section 2, we give the explicit construction of
the particle system Xt , and more importantly, we couple it with the system
Ut = (U1

t , . . . ,UN
t ) of dependent nonlinear processes that we will use through-

out the rest of this article. In Section 3, we prove Theorem 1. The proof of some
intermediate lemmas, including statements of Section 2 and the “decoupling” of
the process Ut , is left for the final Section 4.

3When the present work was just finished, the authors learned from Nicolas Fournier that the latter
question was currently being studied by him, François Bolley and Arnaud Guillin.
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2. Coupling of the particle system and the nonlinear processes.

2.1. The particle system. Let us fix the number of particles N ∈ N. Although
most of the subsequent objects will depend on N , for notational simplicity we
will not make this dependence explicit. We will define both the particle system X
and the nonlinear processes U by means of integral equations driven by the same
Poisson point measure. To this end, let us first introduce the function i : [0,N) →
{1, . . . ,N} given by i(ρ) = 
ρ� + 1, and the set C ⊆ [0,N)2

C = {
(ρ, σ ) ∈ [0,N)2 : i(ρ) �= i(σ )

}
.

Note that |C| = N(N − 1). As in (6), denote η = (ξ, ζ, ξ̃ , ζ̃ ) a generic point in R
4

and � = L(L,R, L̃, R̃). Now, let N (dt, dη, dρ, dσ) be a Poisson point measure
on [0,∞) ×R

4 × [0,N)2 with intensity

N

2
dt�(dη)dρ dσ

1

|C|1C(ρ, σ ) = 1

2(N − 1)
dt�(dη)dρ dσ1C(ρ, σ ).

In words, N picks atoms in [0,∞) at constant rate of N/2, and for each such atom
it also independently samples a tuple (ξ, ζ, ξ̃ , ζ̃ ) from � and a pair (ρ, σ ) uni-
formly on C. We will use (ρ, σ ) to choose the indices of the particles that interact
at each jump. Consider also N independent random variables (X1

0, . . . ,X
N
0 ) =: X0,

independent from N , each having distribution P0. Finally, set F = (Ft )t≥0 to be
the complete right continuous filtration generated by X0 and N . We denote P and
E the probability and expectation in the corresponding probability space.

The particle system X = (X1, . . . ,XN) is defined as the solution, starting
from X0, of the following integral equation:

dXt =
∫
R4

∫
[0,N)2

N∑
i,j=1

1{i(ρ)=i,i(σ )=j}aij

(
η,Xi

t−,X
j

t−
)
N (dt, dη, dρ, dσ).(10)

[Recall that aij (η,u, v) is the vector of R
N whose ith and j th components are

(ξ −1)u+ ζv and (ξ̃ −1)v + ζ̃ u, resp., and is equal to 0 in the other components].
Given the timely ordered atoms (tn, ηn, ρn, σn)n≥0 of N (i.e., tn ≤ tn+1 for all
n ≥ 0), a solution of this equation can be constructed as follows: recursively define
Xtn as

X�
tn

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξnX
i
tn−1

+ ζnX
j
tn−1

, � = i,

ξ̃nX
j
tn−1

+ ζ̃nX
i
tn−1

, � = j ,

X�
tn−1

, � �= i, j ,

(11)

where (i, j) = (i(ρn), i(σn)), and set Xt = Xtn for all t ∈ (tn, tn+1). Uniqueness
for (10) also holds, since there is no choice to make in this construction. It is
straightforward to verify that X has generator (6).
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Thus, the system X is what we want it to be: at rate N/2 we choose two distinct
indices i = i(ρ) and j = i(σ ), and then we update the particles Xi and Xj accord-
ing to the rule described in (3). The fact that we use continuous variables (ρ, σ )

to choose the indices (i, j) (instead of a discrete pair chosen uniformly from the
set {1, . . . ,N}2 \ {i = j}) will be crucial to define our system U of N nonlinear
processes.

2.2. Coupling with the nonlinear processes. From (10), it follows that for any
i = 1, . . . ,N , the process Xi satisfies

dXi
t =

∫
R2

∫
[0,N)

[
(ξ − 1)Xi

t− + ζX
i(τ )

t−
]
N i (dt, dξ, dζ, dτ),(12)

where N i is defined as

N i (dt, dξ, dζ, dτ) = N
(
dt,

(
dξ × dζ ×R

2)
, [i − 1, i), dτ

)
(13)

+N
(
dt,

(
R

2 × dξ × dζ
)
, dτ, [i − 1, i)

)
.

Clearly, N i is a Poisson point measure on [0,∞) ×R
2 × [0,N) with intensity

dt�̄(dξ, dζ )
dτ

N − 1
1Ai (τ ),

where �̄ = 1
2(L(L,R) + L(L̃, R̃)), and Ai = [0,N) \ [i − 1, i). In other words,

N i selects only the atoms of N that produce a jump of Xi , that is, the atoms in
which i(ρ) = i or i(σ ) = i.

Let us examine the expression (12) in more detail. First, note that since τ is cho-

sen uniformly in Ai , the variable X
i(τ )

t− corresponds to a sample from the (random)
probability measure X̄i

t− = 1
N−1

∑
j �=i δX

j

t−
. Thus, from the point of view of the

process Xi , the dynamics is as follows: at rate 1, a number v = X
i(τ )

t− is sampled
from the measure X̄i

t− , and then the value of the process is updated according to
the rule Xi

t− �→ ξXi
t− + ζv, where (ξ, ζ ) is chosen with law �̄.

Comparing (9) and (12), the key observation is the following: if for each jump
time t one replaces X

i(τ )

t− in (12) with a realization v of the law Pt(dv), the resulting
process has law P . In view of this, we would like to define the system of nonlinear
processes U = (U1, . . . ,UN) based on this idea, but using a realization of Pt that
is optimally coupled to the realization X

i(τ )

t− of the measure X̄i
t− . In doing this,

some measurability issues need to be taken into account.

LEMMA 3 (Coupling). For every p ≥ 1 and i ∈ {1, . . . ,N} there exist a mea-
surable mapping �i :R+ ×R

N ×Ai →R, (t,x, τ ) �→ �i
t (x, τ ), with the following

property: for every t ≥ 0 and x ∈ R
N , if τ is uniformly chosen from Ai , then the

pair (�i
t (x, τ ), xi(τ )) is an optimal coupling between Pt and x̄i = 1

N−1
∑

j �=i δxj
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with respect to the cost function c(u, v) = |u − v|p . Moreover, if Y is any ex-
changeable random vector in R

N , then E
∫ j
j−1 φ(�i

t (Y, τ )) dτ = 〈Pt ,φ〉 for any
j ∈ {1, . . . ,N}, j �= i, and any bounded measurable function φ.

For simplicity, in our notation we have not made explicit the dependence of �i
t

on p (however, see Remark 10). Now, we can define Ui as the solution of

dUi
t =

∫
R2

∫
[0,N)

[
(ξ − 1)Ui

t− + ζ�i
t (Xt−, τ )

]
N i (dt, dξ, dζ, dτ),(14)

where N i is the same Poisson point measure as in (12). The proof of Lemma 3 will
imply that the mapping ((t,ω), ξ, ζ, τ ) �→ (ξ −1)Ui

t−(ω)+ζ�i
t (Xt−(ω), τ ) above

is measurable with respect to the product of the predictable sigma field [in (t,ω)]
and the Borel sigma field of R2 × [0,N). This ensures that the integral in (14) has
the usual properties of integrals with respect to Poisson point processes.

We summarize our construction in the following.

LEMMA 4. Let p ≥ 1 be fixed. For each i = 1, . . . ,N there is a unique
solution Ui of (14), and it is a nonlinear process. Moreover, the collection
(X1,U1), . . . , (XN,UN) is exchangeable.

Thus, the system U = (U1, . . . ,UN) is indeed a tuple of N nonlinear processes.
However, as we already mentioned, they are not independent, since N i and N j

share a portion of N , namely, the atoms of N whose coordinates (ρ, σ ) lie in
[i −1, i)×[j −1, j) or [j −1, j)×[i −1, i). In particular, whenever such an atom
occurs the processes Ui and Uj jump simultaneously, using a single realization of
(L,R, L̃, R̃), and samples of Pt that also are correlated.

3. Proof of the main result. Before proving our results, let us first state two
lemmas that constitute our basic tools; they will be proven in Section 4. The first
one provides uniform bounds for the moments of Pt ; it can be seen as a version of
Theorem 3.2 in Matthes and Toscani (2008).

LEMMA 5 (Moment bounds). For p = 1 or p = 2, assume αp ≥ 0 and
Mp(P0) < ∞. If p = 2, assume also that E(LR + L̃R̃) = 0. Then for any
q ∈ {p} ∪ (p, q∗) there exists a constant C, depending on q and some moments
of P0 and (L,R, L̃, R̃) of order at most q , such that

Mq(Pt) ≤ Ce−ᾱp,q t ∀t ≥ 0.

The second lemma is fundamental in our developments since it decouples the
nonindependent nonlinear processes uniformly in time, even in the case αp = 0:
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LEMMA 6 (Decoupling). For p = 1 or p = 2, assume αp ≥ 0 and Mp(P0) <

∞. If p = 2, assume also that E(LR + L̃R̃) = 0. Then there exists a constant C,
depending only on the p-moment of P0 and (L,R, L̃, R̃), such that for all k =
2, . . . ,N and t ≥ 0,

Wp
p

(
Lk(Ut ),P

⊗k
t

) ≤ C(k − 1)min(1, t)e−αpt

N − 1
.

PROOF OF THEOREM 1. Define the constants αL
p = 1

2E(|L|p + |L̃|p) and

αR
p = 1

2E(|R|p + |R̃|p), so αp = 1 − αL
p − αR

p . We first treat the case p = 1. Thus,
we work with the processes Ui solution of (14) using the functions �i

t of Lemma 3
with p = 1. Let us prove (i) first. We estimate the quantity ft = E|X1

t −U1
t | which

provides an upper bound for W1(L1(Xt ),Pt ). Using (12) and (14), for all 0 ≤ s ≤ t

we have ∣∣X1
t − U1

t

∣∣ − ∣∣X1
s − U1

s

∣∣
=

∫
(s,t]

∫
R2

∫
[0,N)

(∣∣ξ (
X1

r− − U1
r−

) + ζ
(
X

i(τ )

r− − �1
r (Xr−, τ )

)∣∣
(15)

− ∣∣X1
r− − U1

r−
∣∣)

×N 1(dr, dξ, dζ, dτ).

Recall that the intensity of N 1 is (N − 1)−1 dt�̄(dξ, dζ ) dτ1A1(τ ), where �̄ =
(L(L,R) +L(L̃, R̃))/2. By the compensation formula, t �→ ft is absolutely con-
tinuous and we obtain

ft − fs ≤ E

∫ t

s

∫
R2

∫
A1

((|ξ | − 1
)∣∣X1

r − U1
r

∣∣ + |ζ |∣∣Xi(τ )
r − �1

r (Xr , τ )
∣∣)

× dτ

N − 1
�̄(dξ, dζ ) dr(16)

= E

∫ t

s

((
αL

1 − 1
)∣∣X1

r − U1
r

∣∣ + αR
1 W1

(
X̄1

r ,Pr

))
dr,

where in the last step we have used the fact that when τ is uniform in A1,
(�1

s (x, τ ), xi(τ )) is an optimal coupling between Ps and x̄1. We deduce that for
almost all t ≥ 0

∂tft ≤ −(
1 − αL

1
)
ft + αR

1 EW1
(
X̄1

t , Pt

)
.(17)

Recall that Ūi
t = 1

N−1
∑

j �=i δU
j
t

for i = 1, . . . ,N . The triangle inequality for W1

gives us

EW1
(
X̄1

t , Pt

) ≤ EW1
(
X̄1

t , Ū1
t

) +EW1
(
Ū1

t , Pt

)
(18)

≤ E
∣∣X1

t − U1
t

∣∣ +EW1
(
Ū1

t , Pt

)
,
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where the last inequality comes from the fact that (X
i(τ )
t ,U

i(τ )
t ) is a coupling be-

tween X̄1
t and Ū1

t when τ is uniformly chosen in A1, and from the exchangeability
of (Xi,Ui)i=1,...,N . Putting this together with (17), we obtain

∂tft ≤ −α1ft + αR
1 EW1

(
Ū1

t , Pt

)
.(19)

Next, we need an estimate for EW1(Ū1
t , Pt ). Since the system (U2, . . . ,UN) is

exchangeable, using a recent result [Theorem 1.2 of Hauray and Mischler (2014)],
we obtain the following: for each q > 0 and each γ < (2 + 1/q)−1, there exists a
constant Cq,γ such that

EW1
(
Ū1

t , Pt

) ≤ Cq,γ Mq(Pt )
1/q

(
W1

(
L

(
U2

t ,U3
t

)
,P ⊗2

t

) + 1

N − 1

)γ

.(20)

Now, Lemma 6 in the case p = 1 and k = 2 implies W1(L(U1
t ,U2

t ),P ⊗2
t ) ≤ C/N ,

where C is some constant, which can change from line to line in what follows.
From this, Lemma 5, and (19)–(20) we have ∂tft ≤ −α1ft + CN−γ e−(1/q)ᾱ1,q t ,
and then Gronwall’s lemma yields

ft ≤ C

Nγ

∫ t

0
e−α1(t−s)e−(1/q)ᾱ1,q s ds,

since f0 = 0. Bounding e−α1(t−s) ≤ e−(1/q)ᾱ1,q (t−s) gives (i) in the case p = 1 and
k = 1. From this and Lemma 6, case k ≥ 2 follows:

W1
(
Lk(Xt ),P

⊗k
t

) ≤ W1
(
Lk(Xt ),Lk(Ut )

) +W1
(
Lk(Ut ),P

⊗k
t

)
(21)

≤ E
∣∣X1

t − U1
t

∣∣ + Ck min(1, t)e−α1t

N
.

We now prove (ii): as in (18) we have

EW1(X̄t , Pt ) ≤ E
∣∣X1

t − U1
t

∣∣ +EW1(Ūt , Pt )

≤ Cte−(1/q)ᾱ1,q t

Nγ
+ Ce−(1/q)ᾱ1,q t

Nγ
,

where the last inequality comes from (i) in the case k = 1, and from (20) (with Ūt

and N in place of Ū1
t and N − 1) together with Lemma 6 in the case k = 2. From

the previous inequality, (ii) follows; moreover, the same estimate is also valid for
EW1(X̄1

t , Pt ).
Now we treat the case p = 2. The proof is similar to the previous case, with

adaptations where required. We work with the processes Ui solution of (14) using
the functions �i

t of Lemma 3 with p = 2. As before, to prove the case k = 1 we
want to estimate ft = E(X1

t − U1
t )2. We proceed as in (15): from (12) and (14),
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we have for all 0 ≤ s ≤ t(
X1

t − U1
t

)2 − (
X1

s − U1
s

)2

=
∫
(s,t]

∫
R2

∫
[0,N)

([
ξ
(
X1

r− − U1
r−

) + ζ
(
X

i(τ )

r− − �1
r (Xr−, τ )

)]2

− [
X1

r− − U1
r−

]2)
×N 1(dr, dξ, dζ, dτ)(22)

=
∫
(s,t]

∫
R2

∫
[0,N)

([
ξ2 − 1

](
X1

r− − U1
r−

)2 + ζ 2(
X

i(τ )

r− − �1
r (Xr−, τ )

)2

+ 2ξζ
(
X1

r− − U1
r−

)(
X

i(τ )

r− − �1
r (Xr−, τ )

))
×N 1(dr, dξ, dζ, dτ).

Taking expectations, the last term in the integral vanishes thanks to condition
E(LR + L̃R̃) = 0. As in (16)–(17), this yields

∂tft ≤ −(
1 − αL

2
)
ft + αR

2 EW2
2
(
X̄1

t , Pt

)
.(23)

Defining gt = EW2
2 (Ū1

t , Pt ) and using the triangle inequality of W2 we have

EW2
2
(
X̄1

t , Pt

)
≤ EW2

2
(
X̄1

t , Ū1
t

) + 2EW2
(
X̄1

t , Ū1
t

)
W2

(
Ū1

t , Pt

) +EW2
2
(
Ū1

t , Pt

)
(24)

≤ ft + 2f
1/2
t g

1/2
t + gt ,

where in the last inequality the term ft is obtained with the same argument as
in (18), and the term f

1/2
t g

1/2
t comes from the Cauchy–Schwarz inequality. From

this and (23), we obtain

∂tft ≤ −α2ft + 2αR
2 f

1/2
t g

1/2
t + αR

2 gt .

Using a version of Gronwall’s lemma [see, e.g., Lemma 4.1.8 of Ambrosio, Gigli
and Savaré (2008)] together with Jensen’s inequality, we obtain

ft ≤ αR
2 e−α2t

(
2 + 8αR

2 t
) ∫ t

0
eα2sgs ds.(25)

Now, we need an estimate for gt = EW2
2 (Ū1

t , Pt ). Unfortunately, we do not have
at our disposal a result similar to (20), which is valid only for W1. To bypass this,
we will make use of the following lemma (proved in Section 4); it has the spirit
of (20) in the sense that it will allow us to work with W2

2 (Ln(Ut ),P
⊗n
t ) instead of

EW2
2 (Ū1

t , Pt ), but at the price of the extra term εn,2(Pt ).
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LEMMA 7. Let Y = (Y 1, . . . , Ym) be an exchangeable random vector, and let
μ be a probability measure on R. Then, for any p ≥ 1 and n ≤ m, n ∈ N, we have

1

2p−1EW
p
p (Ȳ,μ) ≤ kn

m

(
Wp

p

(
Ln(Y),μ⊗n) + εn,p(μ)

)

+ �

m

(
Wp

p

(
L�(Y),μ⊗�) + ε�,p(μ)

)
,

where k and � are the unique nonnegative integers satisfying m = kn + �, with
� ≤ n − 1. Here, εn,p(μ) := EWp

p (Z̄,μ), where Z = (Z1, . . . ,Zn) are i.i.d. and μ

distributed.

Note that W2
2 (L�(Ut ),P

⊗�
t )+ ε�,2(Pt ) ≤ 8M2(Pt ). Using this lemma with p =

2, m = N − 1, Y = (U2
t , . . . ,UN−1

t ) and μ = Pt , we obtain that for every n ≤
N − 1

EW2
2
(
Ū1

t , Pt

) ≤ W2
2
(
Ln(Ut ),P

⊗n
t

) + εn,p(Pt ) + n − 1

N − 1
8M2(Pt )

≤ C

(
ne−α2t

N
+ εn,2(Pt )

)
,

where in the last inequality we have used Lemmas 5 and 6 with p = 2 and k = n;
again C is some constant that can change from line to line. Putting this into (25)
gives

ft ≤ C(1 + t)

(
nte−α2t

N
+

∫ t

0
e−α2(t−s)εn,2(Ps) ds

)
.

Given q ∈ (2, q∗), q �= 4, from Theorem 1 of Fournier and Guillin (2013) we
know that εn,2(Pt ) ≤ CM

2/q
q (Pt )n

−η, where η = min(1/2,
q−2
q

). Choosing n =

N1/(1+η)� and using Lemma 5 with p = 2 yields

ft ≤ C(1 + t)

(
te−α2t

Nγ
+ 1

Nγ

∫ t

0
e−α2(t−s)e−(2/q)ᾱ2,q s ds

)
,

where γ = η/(1 + η) = min(1/3,
q−2
2q−2). Bounding e−α2(t−s) ≤ e−(2/q)ᾱ2,q (t−s)

gives (i) in the case p = 2 and k = 1. The case k ≥ 2 follows as in (21).
Finally, (ii) in the case p = 2 follows from (24) with a similar argument as in

the case p = 1. This completes the proof. �

COROLLARY 8. Under the same hypotheses and notation of Theorem 1, we
have for all T ≥ 0,

E sup
t∈[0,T ]

∣∣X1
t − U1

t

∣∣p ≤ C

Nγ

∫ T

0
(1 + t)pe−(p/q)ᾱp,q t dt.
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PROOF. From (15), discarding the negative term in the integral, we have

sup
t∈[0,T ]

∣∣X1
t − U1

t

∣∣
≤

∫
(0,T ]

∫
R2

∫
[0,N)

(|ξ |∣∣X1
t− − U1

t−
∣∣ + |ζ |∣∣Xi(τ )

t− − �1
t (Xt−, τ )

∣∣)
×N 1(dt, dξ, dζ, dτ).

With the same argument that produced the term W1(X̄1
r ,Pr) in (16), the conclusion

follows taking expectations and using the previous estimates for E|X1
t − U1

t | and
EW1(X̄1

t , Pt ). This proves the case p = 1, and the case p = 2 follows from (22)
with a similar argument. �

REMARK 9. To illustrate how our methods can indeed be used in noncutoff
contexts, consider Kac’s model: L = cos θ = L̃ and R = − sin θ = −R̃, where θ

is chosen according to an even cross-section function β : [−π,π ] → R+ that pos-
sibly is singular at 0, but satisfies the classical condition

∫ π
0 θ2β(θ) dθ < ∞, see

Desvillettes, Graham and Méléard (1999) for details. Define βε(θ) = 1|θ |>εβ(θ)

for a given cutoff level ε > 0, and associate with it the collection (P ε
t )t≥0 solving

∂tP
ε
t = κε(−P ε

t +Q+
ε (P ε

t )), where κε = ∫ π
−π βε(θ) dθ and Q+

ε is defined as∫
φ(u)Q+

ε (μ)(du)

=
∫
R

∫
R

∫ π

−π
φ(u cos θ − v sin θ)

βε(θ) dθ

κε

μ(dv)μ(du).

The particle system Xε and nonlinear processes Uε are constructed in a way similar
as in (12) and (14) but now using a Poisson measure N ε,i(dt, dθ, dτ) with inten-
sity (N −1)−1 dt βε(θ) dθ dτ1Ai (τ ) and functions �

ε,i
t that couple optimally with

P ε
t instead of Pt . Note that:

• The even moments of P ε
t are controlled uniformly in time and independently

of ε [see, e.g., Lemma A.5 in Fournier and Godinho (2012) in the case of the
noncutoff nonlinear process; also, an induction similar to the one used in the
proof of Lemma 5 yields the desired uniform bounds for Mq(P

ε
t ) when q is

even].
• The decoupling property of Lemma 6 is also valid for the system Uε

t , with con-
stants independent of ε: in (31), all the terms involve either 1 − L or R2, which
correspond to 1 − cos θ and sin2 θ , respectively, both of order θ2.

• In (25), the constant αR
2 corresponds to

∫ π
−π sin2 θβε(θ).

Thus, the argument can be replicated and the final constant will depend on∫ π
0 θ2βε(θ) dθ , which remains bounded as we let the cutoff ε → 0. Assuming,
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for instance, that M6(P0) < ∞, this yields a constant C independent of ε > 0 such
that

EW2
2
(
X̄ε

t , P
ε
t

) ≤ C(1 + t)2

N1/3 .

However, we have not been able to obtain a trajectorial result in the noncut-
off case: discarding the negative term in the integral of (22) produces the term∫ π

0 cos2 θβε(θ) dθ which no longer stays bounded when ε → 0.

4. Proof of intermediate lemmas.

PROOF OF LEMMA 3. For fixed n ∈ N, given y = (y1, . . . , yn) ∈ R
n re-

call that we write ȳ = 1
n

∑
j δyj . The mapping (t,y) �→ (Pt , ȳ) from R+ × R

n

to P(R) × P(R) is continuous when P(R) is endowed with the weak topology
(weak continuity of t �→ Pt is clear from the pathwise properties of the non-
linear process). Thus, thanks to a measurable selection result [see, e.g., Corol-
lary 5.22 of Villani (2009)], there exists a measurable mapping (t,y) �→ πt,ȳ such
that πt,ȳ ∈ P(R × R) is an optimal transference plan between Pt and ȳ. We now
define

G(t,y,B) = πt,ȳ(B × {y1})
πt,ȳ(R× {y1}) = πt,ȳ

(
B × {

y1}|R× {
y1})

,

for t ≥ 0, y ∈ R
n and any Borel set B ⊆ R. We claim that G is a probability

kernel from R+ ×R
n into R. Indeed, it suffices to show that for every such B the

mapping (t,y) �→ πt,ȳ(B × {y1}) is measurable, which in turn follows from the
measurability of (t,y) �→ (πt,ȳ,y) and the identity

πt,ȳ
(
B × {

y1}) = lim
ε→0

∑
�∈N

πt,ȳ
(
B × Dε

�

)
1Dε

�

(
y1)

,

where (Dε
�)�∈N is a measurable partition of R with diam(Dε

�) ≤ ε.
Now, given N ≥ 1, with the kernel G defined above for n = N − 1 we can

associate a measurable mapping g :R+ ×R
N−1 × [0,1] → R or randomization of

G such that g(t,y, θ) has distribution G(t,y, ·) whenever θ is a uniform random
variable in [0,1] [see, e.g., Lemma 3.22 of Kallenberg (2002)]. For x ∈ R

N , we
now put

�i
t (x, τ ) =

N∑
j �=i

1{i(τ )=j }g
(
t,x(ij), τ − 
τ�), τ ∈ Ai,(26)

where x(ij) ∈ R
N−1 denotes the vector x with its i coordinate removed, the j coor-

dinate in the first position, and the remaining coordinates in positions 2, . . . ,N −1
in increasing order. We now show that when τ is uniform in Ai , �i

t (x, τ ) and xi(τ )
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have joint distribution πt,x̄i . Denoting Pi the law of this random variable τ and us-
ing the fact that g(t,x(ij), θ) has law πt,x̄i (du×{xj }|R×{xj }) when θ is uniform
in [0,1], we have for every fixed measurable set B ⊆ R and every j �= i:

Pi(�i
t (x, τ ) ∈ B,xi(τ ) = xj )
= ∑

� : x�=xj ,� �=i

∫ �

�−1
1B

(
g
(
t,x(i�), τ − 
τ�)) dτ

N − 1

= 1

N − 1

∑
� : x�=xj ,� �=i

πt,x̄i (B × {x�})
πt,x̄i (R× {x�})

= |{� :x� = xj , � �= i}|
(N − 1)πt,x̄i (R× {xj })πt,x̄i

(
B × {

xj })
,

where the quotient in the last line equals 1. This shows that (�i
t (x, τ ), xi(τ )) has

distribution πt,x̄i and completes the proof of the existence of �i .

It remains to show that E
∫ j
j−1 φ(�i

t (Y, τ )) dτ = 〈Pt ,φ〉 when Y is exchange-
able, j �= i and φ is bounded and measurable. We get from (26) that∫ j

j−1
φ

(
�i

t (Y, τ )
)
dτ =

∫ 1

0
φ

(
g
(
t,Y(ij), τ

))
dτ

=
∫
R

φ(u)πt,Ȳi

(
du × {

Y j }|R× {
Y j })

,

where we have again used that g(t,Y(ij), θ) has distribution πt,Ȳi (du × {Y j }|R×
{Y j }) when θ is uniform in [0,1]. From the exchangeability of Y, it is clear that
the last expression has the same distribution, for all j �= i. Thus, its expected value
must be the same for all j �= i, and since

〈Pt ,φ〉 =
∫
Ai

φ
(
�i

t (Y, τ )
) dτ

N − 1
= ∑

j �=i

∫ j

j−1
φ

(
�i

t (Y, τ )
) dτ

N − 1
,

the conclusion follows. �

REMARK 10. Since we are working on R, the increasing coupling between Pt

and x̄i is in fact an optimal coupling [see, e.g., Theorem 6.0.2 in Ambrosio, Gigli
and Savaré (2008)], which allows for a simpler proof of Lemma 3. However, we
opted to give a proof that remains valid on R

d with the hope that this coupling can
be used in a more general setting.

PROOF OF LEMMA 4. Existence and uniqueness for (14) are obtained with
a construction similar to (11). To show that Ui is a nonlinear process, de-
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fine Ñ i (dt, dξ, dζ, dv) to be the point measure on R+ × R
2 × R with atoms

(t, ξ, ζ,�i
t (Xt−, τ )) for every atom (t, ξ, ζ, τ ) of N i ; since the dependence on

X is predictable, one can use the compensation formula to compute the Laplace
functional of Ñ i and conclude that Ñ i is a Poisson point measure with intensity
dt�̄(dξ, dζ )Pt (dv). Then (9) is satisfied for V = Ui with M = Ñ i , implying that
L(Ui) = P . The collection (X1,U1), . . . , (XN,UN) is obviously exchangeable.

�

PROOF OF LEMMA 5. Call h
q
t = ∫ |u|qPt (du). We first prove the statement

for the case p = 2. Using (1)–(2) with φ = | · |2 yields ∂th
2
t = −α2h

2
t + E(LR +

L̃R̃)(h1
t )

2, and since E(LR + L̃R̃) = 0 this implies h2
t = h2

0e
−α2t . Assume now

that q ∈ (2, q∗) is an integer. Using (1)–(2) with φ = | · |q , we have

∂th
q
t = −h

q
t + 1

2

∫∫
E

(|Lu + Rv|q + |L̃v + R̃u|q)
Pt(du)Pt (dv)

(27)

≤ −αqh
q
t + 1

2

q−1∑
i=1

(
q

i

)
hi

th
q−i
t E

(|L|i |R|q−i + |L̃|i |R̃|q−i).
Using loose bounds for

(q
i

)
, we obtain

h
q
t ≤ h

q
0e−αq t + C

q−1∑
i=1

∫ t

0
e−αq(t−s)hi

sh
q−i
s ds,

where C is a constant that does not depend on t , and may change from line to line.
We now apply induction: the case q = 2 was already proven, and for q ∈ (2, q∗)
integer, assuming the desired property for all integer in {2, . . . , q − 1} and using
the bound h1

t ≤ (h2
t )

1/2 ≤ Ce−α2t/2, we obtain

h
q
t ≤ h

q
0e−αq t + C

∫ t

0
e−αq(t−s)e−α2s/2e−ᾱ2,q−1s ds

+ C

q−2∑
i=2

∫ t

0
e−αq(t−s)e−ᾱ2,i se−ᾱ2,q−i s ds.

Note that αq > 0, since 2 < q < q∗, and recall that ᾱ2,q := inf2≤r≤q αr =
min(α2, αq). Thus, if α2 = 0 then ᾱ2,i = ᾱ2,q−i = ᾱ2,q = 0 and the last inequal-
ity yields h

q
t ≤ h

q
0 + C

∫ t
0 e−αq(t−s) ds ≤ C, as desired. On the other hand, if

α2 > 0, we bound α2, αq , ᾱ2,i and ᾱ2,q−i from below by ᾱ2,q > 0 and obtain
h

q
t ≤ h

q
0e−ᾱ2,q t + C

∫ t
0 e−ᾱ2,q (t+s/2) ds ≤ Ce−ᾱ2,q t , which completes the induction

and the proof in the case p = 2 and integer q ∈ {2} ∪ (2, q∗).
Assume now that 2 < q = m + ε < q∗ with m ∈ {2, . . .} and ε ∈ (0,1). Bound-

ing |x + y|q ≤ (|x| + |y|)m(|x|ε + |y|ε) in (27) and using the binomial theorem as
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before, we obtain

∂th
q
t = −h

q
t + 1

2

m∑
i=0

(
m

i

)∫∫
E

((|Lu|ε + |Rv|ε)|Lu|i |Rv|m−i

+ (|L̃v|ε + |R̃u|ε)|L̃v|i |R̃u|m−i)Pt(du)Pt (dv)

= −αqh
q
t +

m−1∑
i=0

(
m

i

)
E

(|L|i+ε|R|m−i + |L|m−i |R|i+ε

+ |L̃|i+ε|R̃|m−i + |L̃|m−i |R̃|i+ε)hi+ε
t hm−i

t ,

which yields

h
q
t ≤ h

q
0e−αq t + C

m−1∑
i=0

∫ t

0
e−αq(t−s)hi+ε

s hm−i
s ds.

Note that hr
t ≤ (h2

t )
r/2 ≤ Ce−rα2t/2 for r ∈ (0,2). This and the fact that the prop-

erty is true for the integers, allow us to use induction on m in a way similar as
before, and complete the proof in the case p = 2.

A similar argument, with the induction starting at q = 1, proves the case p = 1.
�

PROOF OF LEMMA 6. Let us first prove the case p = 1. Given k ∈ {2, . . . ,N}
fixed, we want to construct k independent nonlinear processes V 1, . . . , V k such
that E|Ui

t − V i
t | is small. To achieve this, we will decouple U1, . . . ,Uk by replac-

ing the shared atoms of N 1, . . . ,N k with new, independent atoms. To this end, let
M be an independent copy of N (also independent from X0), and define for each
i ∈ {1, . . . , k}

Mi(dt, dξ, dζ, dτ)

= N
(
dt,

(
dξ × dζ ×R

2)
, [i − 1, i), dτ

)
(28)

+N
(
dt,

(
R

2 × dξ × dζ
)
, dτ, [i − 1, i)

)
1[k,N)(τ )

+M
(
dt,

(
R

2 × dξ × dζ
)
, dτ, [i − 1, i)

)
1[0,k)(τ ).

Note that Mi is, like N i , a Poisson point measure on R+ × R
2 × [0,N) with

intensity (N − 1)−1 dt�̄(ξ, ζ ) dτ1Ai (τ ), and that M1, . . . ,Mk are independent.
Following (14), we define V i as the solution of

dV i
t =

∫
R2

∫
[0,N)

[
(ξ − 1)V i

t− + ζ�i
t (Xt−, τ )

]
Mi (dt, dξ, dζ, dτ),(29)

with V i
0 = Ui

0. If we define M̃i to be the point process in R+ × R
2 × R with

atoms (t, ξ, ζ,�i
t (Xt−, τ )) for every atom (t, ξ, ζ, τ ) of Mi , it is clear that V i
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depends only on M̃i and Xi
0. Since: (i) the dependence on X is predictable, (ii) the

Poisson measures M1, . . . ,Mk are independent and (iii) the τ -law of �i
t (x, τ )

is Pt for every x ∈ R
N , one can use the compensation formula to compute the

joint Laplace functional of M̃1, . . . ,M̃k and conclude that they are independent
Poisson point measures, all with intensity dt�̄(dξ, dζ )Pt (dv). This shows that
each V i is a nonlinear process and that they are independent.

Consequently, we have

W1
(
Lk(Ut ),P

⊗k
t

) ≤ E

(
1

k

k∑
i=1

∣∣Ui
t − V i

t

∣∣) = E
∣∣U1

t − V 1
t

∣∣,
where in the last step we used the fact that all the (Ui,V i)’s have the same law.
To estimate the last term ht = E|U1

t − V 1
t |, we proceed as in (15): from (13), (14),

(28) and (29), we have for all 0 ≤ s ≤ t :

ht = hs +E

∫
(s,t]

∫
R2

∫
[0,N)

(
J 1

r + J 2
r + J 3

r

)
,(30)

where J 1
r is the term associated with the simultaneous jumps of U1 and V 1, J 2

r

corresponds to the jumps of U1 alone, and J 3
r gives the jumps of V 1 alone. Specif-

ically,

J 1
r = (|ξ | − 1

)∣∣U1
r− − V 1

r−
∣∣(N (

dr,
(
dξ × dζ ×R

2)
, [0,1), dτ

)
+N

(
dr,

(
R

2 × dξ × dζ
)
, dτ, [0,1)

)
1[k,N)(τ )

)
,

J 2
r = (∣∣ξ (

U1
r− − V 1

r−
) + ζ�1

r (Xr−, τ ) + (ξ − 1)V 1
r−

∣∣ − ∣∣U1
r− − V 1

r−
∣∣)

×N
(
dr,

(
R

2 × dξ × dζ
)
, dτ, [0,1)

)
1[0,k)(τ ),

J 3
r = (∣∣ξ (

U1
r− − V 1

r−
) − ζ�1

r (Xr−, τ ) − (ξ − 1)U1
r−

∣∣ − ∣∣U1
r− − V 1

r−
∣∣)

×M
(
dr,

(
R

2 × dξ × dζ
)
, dτ, [0,1)

)
1[0,k)(τ ).

Then

E

∫
(s,t]

∫
R2

∫
[0,N)

J 1
r =

(
1

2

(
E|L| − 1

) + 1

2

(
E|L̃| − 1

)N − k

N − 1

)∫ t

s
hr dr.

Using the triangle inequality in the term J 2
r ,

E

∫
(s,t]

∫
R2

∫
[0,N)

J 2
r

≤ E

∫ t

s

∫ k

1

((
E|L̃| − 1

)∣∣U1
r − V 1

r

∣∣ + E|R̃|∣∣�1
r (Xr , τ )

∣∣ + E|L̃ − 1|∣∣V 1
r

∣∣)

× dr dτ

2(N − 1)
.
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From Lemma 3, we know that E
∫ i
i−1 |�1

r (Xr , τ )|dτ = M1(Pr) for all i = 2, . . . , k.
Using that V 1

r has law Pr , we obtain

E

∫
(s,t]

∫
R2

∫
[0,N)

J 2
r

≤ k − 1

2(N − 1)

((
E|L̃| − 1

) ∫ t

s
hr dr + (

E|L̃ − 1| + E|R̃|) ∫ t

s
M1(Pr) dr

)
.

With a similar argument, the last inequality is also valid with J 3
r in the left-hand

side. Putting all this into (30), we have

ht ≤ hs −
(

1 − 1

2
E

(|L| + |L̃|) + 1

2

(
1 − E|L̃|) k − 1

N − 1

)∫ t

s
hr dr

+ (E|L̃ − 1| + E|R̃|)(k − 1)

N − 1

∫ t

s
M1(Pr) dr.

Recall the constants αL
1 = 1

2E(|L| + |L̃|), αR
1 = 1

2E(|R| + |R̃|) and α1 = 1 −αL
1 −

αR
1 . Also, put b = 1

2(1 − E|L̃|), which can be assumed nonnegative without loss
of generality [if not, exchange the roles of (L,R) and (L̃, R̃)]. From the previous
inequality and from Lemma 5 in the case q = 1, it follows that for almost all t ≥ 0,

∂tht ≤ −
(
α1 + αR

1 + b
k − 1

N − 1

)
ht + C(k − 1)e−α1t

N − 1
,

and now Gronwall’s lemma gives

ht ≤ C(k − 1)e−α1t

(N − 1)(αR
1 + b((k − 1)/(N − 1)))

[
1 − e−(αR

1 +b((k−1)/(N−1)))t ].
Using the inequality 1 − e−x ≤ x, the desired result follows for the case p = 1.

In the case p = 2, we construct the system V 1, . . . , V k exactly as before, but
using the functions �i

t provided by Lemma 3 with cost |x − y|2. To obtain the
desired inequality for W2

2 (Lk(Ut ),P
⊗k
t ), it suffices to work with ht = E(U1

t −
V 1

t )2. We also have (30), where J 1
r , J 2

r and J 3
r now are given by

J 1
r = (

ξ2 − 1
)(

U1
r− − V 1

r−
)2(

N
(
dr,

(
dξ × dζ ×R

2)
, [0,1), dτ

)
+N

(
dr,

(
R

2 × dξ × dζ
)
, dτ, [0,1)

)
1[k,N)(τ )

)
,

J 2
r = ((

ξ
(
U1

r− − V 1
r−

) + ζ�1
r (Xr−, τ ) + (ξ − 1)V 1

r−
)2 − (

U1
r− − V 1

r−
)2)

×N
(
dr,

(
R

2 × dξ × dζ
)
, dτ, [0,1)

)
1[0,k)(τ ),

J 3
r = ((

ξ
(
U1

r− − V 1
r−

) − ζ�1
r (Xr−, τ ) − (ξ − 1)U1

r−
)2 − (

U1
r− − V 1

r−
)2)

×M
(
dr,

(
R

2 × dξ × dζ
)
, dτ, [0,1)

)
1[0,k)(τ ).
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Using that E
∫ i
i−1 �1

t (Xt , τ )2 dτ = M2(Pt ) for all i = 2, . . . , k, we obtain

E

∫
(s,t]

∫
R2

∫
[0,N)

J 1
r =

(
1

2

(
EL2 − 1

) + 1

2

(
EL̃2 − 1

)N − k

N − 1

)∫ t

s
hr dr,

E

∫
(s,t]

∫
R2

∫
[0,N)

J 2
r

=
∫ t

s

((
EL̃2 − 1

)
hr + ER̃2M2(Pr) + E(L̃ − 1)2M2(Pr)

+ 2E(L̃R̃)E
(
U1

r − V 1
r

) ∫ k

1
�1

r (Xr , τ )
dτ

k − 1

+ 2E
(
L̃(L̃ − 1)

)
E

(
U1

r − V 1
r

)
V 1

r

+ 2E
(
(L̃ − 1)R̃

)
EV 1

r

∫ k

1
�1

r (Xr , τ )
dτ

k − 1

)
(k − 1) dr

2(N − 1)
,

E

∫
(s,t]

∫
R2

∫
[0,N)

J 3
r

=
∫ t

s

((
EL̃2 − 1

)
hr + ER̃2M2(Pr) + E(L̃ − 1)2M2(Pr)

− 2E(L̃R̃)E
(
U1

r − V 1
r

) ∫ k

1
�1

r (Xr , τ )
dτ

k − 1

− 2E
(
L̃(L̃ − 1)

)
E

(
U1

r − V 1
r

)
U1

r

+ 2E
(
(L̃ − 1)R̃

)
EU1

r

∫ k

1
�1

r (Xr , τ )
dτ

k − 1

)
(k − 1) dr

2(N − 1)
.

From this and (30), we have for almost all t ≥ 0

∂tht = −ht

((
1 − 1

2
E

(
L2 + L̃2)) + k − 1

2(N − 1)
E(L̃ − 1)2

)

+ M2(Pt )
k − 1

N − 1

(
E(L̃ − 1)2 + ER̃2)

(31)

+ E
(
(L̃ − 1)R̃

)
E

(
U1

t + V 1
t

) ∫ k

1
�1

t (Xt , τ )
dτ

N − 1
.

We also have
∫ i
i−1 E(U1

t + V 1
t )�1

t (Xt , τ ) dτ ≤ 2M2(Pt ) for all i = 2, . . . , k,
thanks to the Cauchy–Schwarz and Jensen inequalities. Recall the constants αL

2 =
1
2E(L2 + L̃2), αR

2 = 1
2E(R2 + R̃2), α2 = 1 − αL

2 − αR
2 , and put b = 1

2E(L̃ − 1)2.
Using Lemma 5 in the case p = q = 2, we thus obtain

∂tht ≤ −
(
α2 + αR

2 + b
k − 1

N − 1

)
ht + C(k − 1)M2(P0)e

−α2t

N − 1
,

and the conclusion follows from Gronwall’s lemma as before. �
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PROOF OF LEMMA 7. For simplicity, we will prove only the case � = 0, that
is, when n divides m. Let us arrange a vector y ∈ R

m as a matrix with k rows
and n columns, that is, y = (yij ), with i = 1, . . . , k, j = 1, . . . , n, and write yi =
(yi1, . . . , yin) and ȳi = 1

n

∑n
j=1 δyij . Let us couple Y with a random vector Z ∈

(Rn)k in such a way that each (Yi ,Zi ) is an optimal coupling between Ln(Y) and
μ⊗n [with respect to the cost function d

p
n,p(·, ·) of (8), as usual]. Using the latter,

we have

EWp
p (Ȳ, Z̄) ≤ 1

k

k∑
i=1

E
1

n

n∑
j=1

∣∣Y ij − Zij
∣∣p = Wp

p

(
νn,μ⊗n)

.(32)

On the other hand, for each i = 1, . . . , k there is a function qi :Rm × [0,1] → R

such that for all z ∈ R
m, the pair (ziin(θ), qi(z, θ)) with in(θ) = i(nθ) = 
nθ� + 1,

is an optimal coupling between z̄i and μ when θ is uniformly chosen in [0,1].
Now we randomize the choice of i with a uniform variable ϑ ∈ [0,1] independent
of θ , so zik(ϑ)in(θ) and q ik(ϑ)(z, θ) are (θ,ϑ)-realizations of z̄ and μ, respectively.
Putting Z in place of z, this construction gives

EWp
p (Z̄,μ) ≤ E

∫∫
[0,1]2

∣∣Zik(ϑ)in(θ) − q ik(ϑ)(Z, θ)
∣∣p dϑ dθ

= E
1

k

k∑
i=1

Wp
p (Z̄i ,μ) = εn,p(μ).

[Recall that εn,p(μ) = EWp
p ( 1

n

∑
i δζ i ,μ), with ζ 1, . . . , ζ n independent and

μ-distributed]. With this and (32), we conclude in the case � = 0

EWp
p (Ȳ,μ) ≤ E

(
Wp(Ȳ, Z̄) +Wp(Z̄,μ)

)p ≤ 2p−1(
EWp

p (Ȳ, Z̄) +EWp
p (Z̄,μ)

)
.

In the case � > 0, the construction is similar, but now (Y,Z) must include an
additional optimal coupling between L�(Y) and μ⊗�, which gives the extra term.

�
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