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Abstract: Time series data obtained from neurophysiological signals is of-
ten high-dimensional and the length of the time series is often short relative
to the number of dimensions. Thus, it is difficult or sometimes impossible
to compute statistics that are based on the spectral density matrix because
estimates of these matrices are often numerically unstable. In this work,
we discuss the importance of regularization for spectral analysis of high-
dimensional time series and propose shrinkage estimation for estimating
high-dimensional spectral density matrices. We use and develop the multi-
variate Time-frequency Toggle (TFT) bootstrap procedure for multivariate
time series to estimate the shrinkage parameters, and show that the multi-
variate TFT bootstrap is theoretically valid. We show via simulations and
an fMRI data set that failure to regularize the estimates of the spectral
density matrix can yield unstable statistics, and that this can be alleviated
by shrinkage estimation.

Keywords and phrases: Bootstrap, high-dimensional time series, shrink-
age estimation, spectral analysis.
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1. Introduction

With the ubiquity of high-dimensional time series data, there is a need for de-
velopments of statistical methods for spectral analysis of time series data that
are robust to the curse of high-dimensionality. Examples of high-dimensional
time series include, but are not limited to, signals from electroencephalogram
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(EEG), data obtained from functional magnetic resonance imaging (fMRI) ex-
periments, systems biology, and economic panel data. Böhm and von Sachs
[4] developed a shrinkage procedure for spectral analysis of high-dimensional
portfolio analysis and Fiecas et al. [11] used shrinkage estimation for spectral
analysis of EEG signals. There have been many contributions to the literature
on the estimation of high-dimensional covariance matrices (see Pourahmadi [25]
for a thorough review), but only very few contributions to the literature in the
estimation of high-dimensional spectral density matrices, which can be thought
of as the covariance matrix of the time series data in the frequency domain.
The works by Böhm and von Sachs [5] and Fiecas and Ombao [10] used the
same shrinkage framework for spectral analysis of multivariate time series, but
they had two different goals. The former was interested primarily in regulariza-
tion, and so their shrinkage estimator introduced a substantial amount of bias
to yield an estimator that is numerically stable. The latter, on the other hand,
was interested primarily in obtaining a good fit to the spectral density matrix,
and so their shrinkage estimator had good frequency resolution, allowing them
to accurately capture the frequencies that drive the dynamics of the process.
However, they had the luxury of large samples and multiple traces of the data.
The primary goal of this work is to give further methodological developments
to shrinkage estimation of spectral density matrices by balancing two extremes,
namely, that of regularization per Böhm and von Sachs [5] and that of fit per
Fiecas and Ombao [10], and in the setting where the length of the time se-
ries is small relative to its dimensionality. Specifically, we will use a diagonal
shrinkage target in order to accurately capture the power for each dimension
of the time series and simultaneously yield an estimate of the spectral density
matrix that is regularized due to dimensionality. Furthermore, one important
parameter in the shrinkage framework is the shrinkage weight, which is a func-
tion of population-level statistics. The strategy by Böhm and von Sachs [5] and
Fiecas and Ombao [10] to estimate these statistics was to borrow information
from neighboring frequencies, which decreased their frequency resolution. In the
present work, to estimate these statistics, we have developed a bootstrap pro-
cedure for multivariate time series, and so we do not suffer from this loss in
frequency resolution.

There has been very little theoretical and methodological developments on
the bootstrap for multivariate time series. The classic work by Franke and Härdle
[15] on bootstrapping univariate time series in the frequency domain was ex-
tended to the multivariate setting by Berkowitz and Diebold [2], though without
proving theoretical validity. Dette and Paparoditis [9] gave theoretical develop-
ments on bootstrapping frequency domain statistics for hypothesis testing. Dai
and Guo [8] and Guo and Dai [17] showed how to create bootstrap samples of
multivariate time series given any valid spectral density matrix, and their ideas
were recently used by Krafty and Collinge [20] for creating bootstrap confidence
intervals for each element of the spectral density matrix. Jentsch and Kreiss
[18] developed the multiple hybrid bootstrap for multivariate time series, which
combines the time domain parametric bootstrap and the frequency domain non-
parametric bootstrap, and showed its theoretical validity. In the present work,
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we have extended the ideas by Kirch and Politis [19] on the Time-Frequency
Toggle (TFT) bootstrap for univariate time series to the multivariate setting.
The method is called TFT because the original data is observed in the time
domain, which is then mapped to the frequency domain where it is resampled,
and then mapped back to the time domain. In our context, we can show that
our extension of the TFT to the multivariate setting produces theoretically valid
bootstrap samples.

This paper is organized as follows. In Section 2, we discuss and develop shrink-
age estimation for the spectral density matrix. This section includes a brief
review of smoothed periodogram matrices and also our algorithm for the multi-
variate TFT bootstrap. In Section 3, we illustrate the performance of shrinkage
estimators on simulated high-dimensional time series data. In Section 4, we
present results from the analysis of a high-dimensional resting-state fMRI data
set. The theoretical validity of the multivariate TFT bootstrap is argued in
Section 5. And finally, Section 6 is our discussion of this work.

2. Shrinkage estimators for the spectral density matrix

2.1. The smoothed periodogram matrix

Let X(t), t = 1, . . . , T, be a discrete real-valued zero-mean weakly stationary
time series with an absolutely summable autocovariance function. The P × P
spectral density matrix f(ω) of X(t) is

f(ω) =

∞∑

h=−∞

E(X(t)X(t + h)⊤) exp(−i2πωh).

To estimate f(ω) nonparametrically, we first convert the data X(t) from
the time domain to the frequency domain using the discrete Fourier trans-
form: dX(ω) =

∑T
t=1 X(t) exp(−i2πωt). The periodogram matrix is IT (ω) =

T−1dX(ω)dX(ω)∗, where (∗) denotes the complex conjugate transpose. It is
well-known that the periodogram matrix is an asymptotically unbiased but in-
consistent estimator for f(ω) [6]. If we smooth each (j, k)-th element of IT (ω)

using a smoothing kernelK
(jk)
T (·) whose smoothing span isM

(jk)
T , then this gives

us each element of the smoothed periodogram matrix f̃T (ω), i.e., the (j, k)-th

element of f̃T (ω) is given by f̃jk,T (ω) =
∫ 0.5

−0.5
K

(jk)
T (ω−α)Ijk,T (α)dα. Under reg-

ularity conditions and in an asymptotic framework where the smoothing spans
increase at a rate slower than the sample size T , the smoothed periodogram
matrix is a consistent estimator for f(ω) [6].

Even though the smoothed periodogram matrix is a consistent estimator, it
can also be very unstable numerically, in particular for high dimensionality; at
each frequency, the dispersion between its maximum eigenvalue and its minimum
eigenvalue can be considerably larger than the corresponding quantity of its
population analog, the true underlying spectral density matrix. This leads to
an increased condition number (see, e.g., Böhm and von Sachs [5]), which is
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defined to be the ratio of the maximum eigenvalue to the minimum eigenvalue.
As a result, statistics based on the inverse of the spectral density matrix are
either impossible to compute because the smoothed periodogram matrix is not
invertible or, if it is invertible, they will have high variance. This motivates to
use, as an alternative, shrinkage estimators to obtain regularized estimates of
the spectral density matrix, as shrinkage can considerably reduce the dispersion
in the range of the empirical eigenvalues and, in particular, move the minimum
eigenvalue further away from zero.

2.2. Shrinkage estimators

The class of estimators for the spectral density matrix we consider in this work
will have the following form:

f̂(ω) = WT (ω)Ξ(ω) + (1−WT (ω))f̃T (ω), (1)

where f̃T (ω) is the smoothed periodogram matrix, Ξ(ω) is what we call the
shrinkage target, and WT (ω) is the shrinkage weight. This form, a convex combi-
nation between the shrinkage target and the data-driven smoothed periodogram
matrix, was used in previous works for estimating spectral density matrices
[5, 4, 10]. Specifically, Böhm and von Sachs [5] used Ξ(ω) = µ(ω)Id, where µ(ω)

is the mean eigenvalue of f̃T (ω) at frequency ω. This is the frequency domain
analog of the estimator developed by Ledoit and Wolf [22] for estimating high-
dimensional covariance matrices. If the primary goal is to improve the condition
number, then one should choose µ(ω)Id to be the shrinkage target because
it guarantees an estimator with a considerable reduction in the dispersion of
its eigenvalues, i.e., the distribution of the eigenvalues are shrunk towards their
mean. Böhm and von Sachs [4] and Fiecas and Ombao [10] used Ξ(ω) = Ξ(ω; θ),
i.e., the smoothed periodogram matrix was shrunk towards the spectral density
matrix of a parametric model. Their idea was to fit a parametric model, which
was likely to be misspecified, but correct the misspecification via the smoothed
periodogram matrix which is completely data-driven. Specifically, Fiecas and
Ombao [10] used the spectral density matrix obtained by fitting a vector au-
toregressive (VAR) model to the data. The dimension of the parameter space
of a VAR model, however, is of the order P 2, but in that work they had a large
sample size and many traces of the time series that allowed them to efficiently
estimate the large number of parameters. In the present work, we are more in-
terested in the scenario where there is only one trace of the time series available
and whose dimensionality P is large relative to its length T .

2.2.1. The diagonal shrinkage target

Our aim in this work is to use a shrinkage target that will balance regular-
ization due to the high-dimensionality of the data and fit. To motivate this
problem, consider Figure 1, which shows an estimate of the autospectra of a
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Fig 1. The autospectra of a 90-dimensional time series extracted from resting-state fMRI data.
Each color represents the autospectrum for the fMRI time series obtained from a particular
region of the brain. The bold black dashed line is the mean of the autospectra.

90-dimensional time series, taken from a resting-state fMRI data set which we
will see later. The autospectra are the diagonal elements of f(ω). In Figure 1, we
see a considerable amount of heterogeneity among the autospectra, and so we
would achieve better fit to the data if this heterogeneity is accounted for. Thus,
in this work we will let the shrinkage target be a diagonal matrix, which will be a
function of a vector of parameters θ̂T , i.e., Ξ(ω) = Ξ(ω, θ̂T ), estimated from the
data; for further emphasis that the shrinkage target is a diagonal matrix, from
here on we denote Ξ(ω, θ̂T ) = D̂T (ω), and we omit the dependency of D̂T (ω)

on θ̂T for simplicity in notation. In order to construct the diagonal shrinkage
target D̂T (ω), we proceed by treating each dimension of X(t) independently:
for the j-th dimension of X(t), we will consider the class of autoregressive (AR)
models, and the estimated parametric spectral density function of the AR model
will be the (j, j)-th element of the estimated shrinkage target D̂T (ω), i.e.,

D̂jj,T (ω) =
σ̂2
j,T

|1− (
∑pj

k=1 φ̂
(j)
k,T exp(−2πiωk))|2

,

where (pj) is the order of the AR model picked using, say, the Bayes Information

Criterion (BIC), and (σ̂2
j,T , φ̂

(j)
1,T , . . . , φ̂

(j)
pj ,T

)⊤ is the vector of estimated parame-

ters for the AR(pj) model. AR models have the desirable property that, under
regularity conditions, the spectral density of a univariate time series can be ap-
proximated by that of an AR model [1]. Thus, asymptotically, the estimated
shrinkage target will preserve the power of each dimension of X(t).
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2.2.2. The shrinkage weight

From Equation (1), the shrinkage estimator is a weighted average, where the
weight is given by WT (ω), between the shrinkage target and the smoothed pe-
riodogram matrix. We can define WT (ω) to be optimal in the sense that it
minimizes the quadratic risk function for the shrinkage estimator. Following
Böhm and von Sachs [5] and Fiecas and Ombao [10], the quadratic risk was

constructed with respect to E(f̃T (ω)) as opposed to the true spectral density
matrix f(ω). This is a purely theoretical device because, under mild regularity

conditions on the smoothing span, f̃T (ω) is asymptotically unbiased and con-
verges to the true spectral density matrix f(ω) sufficiently fast [6]. As shown
by Fiecas and Ombao [10], this leads to a closed-form solution for the optimal
shrinkage weight WT (ω), namely

WT (ω) =
var(f̃T (ω))− Re

(
cov(f̃T (ω), D̂T (ω))

)

E(||̃fT (ω)− D̂T (ω)||2)
, (2)

where

var(f̃T (ω)) =

P∑

jk

var(f̃jk,T (ω)),

cov(f̃T (ω), D̂T (ω)) =

P∑

jk

cov(f̃jk,T (ω), D̂jk,T (ω)),

and ||A||2 = tr(AA∗) is the Hilbert-Schmidt norm.
Note that the behavior of the shrinkage weight is a function of the relative

performance of each of the smoothed periodogram matrix and the shrinkage
target. Consider the three terms: i) the variance of the smoothed periodogram
matrix, ii) the covariance between the smoothed periodogram matrix and the
shrinkage target, iii) and the expected squared distance between the smoothed
periodogram matrix and the shrinkage target. For i), if the variance of the
smoothed periodogram matrix is large, which is the case when the dimensional-
ity is large [5], then the shrinkage weight will be large and so shrinkage estimator
will favor the shrinkage target. Term ii) corrects for the covariation coming from
the fact that the smoothed periodogram matrix and the shrinkage target were
estimated using the same data. Term iii) corrects for model misspecification. If
the model misspecification of the shrinkage target is severe, then its distance
from the smoothed periodogram matrix (which is a consistent estimator) will be
large, and so the shrinkage weight will be small so that the shrinkage estimator
will favor the smoothed periodogram matrix.

To estimate the shrinkage weight, Böhm and von Sachs [5] and Fiecas and
Ombao [10] both used moment estimators that borrowed information from
neighboring frequencies. However, with this approach, frequency resolution is
lost. This would also apply to plug-in estimators which could be used alter-
natively, but which would be suboptimal as depending on asymptotic develop-
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ments. Instead, in this work, we propose to use the bootstrap to estimate the
shrinkage weight, which we describe in the next section.

2.3. The multivariate time-frequency toggle bootstrap

Our aim with the bootstrap is to create replicates of the data in order to obtain a
bootstrap sample of the estimated shrinkage target D̂T (ω) and of the smoothed

periodogram matrix f̃T (ω). We can then easily use the bootstrap distribution
to obtain moment estimators of the variance, covariance, and expected squared
distance that are necessary to estimate WT (ω). We use a multivariate general-
ization of the Time-Frequency Toggle (TFT) bootstrap method given by Kirch
and Politis [19] described in the following sections.

2.3.1. Estimating the shrinkage weight

Given the dataX(t), t = 1, . . . , T , the bootstrap procedure for estimatingWT (ω)
is as follows:

1. Obtain the smoothed periodogram f̃T (ω) and shrinkage target D̂T (ω).
2. For each bootstrap sample and Fourier frequency k = 1, . . . , T , generate

Z+(k) ∼ NR(0, Id) for k/T ∈ {0.5, 1}, Z+(k) ∼ NC(0, Id) for k/T /∈
{0.5, 1}, and Z+(k) = Z+(T − k+1)∗, where NR and NC denote the real
and complex P -variate normal distributions, respectively.

3. Use the resampled Fourier coefficients Z+(k) to generate a time domain
sample:

X+(t) = T−1/2
T∑

k=1

A(ωk) exp(i2πkt/T )Z
+(k), ωk = 2πk/T,

where A(ωk) = U(ωk)V
1

2 (ωk), where U(ωk) is the matrix of eigenvectors

of f̃T (ωk) and V
1

2 (ωk) is the diagonal matrix of square-rooted eigenvalues

of f̃T (ωk). This is motivated by the discretized version of the Cramér
representation of the time series data [6]. Repeat this step B times to
obtain B bootstrap samples.

4. For each bootstrap sample, obtain D̂+
T (ω) using independent univariate

model fits, where the model for dimension j is the same as that used
to obtain D̂jj,T (ω). Obtain f̃+T (ω) using the same smoothing kernel and
smoothing span as before.

5. Set v̂ar(f̃T (ω)) to be the empirical variance of f̃+T (ω).

6. Set ĉov(f̃T (ω), D̂T (ω)) to be the empirical covariance between f̃+T (ω) and

D̂+
T (ω).

7. Set Ê(||̃fT (ω) − D̂T (ω)||
2) to be ||̃f+T (ω) − D̂+

T (ω)||
2 averaged across all

bootstrap samples.
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8. Set

ŴT (ω) =
v̂ar(f̃T (ω))− ĉov(f̃T (ω), D̂T (ω))

Ê(||̃fT (ω)− D̂T (ω)||2)
. (3)

Note that we generated data using the smoothed periodogram matrix f̃T (ω)

so that the spectral density matrix of the bootstrapped data X+(t) is f̃T (ω).

Now one may often encounter the scenario of f̃T (ω) having negative eigenvalues,
especially when T is small relative to P . In this case, to ensure eigenvalues
which are strictly positive, we suggest to instead generate the bootstrapped
data from a pre-regularized estimator f̃T (ω) + ǫ(ω)Id, where ǫ(ω) is a scalar,
which is potentially a function over frequencies, large enough at each frequency
ωj so that f̃T (ωj) + ǫ(ωj)Id has eigenvalues that are strictly positive. Also, we
emphasize that, even though the data X(t) is observed in the time domain,
the resampling takes place in the frequency domain, and the resampled data
are then mapped back to the time domain to create the bootstrapped time
domain data X+(t). In this work, we are not interested in reproducing (the
whole distribution of) the time series X(t), but rather in estimating quantities
which only depend on second-order characteristics of this time series. Hence,
using Gaussian increments in the frequency domain to generate our time-domain
data, in this specific context, does not appear to be restrictive. This is indeed
similar to what Franke and Härdle [15] have suggested in their seminal work
on (univariate) kernel spectral bootstrap as a valid alternative to their residual-
based bootstrap, namely, bootstrapping from the asymptotic distribution of
periodogram ordinates, which is χ2, and in fact, the square of the (complex)
normals we use in our bootstrap.

2.3.2. Shrinkage towards an arbitrary target

The bootstrap algorithm proposed in Section 2.3.1 for estimating the shrinkage
weights are not constrained to work only when the shrinkage target is a diag-
onal matrix. Consider now the general class of shrinkage estimators as given
in Equation (1). The shrinkage target, Ξ(ω), is potentially a function of some
vector of parameters θ, i.e., Ξ(ω) = Ξ(ω; θ). Using the data to estimate both

the shrinkage target and the smoothed periodogram matrix with Ξ(ω; θ̂T ) and

f̃T (ω), respectively, the convex combination in Equation (1) then becomes

f̂(ω) = WT (ω)Ξ(ω; θ̂T ) + (1−WT (ω))f̃T (ω). (4)

The shrinkage weight that minimizes quadratic risk is

WT (ω) =
var(f̃T (ω))− Re

(
cov(f̃T (ω),Ξ(ω; θ̂T ))

)

E(||̃fT (ω)−Ξ(ω; θ̂T )||2)
.

As before, in order to estimate the optimal shrinkage weight, we use the boot-
strap to generate bootstrapped distributions of the statistics of interest. The
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multivariate TFT bootstrap algorithm we developed in Section 2.3.1 can be
easily modified. In Step 4 of the algorithm, we use the bootstrapped data X+(t)
to obtain a bootstrapped estimate of the parameters of the shrinkage target
θ̂+T . Steps 6–8 are appropriately modified by replacing D̂T (ω) and D̂+

T (ω) with

Ξ(ω; θ̂T ) and Ξ(ω; θ̂+T ), respectively.
Each of the shrinkage estimators proposed by Böhm and von Sachs [4], Böhm

and von Sachs [5], and Fiecas and Ombao [10] is a special case of Equation (4)

by letting the shrinkage target Ξ(ω; θ̂T ) be appropriately specified. Using the
multivariate TFT bootstrap as we have described in this section for estimating
the shrinkage weight will improve on their estimation procedures by maintaining
frequency resolution since we do not rely on another layer of smoothing over
frequencies to estimate the shrinkage weight, as was done in those works.

3. Simulation study

We assessed the performance via a Monte Carlo simulation study of shrinkage
estimators by investigating how well they estimate the spectral density matrix
and the partial cross-coherence (PCCoh) matrix. PCCoh is the frequency do-
main analog of partial cross-correlation. Calculating PCCoh is challenging for
high-dimensional time series data because it is a function of the inverse of the
spectral density matrix [7]. To evaluate the estimators of the spectral density
matrix, we used the mean integrated squared error (MISE), defined by

MISE =
1

M

M∑

m=1

1

T

T∑

k=1

||̂f (ωk)− f(ωk)||
2,

where M = 100 denotes the number of Monte Carlo samples in our simulation
study. Similarly, to evaluate an estimator’s performance in estimating PCCoh,
we also used the MISE but in the above formulation replace f(ωk) and f̂(ωk)
with the true and estimated values of PCCoh at frequency ωk, respectively. We
compared the performance of the smoothed periodogrammatrix to the shrinkage
estimator using various shrinkage targets, namely, the diagonal target described
in the present work, the VAR target obtained by fitting a vector autogregressive
model as described by Fiecas and Ombao [10], and the scaled identity target as
described by Böhm and von Sachs [5].

The simulated data were P -dimensional vectors drawn from two different
time series models. The first model was the first-order vector moving average
with innovations such that each dimension was first drawn from Unif(−3,3),
and then jointly rotated to induce correlation between dimensions. The second
model was the first-order vector autoregressive, with innovations also drawn
from Unif(−3,3), and then jointly rotated to induce correlation between di-
mensions. The details of the simulation settings are given in the appendix. We
considered the cases P = 12, 48, and 96 using sample sizes T = 256 and 512.
These are challenging scenarios, and are the scenarios that one can often en-
counter when analyzing data such as, e.g., fMRI time courses, as we will see in
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Section 4. First, the effective sample sizes (the smoothing span of the smooth-
ing kernel) are small relative to the dimension P because a small smoothing
span (relative to the sample size T ) is needed in order to accurately capture
the frequencies which drive the process; indeed, in each setting for T , the ef-
fective sample sizes ranged from as low as approximately .06 T to as high as
approximately .17 T . Thus, the setting T = 256 and P = 96 is the most chal-
lenging scenario. Second, since both the diagonal and the VAR shrinkage targets
are based on the univariate and vector autoregressive models, respectively, then
these shrinkage targets used misspecified parametric models whenever the true
process was a vector moving average. Finally, to confirm that the performance
of our bootstrap estimators, based on Gaussian increments in the frequency
domain, is not tied to Gaussianity of the underlying time series, we used a
non-Gaussian time series in our simulation study.

To smooth the periodogram matrix, we used the algorithm by Ombao et al.
[24] for obtaining an optimal smoothing span for each dimension of the time
series, and then taking the maximum of these smoothing spans to smooth the
off-diagonal elements because, in our experience with empirical data, the cross-
spectra tended to be smoother than the autospectra. For the VAR and scaled
identity shrinkage targets, we used the multivariate TFT bootstrap outlined in
Section 2.3.2 to estimate the shrinkage weights, and generated the bootstrap
samples using a pre-regularized estimator that guarantees a minimum eigen-
value of 0.01 at the frequencies where the smoothed periodogram matrix had
negative eigenvalues. For all shrinkage estimators, we used a pre-regularized
smoothed periodogram matrix. The results for the smoothed periodogram ma-
trix we report in this study is also for the pre-regularized smoothed periodgram
matrix to make the comparisons fair. For all shrinkage estimators, we generated
B = 200 bootstrap samples using the multivariate TFT to estimate the shrink-
age weight. We used the BIC to pick the order of each of the univariate AR fits
for the diagonal target and also for the order of the VAR model for the VAR
target.

First, let us discuss the performance in estimating the spectral density ma-
trix as shown in Table 1. In all cases, shrinkage towards the diagonal matrix
improved on both the smoothed periodogram matrix and the diagonal target
alone. Specifically, we clearly see that shrinking towards the diagonal target
balances the low bias but high variance of the smoothed periodogram matrix
with the high bias but low variance of the diagonal shrinkage target. Now let
us compare the performance of the different shrinkage estimators. In Table 2,
recall that the dimension of the parameter space of a VAR model is of the
order P 2. Consequently, the order of the VAR model for the shrinkage target
was picked to be 1 in all cases because of the high number of parameters in
the model, yielding a highly biased shrinkage target whenever the true process
was VMA. However, whenever the true process was VAR, shrinkage towards the
VAR yielded the smallest bias compared to the other estimators, but the MISEs
were high because of the high variance in the parameter estimates due to the
large dimensionality of the parameter space. On the other hand, the dimension
of the parameter space for each of the diagonal and the scaled identity targets
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is of much smaller order, hence, their better performances at higher dimensions.
Of these two estimators, shrinking towards the diagonal led to lower MISEs
because it better captured the heterogeneity in the autospectra. We point out
that the scale of the MISEs with respect to the true process being VAR is much
larger than that of the VMA process is because the power integrated across all
frequencies is much larger for the former than the latter.

Now let us turn to the performance in estimating PCCoh, as shown in Tables
3 and 4. In Table 3, the variance for the diagonal only estimator is zero for all
cases because its estimates of all pairwise PCCoh are all 0, hence no variance.
The pre-regularized smoothed periodogram yielded estimates of PCCoh with
high variance, and thus had high MISEs. We see that shrinking towards the
diagonal target also yielded good estimates of PCCoh relative to the smoothed
periodogram, particularly when P = 48 and P = 96. Now let us look at Table 4
that compares the different shrinkage estimators. We see that shrinkage towards
the VAR has some merits, especially when T is large relative to P . By shrink-
ing towards the VAR, the conditional dependencies between the dimensions
of the time series were modeled and then adjusted nonparametrically via the
smoothed periodogram matrix [10]. The merits of the diagonal and the scaled
identity shrinkage targets include a reduction in the dimensionality of the pa-
rameter space, though this is at the expense of the estimated cross-dependencies
being biased towards zero. The performance of shrinking towards the proposed
diagonal matrix is comparable to shrinking towards the scaled identity matrix.

Altogether, it is clear that the smoothed periodogram matrix is not a good
estimator for the spectral density matrix of high-dimensional time series data.
Each of the three shrinkage estimators we have considered improved on the
smoothed periodogram matrix. The choice of the shrinkage target, however,
is not clear, and is likely to be dependent on the problem at hand. Shrinking
towards a diagonal matrix leaves each autospectrum as a free parameter, in
contrast to the scaled identity matrix which averages across all the autospectra;
if there is heterogeneity in the shapes of the autospectra, as was the case in
our simulated data, then it may be better to shrink towards a diagonal matrix.
If matrix inversion is necessary for the statistics of interest, as is the case for
computing PCCoh, we recommend shrinkage towards the diagonal or towards
the scaled identity matrix because they both give estimates which are regularized
over the dimensions. We only recommend to consider shrinking towards the VAR
model if the length of the time series is long relative to its dimensionality.

4. Application to resting-state fMRI

4.1. Description of the data

Resting-state fMRI studies have provided evidence on using functional connec-
tivity (FC), conceptually defined as the temporal dependencies across different
regions of the brain [16], as a biomarker for various diseases [14, 13]. Recently,
test-retest analyses have been conducted to investigate the reliability of FC in
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resting-state fMRI studies [28, 12]. Partial cross-coherence (PCCoh) has been
successfully used in resting-state FC studies and there is evidence that the fre-
quency band [0.01 0.10] Hertz carry the relevant signal [26, 27]. Our interest in
this study is to investigate the effects of regularization on the smoothed peri-
odogram matrix used to obtain estimates of PCCoh in a test-retest analysis. In
the following test-retest data set, the same subjects were scanned at different
sessions, though without any changes to the scanning protocols, and so ideally,
under the assumption that the brain dynamics do not change across sessions,
the estimates of PCCoh are robust with respect to the sessions and to the noise.

We analyzed a resting-state fMRI data set of 25 participants (mean age 29.44
± 8.64, 10 males) that is publicly available at NITRC (http://www.nitrc.org/
projects/nyu trt). A Siemens Allegra 3.0-Tesla scanner was used to obtain three
resting-state scans for each participant. Each scan consisted of T = 197 con-
tiguous EPI functional volumes with a time repetition (TR) = 2000 ms. Scans
2 and 3 were conducted in a single session 45 minutes apart and were 5–16
months (mean 11± 4 months) after scan 1. During each scan, each participant
was asked to relax and remain still with eyes open during the scan. The raw
images were preprocessed as follows: they were 1) motion corrected, 2) nor-
malized into the Montreal Neurological Institute space, 3) removed of nuisance
signals, namely the six motion parameters, signals from white matter and the
cerebrospinal fluid, and the global signal, and then 4) spatially smoothed using
a Gaussian kernel with full-width half-maximum 6mm. Because we will perform
a test-retest analysis in the frequency domain on the signals, the signals were
not passed through a band-pass filter which may introduce another source of
variability. These are the same preprocessing procedures carried out by Fiecas
et al. [12].

To obtain anatomically defined regions-of-interest, we used the Anatomical
Automatic Labeling (AAL) atlas, which parcellates the whole brain into 90
different regions [30]. Each region’s mean time course was obtained by averaging
the fMRI time series over all of the voxels within the region. Each regional time
course was then detrended and standardized to unit variance. Thus, the data in
hand is a P = 90 dimensional fMRI time series of length T = 197 for each of
the twenty-five subjects and in each of the three sessions.

4.2. Overview of the statistical procedure

We smoothed each element of the periodogram matrix with a MT = 31-point
Hamming window. Thus, the effective sample size for estimating the spectral
density matrix at each discrete frequency is smaller than the dimension P = 90
of the time series. We could not obtain estimates of PCCoh from the (unregular-
ized) smoothed periodogram matrix because the smoothed periodogram matrix
was not invertible and so we used our proposed shrinkage estimator to regularize
the smoothed periodogram matrix. We generated B = 200 bootstrap samples of
the time series data using the multivariate TFT using a pre-regularized estima-
tor such that the minimum eigenvalue at each frequency is at least 0.01. Though

http://www.nitrc.org/projects/nyu_trt
http://www.nitrc.org/projects/nyu_trt
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the pre-regularization scalar varied across frequencies for each subject in each
session, within the frequency band [0.01 0.10] Hertz the pre-regularization scalar
was constant at 0.01 because the negative eigenvalues were small in magnitude.
By comparison, if we were to shink towards the scaled identity target, within
the frequency band [0.01 0.10] Hertz the scale, which also varied across frequen-
cies for each subject in each session, ranged from 0.339 to 3.518, with a median
value of 0.757. Thus, the pre-regulization scalar was relatively much smaller. For
each subject and each of the three sessions, we computed the PCCoh between
each dimension in our 90-dimensional time series, so that for each subject, we
have 4005 many estimates of PCCoh. PCCoh estimates were averaged within
the frequency band [0.01 0.10] Hertz.

We performed a test-retest analysis on each of the 4005 estimates in order
to investigate the stability of partial cross-coherence as an estimate of the con-
ditional dependencies between different regions. We calculated the intraclass
correlation coefficient (ICC) to investigate how much each source of variability
contributed to the overall variability in the estimates. To compute the ICC, con-
sider first the following random-effects ANOVA model: ρjk = ρ+αj + βk + ǫjk,
where ρjk is the estimated PCCoh for subject j in session k, ρ is PCCoh at
the population-level, αj ∼ N(0, σ2

α) is the subject-effect, βk ∼ N(0, σ2
β) is the

session-effect, and ǫjk ∼ N(0, σ2
ǫ ) is noise [29]. Using this model, we can define

the ICC to be ICC = σ2
α/(σ

2
α+σ2

β+σ2
ǫ ), which is the proportion of variability in

the estimates of PCCoh that is attributed to the subjects. Data from all three
sessions were used to compute the “overall” ICC; only data from Sessions 1 and
2 were used to compute the “long-term” ICCs and only data from Sessions 2
and 3 were used to compute the “short-term” ICCs.

4.3. Results of the test-retest analysis

Overall, long-term, and short-term ICCs, along with the estimates of subject,
session, and noise effects, of PCCoh averaged over the 4005 estimates are shown
in Table 5. Though it may seem that the ICCs are low, this is the case with
resting-state fMRI data, and our estimates of ICC are within the same range
as those reported by Shehzad et al. [28] and Fiecas et al. [12]. As reported by

Table 5

The test-retest reliability of the estimates of PCCoh, decomposed into the three sources of
variation (subject, session, and noise). Reported are the means and the standard deviation
of the empirical distribution of the 4005 estimates of the variation of PCCoh attributed to
each source, and the mean and standard deviation of the empirical distribution of the 4005
estimates of ICC. The means and standard deviation of the empirical distribution of each of

σ2
α, σ

2

β
, and σ2

ǫ that we report here are ×105 what we obtained in the analysis

Term Subject Effect (σ2
α) Session Effect (σ2

β
) Noise (σ2

ǫ ) ICC

Overall 0.045 (0.254) 0.004 (0.030) 0.216 (0.420) 0.097 (0.115)
Long-term 0.048 (0.224) 0.005 (0.040) 0.213 (0.439) 0.120 (0.148)
Short-term 0.058 (0.320) 0.005 (0.039) 0.200 (0.377) 0.138 (0.159)
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Fiecas et al. [12], there is a positive relationship between ICC and PCCoh, and
because a substantial proportion of the 4005 PCCoh values were small, a large
number of the 4005 PCCoh values also yielded small ICCs. We point out that
the ICC only quantifies the effects of the elapsed time across scanning sessions,
and so a higher ICC does not mean that the estimates are more accurate, but
rather, they indicate that they are less variable across scanning sessions.

This data set perfectly illustrates the need for regularization of estimates of
the spectral density matrix. In particular, we emphasize that if we did not regu-
larize the smoothed periodogram matrix, then matrix inversion would not have
been possible, and thus, obtaining estimates of PCCoh would not have been pos-
sible. The results of our test-retest analysis are identical to the results obtained
by Fiecas et al. [12], who used the scaled identity matrix as the shrinkage target.
Using a diagonal shrinkage target can better capture the heterogeniety in the au-
tospectra as suggested by Figure 1. Thus, we obtain better fit to the data while
simulateneously achieving similar performance in test-retest reliability for the es-
timates of PCCoh as that when the shrinkage target is the scaled identity matrix.

5. Theoretical validity of the bootstrap estimates

Our estimate of the shrinkage weight uses statistics computed from the boot-
strapped distribution. We show this strategy to be theoretically sound by show-
ing that the bootstrapped distribution well-approximates the asymptotic dis-
tribution of the estimate of the parameter of interest, which we assess using
Mallows’ d2 metric [23, 3]. The d2-distance between distributions F1 and F2

is d2(F1,F2) = inf(E|X1 − X2|
2)1/2, where the infimum is taken over all ran-

dom variables X1 and X2 with marginal distributions F1 and F2, respectively.
Formally, one has to consider the bootstrap distribution as a conditional distri-
bution given the data X(1), . . . ,X(T ) and show the convergence in probability
of this distance to zero. In our case it will be sufficient to establish convergence
of the distribution of the bootstrapped quantities, appropriately standardized,
to the normal distribution (as in Franke and Härdle [15]), accompanied by the
convergence of the first two moments of this distribution. In order to do so we
will first derive the results for the convergence of the distribution of the con-
sidered estimators in the “real world” and then show that the same Central
Limit Theorem holds in the “bootstrap world”. Moreover, we treat the first
and second moments in these central limits: thanks to a well-chosen rate of
convergence of smoothing span and order of autoregressive fit, respectively, the
squared bias term is asymptotically vanishing, hence asymptotic normality with
closeness of the asymptotic variances serves us to show the required convergence
in the Mallows’ d2 metric. With this, an empirical estimator of the variance in
the bootstrap world (the “bootstrap variance”) approaches the variance in the
“real word”. Applying this argument to the distributions of our two used es-
timators, the smoothed periodogram f̃T (ω) and the parametric fit D̂T (ω), we
derive that our bootstrap consistently estimates the variance of these two esti-
mators. A continuous mapping argument (“Slutsky’s theorem”) will finally be

used to show that the bootstrapped optimal shrinkage weight ŴT (ω) is a con-
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sistent estimator of the true optimal one WT (ω), meaning that with T → ∞
their differences converges to zero in probability. The details of this argument
are presented now along the following three theorems.

First, we give the theoretical validation to our bootstrap procedure for obtain-
ing statistics about the smoothed periodogrammatrix. For simplicity, we assume
that the smoothing kernels and smoothing spans used to estimate each element

of the smoothed periodogram matrix are the same span, i.e., K
(jk)
T (·) = KT (·)

and M
(jk)
T = MT for all j, k = 1, . . . , P . The following result implies that the

sample variance of the bootstrapped distribution of each element of the boot-
strapped smoothed periodograms is a valid estimator for the variance of the
smoothed periodgram matrix.

Theorem 5.1. Suppose that X(t) is a (P -dimensional) linear process with
(element-wise) absolute summable coefficient matrix driven by independent and
identically distributed innovations with finite fourth moments and non-singular
variance-covariance matrix. Suppose further that the spectral density matrix of
X(t) is (element-wise) two times differentiable on [−0.5, 0.5], and that it is es-

timated with the smoothed periodogram matrix f̃T (ω) using a kernel function of
order 2 (such as a symmetric kernel) with smoothing span MT . Assume that

MT → ∞ and M5
T /T

4 → 0 as T → ∞. Suppose f̃T (ω) is used to generate the
bootstrapped data X+(t). Then for any given frequency ω and j, k ∈ {1, . . . , P},

d2{L(
√
MT (f̃jk,T (ω)− fjk(ω)),

L+(
√

MT (f̃
+
jk,T (ω)− f̃jk,T (ω)) | X(1), . . . ,X(T ))} → 0

in probability.

In this theorem the assumptions on the smoothing parameter MT are some-
what classical. Recalling that the kernel span MT is related to the kernel band-
width bT (also often used in the literature) by MT = bT T , we observe that its
asymptotic behavior is equivalent to assuming b5T T → 0 as T → ∞. Note that
this condition leads to a slightly smaller than the usual MSE-optimal bandwidth
for nonparametrically estimating a spectral density under the given conditions
of regularity (which is bT ∼ T−1/5). As an advantage and in fact motivated
from this, the aforementioned convergence in distribution of the appropriately
scaled spectral estimates can directly be stated by centering about the popula-
tion quantities without needing to consider a bias term; for details we refer to
the proof of Theorem 5.1 in the Appendix. As a consequence, in the particular
context of bootstrapping kernel spectral estimates and in contrast to Franke and
Härdle [15], the smoothing parameters of the kernel estimators can be chosen
to be the same in the bootstrap and in the “real” world.

Second, we address the asymptotic behaviour of the distribution of D̂T (ω).
Under additional conditions on the underlying time series process, derived by
[1], we will establish an asymptotic result for D̂T (ω) which is similar to the one

of Theorem 5.1, established for the smoothed periodogram matrix f̃(ω). For this
we have to suppose that p = pT = min1≤j≤P pj tends asymptotically to infinity
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as T → ∞, meaning that for all elements of the diagonal matrix D̂T (ω) we
assume an asymptotically growing order of the AR-fit. More precisely we use the
conditions of [1], Theorem 6, applied to each dimension of the true underlying
multivariate process separately, to show asymptotic normality of the univariate
autoregressive fits and to control, in particular, the asymptotic behavior of both

bias and variance of D̂T (ω) in comparison with the rate of convergence M
−1/2
T

of f̃T (ω). This gives us the following analog of Theorem 5.1.

Theorem 5.2. Suppose that each marginal Xi(t), i = 1, . . . , P of the true un-
derlying process X(t) can be represented as an invertible linear process driven
by independent and identically distributed innovations with finite fourth mo-
ments, and denote the autoregressive coefficients of its AR representation by
{ak}k≥1. Suppose further that i) MT → ∞ and M5

T/T
4 → 0 as T → ∞, that

ii) pT → ∞ and p3T /T → 0 as T → ∞ and iii) p = pT is chosen such that
T 1/2

∑
ℓ≥1 |ap+ℓ| → 0 as T → ∞, and that finally iv) MT pT /T → 0 as T → ∞.

Then for any j ∈ {1, . . . , P},

(1)

d2{L(
√

T/pT (D̂jj,T (ω)− fjj(ω))),

L+(
√
T/pT (D̂

+
jj,T (ω)− f̃jj,T (ω)) | X(1), . . . ,X(T ))} → 0

in probability.

(2) Further, the bias of each (j, j)-th element D̂jj,T (ω) is of order o(M
−1/2
T )

whereas its variance is of order o(M−1
T ).

The proof of this Theorem 5.2 is a copy of the proof of Theorem 5.1, a direct
consequence of the asymptotic normality of D̂jj,T (ω) stated in Theorem 6 of
[1]. For some more details, we refer to the appendix. Note that, in particular,

we obtain the asymptotic variance of each diagonal element of D̂T (ω), which
turns out to only depend on the true underlying spectrum. With this result,
the sample variance of the bootstrapped distribution of each diagonal element
of the bootstrapped D̂+

T (ω), is a valid estimator for the variance of D̂T (ω).

Now we have prepared the ground to address the validity of our bootstrap
estimator of the optimal shrinkage weights WT (ω) which we recall from equa-
tion (3) to be

ŴT (ω) =
v̂ar(f̃T (ω))− ĉov(f̃T (ω), D̂T (ω))

Ê(||̃fT (ω)− D̂T (ω)||2)
.

Theorem 5.3. Under the conditions of the two preceding theorems, ŴT (ω) −
WT (ω) = op(1) as T → ∞.

For details of the proof, we refer again to the Appendix section. However,
for the reader’s insight, we note already here that it is in fact not necessary
to treat the covariance term arising both in numerator and denominator of
Equation (3) (which we actually would not be able to do as we cannot control
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the joint distribution of (f̃T (ω), D̂T (ω))): under the conditions on the rate of

increase of pT given in Theorem 5.2, cov(f̃T (ω), D̂T (ω)) = o(M−1
T ), and hence

converges to zero faster than does the dominating term var(f̃T (ω)) (which is of
order O(M−1

T )).
In total, we observe the validity of the multivariate TFT bootstrap, and

consequently, the validity of our estimate of the optimal shrinkage weight.

6. Discussion

We further developed methodology on addressing the challenge between balanc-
ing spectral fit versus regularization of estimates of high-dimensional spectral
matrices, two extremes that were developed by Böhm and von Sachs [5] and
Fiecas and Ombao [10], and then proceeding with a general algorithm that con-
tains those two works as special cases. As previously investigated in the cited
literature and in this work, the smoothed periodogram matrix, which is the
classical nonparametric spectral estimator, needs to be regularized in high di-
mensions. Hence, we chose a shrinkage target that sufficiently stabilizes the reg-
ularity of the smoothed periodogram matrix and serves as a reasonable, though
deliberately misspecified, parametric fit. We chose a diagonal matrix, composed
of a collection of univariate AR-fits to each autospectrum, hence, representing a
good compromise between the highly regularizing fully misspecified multiple of
the identity as in Böhm and von Sachs [5] and the fully parametric VAR fit of
Fiecas and Ombao [10]; the diagonal structure regularizes over the dimensions
and substantially reduces the number of parameters from that of a full VAR
model, and simultaneously, modeling the diagonal elements results in better fit
for the autospectra of the process.

One could, however, choose any valid shrinkage target, and use our procedure
as outlined in Section 2.3.2. Another possible shrinkage target, for example, is
a block-diagonal matrix. For instance, in the context of functional connectiv-
ity analyses for fMRI, one could arrange the blocks to correspond to known
functional networks in order to obtain improved fit to the cross-dependencies
between the dimensions within each known network. Moreover, the block diag-
onal structure will regularize the smoothed periodogram matrix, though only
mildly so relative to our proposed diagonal shrinkage target. In the context of
high-dimensional time series data, we recommend picking a shrinkage target
which is highly regularized and has a low-dimensional parameter space.

Our second important contribution is the multivariate TFT bootstrap and its
theoretical validity. Our multivariate TFT bootstrap can be considered as the
multivariate generalization of an instance of the univariate TFT bootstrap of
Kirch and Politis [19]. We showed the utility of the multivariate TFT bootstrap
in estimating the optimal shrinkage weights of the shrinkage estimator. The
multivariate TFT bootstrap samples from the multivariate complex normal dis-
tribution. A fully nonparametric bootstrap on the residuals would better capture
the higher-order structure of the data in order to reproduce the whole distribu-
tion of the time series. However, for our purposes of using the multivariate TFT



2996 M. Fiecas and R. von Sachs

bootstrap to estimate the shrinkage weight, we are interested in reproducing
the variance of estimates of the spectral density matrix, which asymptotically
does not depend on higher-order moments of the data. In a simulation study
not reported here, we investigated the impact of skewness in the underlying
data on the bootstrap procedure for estimating the variance of the smoothed
periodogram. We saw that, even though the data was skewed and the bootstrap
samples were not skewed, the resulting estimates of the variance of the smoothed
periodogram, which asymptotically does not depend on higher-order quantities,
were still very satisfactory, even for small samples. Accurate estimates of the
variance of the smoothed periodogram is sufficient for our purpose of estimating
the shrinkage weights.

To our knowledge, the only other method for bootstrapping multivariate time
series data that has been shown to give theoretically valid bootstrap samples in
both the time and frequency domains is the multiple hybrid bootstrap proposed
by Jentsch and Kreiss [18]. This bootstrap procedure, which is the multivariate
generalization of the bootstrap procedure proposed by Kreiss and Paparoditis
[21], first fits a VAR model to the data, resamples the residuals, and then applies
a bias-correction in the frequency domain. One could also use this multiple
hybrid bootstrap to estimate the shrinkage weight since it has the attractive
feature that it can create bootstrap samples in the time domain even though the
resampling takes place in the frequency domain. However, the multiple hybrid
bootstrap requires one to fit a VAR model to the data. If the length of the
time series is short relative to the dimensionality, fitting a VAR model may not
be possible. Moreover, matrix inversion is necessary to do the bias-correction
in the frequency domain in their procedure, and so the performance of this
procedure may not be optimal in the context of high-dimensional time series.
We speculate, however, that, in the same spirit as our diagonal shrinkage target,
one could modify the multiple hybrid bootstrap whenever the dimensionality is
large by instead fitting independent univariate AR models to each dimension of
the data.
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Appendix: Proofs

Proof of Theorem 5.1. For convenience, we use the vec(·) operator to stack
the columns of a matrix below one another. To prove the theorem, we instead
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show the sufficient assertion

d2{L(
√
MTvec(f̃T (ω)− f(ω))),

L+(
√
MTvec(f̃

+
T (ω)− f̃T (ω)) | X(1), . . . ,X(T ))}

P
→ 0. (5)

For ease of notation, henceforth we denote L+(·), E+(·), and cov+(·, ·) to de-
note the law, expectation, and covariance, respectively, conditional on the data
X(1), . . . ,X(T ). According to Mallows [23] and Lemma 8.8 in Bickel and Freed-
man [3], we can split Equation (5) into two terms, namely a term each for
variance V 2

T and squared bias B2
T , given by

V 2
T = d2{L(

√
MTvec(f̃T (ω)− E(f̃T (ω)))),L

+(
√
MTvec(f̃

+
T (ω)− E(f̃+T (ω))))}

and

B2
T = MT ||vec(E(f̃T (ω))− f(ω)) − vec(E+(f̃+T (ω))− f̃T (ω))||

2.

By Lemma 8.3 in Bickel and Freedman [3], we have convergence in Mallow’s d2
metric if we also have convergence in the first two moments and convergence in
distribution.

First, we treat the variance term. Recall the following result, which can be
found in Brillinger [6]:

MT cov(f̃jk,T (ω), f̃lm,T (λ))

→





(fjl(ω)fmk(ω) + fjm(ω)flk(ω))
∫
K2(u)du, ω = λ∈{0,±0.5},

fjl(ω)fmk(ω)
∫
K2(u)du, ω = λ∈ (−0.5, 0.5),

0, ω 6= λ.
(6)

Moreover, the asymptotic distribution of the smoothed periodogram matrices is

L
(√

MTvec
(
(f̃T (ω)− E(f̃T (ω))

))
∼ ANC(0,W),

where the elements of the asymptotic variance-covariance matrix W are ob-
tained from Equation (6) [6]. For the bootstrapped smoothed periodogram ma-

trices, recall that the bootstrapped time series have f̃(ω) as the “true” spectral
density matrix in the bootstrap world. Given the time series data, the asymp-
totics of the bootstrapped smoothed periodogram follow the above derivations
of the kernel estimator in the “real world” as can be seen from, e.g. Franke and
Härdle [15] (with the difference that in contrast to their approach we can choose
the same MT in both worlds). In particular, we have that the difference between

MT cov+(f̃+
jk,T (ω), f̃

+
lm,T (λ)) and





(f̃jl,T (ω)f̃mk,T (ω) + f̃jm,T (ω)f̃lk,T (ω))
∫
K2(u)du, ω = λ ∈ {0,±0.5},

f̃jl,T (ω)f̃mk,T (ω)
∫
K2(u)du, ω = λ ∈ (−0.5, 0.5),

0, ω 6= λ,
(7)

tends to zero in probability with T → ∞.
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Furthermore, we have

L+
(√

MTvec
(
(f̃+T (ω)− E(f̃+T (ω))

)
| X(1), . . . ,X(T )

)
∼ ANC(0,W̃),

where the elements of the asymptotic variance-covariance matrix W̃ are ob-
tained from the above equation (7). Because each element of the smoothed

periodogram matrix is consistent, then ||W̃ −W||2 converges in probability to

0, and consequently V 2
T

P
→ 0.

By Brillinger [6], our assumption on the rate of convergence of the smoothing
span MT , and under the given conditions on the spectrum and the used kernel
of second order, we have

E(f̃jk,T (ωl)− fjk(ωl)) = O((MT /T )
2).

Since the asymptotics of the bootstrapped smoothed periodogram follow those
from the “real world”, we have

E
+(f̃+

jk,T (ωl)− f̃jk(ωl)) = OP ((MT /T )
2).

It follows that B2
T

P
→ 0.

Altogether, it follows that we have convergence in probability to zero of the
considered Mallow’s d2 metric.

Proof of Theorem 5.2. We first prove the second part of the theorem. We
compare the convergence of the bias and the variance of D̂jj,T (ω) with that of
the nonparametric fit, for which we need condition iv). For this we first observe
that condition i) simply retakes the condition M5

T/T
4 → 0 of Theorem 5.1

coming from the control of the squared bias therein. Using the conditions ii)

and iii) taken from Theorem 6 of Berk [1], the bias of D̂jj,T (ω) is of the order

of o(
√

pT /T ) which is, under condition iv), well of order o(M
−1/2
T ) whereas

its variance is of order O(pT /T ) which is, again under condition iv), of order
o(M−1

T ).
Now we prove the first part of the theorem. For the reader’s convenience we

state the Central Limit Theorem of Berk [1], Theorem 6, reformulated for the

diagonal elements of D̂T (ω) (for 0 < ω < 0.5, to simplify):

L
(√

T/pT (D̂jj,T (ω)− fjj(ω))
)
∼ AN(0, 2 f2

jj(ω)),

for j = 1, . . . , P . Based on this asymptotic normality, the proof of the con-
vergence of the Mallows’ metric follows the lines of the proof of Theorem 5.1,
replacing the rate of convergence M−1

T of the variance by the appropriate rate
pT /T coming from Berk [1], Theorem 6. In order to transfer the convergence
to the asymptotic distribution from the “real world” to the bootstrap world,
we use the following arguments of the (univariate) TFT-bootstrap of Kirch and
Politis [19].

Although we have to go back into the time domain to obtain our paramet-
ric spectral estimator (via the estimates of the autoregressive parameters con-
structed in the time domain, such as the Yule-Walker estimators), the (univari-
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ate) TFT-bootstrap is valid for sample autocorrelations [19] and, in our asymp-
totic context of pT → ∞, p/T → 0 as used by Berk [1], the TFT-bootstrap is
valid for sample autocovariances. This is because, in our asymptotic set-up, a
possible contribution of the fourth-order cumulant of the considered time series
in the time domain, as typically arising in the asymptotic normality of the time-
domain estimator of the innovations variance of the linear process, drops out
(as it is known to be the case for certain ratio statistics and in particular also
for the nonparametrically smoothed periodograms). Thus, for the bootstrapped
estimators we have

L+
(√

T/pT (D̂
+
jj,T (ω)− f̃jj,T (ω))|X(1), . . . ,X(T )

)
∼ AN(0, 2 f̃2

jj,T (ω)),

for j = 1, . . . , P . We decompose Mallow’s d2 metric into a squared bias and
a variance term as before. We have the convergence in probability to zero of
the bias term per the second part of the theorem. Per the consistency of the
smoothed periodogram, we also have the convergence of the variance term, and
hence, we have the convergence in probability to zero of the difference in the
limiting variances. Thus, we have convergence in probability to zero of the con-
sidered Mallow’s d2 metric.

Proof of Theorem 5.3.

Step 1: To show the above Theorem 5.3 we note that we cannot control the
joint distribution of (f̃T (ω), D̂T (ω)), but it is not necessary to do. Rather, using
asymptotic investigations of both the numerator and the denominator, we first
show that, under the conditions on the rate of increase of pT given in Theo-
rem 5.2, cov(f̃T (ω), D̂T (ω)) = o(M−1

T ), and hence converges to zero faster than

does var(f̃T (ω)), the latter one being of order O(M−1
T ). This is, however, a di-

rect consequence of the Cauchy-Schwarz inequality and the specified rates of
convergence:

M2
T cov2(f̃T (ω), D̂T (ω)) ≤ MT var(f̃T (ω)) MT var(D̂T (ω)) = o (1),

as var(f̃T (ω)) = O(M−1
T ) and var(D̂T (ω)) = o(M−1

T ).
With this we have shown an asymptotically valid reproduction of the numer-

ator of the shrinkage weight by our bootstrap procedure, based on the asymp-
totics for var(f̃T (ω)), derived by Theorem 5.1: the numerators of ŴT (ω) and

WT (ω) asymptotically behave as the same quantity which is var(f̃T (ω)), i.e., this
variance of the nonparametric estimator is (asymptotically) correctly estimated

by v̂ar(f̃T (ω)), the empirical variance estimator of the bootstrap distribution

of f̃+T (ω).

Step 2: Now we turn our attention to the denominator of the shrinkage weight,
which we decompose as follows:

E(||̃fT (ω)− D̂T (ω)||
2)

= var(f̃T (ω))− 2 cov(f̃T (ω), D̂T (ω)) + var(D̂T (ω)) +B2
T , (8)

where BT := E||D̂T (ω)− f0T (ω)|| and f0T (ω) = E(f̃T (ω)).
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We state the following observations:

(i) treating the first three terms of Equation (8), which represent the variance
part of the denominator, we observe that, as previously discussed, the term
var(f̃T (ω)) asymptotically dominates the two others being of order o(M−1

T )
each; and

(ii) by the assertion of Theorem 5.2, the diagonal elements ofBT = E||D̂T (ω)−
f0T (ω)|| converge to zero sufficiently fast. As for the off-diagonal elements

of D̂T (ω)− f0T (ω), we observe that they are non-stochastic quantities that
express the “model selection bias” due to the deliberate misspecification
of the diagonal shrinkage target. This term does not depend on the data,
and hence will appear as a constant term C2 both in the truth and in the
bootstrap world of our procedure (formally C2 := limT→∞ B2

T is the sum
of the elements of a P × P -matrix of constant terms and with diagonal
elements equal to zero). It represents the bias that we accept to pay as
the price for regularization by shrinkage.

Using the same arguments as in Step 1, Step 2 shows that the denominators
of ŴT (ω) and WT (ω) asymptotically behave as the same quantity which is

var(f̃T (ω)) + C2. Here, as in Step 1, Theorem 5.1 is used for the estimation of
the first term whereas Theorem 5.2 delivers the arguments for the second term.

Step 3: As a consequence of Steps 1 and 2, we can now derive that both ŴT

and WT converge to the same quantity.
First, by Slutsky’s theorem (based on the continuous mapping theorem), re-

calling that separate stochastic convergence of numerator and denominator (to a
positive constant) induces convergence in probability of the ratio, we observe
that, conditionally on the data,

ŴT (ω)−
var(f̃T (ω))

var(f̃T (ω)) + C2
= op(1).

However, as discussed above, we also observe that asymptotically,

WT (ω)−
var(f̃T (ω))

var(f̃T (ω)) + C2
= o(1).

Hence in total ŴT (ω)−WT (ω) = op(1) which is the assertion of the theorem.

Appendix B: Simulation settings

The first-order vector moving average has the form

X(t) = Z(t) + ΦZ(t− 1).

The innovations, Z(t), are P -variate random vectors whose marginal distri-
butions were Unif(−3,3) and then rotated by a correlation matrix R, which
was constructed as follows. First, define a 3 × 3 correlation matrix R3 by set-
ting the diagonal elements to 1.0 and each off-diagonal element to 0.25. Then
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the P × P correlation matrix of the innovations is the block diagonal matrix
R = diag(R3, R3, . . . , R3), so that R is composed of P/3 many blocks.

The coefficient matrix Φ is defined in a similar manner. For the first coefficient
matrix, first define a 3× 3 coefficient matrix

Φ3 =



.5 .9 0
0 .5 .9
0 0 −0.5


 .

Then the P ×P coefficient matrix is Φ = diag(Φ3,Φ3, . . . ,Φ3). Just as with the
correlation matrix, the coefficient matrix is composed of P/3 many blocks.

For the vector autoregressive model, we use the same procedure for generating
the innovations. The first-order vector autoregressive model has the form

X(t) = ΦX(t− 1) + Z(t),

where we used the same coefficient matrix Φ.
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[15] Franke, J. and Härdle, W. (1992). On bootstrapping kernel spectral
estimates. The Annals of Statistics 20 121–145. MR1150337

[16] Friston, K., Frith, C., Liddle, P. and Frackowiak, R. (1993). Func-
tional connectivity: The principal-component analysis of large (PET) data
sets. Journal of Cerebral Blood Flow and Metabolism 13 5–14.

[17] Guo, W. and Dai, M. (2006). Multivariate time-dependent spectral
analysis using Cholesky decomposition. Statistica Sinica 16 825–845.
MR2281304

[18] Jentsch, C. and Kreiss, J.-P. (2010). The multiple hybrid bootstrap –
resampling multivariate linear processes. Journal of Multivariate Analysis
101 2320–2345. MR2719865

[19] Kirch, C. and Politis, D. N. (2011). TFT-bootstrap: Resampling time
series in the frequency domain to obtain replicates in the time domain. The
Annals of Statistics 39 1427–1470. MR2850208

[20] Krafty, R. and Collinge, W. (2013). Penalized Multivariate Whit-
tle Likelihood for Power Spectrum Estimation. Biometrika 100 447–458.
MR3068445

[21] Kreiss, J. P. and Paparoditis, E. (2003). Autoregressive-aided peri-
odogram bootstrap for time series. Annals of Statistics 31 1923–1955.
MR2036395

[22] Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-
dimensional covariance matrices. Journal of Multivariate Analysis 88 365–
411. MR2026339

[23] Mallows, C. L. (1972). A note on asymptotic joint normality. Annals of
Mathematical Statistics 43 508–515. MR0298812

[24] Ombao, H., Raz, J., Strawderman, R. and von Sachs, R. (2001).
A simple generalised crossvalidation method of span selection for peri-
odogram smoothing. Biometrika 88 1186–1192. MR1872229

[25] Pourahmadi, M. (2011). Covariance estimation: The GLM and regular-
ization perspectives. Statistical Science 26 369–387. MR2917961

[26] Salvador, R., Suckling, J., Schwarzbauer, C. and Bullmore, E.

(2005). Undirected graphs of frequency-dependent functional connectivity
in whole-brain networks. Philosophical Transactions of the Royal Society B
360 937–946.
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