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1. Introduction

The accelerated failure time (AFT) model is a useful alternative to the popular
Cox regression model for survival data analysis, especially when the key assump-
tions of the Cox model, for example, proportional hazards, are not guaranteed
to hold in practice. The direct interpretability of the AFT model in terms of
life expectancy is more desirable for practitioners, compared to the indirect in-
terpretation based on hazards in the Cox model. For more discussion, see Wei
(1992), among others.

Buckley and James (1979) proposed solving normal equations with censored
responses replaced by their expected life length based on the Kaplan-Meier
estimate. Simulation studies conducted by Miller and Halpern (1982) showed
that the Buckley-James estimator is reliable. However, its asymptotic properties
are difficult to establish; see Lai and Ying (1991). In addition, the iteration
involved can become trapped in a loop and thus may never converge. Non-
convergence occurs more frequently when censoring occurs more severely. Stare
et al. (2000) suggested that it is safe to use the Buckley-James estimator only
when censoring is less than 20%.

Ritov (1990) and Tsiatis (1990), among others, studied rank estimators based
on the linear rank statistics for censored data proposed by Prentice (1978).
A Gehan-type weight function is commonly used, and is a starting point in con-
sidering rank estimators, as the function leads to a monotonic estimating func-
tion. Although other weighting schemes could yield more efficient estimates, the
monotonicity of their associated estimating functions is not ensured, and the
uniqueness of the estimates is not guaranteed. Jin et al. (2003) developed an
iterative procedure for approximating possibly non-monotone weighted log-rank
estimating functions around the true values of regression parameters. The it-
eration algorithm starts with a Gehan-type estimator, and solves a monotone
estimating function at each step with updated weights. The covariance matrix
of the estimated regression coefficients are then estimated by using a resampling
approach to approximate their distributions. However, although this numerical
procedure can be conveniently implemented, for large datasets the high compu-
tational burden resulting from resampling techniques is undesirable.

To overcome difficulties in estimating the covariance matrix, usually caused
by non-smooth estimating functions, Brown and Wang (2005) developed an in-
duced smoothing technique, resulting in continuously differentiable objective or
estimating functions, which makes the standard numerical methods applicable.
This induced smoothing technique provides a natural method for determining
kernel bandwidths when replacing discontinuous functions in estimating equa-
tions with smoothed distribution kernels. Recently, Chiou et al. (2013) developed
a fast and efficient rank-based inference procedure for the AFT model in the
context of case-cohort studies by adopting the induced smoothing approach.
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Consider the linear regression model,

Yi = XT
i β0 + εi; εi, i = 1 . . . n, are independent and identically distributed.

Denote Xi −Xj by dij . The corresponding rank estimating function is,

Sn(β) = − 1

n(n− 1)

n∑

i<j

sgn{Yi − Yj − dTijβ}dij

= − 1

n(n− 1)

n∑

i<j

sgn{εi − εj}dij . (1)

The smoothed rank estimating function derived by Brown and Wang (2005) is,

S̃n(β) = − 1

n(n− 1)

n∑

i6=j



Φ


Yi − Yj − dTijβ√

dTijΓdij


− 1

2



 dij ,

in which Γ is a p×p covariance matrix of β̂, the root of the smoothed rank esti-
mating function. Γ can be estimated with a sandwich formula Γ̂ =
D−1cov{S̃n(β0)}{DT}−1, where D = E{S̃′

n(β)}β0
, and Φ(·) denotes the stan-

dard normal cumulative distribution function. Here, D and cov{S̃(β0)} can be

replaced by their estimates D̂ = S̃′
n(β̂) and ĉov{S̃n(β0)}, respectively. By start-

ing from an initial matrix of Γ(0) based on an initial estimate of β(0), we can

obtain β(k+1) by iterating between solving S̃(k)(β) using Γ(k), and updating
Γ(k+1). Thus, the unique estimator of β0 and its estimated covariance matrix

Γ̂ are the limits of the sequence of β(k) and Γ(k), k ≥ 1. The smoothed rank
estimating function with variable kernel bandwidths has an appealing rationale.
The consistent estimator β̂ to be obtained can be stochastically expressed as
β0 + Γ

1

2N(0, Ip), which is a random perturbation to the true parameter values

β0. This leads us to consider S̃(β0) = E{S(β0 + Γ
1

2N(0, Ip))}, an average of
random perturbations of S. Since monotonicity of the estimating equations is
needed for the induced smoothing method, application to the AFT models is
made by Brown and Wang (2006) only for the Gehan estimating equations.

In this article, we investigate the induced smoothing approach for the AFT
model together with the EM algorithm, i.e, iterating between imputing the cen-
sored lifetime using their expected conditional survival time and solving the
smoothed rank estimating equation for “complete data.” To overcome non-
smoothness and non-monotonicity due to imputation for the censored lifetime
based on the Kaplan-Meier estimate of survival functions, we first propose in
Section 2 an estimate of the conditional expectation of residuals using kernel
smoothing, which is smooth in the residuals, but also more importantly the
regression coefficient β. The choice of the kernel function and bandwidths are
discussed in Section 3. Using the consistent Gehan estimator as the initial value,
we develop an iteration procedure consisting of imputing censored residuals with
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their smoothed estimates and solving smoothed monotone rank estimation equa-
tions established by using the induced smoothing approach in Section 4. In light
of the smoothness of the estimating functions in each iteration, we can obtain
the limiting covariance matrix by the standard procedure. Theoretical justifica-
tions for the locally asymptotic linearity of the resulting estimating functions
and asymptotic normality of the proposed estimators are provided. Simulation
results and two real examples are also presented in Section 5 and Section 6, to
demonstrate the usefulness of the proposed method.

2. Smoothed estimates of conditional mean residuals

Suppose that there is a random sample of n subjects. Let Ti and Ci be the
failure time and censoring time, respectively, for the ith subject and Xi be the
associated p × 1 vector of covariates. It is usually assumed that Ti and Ci are
independent, conditional on Xi. The observed data may be written as a triplet
(T̃i, δi, Xi); 1 ≤ i ≤ n, where T̃i = min(Ti, Ci) and δi = I(Ti ≤ Ci) is the
censoring indicator. The usual accelerated failure time model takes the form,

log(Ti) = XT
i β0 + εi,

where β0 is the true value of a p×1 vector of regression coefficients, and {εi; 1 ≤
i ≤ n} are independent error terms following a common distribution F .

Denote by {Yi = log(T̃i), 1 ≤ i ≤ n} the observed responses. For fixed β,
in the presence of censoring, the observed residual, ẽi = Yi − XT

i β is not the
actual residual any more for the ith subject. Note that ẽi = min(ei, ci), where
ei = logTi − XT

i β and ci = logCi − XT
i β, and thus, whenever the observed

lifetime is censored, the corresponding residual is also censored. Buckley and
James (1979) suggested replacing the censored residual ẽi with the conditional
expectation of ei, which can be expressed as

m(ẽi;β) = E(ei|ei > ẽi) =

∫∞

ẽi(β)
udFβ(u)

1− Fβ{ẽi(β)}
. (2)

In the Buckley-James estimator for the AFT model, F is replaced by its Kaplan-
Meier estimator F̂ and the censored observation Yi by

XT
i β +

∫∞

ẽi(β)
udF̂β(u)

1− F̂β{ẽi(β)}
. (3)

The estimated conditional mean lifetime in (3) is piecewise linear in β with
jumps where there is a change in the ranks of {ẽi(β), 1 ≤ i ≤ n}. When im-
puting in the subsequent iteration procedures for updating β, the discontinuous
estimate of m(ẽi;β) can lead to non-uniqueness of β estimates, which is indi-
cated by iterates oscillating between two values.

To deal with the non-smoothness caused by applying the Kaplan-Meier es-
timate F̂ , smoothed estimates of F can be used instead in (2). Numerous
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smoothed estimates for lifetime survival functions have been proposed and stud-
ied in the literature. They could be adopted here to obtain a smoothed estimate
of the residual distribution. However, care is needed because the smoothness
property is required not only in the residuals but, more importantly, also, in
the regression coefficients β. Bearing this in mind, we start by considering the
kernel estimator for the hazard rate function α(t), developed by Ramlau-Hansen
(1983).

Let E1 < E2 < · · · be the ordered successive jump residuals for a given β.
This kernel estimator of hazard rate was derived by smoothing the increments
of the Nelson-Aalen estimator and may be written as, in terms of residuals,

α̂(e) = h−1
1

∑

j

k

(
e− Ej

h1

)
(Y (Ej))

−1, (4)

where Y (e) = n−
∑n

i=1 I(ẽi < e) = n(1−Fn(e)), and Fn(e) = n−1
∑n

i=1 I(ẽi <
e). Here, the kernel function k is a bounded function that vanishes outside [−1, 1]
and has integral 1. The bandwidth h1 is a positive parameter. By assuming a
continuous underlying distribution of ẽi, i = 1 . . . n, further kernel smoothing
applied to the at-risk process Y (t) gives Ŷ (e) = n(1 − F̂n(e)), where F̂n(e) =

n−1
∑n

i=1 K{(e − ẽi)/h2} and K(t) =
∫ t

−∞
k(u)du; see Azzalini (1981) among

others. Here, the bandwidth parameters h1 and h2 are to be determined among
uncensored subjects, and among all subjects, respectively. Substituting Y (e)
with Ŷ (e) in α̂(e), we may further derive

α̃(e) = (nh1)
−1

∑

j

k(
e−Ej

h1

)

1− n−1
∑n

i=1 K(
Ej−ẽi

h2

)
. (5)

Then a kernel-based estimator Ã(e) for the cumulative hazard function A(e) =∫ e

−∞
α(u)du is

Ã(e) =

n∑

j=1

δjK(
e−ẽj
h1

)

n−
∑n

i=1 K(
ẽj−ẽi
h2

)
. (6)

Note that Ã(e) is continuous in e, and thus the conditional survival distribution

of the residual errors can be subsequently estimated by S̃(e) = exp−Ã(e) for
a given β and convariates x. Let {ẽ(i); 1 ≤ i ≤ n} be the ordered residuals of

{ẽi; 1 ≤ i ≤ n}. Substituting the kernel estimator S̃(e) into (2) for a censored
residual ẽi leads to a smoothed estimator for m(ẽi, β),

m̃(ẽi;β) = −
∫∞

ẽi
edS̃(e)

S̃(ẽi)
=

∑n+1
k=j+1{S̃(ẽ(k−1))− S̃(ẽ(k))}{ẽ(k−1) + ẽ(k)}

2S̃(ẽi)
, (7)

where j is the rank of ẽi (j = 1, 2, . . . , n), i.e., ẽi = ẽ(j). For convenience, we

define ẽ(n+1) = 0, and S̃(ẽ(n+1)) = 0. It is obvious that m̃(·) is smooth in
the residuals and the regression coefficients β. Under the conditions required in
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Ramlau-Hansen (1983) for showing the consistency of α̂(t) in (4), we have the
following consistency results in Theorem 1.

Theorem 1. Denote the support of F by E = (−∞, T ], where T = sup{u :
F (u) < 1} < ∞. Let k be a bounded density kernel of order q and the bandwidths

h1 → 0 and h2 → 0 satisfying h2 > log(n)/n, as n → ∞. For any given interior

point e ∈ E, if there exists an ε > 0 such that infs∈[e−ε,e+ε] h1Y (s)
P→ ∞ and

max(
√

h2 log(1/h2)/n, h
q
2) = o(h1), the kernel smoothed estimators α̃(e) and

Ã(e) are pointwise consistent, and supe∈E
|m̃(e;β)−m(e;β)| P→ 0.

3. Choice of bandwidths and kernel functions

If smoothing the at-risk process is regarded as smoothing a survival distribution
for complete data, the optimal choice for h2 is of order n

−1/(2q−1); while the opti-

mal choice for h1 is of order N
−1/(2q+1)
1 for estimating the kernel density in α̃(e),

where N1 is the number of uncensored subjects. See Azzalini (1981) for a de-
tailed discussion. In these cases of h1 and h2, from Giné and Nickl (2009), it can
be shown that for q > 1, max(

√
h2 log(1/h2)/n, h

q
2) = O(n−q/(2q−1)

√
logn) =

o(n−1/2), and thus, that the convergence in Theorem 1 follows.
As defined in estimating the conditional expectation of regression residuals,

the kernel function k is required to be a bounded function that vanishes out-
side [−1, 1] and integrates to 1. Although any kernel functions satisfying this
requirement can be used and we expect that the choice of kernel function is
a secondary matter compared with selecting the bandwidths as shown in An-
dersen et al. (1992), we suggest using the Epanechnikov kernel for convenience.
This also makes K in the denominator of α̃(e) the cumulative Epanechnikov
kernel, which is

K(t) =





0, t ≤ −1

−t3/4 + 3t/4 + 1/2, |t| < 1

1, t > 1.

Corresponding to the Epanechnikov kernel, in all the simulation studies per-
formed in Section 5 and the examples shown in Section 6, the optimal band-

width (40
√
π)1/5σ1N

−1/5
1 for h1 was used, and h2 was set to be 1.3σ2N

−1/3
2 ,

where N2 = n. Here σ1 and σ2 are estimates of the standard deviations of
e = logT − β̂TX , respectively, among the uncensored subjects and among all
subjects. In consideration of heavy-tailed and skewed errors, they can be esti-
mated, following Silverman (1986), by

σ̂ = min

{
ŝ,

Q3 −Q1

1.34

}
,

where ŝ, Q1 and Q3 are the sample standard deviation, the first and third sam-
ple quartiles, among N1 uncensored subjects when estimating σ1, or among all
N2 subjects when estimating σ2, respectively. The scale parameter (40

√
π)1/5σ1

in h1 is calculated by referring to a normal underlying distribution and using
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the Epanechnikov kernel in the optimal smoothing parameter suggested in Sil-
verman (1986), which minimizes the approximate mean integrated square error
(AMISE) for the kernel density. When determining the scale parameter for h2,
we recommend using 1.3σ2 for general use for ease of computation, which has
been shown in Azzalini (1981) as a reliable choice against various underlying
distributions for the Epanechnikov kernel. Although plug-in methods or even
cross-validation methods may provide a more accurate approximation to the
bandwidth minimizing AMISE, see Altman and Leger (1995) among others, the
high computational burden required makes them practically difficult to imple-
ment in the estimating procedure proposed later.

4. Smoothed rank procedure for the AFT model

In this section, we propose an EM-type procedure for the AFT model, iter-
ating between estimating the kernel smoothed conditional expectations of the
censored residuals developed in Section 2 and solving the ordinary rank-based
estimating equations for complete data, with censored residuals being imputed
by their estimates obtained in the expectation step. The induced smoothing
technique is also introduced into this framework to facilitate estimating the
covariance matrices required in the iteration procedure.

With the censored residuals being imputed by their smoothed estimates of
their conditional expectations and replaced in (1) for the ordinary rank-based
estimating function for complete data, an estimating function can be defined as

U(β) =− 1

n(n− 1)

n∑

i<j

sgn
{
δiẽi + (1 − δi)m̃(ẽi;β)− δj ẽj − (1− δj)m̃(ẽj ;β)

}
dij

=− 1

n(n− 1)

n∑

i<j

sgn
{
Yi − Yj − dTijβ + Vi − Vj

}
dij , (8)

where Vk = (1− δk){m̃(ẽk;β)− ẽk}, k = i, j. Conditional on {Vi; 1 ≤ i ≤ n} for
censored residuals, we may approximate U(β) with the smoothed Ũ(β) using
the induced smoothing technique as follows:

Ũ(β) = − 1

n(n− 1)

n∑

i6=j



Φ


Yi − Yj − dTijβ + Vi − Vj√

dTijΓdij


− 1

2



 dij , (9)

where Γ = D−1cov{Ũ(β0)}{DT }−1 and D = E{Ũ ′(β)}β0
. In the sequel, we

assume n−1(n− 1)−1
∑n

i6=j dijd
T
ij ≤ M for a constant value M , which is reason-

able as long as ||Xi|| is bounded almost surely by a non-random constant for
1 ≤ i ≤ n. Note that Ũ(β) is asymptotically equivalent to U(β) as presented
in Lemma 1 although unconditionally it is not established by directly taking
an overall average on U(β) after perturbing β everywhere whenever it appears
inside the estimating function. In the iteration procedure developed later where
{Vi; 1 ≤ i ≤ n} have been pre-fixed from the previous estimation step, Ũ(β) is
naturally obtained as if there is no censored data.
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Lemma 1. Under the conditions

1. The covariates X are uniformly bounded and

2. The probability density functions for Ẽij = δiẽi+(1−δi)m(ẽi;β0)−δj ẽj−
(1 − δj)m(ẽj ;β0) for all i 6= j are bounded,

the induced estimating functions Ũ(β) at β = β0 are asymptotically equivalent

to U(β0) in probability, i.e.,
√
n||Ũ(β0)− U(β0)|| = op(1).

Since it is reasonable to assume that δiẽi + (1 − δi)m(ẽi, β0), i = 1 . . . n, are
identically distributed, we have that Pr{δiẽi + (1 − δi)m(ẽi;β0) > δj ẽj + (1 −
δj)m(ẽj ;β0)} = 1/2. From Lemma 1, this indicates that E{U(β0)} → 0 and

thus, E{Ũ(β0)} → 0 as n → ∞. In light of the continuity of Ũ(β) everywhere
in β, Ũ(β) is locally linear at β0 by applying the Taylor expansion.

Suppose the root of Ũ(β) is β̂DSR. We show in the Appendix that β̂DSR is

a consistent estimator of β0 and n1/2(β̂DSR − β0) is asymptotically normally
distributed as N(0, nΓ). Denote the covariate vectors corresponding to the or-
dered {ẽ(i), 1 ≤ i ≤ n} by {X(i), 1 ≤ i ≤ n}. Because {m̃(ẽi, β), 1 ≤ i ≤ n} for
censored residuals are continuous in β, asymptotically we may estimate D by
D̂ = {Ũ ′(β)}β̂ , i.e.,

D̂ =
1

n(n− 1)

∑

i≤j

dij(dij − vij)
T

√
dTijΓdij

φ


Yi − Yj − dTij β̂ + Vi − Vj√

dTijΓdij


 , (10)

where β̂ is an estimate of β0 obtained from a consistent estimator, vij = vi − vj
and for k = i, j

vk =
∂Vk

∂β
|β̂ = (1− δk)

{
m̃(ẽk, β)

∂Ã(ẽk)

∂β
− S̃−1

∂
∫∞

ẽk
udS̃(u)

∂β
+Xk

}
(11)

in which

∂Ã(ẽk)

∂β
|
β̂

= −

n
∑

j=1

δj

[

{n−
∑n

i=1
K(

ẽj−ẽi
h2

)}k(
ẽk−ẽj

h1

)dkjh
−1

1
+K(

ẽk−ẽj
h1

){
∑n

i=1
k(

ẽj−ẽi
h2

)djih
−1

2
}
]

{n−
∑n

i=1
K(

ẽj−ẽi
h2

)}2
,

(12)

and for ẽ(j) = ẽk, ẽ(n+1) = 0, X(n+1) = 0p×p and S(ẽ(n+1)) = 0

∂
∫∞

ek
udS̃(u)

∂β
|β̂

=
1

2




n+1∑

i=j+1

{
S̃(ẽ(i−1))

∂Ã(ẽ(i−1))

∂β
− S̃(ẽ(i))

∂Ã(ẽ(i))

∂β

}
{ẽ(i−1) + ẽ(i)}

+
{
S̃(ẽ(i−1))− S̃(ẽ(i))

}
{X(i−1) +X(i)}

]
. (13)



Smoothed rank procedure for censored data 2961

Because of the asymptotic equivalence of Ũ(β0) and U(β0), the asymptotic co-
variance matrix cov{U(β0)} needs to be estimated next. This can be approached
by applying the Hajek projection method to

Û2(0;β0) = − 1

n(n− 1)

∑

i<j

sgn{δiẽi+(1−δi)m(ẽi, β0)−δj ẽj−(1−δj)m(ẽj , β0)}dij ,

which is asymptotically equivalent to U(β0) as obtained from Lemma 1. It fol-
lows estimating cov{U(β0)} by

ĉov{U(β0)} =
4

n2(n− 1)2

n∑

i=1

ξ̂iξ̂
T
i (14)

where

ξ̂i =

n∑

j 6=i

[
I
{
δiẽi + (1 − δi)m̃(ẽi; β̂) > δj ẽj + (1− δj)m̃(ẽj ; β̂)

}
− 1

2

]
dij .

The proposed estimating function Ũ(β) is smooth but not necessarily mono-

tone in β, i.e., β̂DSR is not necessarily a unique root of Ũ(β). However, in light of

the local linearity of Ũ(β), we propose to approximate β̂DSR with the following
iterative algorithm.

Step 1: Initial calculation. Use the induced smoothing method in Brown and
Wang (2006) for the AFT model to get the Gehan rank estimator β̂G and let

β̂(0) = β̂G.

Step 2: Updating conditional mean residuals. Estimate {m̃(ẽi; β̂(m)), 1 ≤
i ≤ n} for censored residuals using the kernel method proposed in Section 2.

Step 3: Updating regression estimates. Solving β̂(m+1) from Ũ(β) = 0 as if
{Yi + Vi; 1 ≤ i ≤ n} are completely observed lifetimes. To solve the estimat-
ing equation, the numerical algorithm proposed in Brown and Wang (2005) is
embedded in Step 3, consisting of

1) Using β̂(m) and Γ(m) as initial values

2) Updating β̂(m) by solving Ũ(β) = 0 with Γ being fixed at the updated Γ(m)

3) Updating (10) and (14) by using the updated β̂(m) and hence Γ(m)

4) Repeating 2) and 3) until convergence. The updated β̂(m) and Γ(m) after

convergence are denoted as β̂(m+1) and Γ(m+1)

Step 4: Continuation. Repeat Steps 2 and 3 until convergence.

By starting from an initial value obtained from a consistent estimator, such
as the Gehan rank estimator β̂G, we show in the Appendix that the mth-step
estimator

β̂(m) = β0 + (I −B−1D)m(β̂G − β0)− (I − (I −B−1D)m)D−1Ũ(β0)

+ op(n
−1/2) (15)
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where

B =
1

n(n− 1)
E
∑

i6=j

dijd
T
ij√

dTijΓdij
φ


Yi − Yj − dTijβ + Vi − Vj√

dTijΓdij


 ,

is a consistent estimator of β0 and asymptotically normally distributed. Provided
that β̂(m−1) at the (m−1)th-step of iteration is a fixed and consistent estimator
of β0 so that the imputed lifetime Yi+Vi, i = 1 . . . n and Γ(m−1) are given, it can

be seen that β(m) is a unique root of Ũ{β̂, β̂(m−1)}, the estimating function in (9)
at the mth-step, since now this conditional function, as an ordinary rank-based
estimating function for complete data, is smooth and monotone. By starting
from a fixed initial value obtained from a consistent estimator, by induction
β̂(m) is a unique estimator at the mth-step of iteration.

Apparently, β̂(m) approaches the usual smoothed rank estimator when the
censoring vanishes. When the hazard α(e) is nondecreasing in the residual e,
we further show that the matrix B−D is nonnegative, which implies from (15)

that when m tends to infinity, (I − B−1D)m tends to a zero matrix, and β̂(m)

uniquely estimates β0 as lomg as β̂(0) is consistent. The covariance matrix of

β̂(m) approaches Γ̂ = D−1cov{Ũn(β0)}{DT }−1 after sufficiently many steps of
iteration m, which in turn approaches to Γ as n → ∞.

5. Simulations

To examine the finite sample performance of the proposed rank procedure, we
considered the same model simulated by Jin et al. (2006a). Specifically, the
failure times were generated from the following model:

logT = 2 +X1 +X2 + ǫ,

where X1 follows Bernoulli with .5 success probability and X2 has the indepen-
dent normal distribution N(0, 0.52). Four different error distributions for ǫ: the
standard normal distribution; the standard logistic distribution; the extreme-
value distribution; and a mixture of N(0, 1) and N(0, 9) with mixing probabili-
ties (0.9, 0.1), denoted by 0.9N(0, 1)+ 0.1N(0, 9), and one Weibull distribution
with hazard rate 1/(2

√
t) for exp(ǫ), denoted by Weibull(0.5, 1), were investi-

gated. We considered random samples of 100 and 200 subjects. The censoring
times were generated from the uniform distribution Un[0, c], where c was chosen
to yield separately a 25% and a 50% censoring rate for each scenario.

In addition to the proposed estimator (DSR), we included the profile like-
lihood estimator (PLE) proposed by Zeng and Lin (2007), the log-rank (Log-
rank), the least squares (LSQ) estimators proposed by Jin et al. (2003, 2006a),
and the Gehan estimator for efficiency comparisons. The log-rank and least
squares estimators are asymptotically efficient under the extreme-value and
normal error distributions, respectively. The profile likelihood method demon-
strated substantial gain in efficacy for ǫ following Weibull(2, 1) in the simu-
lations conducted by Zeng and Lin (2007). We did not include this case as it
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might be more informative for comparisons after further transformations to the
LSQ, Log-rank, and DSR methods for the Weibull(2, 1) error of L-shape than
comparing them directly. Note that the results for the Gehan estimator asymp-
totically also represented the performance of its smoothed version proposed by
Brown and Wang (2006), as well as the one proposed by Heller (2007), which is
essentially the same as Brown and Wang (2006) as commented in Johnson and
Strawderman (2009).

The results of the simulations based on 1000 repetitions for n = 100 and
n = 200 are summarized in Table 1. In Table 1, we find that the proposed
parameter estimators of β1 and β2 are virtually unbiased. The standard errors
of the PLE, Log-rank, and LSQ estimators are very similar to those obtained
for the same scenarios in Zeng and Lin (2007) and Jin et al. (2003, 2006a),
respectively, though not presented here. The induced smoothing procedure for
estimating variances appears to reflect true variations, and the confidence in-
tervals had proper coverage probabilities. The Epanechnikov kernel and the
bandwidths used worked well, and the approximation of the conditional mean
residual seemed appropriate in producing reasonable estimates.

With the normal error and the 25% censoring rate, the proposed estimator
was slightly less efficient than the least squares estimator, but more efficient than
the other two estimators. For the 50% censoring rate, it outperformed all the
other estimators, even including the least squares estimator. Under the extreme-
value error, the proposed estimator was less efficient than the log-rank estimator,
but much more efficient than the other two estimators. Under the logistic and
mixture normal error distributions, the proposed estimators were more efficient
than the other three estimators. For the Weibull case, the relative performance
of all the methods was, as expected, consistent with those for the extreme value
distribution, because a log-Weibull distribution of ǫ is theoretically equivalent to
a scaled extreme value distribution. In addition, the least squares method also
performed well for the logistic apart from normal, but poorly for the other error
distributions. The Log-rank regression is most efficacious for the distributions
scaled to the extreme value. However, its performance was generally the worst for
all the other scenarios. In general, the PLE estimator performed well when the
censoring rate was 25%. However, when the censoring rate was increased to 50%,
it showed no better performance than the least squares and log-rank estimators.
The Gehan estimator performed well for normal and logistic distributions for
the 25% censoring rate. However, the performance was pretty much poor for the
50% censoring rate. In summary, the doubly smoothed estimator appeared to
retain relatively high efficiency against different underlying distributions. The
efficiency gains were particularly substantial for severe censoring.

With a convergence criterion of 0.001, the proposed numerical procedures
converged very rapidly with a 25% censoring rate, usually within 5 iterative
steps. For the scenarios with a 50% censoring rate, convergence was always
achieved between 10 to 50 steps, depending on the sample sizes. Table 2 demon-
strates the computing time for the rank-based procedures in seconds for each
replicate averaged among all the simulations, when running on a personal com-
puter with an Intelr 2.33GHz CPU and 2G RAM. For the 25% censoring rate,
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Table 1

Summary of simulation studies

DSR PLE LSQ Log-rank Gehan

N Censoring Bias SE SEE CP Bias RE Bias RE Bias RE Bias RE

Normal error

100 25% β1 0.010 0.222 0.227 0.952 -0.001 0.962 0.011 1.051 0.014 0.916 0.011 0.975

β2 0.002 0.227 0.227 0.938 0.002 0.901 0.003 1.011 0.001 0.879 0.004 0.964

50% β1 0.006 0.250 0.243 0.954 0.012 0.741 0.009 0.885 0.008 0.832 0.010 0.807

β2 -0.005 0.254 0.246 0.936 0.002 0.742 -0.007 0.915 -0.006 0.884 -0.008 0.807

200 25% β1 0.002 0.158 0.160 0.947 -0.003 0.955 0.002 1.015 0.004 0.959 0.002 0.937

β2 -0.005 0.155 0.160 0.952 0.004 0.939 -0.004 1.034 -0.003 0.903 -0.003 0.973

50% β1 0.007 0.166 0.170 0.958 0.009 0.834 0.006 0.847 0.004 0.848 0.007 0.752

β2 -0.002 0.175 0.171 0.948 0.003 0.837 -0.005 0.858 -0.006 0.804 -0.006 0.798

Logistic error

100 25% β1 -0.0002 0.395 0.395 0.944 -0.015 0.875 0.005 0.963 0.002 0.866 0.001 0.991

β2 -0.002 0.394 0.398 0.943 -0.007 0.872 -0.003 0.949 0.011 0.872 -0.002 0.972

50% β1 -0.016 0.430 0.423 0.944 -0.015 0.679 -0.012 0.839 -0.016 0.805 -0.014 0.838

β2 0.005 0.421 0.429 0.947 -0.012 0.667 -0.003 0.811 -0.002 0.780 -0.001 0.798

200 25% β1 -0.012 0.276 0.275 0.953 0.014 0.950 -0.015 0.941 -0.014 0.863 -0.009 1.006

β2 -0.004 0.281 0.276 0.938 -0.005 0.866 -0.007 0.961 -0.004 0.860 -0.004 1.009

50% β1 0.005 0.298 0.297 0.953 0.006 0.768 0.003 0.839 0.008 0.774 0.005 0.842

β2 0.014 0.289 0.298 0.956 0.008 0.756 0.013 0.838 0.009 0.792 0.017 0.875

Extreme value error

100 25% β1 0.002 0.251 0.251 0.948 0.007 0.781 0.004 0.791 -0.003 1.232 0.001 0.892

β2 0.019 0.257 0.256 0.948 -0.011 0.783 0.023 0.742 0.015 1.232 0.017 0.886

50% β1 0.003 0.274 0.275 0.950 -0.010 0.661 0.006 0.645 0.005 1.102 0.008 0.727

β2 -0.016 0.298 0.283 0.924 -0.008 0.631 -0.021 0.717 -0.015 1.218 -0.017 0.792

200 25% β1 0.010 0.172 0.173 0.949 0.014 0.916 -0.001 0.741 0.005 1.192 0.001 0.861

β2 -0.007 0.177 0.174 0.952 -0.003 0.912 0.010 0.716 0.004 1.158 0.006 0.860

50% β1 0.001 0.186 0.186 0.951 0.001 0.722 0.004 0.645 -0.001 1.129 0.001 0.714

β2 -0.001 0.193 0.187 0.944 0.008 0.758 0.002 0.665 -0.002 1.091 0.001 0.722

Mixture Normal error

100 25% β1 0.0001 0.267 0.263 0.949 0.010 0.932 0.003 0.817 0.003 0.847 -0.002 1.018

β2 -0.007 0.263 0.266 0.949 0.001 0.953 -0.009 0.779 -0.007 0.831 -0.007 0.998

50% β1 0.008 0.282 0.289 0.954 -0.009 0.769 0.012 0.744 0.007 0.776 0.009 0.920

β2 -0.005 0.306 0.289 0.952 -0.013 0.745 -0.007 0.760 -0.004 0.777 -0.006 0.884

200 25% β1 0.002 0.179 0.184 0.958 0.008 0.956 0.006 0.790 0.005 0.816 0.003 1.024

β2 0.004 0.185 0.185 0.954 0.008 0.991 0.003 0.793 -0.001 0.834 0.004 1.015

50% β1 -0.007 0.212 0.201 0.944 0.012 0.816 -0.006 0.754 -0.011 0.814 -0.001 0.854

β2 0.005 0.209 0.203 0.958 0.005 0.821 0.003 0.760 0.003 0.789 0.003 0.859

Log-Weibull error

100 25% β1 0.005 0.484 0.500 0.951 0.011 0.814 0.005 0.730 0.009 1.225 0.008 0.862

β2 -0.036 0.511 0.505 0.940 -0.029 0.808 -0.032 0.735 -0.024 1.179 -0.032 0.866

50% β1 -0.008 0.557 0.537 0.943 -0.013 0.621 -0.006 0.649 -0.001 1.064 -0.010 0.699

β2 -0.018 0.544 0.545 0.934 -0.008 0.614 -0.023 0.630 -0.017 1.029 -0.025 0.680

200 25% β1 0.011 0.356 0.345 0.943 0.012 0.942 0.010 0.737 0.014 1.244 0.009 0.854

β2 0.009 0.342 0.346 0.953 0.015 0.885 0.011 0.731 0.007 1.173 0.010 0.858

50% β1 0.004 0.361 0.367 0.951 0.004 0.762 0.008 0.637 -0.002 1.059 0.007 0.701

β2 -0.006 0.372 0.369 0.950 -0.002 0.790 -0.018 0.622 -0.004 1.072 -0.016 0.685

SE: standard error of the parameter estimator; SEE: mean of the standard error estimator;
CP: coverage probability of the 95% confidence interval; RE: ratio mean squared error of the
proposed estimator to that of the other estimator

the computational speed of the newly proposed estimator was almost the same
as the profile likelihood estimator. Both were much faster than the other two
estimators based on resampling techniques. When the censoring rate was 50%,
the DSR method was slower than the profile likelihood and the Gehan esti-
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Table 2

Average computing time (Sec.)

N Censoring DSR PLE Log-rank Gehan
100 25% 23.9 23.2 138.7 31.2
100 50% 53.7 22.9 119.1 27.1
200 25% 87.4 90.9 804.7 167.5
200 50% 199.6 92.1 605.5 126.4

mator. However, some of the other procedures except for the DSR converged
even faster compared with their computing time for the 25% censoring rate
when n was fixed. This is because in all the estimating functions of the other
estimators, the censoring indicator is a multiplier, which means that the com-
putational complexity for these estimators decreases along with the increased
censoring rate. However, the DSR method can always manage to recover the
censored information, which implies a more complex computational require-
ment when the censoring rate is higher. This perhaps, from a different perspec-
tive, explains why the performance of the DSR method for the high censoring
rate was better than the others for most of the scenarios and even very close
to those supposed to be asymptotically efficient for the underlying distribu-
tions.

6. Two examples

We first applied the proposed doubly smoothed method to the Mayo primary bil-
iary cirrhosis (PBC) study described in Fleming and Harrington (1991), which
has been widely investigated, such as in Jin et al. (2006a) and Zeng and Lin
(2007). The data contain information about the survival time and prognos-
tic factors for 418 patients. Jin et al. (2006a) fitted the accelerated failure
time model with five covariates – age, log(albumin), log(bilirubin), edema, and
log(protime) – using rank and least squares estimators. We fitted the same
model using the proposed method, for which the Epanechnikov kernel was
used in estimating conditional mean residuals, separately with the bandwidths

a1 = (40
√
π)1/5σ1N

−1/5
1 and a2 = σ1N

−1/7
1 for h1. The results are presented

in Table 3, together with the estimates from other methods, cited directly from
Zeng and Lin (2007) and Jin et al. (2003, 2006a), for ease of comparison.

Table 3

Analysis results of the Mayo PBC data

DSRa1 DSRa2 PLE LSQ Log-rank
Parameter Est. SE Est. SE Est. SE Est. SE Est. SE
Age -0.0167 0.0044 -0.0191 0.0047 -0.0286 0.0061 -0.0256 0.0063 -0.0265 0.0042
log(Albumin) 1.3847 0.5532 1.3968 0.6068 1.6212 0.4761 1.6174 0.5409 1.6558 0.3683
log(Bilirubin) -0.4093 0.0642 -0.4472 0.0846 -0.6175 0.0669 -0.5885 0.0752 -0.5849 0.0455
Edema -0.8506 0.2977 -0.8572 0.2643 -0.7985 0.3179 -0.8430 0.2604 -0.7338 0.1781
log(Protime) -2.6064 1.1089 -2.2957 1.1664 -2.4095 0.8050 -2.3331 0.8543 -1.9439 0.4622

Est.: parameter estimate; SE: standard error of the parameter estimator
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The parameter estimates and the variance estimates produced from the pro-
posed method appear similar for the two different choices of bandwidths. The
new estimating method led to numerically smaller absolute effects in age,
log(Albumin) and log(Bilirubin) than those from the other methods. For Edema
and log(Protime), our estimates are comparable with those from the Gehan and
least squares regressions. As the censoring rate in this dataset is approximately
as high as 61.5%, the new estimates could provide a useful alternative explana-
tion for the model in view of the relatively good performance of the method for
severe censoring, shown in the simulations.

The second example is the well-known Stanford heart transplant data ana-
lyzed by Miller and Halpern (1982) using the Cox and Buckley-James regression
methods. Survival time for a total of 184 heart-transplanted patients was col-
lected with their ages at the time of the first transplant and T5 mismatch scores.
Following Miller and Halpern (1982), the 27 patients who did not have T5 mis-
match scores and the 5 patients with survival time of less than 10 days were
excluded from our analysis. Out of the remaining 152 patients, 55 were censored
as of February 1980. The dataset is available and named “stanford2” in the “sur-
vival” package in R. A quadratic model of base 10 logarithm of survival time
with regard to age was also considered here as reported in Miller and Halpern
(1982), rather than a linear model for a better fit.

The AFT model is usually used when the proportional hazards assumption
required by the Cox model is questionable. In this regard, many existing meth-
ods for assessing the adequacy of the proportional hazards assumption can be
first used here. Our perspective is that even though the Cox model is valid, the
AFT model can be a reliable alternative by providing a different interpretation
to the covariate effect. In light of this, instead of checking the proportional odds
assumption, we explored graphically the appropriateness of the log-linear speci-
fication assumed in the AFT model. Kaplan-Meier estimates of the log survival
time conditional on age at quantiles τ = 0.01, 0.25, 0.5, and 0.75 were plotted
against age. Larger quantiles were not included because there are relatively few
ages at which these quantiles are available around observed data points. Mean-
while, at each age, the convention to redefine the largest log survival time as
uncensored whenever it is not was adopted. Fitted quadratic models of these
quantiles with regard to age using least squares estimate were also plotted. Fig-
ure 1 demonstrates that the quadratic age model assumed fits the data well, and
the patterns on age effect at different quantiles appear similar to each other,
indicating that a homogeneous AFT model is adequate for the data.

To better interpret the age effect to avoid the possible multicollinearity be-
tween age and age2, we further centralized age at its mean value 42, following
Wei et al. (1990). The parameter estimates for centralized age and age2 using
the proposed DSR method and a convergence criteria of 10−6 are −0.033 and
−0.0014 with the corresponding 95% confidence intervals (−0.051,−0.016) and
(−0.0028,−0.00014), respectively. Compared with the results from the Gehan
(−0.036 and −0.0017) and log-rank (−0.038 and −0.0016) methods reported
in Wei et al. (1990), the DSR estimators demonstrate also negative linear and
quadratic, but both age effects are smaller in magnitude.
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Fig 1. Estimated quantiles of log survival time and fitted curves from least squares estimates
of age quadratic models.

7. Discussion

In this article, we have proposed an induced smoothing rank regression method
for censored data, where censored observations are imputed by using kernel
smoothed estimates for conditional expectations of lifetimes. The original pur-
pose is to recover the efficiency of rank procedure with censored data following
the logistic distribution, as in the common Wilcoxon type procedures. The sim-
ulation results also showed that the performance of the proposed estimator
generally outperformed the other existing estimators, in particular, for severe
censoring. The kernel estimation used is based on the convolution formulation for
the hazard function in Ramlau-Hansen (1983). Other smoothed estimators, such
as those proposed in Chaubey and Sen (2008), could also be adopted here. We
could even consider smoothing the mean residual lifetime directly as in Abdous
and Berred (2005), among others. However, the kernel estimator we proposed is
convenient for demonstrating smoothness in the regression coefficients, and for
showing asymptotic properties for the final regression estimators.

The proposed method could also be extended to clustered data settings. To
this end, we can consider induced smoothing the weighted rank regression sug-
gested by Wang and Zhao (2008) with censored observations being imputed by
certain smoothed estimates of conditional expectations of lifetimes, adjusted
for correlations. Another potential application can be developing a smoothed
estimating equation in a quantile regression (Wang et al. (2009)), when both
smoothing and imputing are needed for censored data. This is of particular
interest in presence of heteroscedasiticity.
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Appendix

1. Proof of Theorem 1

Denote by E the support of F . We have

|α̃(e)− α̂(e)| ≤ n−1h−1
1

∑

j

∣∣∣
k(

e−Ej

h1

)

1− F̂n(Ej)
−

k(
e−Ej

h1

)

1− Fn(Ej)

∣∣∣.

Suppose that the distribution function of ẽi = min(ei, ci), i = 1 . . . n, is continu-
ous. From Theorem 1 in Giné and Nickl (2009) and the conditions assumed on h1

and h2, it can be shown that supE∈E
|F̂n(E)−Fn(E)|=Oa.s.(max(

√
h2 log(1/h2),√

nhq
2))= oa.s.(h1). This means also that supE∈E

|(1−F̂n(E))−1−(1−Fn(E))−1|=
oa.s.(h1) from the continuous mapping theorem. It follows that |α̃(e)−α̂(e)| P→ 0
by noting that k is a bounded kernel.

Observing that the counting process arguments are still applicable here in
term of the residuals even though arbitrarily large negative values may be ob-

served, we further obtain that α̂(e)
P→ α(e) as n → ∞, under those conditions

required for showing consistency of α̂(e) in Ramlau-Hansen (1983). It implies

that α̃(e)
P→ α(e). By dominated convergence again, we have |Ã(e)−A(e)| P→ 0

as n → 0. The consistency of S̃(e) follows immediately. Following the derivation
of Lemma 1 in James and Smith (1984), now we can show that supe∈E

|m̃(e;β)−
m(e;β)| P→ 0.

2. Proof of Lemma 1

Assume that z is a random vector, following a standard multivariate normal
distribution N(0, Ip), where Ip is a p× p identity matrix, and Γ is a covariance

matrix of order O(n−1). From the definition of Ũ(β), we can write Ũ(β0) =
Ez{Û1(z;β0)} and U(β0) = Û1(0;β0), where

Û1(z;β0) = − 1

n(n− 1)

∑

i<j

sgn{δiẽi + (1− δi)m̃(ẽi)

− δj ẽj − (1− δj)m̃(ẽj)− dTijΓ
1/2z}dij,

and further

Ũ(β0)− U(β0) =

∫

Rp

{Û1(z;β0)− Û1(0;β0)}dΦ(z). (A1)

We first prove that
√
n||Û1(z;β0)− Û2(z;β0)|| → 0 in probability, where

Û2(z;β0) = − 1

n(n− 1)

∑

i<j

sgn{δiẽi + (1− δi)m(ẽi)

− δj ẽj − (1− δj)m(ẽj)− dTijΓ
1/2z}dij.
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This can be proceeded by showing that any component k, k = 1 . . . p, of√
n{Û1(z;β0) − Û2(z;β0)}, in term of ẽ, is convergent to zero in probabil-

ity. Due to the assumption that ẽi, i = 1 . . . n, are independent and iden-
tically distributed and uniformly censored, it is reasonable to assume that
Ẽij = δiẽi + (1 − δi)m(ẽi) − δj ẽj − (1 − δj)m(ẽj) for all i 6= j follows a same
continuous distribution G with G(0) = 1/2. Denote the pdf of G by g and
m̃(ẽi)−m(ẽi) by Mi for i = 1 . . . n. After some simplifications, we obtain

E||
√
n(Û1(z;β0)− Û2(z;β0))||2

≤ 1

n(n− 1)2
E

[∑

i6=j

||dij ||
[
I{Ẽij > dTijΓ

1/2z − (1− δi)Mi + (1− δj)Mj}

− I{Ẽij > dTijΓ
1/2z}

]
]2

≤ 1

n(n− 1)
E
∑

i6=j

||dij ||2|I{Ẽij > dTijΓ
1/2z − (1− δi)Mi + (1 − δj)Mj}

− I{Ẽij > dTijΓ
1/2z}|

=
1

n(n− 1)
E
∑

i6=j

||dij ||2g(ζij){(1− δi)Mi − (1− δj)Mj}

where, by the mean value theorem, ζij is between dTijΓ
1/2z and dTijΓ

1/2z −
(1 − δi)Mi + (1 − δj)Mj . The last inequality holds because the expectation
of each of those individual items who have different subscripts i 6= i′ 6= j 6= j′

equals 0. From Theorem 1, the right-hand side of the above inequality tends
to zero. We therefore have E||√n(Û1(z;β0) − Û2(z;β0))||2 → 0 as n → 0. It
indicates that

√
n||Û1(z;β0)− Û2(z;β0)|| = op(1) by the Chebyshev inequality.

The asymptotic equivalence of Û1(z;β0) and Û2(z;β0) and (A1) imply that

√
n||Ũ(β0)− U(β0)|| ≤

∫

Rp

√
n||Û2(z;β0)− Û2(0;β0)||dΦ(z) + op(1) (A2)

If We can show that
√
n||Û2(z;β0) − Û2(0;β0)|| converges in probability to

0 by showing its componentwise convergence, then we complete the proof of
Lemma 1. Denote the kth component of Û2(z;β0)−Û2(0;β0) by Û2k(z)−Û2k(0).
Since E{Û2(0;β0)} = 0, we have

√
nE{Û2k(z)− Û2k(0)} =

√
nE[E{Û2k(z)|z}]

=
1√

n(n− 1)
E
∑

i6=j

dijk

[
G(dTijΓ

1/2z)−G(0)
]

=
Γ1/2

√
n(n− 1)

E
∑

i6=j

dijkg(τij)d
T
ijz (A3)

where, by the mean value theorem, τij is between 0 and |dTijΓ1/2z|. As Γ is matrix

of orderO(n−1) and z is of standard normal, ||Γ1/2z|| tends to zero in probability
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and g(τij) → g(0) in probability for all i 6= j. Hence, under regularity conditions
on g, it follows that (A3) tends to zero. Meanwhile, simplification leads to

nvar{Û2k(z)− Û2k(0)} ≤ 1

n(n− 1)
E

n∑

i6=j

d2ijk |I{Ẽij > dTijΓ
1/2z} − I{Ẽij > 0}|

Following again the line in (A3), nvar{Û2k(z)− Û2k(0)} tends to zero as n tends
to infinity. This shows

√
n||Û2(z;β0)− Û2(0;β0)|| = op(1)

and hence the right-hand side in (A2) converges in probability to zero, conclud-
ing the proof.

3. Proof of the consistency and asymptotic normality of β̂DSR

and β̂(m)

To show first the consistency and asymptotic normality of β̂DSR, we note that
routine application of the projection method gives that

√
nÛ2(0;β0) converges

in distribution to a normal distribution N(0, nΣ) as n → ∞, where

Σ =
4

n2(n− 1)2

n∑

i=1

E(ξiξ
T
i ) (A4)

and

ξi =

n∑

j 6=i

[
H{δj ẽj + (1− δj)m(ẽj)} −

1

2

]
dij ,

where H is the distribution function of δiẽi + (1 − δi)m(ẽi), i = 1 . . . n. This
implies that ||Û2(0;β0)|| = op(1). Since

√
n||Ũ(β0)− Û2(0;β0)|| ≤

√
n||Ũ(β0)−

U(β0)|| +
√
n||U(β0) − Û2(0;β0)|| = op(1) from Lemma 1, ||Ũ(β0)|| = op(1) by

the triangle inequality.
Let h = β̂DSR − β0 and denote β̂DSR by β0 + h. Due to the continuity of

Ũ(β) in β, generalizations of the mean value theorem give that almost surely

||{Ũ(β̂DSR)− Ũ(β0)} −Dh(β̂DSR − β0)|| = 0, (A5)

where Dh =
∫ 1

0 JŨ(β0 + th)dt, 0 ≤ t ≤ 1, and JŨ(·) is the Jacobian matrix of

Ũ(·). The triangle inequality and (A5) further give that

|| −Dh(β̂DSR − β0)||
≤ ||{Ũ(β0)− Ũ(β̂DSR)}||+ ||{Ũ(β̂DSR)− Ũ(β0)} −Dh(β̂DSR − β0)||
= op(1) (A6)

By assuming the Jacobian matrix JŨ(·) is non-singular within 0 ≤ t ≤ 1, it

shows that β̂DSR is a consistent estimator of β0. Note that this consistency
result states nothing about the uniqueness of β̂DSR.
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Application of the Taylor expansion to the continuous estimating function
Ũ(b) at ||b− β0|| ≤ n−1/2 gives

sup
||b−β0||≤n−1/2

||√n{Ũ(b)− Ũ(β0)} −
√
nDT (b− β0)||

1 +
√
n||b− β0||

= op(1).

From
√
n||Ũ(β0)− Û2(0;β0)|| = op(1), it leads to

√
n{Ũ(b)− Û2(0;β0)} =

√
nD(b− β0) + op(1 +

√
n||b− β0||). (A7)

The consistency of β̂DSR and (A7) give that

√
n(β̂DSR − β0) = −

√
nD−1Û2(0;β0) + op(1). (A8)

The asymptotic normality of β̂DSR immediately follows from the asymptotic
normality of

√
nÛ2(0;β0) as shown above.

Next, we show that β̂(m) is also a consistent estimator of β0 and asymptot-

ically normally distributed. Denote the estimating function Ũ(β) in the mth

iteration by Ũ{β̂(m), β̂(m−1)}, where β̂(m−1) comes from the estimates of the

conditional mean residuals in the (m− 1)th iteration. Suppose that β̂(m−1) is a
consistent estimator of β0 when starting iterations from a consistent estimator
β̂(0). Because of the continuity of Ũ(β) everywhere in β, the Taylor expansion

of Ũ{β̂, β̂(m−1)} regarding β̂(m−1) in ||β̂(m−1) − β0|| ≤ n−1/2 gives

Ũ{β̂, β̂(m−1)} = Ũ{β̂, β0} − (B −D)(β̂(m−1) − β0) + op(1). (A9)

Since ||Ũ(β0)|| = op(1), it is evident that ||Ũ{β0, β̂(m−1)}|| = op(1). Following

the line in showing the consistency of β̂DSR, we can obtain that the root of
the estimating function Ũ{β̂, β̂(m−1)}, i.e. β̂(m), is a consistent estimator of

β0. Furthermore, given β̂(m−1), it can be shown that β̂(m) is a unique root

of Ũ{β̂, β̂(m−1)} by regarding it as a smoothed rank estimating function for
complete data and following the line similar to Lemma 1 and Lemma 2 in
Johnson and Strawderman (2009).

From the consistency of β̂(m) and Taylor expansion, we have

β̂(m) − β0 = (I −B−1D){β̂(m−1) − β0} −B−1Ũ(β0) + op(n
−1/2)

By induction, we have for a fixed m > 1

β̂(m) − β0 = (I −B−1D)m(β̂G − β0)

− (I − (I −B−1D)m)D−1Ũ(β0) + op(n
−1/2)

Since
√
nŨ(β0) converges in distribution to N(0, nΣ), as shown in (A4), as

n → ∞ and
√
n(β̂G − β0) is also asymptotically normal as shown in Jin et al.

(2006b), it follows that β̂(m) is asymptotically normally distributed as n → ∞.
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The asymptotic covariance matrix of β̂(m) is determined by the variations of both

β̂G and Ũ(β0). However, it approximately equals Γ = D−1cov{Ũ(β0)}{DT }−1

when m is sufficiently large.
This can be seen by first showing that B − D is nonnegative under the

condition that the hazard α(e) is nondecreasing in e. We find that for any
i = 1 . . . n, Vi = (1 − δi){m(ei;β) − ei} = (1 − δi)

∫∞

ei
S(t)dt/S(ei) is non-

increasing in ei, shown as follows,

∂Vi

∂ei
= (1− δi)

α(ei)
∫∞

ei
S(t)dt− S(ei)

S(ei)
= (1− δi)

∫∞

ei
{α(ei)− α(t)}S(t)dt

S(ei)
≤ 0

It follows that for any vector γp×1 and vi = ∂Vi/∂β,

vTi γ =
∂Vi

∂ei

{
∂ei
∂β

}T

γ = −∂V

∂e
xT
i γ

is nondecreasing in γTxi. It implies that B − D is nonnegative and therefore
(I −B−1D)m approaches a zero matrix as m is sufficiently large.
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