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Abstract: In this work, consistent estimators and simultaneous confidence
bands for the derivatives of mean functions are proposed when curves are re-
peatedly recorded for each subject. The within-curve correlation of trajecto-
ries has been considered while the proposed novel confidence bands still en-
joys semiparametric efficiency. The proposed methods lead to a straightfor-
ward extension of the two-sample case in which we compare the derivatives
of mean functions from two populations. We demonstrate in simulations
that the proposed confidence bands are superior to existing approaches
which ignore the within-curve dependence. The proposed methods are ap-
plied to investigate the derivatives of mortality rates from period lifetables
that are repeatedly collected over many years for various countries.
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1. Introduction

Advanced data collection technology has evolved over the last decade so as to
permit observations densely sampled over time, space, and other continua. These
observed data are often sets of functions represented in the form of curves, im-
ages or shapes; they meanwhile demand more powerful and flexible statistical
analysis techniques. As a result, functional data analysis (FDA), which addresses
emerging issues in the analysis of these complex data, has seen significant de-
velopment in theory, methods, and computation. We refer to [15] and [11] for
monographs on FDA. In the field of FDA, statistical tools are mainly investi-
gated under the situations of independently sampled functions. In recent years,
many longitudinal studies are collecting functional measurements at each visit,
for example, mortality data [5] in which the age specific lifetables are recorded
over years for various countries; longitudinal diffusion tensor imaging (DTT) [20]
and repeated white matter tract data [18].

Our objective is to conduct estimation and simultaneous inference of deriva-
tives of repeatedly observed random trajectories. In the fields of engineering
and biomedical science, the inference of velocity or acceleration is also highly
needed, for example, magnetic gradients and white matter tract. This work
is motivated by characterizing the velocity of mean curves for mortality data
in [5]. The derivative function reflects the overall trend or direct estimation of
an underlying population progress and can be used as an important index for
the population response. Hence, it is of particular interest in data analysis to
construct simultaneous confidence bands (SCB) for the derivative functions in-
stead of point-wise confidence intervals and to develop global test statistics for
the general hypothesis testing problem on the derivative functions. In the previ-
ous works, the theoretical focus has mainly been on obtaining consistency and
asymptotic normality of the nonparametric estimators, thereby providing the
necessary ingredients to construct pointwise confidence intervals for the deriva-
tive functions [14]. Most SCB construction studied in the existing FDA literature
only considers independent and no repeatedly observed trajectories cases. Par-
ticularly, [3] constructed asymptotic SCB for the derivative of mean curves in
function data analysis without considering any within-curve dependence. [1, 8]
and [4] considered asymptotic SCB for mean functions of the functional regres-
sion model when within-curve dependence is not present.

Recently, there have been some attempts to study such dependent func-
tional data in various models. For instance, [9] emphasised a general hierarchical
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model. [5] proposed a flexible longitudinally observed functional model and pro-
vided comnsistency results and asymptotic convergence rates for the estimated
model components. [20] established the uniform convergence rate and confi-
dence band for each estimated individual effect curve in multivariate varying
coefficient models. [18] developed a functional mixed effects modeling frame-
work to delineate the dynamic changes of diffusion properties along major fiber
tracts and the structure of the variability of these white matter tract proper-
ties in various longitudinal studies. More recently, [2] studies polynomial spline
confidence bands for mean curves of dependent functional data. However, we
note that all currently available statistical nonparametric methods cannot be
immediately used for constructing SCB for derivatives of mean functions when
curves are repeatedly recorded.

To develop simultaneous inference for dependent functional responses, we en-
counter many new challenges. First, the greater technical difficulty to formulate
SCB for infinite dimensional functional response and establish their theoretical
properties. Second, unlike the scenarios considered in the classical FDA liter-
ature where the data consist of n independent units, in out settings, however,
there is complex within-subject or spatial-temporal correlation structure. In this
work we use polynomial splines to approximate the derivative functions. We
show that the proposed spline confidence bands are asymptotically correct and
satisfying semiparametric efficiency in the sense that they are asymptotically the
same as if all random trajectories are fully recorded and without measurement
errors as in [3]. In this context, we further extend the simultaneous inference to
the two-sample case and evaluate the equality of derivative functions from two
groups. Our Monte Carlo results show that the proposed bands are superior to
existing methods which ignore the dependence within the repeatedly observed
curves.

The paper is organized as follows. Section 2 states the model and intro-
duces the spline estimates of the derivative functions for dependent functional
data. Section 3.1 describes the asymptotic distribution of the spline derivative
estimator in the framework of allowing unknown within-curve dependence of
the trajectories. Using this asymptotic result, we construct SCB for derivative
functions. Section 3.2 develops the confidence bands to study the difference of
derivative functions from two populations. The actual steps to implement the
confidence bands are provided in Section 4. A simulation study is presented in
Section 5. We present applications to age-specific human mortality datasets in
Section 6.

Technical proofs are collected in the Appendix.

2. The model and estimates
2.1. Background on dependent functional data

The sample of functions that give rise to the data are viewed as realizations of a
smooth and square integrable random process {X;;(s),s € X} fori =1,...,n,



2642 G. Cao

j=1,...m;, where X is a compact interval, ¢ is the subject index, and j is the
repeated observation index for the i-th subject. Without loss of generality, let
X =10,1] and m; = m for i = 1,...,n. If the repeated sizes are not equal, we
do transformation of the data, which is discussed in details in Section 4.

The process X;;(s) is assumed to have covariance function Cov(X;;(s),
Xijr(t)) = Gjji(s,t), where j,j' = 1,...,m and s,¢t € [0,1] and G(s,t) =
{Gjj (s, 1)}~y is an m x m matrix of symmetrlc positive definite, and contin-
uous functlon Therefore, G(s,t) mainly characterizes within-subject correlation
structure. For each (i, j ), random process X;;(s) can be viewed as an Ly process
on [0, 1], and hence by the Karhunen-Loeve expansion,

oo
Xi; )+ Z §Z]k)\Jk bin(s) = p(s) + Y &ijudju(s)
where p(s) = E{Xi;(s)}, 1/)jk(') s are orthonormal eigenfunctions of the co-
variance function G;;(s,t) and for each fixed (4, ), the &jz’s are uncorrelated
random coefficients with mean 0 and variance 1. The random coefficients &;;;,’s
are also referred to as the (jk)-th functional principal component (FPC) scores
of the i-th subject. We assume that 1;(-)’s are kept in a descending order of
Ajr’s, i.e. Aji > Ajg > -+ > 0. The number of principal components is 0o in our
theories, but is often assumed to be finite for practical considerations.

In practice, one often observes measurements Y;;(s) = X;;(s) + €45(s), and
gi(s) = (i1(8),...,&im(s))" are mean zero measurement errors. Measurement
errors ¢;(s) are mutually independent of {X;;(s)}}L; and &;(s) are i.i.d. copies
of stochastic processes with mean vector 0 and covariance functions I'(s,t).
Random processes €;(s) and €;(t) are assumed to be independent when s # ¢,
and IT'(s,t) = T'(s)I(s = t), where T'(s) is an m X m matrix of functions of
s and I(-) is an indicator function. Let Y;(s) = (Yi1(s),Yi2(8),. .., Yim(s))"
i = 1,...,n. The covariance structure of Y;(s) is characterized as X(s,t)
G(s,t) + T'(s)I(s = t).

We consider a typical functional data setting where Y;(s) is measured at
the same grid of equidistant location points, i.e., s = /N, [l = 1,2,... N, for
each subject. The above leads to the following model for dependent functional
measurements

Vi = p(/N)+ > &ijndjn (I/N)+ei (I/N), 1<i<n,1<j<m1<I<N.
k=1
(2.1)
The sequences {\;x}7 =1, {#jx(-)} %=, and the random coefficients &;;i,’s only
exist mathematically and they are unknown and unobservable respectively. The
problem addressed here is estimation and inference of v-th order derivative
function p)(s). A similar model has been considered in [2].

2.2. Estimation procedure

We propose an estimation procedure that approximates the derivative of mean
functions by polynomial splines. Let wg = 0 < w1 < we-+ < wpn, < 1 =
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wn,+1 be equally-spaced points over [0, 1], called interior knots, in which w; =
Jhy, 0 < J < Ny, and h, = 1/(N, + 1) is the distance between neighboring
knots. Denote H(P~2) the p-th order spline space, i.e., p — 2 times continuously
differentiable functions on [0, 1] that are polynomials of degree p—1 on [t s, ts41],
J=0,...,N,.

Following [2], we propose to approximate the mean function pu(-) by a linear
combination of spline basis:

Nu
is)= S BiBils), (2.2)

J=1-p

where Bj be the J-th B-spline basis of order p defined in [7] and coefficients

{Bl,p, B N, }" are the solutions of the following least squares problem
~ ~ T
{ﬁl—p, - ,BNM}
nom N, °
= Mgmin{ﬂl,p,...,ﬁw}eRN““? Z Z Yij — Z BsBs(I/N) 3 . (2.3)
i=1 j=1 I=1 J=1-p

Let Y(s) = (Y1(s),Ya(s),...,Y,.(s))*T. Applying elementary algebra, one
obtains
ji(s) = B,(s) (B"B) ' B"Y (2.4)
in which By (s)=(B1-p(8), ..., BN, p(s)) and B=(B}(1/N),...,B;(N/N))*
is the design matrix.
Given the estimation of mean function /i(s), we consider 1(*)(s) as the esti-
mator of u(”)(s), foranyv=1,...,p—2, ie.

i (s) =B (s) (B"B) ' B"Y, (2.5)

where B,(,V)(s) = (Bfi)p)p(s), .. ,BJ(\l;gyp(s)). According to B-spline property in

de Boor (2001), forp >2 and 1 —p < J < N,

Bip-1(s)  Bytip-1(s) )
Witp—1 — Wy  Wjiyp — Wi+l

B, ) == (

Therefore, B,(,V)(s) =B, (s)D{,, in which D(,) = Dy ---D,_1D,, and matrix
D;, 1 <1 <v <p-—2,is defined the same as equation (6) in [19].

3. Confidence bands
3.1. Asymptotic confidence bands

First we study the asymptotic properties of the spline estimator given in (2.2).

Pretending XZ-(;-'), 1=1,2,...,n,7=1,2,...,m is known, the “ideal” or “infea-
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sible” [3, 2] estimator of u*) is
A (s) = XW(s) = (nm) 1D "X (s), s e 0,1, (3.1)

Theorem 1 below shows that the spline estimator (") in (2.2) is asymptotically
equivalent to the “ideal” estimator (") in (3.1) with y/n-rate, which is the same
rate of convergence in the parametric setting. Thus, we have the oracle efficiency
of the nonparametric estimator (*).

We need more notations for Theorem 1. Define the derivative of covariance
function G, (s, t) as G;;,)(s,t) = 1/}j/7k¢§-l,;) (s)¢§lf,1(t), where Vj;i . = Cov(&j,
&jk)s 7.7 =1,...,m. Denote the average of all entries in derivative of covari-
ance function G (s,t) by Q(s,t) = m 2 > i1 Gg;,) (s,1). Let ((s), s € 0,1],
be a standardized Gaussian process satisfying EC(s) = 0, E¢?*(s) = 1 and
EC(s)¢(t) = Q712(s,5)Q(s, )27 1/2(t,t), s,t € [0,1]. For any a € (0,1), we
denote Q1_, the 100(1 — a)-th percentile of the absolute maxima distribution
of ((s), i.e., P[supyeioq]1¢(s)] < Qi—a] =1 —a and z;_,/2 the 100(1 — a/2)-th
percentile of the standard normal distribution.

THEOREM 1. Suppose Assumptions (A1)-(A5) in Appendiz hold. For any o €
(0,1), as n — oo, the “infeasible estimator” a) converges to u*) uniformly at
the \/n rate

P{ sup v/ | (s) — u(”)(S)‘ Os,s)"1/? < Qla} —1-a,

s€10,1]

P{Va|a(s) = s (5)| Q(s,9) 1 < 21 e} 1 -0, Vse 0,1,

while the spline estimator ") is asymptotically equivalent to ™) up to 4D
order, i.e.

sup /i) (s) = i) (5)] = op(1).
s€[0,1]

The oracle efficiency in Theorem 1 immediately indicates the following result,
which can be used to construct SCB or pointwise confidence intervals for p(*) (s),
s €10,1].

COROLLARY 1. Under Assumptions (A1)-(A5) in Appendiz, for any o € (0,1),
as n — oo, an asymptotic 100(1 — a)% correct confidence band for p)(s),
s €[0,1], is

i (s) £n7120(s, $)Y2Q _a, (3.2)

while an asymptotic 100(1 — a)% pointwise confidence interval for u(”)(s), s €
[0,1], s

i (s) £n12Q (s, 5)1/2 Z1—a/2-
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3.2. Confidence bands for the difference between two derivative
functions

In this section, we focus our review on the statistical inference for the derivative
functions in the two-sample problems drawn from dependent function data sets.
The aforementioned confidence bands for one sample derivative function can
be extended to the two-sample case. Analogous to the previous notations, we
denote two samples indicated by d = 1,2, which satisfy

Yijta = pra (1/N) + Y Eigiadsn.a (I/N) + €ija (1/N)
k=1

where 1 <i <ng, 1 <j<mygand 1l <! < N. Define the ratio of two-sample
sizes as 7 = ny/ng and assume that lim,, oo 7 =7 > 0.

Ford=1,2,1let /lg') be the spline estimate of derivative function M&U) as given
n (2.2), and define Qq(s, ) = m;? did— G;l;-/)ﬁd(s, t). Next let Cainr(s) be a stan-
dardized Gaussian process on [0, 1] such that Eaqin(s) =0, EC34(s) =1 and

Qq (s,t) + 70 (s, t
Eaigr (s)Cairr () = ( 3/2 (51) 73"

{Ql(s,s) +TQQ(S,8)} {Ql (t,t) + 709 (t,t)}
for s,t € [0,1]. Next denote Qgift,1—o the (1 — a)-th quantile of the absolute
maxima deviation of (qig (s), s € [0, 1] as above. We mimic the two-sample t-test
and state the following theorem whose proof is analogous to that of Theorem 1.

THEOREM 2. If Assumptions (A1)-(A5) in Appendiz are modified for each
group accordingly, then for any « € (0,1), as ny — o0, 7 — 7 > 0,

1/2 ~ (v ~ (v v v
2 |8 = 08 = ul” + ) (s)]
P sup 1/2
s€[0,1] {0 +7Q) (s,9)}

< Qdiff1—a p —> 1 —a.

Theorems 2 yields the following asymptotic SCB for ugy)(s) — uéy)(s), s €

[0,1].

COROLLARY 2. If Assumptions (A1)-(A5) in Appendiz are modified for each
group accordingly and lim,,, oo 7 =7 > 0, then for any o € (0,1), an 100(1 —
a)% asymptotically correct confidence band for ,ugu) — ,uéy) is ([Lgu) — [ng))(s) +

172 Qa1 —a (1 + 7 (s, 8)}/2, s € [0, 1].

4. Implementation

To apply the proposed confidence bands, there are a number of important func-
tion and parameter estimation issues that need to be addressed, such as the un-
known function (-, ) and the quantiles Q1_o and Qgis,1—a, as well as choosing
the number of principal components.

In practice, very often the repeated sizes are not equal, and we suggest the
following specific data transformation. For 1 < j < maxi<i<,m; = m, we
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define }/7;() - }/ZJ( )7 gj_]k glﬂk’ zg(') - Eij(') and ¢;k() = ¢jk(')7 if }/ZJ() is
observed and Ylg( ) =0, guk () =0 and ¢;r_k(,) =0, if Y;;(+) is missing.
Further let r;; = I(Y;;(-) is observed), thus, Y50, D20 rig = Dy M = N
In the following, for simple notations we do not distinguish Y;;(), &jk, €i;(+)
and ¢;x(-) from le( ), §wk’ () and (b;k(-), respectively.

4.1. Estimating Q(s, s)
We first apply tensor product spline approach addressed in [3] to estimate the
covariance function G,;(s,t). The pilot spline estimator of G;;(s,t) is

Ng

Gjj(s,t)= Y byyBy(s)By(s), (4.1)

J,J'=1—p

where N¢g is the number of interior knots used to build the tensor product
B-spline basis and the spline coefficients

~ Ne
{bJ,J’}
J,J'=1-p

2
N
= argminRNG+p®RNG+p Z C-ll' — Z bJJ/BJ (Z/N) BJ/ (l//N) y
1#l 1-p<J,J'<Ng

and Cypr = nt 370 3 ri{ Y — (L /N)H Y0 — p(I'/N)}, 1 < 1#1 < N.
The estimation procedure of eigenvalues ;\jk, eigenfunctions 1/3jk and FPC éijk

follows standard method discussed in [17]. We focus on estimation of the v-th

derivative of eigenfunctions 1/;](;) According to [3], one has the eigenequation

. 1@(5 69 (s>d8—/lﬁ@“<s s (s)ds = A (1), (4.2)
dt”o AGE jk _Oat” VAGE ik — NjEYg ) :

where 1 are subject to fol A?k(s)ds = 1 and fo Vi (s)jp (s)ds = 0 for
k' < k.If N is sufficiently large, the left hand side of (4.2) can be approximated
by =+ Zz 1G(V (N’ Nﬁ&]k( ). Then we estimate G V)(s t) by G V)(s t) =

Zk 1 JM/}];C (s )7/1 ( )-
For j # j', note that G/ (s, t) = 337, D201 E(§ujwéujin ) Ok (s)jon (1), so

we can estimate G;;,) (s,t) by

iy 1 n oo oo
G\ (s,1) = S e DD DD nglj’k’¢gk (s )¢(’k’( t).
D s e ot
Thus, Q(s, s) can be estimated by
Q(s,s) = m™2 Z ég;)(s,s) (4.3)

J,3'=1
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The following theorem shows that Q(-,-) and Q(-,-) are asymptomatically
equivalent.

THEOREM 3. Under Assumptions (A1)-(A5), one has

sup  [Qs,t) — Qs t)| = op (1).
(s,t)€[0,1]2

The proof of Theorem 3 is given in Appendix A.3.

According to our experience, the aforementioned approach is less efficient
than imposing a structure on the within-curve correlation. For example, ex-
changeable (EC), first-order autoregressive (AR-1) and toeplitz (TOEP) are
some common options of the structure. Similar methods are introduced in the
repeated measurement studies [13, 2]. In the following we assume the covariance
structure between ;5 and &1,

Cov (E1jk- €1yrk) = P NN (5 # 3) + NN/ (G = 5)

where 0 < pj;» < 1 forany j # j/. Let Y., =n ' 30 >y i Y, 1< T< N.
Define the empirical version of with-subject covariance as

n N
Ejj' Z Z T’L'jT'L'j' (}/ZJZ - Y-l)(}/ij'l’ - Y.l/).

2
N Zz 1 TigTig! i=11,1'=1

Without loss of generality and for notation simplicity, let us assume \j; = A,
Yjr = Yi, and estimate p;;» under three popular correlation structures: EC, AR-
1 and TOEP. For any j # j', the estimator of p;; can be defined as

pis’
pi=i" = {(RTR)"*R*™D}l 7', AR-1
1

== (m =17 X0 Xy (55 X)) B
N . g — m—|j—j'| ¢ mos )yt
Pli—gr) = (m =15 = 3D m (S S ) (27 B), TOEP

where R* = (ijl,i]jQ, ey ijymfl,j = 1, e, — 1) and DT = (ijg,zj'g,
2j7m,j =1,...,m —1). Therefore, we can estimate G;?,)(s, t) by

co  { (v) ~(v) e

| RS, U
Pij’ Ek:1)\k¢k ()1/) ()7 if j £

and define Q(s, s) = m =2 S G (s 5).

REMARK 1. Note that under the assumption of the aforementioned with-subject
correlation structures and simple notations, (s, s) is equivalent to Q(s, s) de-
fined in (4.3). Therefore, according to Theorem 3, under Assumptions (Al)-
(A5)7 SUP(s,t)€l0,1]2 |Q(Svt) - Q(Svt)| = OP(l)'
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4.2. Estimating the quantiles

We generate independent R™-valued Gaussian vectors, Zj, , = (Zlk,b, cee ka’b)T
satisfying that Cov(Zkp, Zjikp) = Vjjr kOkkr, where dgir = I(k = k') and
b=1,...,by. Here by is a preset large integer, the default of which is 1000.
Let

Go(s) = Qs s) /2 milzzzjk b1/1

j=1k=1

One estimates ()1, by the empirical quantile Ql,a of these maximal absolute
value for each copy of (p(s).

In two-sample situation, for d = 1,2, one geneTrates independent R™<-valued
Gaussian vectors, Zy p.a = (Z1k,b.dy - - - s Zmgk,b,d) satisfying that
COV( k,bds Zj/k’,b,d) = ij/,k,dékk/- Similarly to Qb(-), let

Cair.o(s)
= {(Ql + Q) (s, s)}

mi

—1/2

1

m
1

ng,b,z (s)

Mg

Jk,lhl
n2m2
1 j=1k=1

>
Il

One has Qdifm_a by taking the empirical quantile of these maximum values of

édiﬁ',b(s)-

4.8. Selecting correlation/covariance structure

In the practice, an appropriate correlation matrix based on available data is
needed. To choose correlation structure, it is natural to consider bootstrap
method using the empirical coverage rates of inducing confidence bands as the
choosing criterion. Following the suggestions in [2], we select the structure which
provides the closest coverage rate to the nominal level. First, one computes the
spline estimator /i(*) for observed data. Second, given a correlation structure,
one constructs the corresponding confidence band based on the bootstrap sam-
ple data for 500 times and compute the coverage rate of the confidence band
under each correlation structure from a given set of candidates. Here, () is
assumed as the true underlying function when checking the empirical coverage
rate. Finally, one chooses the covariance structure whose empirical coverage rate
is the closest one to the nominal level.

4.4. Selecting spline knots and the number of eigenfunctions

The numbers of knots serve as the smoothing parameters, playing the same
role as bandwidths in the local linear method. According to Assumption (A3)
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in Appendix, the number of interior knots in estimating ;(*)(s) is taken to be
N, = [n'/2(t=") log(n)], in which [a] denotes the integer part of a. Meanwhile,
the spline estimator Gj;(s,t) in (4.1) is calculated with the number of interior
knots Ng = [2n'/(?P)log(log(n))]. Similar knots selections are suggested in [3].
These choices of knots also satisfy Assumption (A3) in Appendix.

We choose the number of eigenfunctions using the following standard and ef-
ficient criterion: k = argmin1<l<T{Z§€:1 Ak/ E;‘::l A > 0.95}, where {\g, k =
1,...,T} are the first T estimated positive eigenvalues.

5. Simulation results

To access the practical behavior of the proposed methodology, we conduct two
simulation examples to explore the performance of the proposed asymptotic
SCB.

5.1. Sitmulation 1: Empirical coverage rates

We take the observations to be generated from the following model

2
Yiju = (L/N)+D  ndn (I/N)+eij, 1<i<n1<j<m,1<I<N, (5.1)
k=1
where p(s) = 5s + 4sin{27(s — 1/2)}, ¢1(s) = cos(ws) and ¢p2(s) = sin(ws).
We generate the FPC scores & = (iky -+ Cimk)™ ~ N(0,\e€2), A1 = 2/3,
Ao = 1/2 and g5 = (€11, -+ -, €im1)™ ~ N(0,0.12Q2). We consider the following
settings for the correlation matrix € = {€;;/ }7%,_;.

Case 1. IND: ij/ = I(] Zj/);

Case 2. EC: Q,;y = I(j =j')+ pI(j # j'), where p = 0.05, 0.1;

Case 3. AR-1: Q5 = I(j = j') + =71 1(j # j'), where p = 0.2, 0.4;

Case 4. TOEP: Qv = 1(j = §') + py_j 1(j # 7). where p;_y| = pr with
pr=02"40.05and 0.3"+0.1,r=1,...,m — 1.

We use the proposed method in (3.2) and its “oracle” version Q(s,s) in
(4.3) to construct the confidence bands for x(Y)(-) under different correlation
structures: “IND”, “EC”, “AR-1" and “TOEP”. We consider two confidence
levels: 1 — a = 0.95,0.99. The number of trajectories n is taken to be 30, 50,
100, and for each n, the number of observations on the trajectory is N = n.
Each simulation is repeated 1000 times.

For each setting, we adopt cubic spline (p = 4) smoothing and calculate the
percentage of coverage of the true function on regular grid with increments 0.01
by the bands constructed using four different correlation structures. Tables 1
and 2 summarize the percentage that the true curve u(Y)(:) is covered by the
cubic spline confidence bands respectively.

In Table 1, the true underlying within-curve correlation structure is chosen
as independent (“IND”), i.e. € is identity matrix. Hence, one would expect
the bands constructed using the “IND” structure to be the best performer. In
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TABLE 1
Empirical coverage rates of the bands using various correlation structures (Case 1)

Est. Oracle
mon @ IND EC AR-1 TOEP IND EC AR-1 TOEP
50 005 0808 078 0807 0788 0849 = -

0.01 0943 0.933 0.941 0.931 0.964 - - -
0.05 0.906 0.897  0.902 0.896 0.917 - - -

1050 0.01 0.983 0.978 0.983 0.974  0.987 - - -
100 0.05 0.946 0.939 0.949 0.948 0.948 - - -

0.01 0.993 0.991 0.993 0.991 0.996 - - -

30 0.05 0.743 0.718 0.739 0.716 0.766 - - -

0.01 0.925 0.900 0.929 0.902 0.945 - - -

20 50 0.05 0.894 0.874 0.888 0.870 0.899 - - -
0.01 0.984 0.981 0.984 0.975 0.981 - - -

100 0.05 0.939 0.926 0.939 0.932 0.950 - - -

0.01 0.990 0.991 0.992 0.991 0.994 - - -

fact, Table 1 shows that the bands constructed using correlated structures are
very competitive, too. In several cases, the coverage rates of the bands with
correlated structures (“EC”, “AR-1”7 and “TOEP”) are very close to or even
better than the bands with “IND” structure. As we expected coverage rate of
“oracle” bands approach the nominal levels is faster than the estimated one,
but both of them converge to the nominal level clearly, which show positive
confirmation of Theorems 1 and 3. To summarize, in many correlated structure
settings, our method can lead to substantially better coverage rates than the
“naive” (“IND”)-type band, while the loss in the case of an underlying “IND”
structure is quiet small when sample sizes increase.

In Tables 2 and 3, we investigate the coverage percentages when the true
correlation structures are “EC”, “AR-1” or “TOEP”. For each true correlation
structure, we construct spline confidence bands based on all four correlation
assumptions including “IND”. As expected, the coverage percentages for the
confidence bands are close to the nominal levels when applying the correct cor-
relation structure. The bands obtained by “IND” have significantly smaller cov-
erage rates than the nominal levels regardless of the sample sizes and correlation
structures. Particularly, when the correlation structure becomes stronger, for ex-
ample, increasing p;; in €2;;/, the “IND”-type of band performs much worse than
its counterparts. While the advantage of applying our proposed bands over the
“naive” band seems to persist across the table, it is more evident in the situation
with stronger correlation structure, i.e., increasing p;;s in £2;;,. From Tables 2
and 3, we can see that in most of the scenarios the “oracle” confidence bands
outperform the estimated bands, and the “oracle” bands approach the nominal
coverage with sample sizes increasing. In Tables 1 to 3, when nominal level is
0.05, the standard error for each empirical coverage rate ranges from 0.0001 to
0.00025 and the average standard error is around 0.0002. When nominal level
is 0.01, the standard errors of empirical coverage rates are less than 0.0001.

We depict a typical comparison between two 95% confidence bands con-
structed using “IND” and “TOEP” correlation structures in Figure 1. The true
correlation structure is “TOEP” (with p = 0.3" 4+ 0.1). This plot is based on



Deriwatives of dependent functional data 2651

TABLE 2
Empirical coverage rates of the bands using various correlation structures (Cases 2, 3
and 4) and each trajectory is repeatedly observed mi = mg = 10 times

True Structure Est. Oracle

(true p) " @ TIND EC AR TOEP IND EC AR-1 TOEP
50 005 0603 0812 0736 08Il - 0866 - -

0.01 0.887 0938 0.899 0942 - 0976 - -

0.05 0805 0887 0835 0881 - 0011 - =

EC(0.05) 0 001 0934 0981 0948 0978 0987 -
oo 005 0857 0044 0882 094 0947 - =

0.01 0.970 0.994 0976 0.992 - 0994 - -

50 005 OGIL 0826 0699 0820 — 0881 - -

0.01 0.813 0951 0.869 0947 — 0979 — -

0.0 0.715 0022 0797 0022 - 0930 - -

EC(0.10) 0 001 0904 0988 0941 098 0995 -
0o 005 0762 0951 084 0956 0962 - =

0.01 0.934 00992 0973 0993 -~ 0994 - -

50 005 0693 0794 0821 0807 - — 0859 -

0.01 0.879 0.936 0.952 00937  — - 0970 -

0.0 0.807 0.898 0006 0896 - — 0919 -

AR-1(0.2) %0 501 0932 0979 0983 0980 ~ 0988 -
oo 005 0857 0950 0946 0943 - — 0950 -

0.01 0.972 0.997 0.997 0994  — ~ 0997 -

50 005 0554 0840 0840 0839 - — 0881 -

0.01 0.780 0.950 0.956 0.951  — -~ 0976 -

005 0673 0014 00921 0918 - — 0938 -

AR-1(0.4) 0 001 0858 0990 0991 0992 - 0997 -
0o 005 0725 0946 0954 0954 — 095 -

0.01 0.907 0992 0.995 0992 - - 0997 -

50 005 0627 0850 0813 0851 - - ~ 0.901

0.01 0.841 0950 0.937 00953  — - ~ 0976

TOEP s 005 0712 0919 0804 0921 - = — 093
(0.2" +0.05) 0.01 0.902 00983 0.977 0981 - - ~0.992
oo 005 0763 0944 0912 0946 - = — 095%

0.01 0.930 0994 0983 0992 - - ~0.994

5o 005 0496 0863 0810 0867 - - — 0.908

0.01 0.703 0.962 0.946 0961  — - ~ 0982

TOEP sy 005 0572 0882 0864 0882 - = — 00945
(0.3" +0.1) 0.01 0.798 0.970 0.952 0.968  — - - 0.993
oo 005 0596 0930 0881 0926 - = — 0947

0.01 0.818 0.986 0.984 00986  — - ~ 0998

n = 30, m = 10, 20. In Figure 1, one sees that the “IND” and “TOEP” produce
the same estimator for the true curve p(1)(-), however, the confidence bands ob-
tained are very different. From Figure 1, one sees that the true curve u(V(-) lies
completely inside the “TOEP”-type of band, but it can not be covered entirely
by the “IND”-type of band.

5.2. Stmulation 2: Empirical sizes and power

We conduct a numerical study to evaluate the empirical size and power of hy-
pothesis tests for the derivative functions based on the proposed confidence
bands. We compare the results of the bands developed under the “IND” as-
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TABLE 3
Empirical coverage rates of the bands using various correlation structures (Cases 2, 8 and
4) and each trajectory is repeatedly observed mi = mo = 20 times

True Structure Est. Oracle
(true p) " @ TIND EBEC AR TOEP IND EC AR-1 TOEP
50 005 0493 0782 0547 0788 - 084l - -
0.01 0.757 0.923 0.806 0.928 - 0961 - -
005 0675 0899 0728 0906 — 0915 - =
EC(0.05) %0 001 0.880 0982 0.906 0983 0992 -
oo 005 0709 0930 0775 0934 0042 - =
0.01 0911 0992 0935 0992 -~ 0995 - -
5o 005 0386 0849 0518 0852 — 0900 - -
0.01 0.658 0975 0.789 0975 — 0984 — -
0.0 0.495 0013 0640 0009 - 0931 - -
EC(0.10) 0 001 0.751 0982 0.856 0981 0087 -
0o 005 0555 0951 0723 0955 0961 - -
0.01 0.810 0.998 0.907 0.999 -~  0.998 - -
50 005 0592 0752 0762 0.750 - — 0804 -
0.01 0.834 0909 0929 00903  — - 0952 -
0.0 0.798 0890 0905 0893 - — 0912 -
AR-1(0.2) %0 501 0938 0980 0985 0982 - 0989 -
oo 005 08I5 0932 0938 0931 — 09043 -
0.01 0.970 0993 0.995 0991  — 0994 -
50 005 0466 0830 0859 0835 - — 0881 -
0.01 0.749 0960 0.971 0959 - -~ 0980 -
005 0625 0013 00918 0910 - — 0930 -
AR-1(0.4) %0 001 0.848 0980 0985 0984 - 0992 -
oo 005 00685 0943 0947 0944 — 0958 -
0.01 0.896 0.997 0.997 0997 - - 0999 -
50 005 0481 0836 0726 0842 - - = 0893
0.01 0.729 0950 0.900 0945  — - ~ 0968
TOEP 5o 005 0564 0899 0805 0900 - = — 00915
(0.27 4+ 0.05) 0.01 0.902 00983 0.977 0981 - - ~ 0984
oo 005 0650 0935 0853 0937 - = — 094
0.01 0.858 0.992 0.964 0994 - - ~0.992
5o 005 0338 0877 0736 0875 - - — 0.906
0.01 0.576 0.963 0.905 0961  — - ~ 0979
TOEP 5o 005 0398 00922 0817 008 - = — 095
(0.3" +0.1) 0.01 0.672 0989 0.957 00985  — - ~ 0994
oo 005 0476 0953 0851 0955 - = — 0.960
0.01 0.724 0993 0972 0994  — - ~0.99

sumption with those taking into account the within-curve correlations. In order
to mimic the two-sample testing problems, we consider the following hypothesis
test:

Hy: ugl)(s) = uél)(s), Vs €[0,1] «— H, : ugl)(s) # uél)(s), ds €[0,1]. (5.2)

We generate two groups of data from the model given in (5.1) with pq(s) =
5s + 0s + 4sin{27(s — 1/2)} and pa(s) = 5s + 4sin{27(s — 1/2)}, and all the
remaining settings are the same as in Example 1 under the same parameter
values. The constant ¢ takes 6 values {0,0.25,0.5,...,1.25}. We choose the
sample sizes n; = ny = 100, and the number of observation points of each
curve N = 100. For each subject, the noisy trajectory is repeatedly observed
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Fic 1. The estimated derivative function (middle dashed line), the true derivative function
(middle solid line) and its 95% confidence bands (3.2) using “TOEP” structure (upper and
lower dotted lines) and using “IND” structure (upper and lower dot-dashed lines).

my = mo = 10 times under three true correlation structures:“AR-1” (p = 0.2),
“EC” (p = 0.05) and “TOEP” (p, = 0.2" +0.05, » = 1,...,m — 1). For each
simulation, the significance level was set at a = 0.05, and 500 replications were
used to estimate the rejection rates. Indeed, large values of ¢ shift the derivative
of mean function for the first group data further away from second one, therefore
the rejection rates increase with the values of §.

Table 4 summarizes the empirical type I errors and powers of the hypothesis
test in (5.2) under different true correlation structures respectively. For each
correlation structure, we compare the performance of the “IND”-type band and
the band using the true structure at 5% nominal level. It can be seen from Ta-
ble 4, when 6 = 0, the “IND” does not maintain its sizes regardless of the true
correlation structures and sample sizes. This finding also correspond with its
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TABLE 4
Empirical type I errors and powers for hypothesis testing (5.2) at 5% nominal levels with
various correlation structures. For each case, sample sizes are n1 = na = N = 100 and each
trajectory is repeatedly observed mi = ma = 10 times

. )
True Structure (true p)  Applied Structure 500 035 550 077E 100 195
TOEP 0.056 0.124 0.332 0.642 0.966 1.000

— T

TOEP(pr = 0.2 +0.05) IND 0.241 0.422 0.790 0.981 1.000 1.000
EC(0.05) EC 0.061 0.153 0.424 0.796 0.995 1.000
) IND 0.129 0.318 0.723 0.973 1.000 1.000
AR-1 0.057 0.148 0.426 0.808 0.998 1.000
AR-1(0.20) IND 0.135 0.309 0.699 0.978 1.000 1.000

low coverage rates in Tables 2 and 3. Therefore, although the power of “IND”
is larger than our proposed method, it is not recommended for practical appli-
cations. Overall, the tests based on our proposed method maintain their sizes
at 5% nominal level, while increasing values of § and sample sizes improve the
power of detecting the alternatives.

6. Real data analysis

6.1. Confidence bands for derivative function of human mortality
rates

Assessing demographic trends in mortality is of growing interest due to the
demographic impacts of aging and extended longevity on the future viability
of social security and retirement systems [6]. Such trends not only raise basic
biodemographic questions about the nature and the limits of human lifespan
but also about the demographic future of aging societies. Our dataset contains
the lifetables for 41 countries and areas from the calendar year 1992 to year 2005
obtained from the Human Mortality Database [12] (www.mortality.org). Fig-
ure 2 depicts mortality rates within age 60 to age 100 in two countries (Australia
and Iceland) from year 1992 to year 2005. It can be found that the mortality
rate decreases slightly over the years in Australia, while there are no clear trends
happening in Iceland during these years. Various approaches have been proposed
for the modeling of mortality data including i.i.d. functional approach [6] and
two-dimensional functional principal analysis approach [5]. There is one inter-
esting issue: the analysis of recurring mortality patterns and their structure. In
our analysis, we focus on the estimation and inference of the first order deriva-
tive of mortality rate over calendar years for elder population. We also apply
the proposed confidence bands to period lifetables to recur mortality trends.

Let Y;;(s) denote the mortality rate observed for the ¢th country, jth calendar
year at age s, where i = 1,...,41, 7 = 1992,...,2005. We focus on the older
individuals within the age range 60 < s < 100.

Applying cubic spline smoothing to the dataset, we obtain the estimated
overall first order derivative function of mortality rates (1) (-) for age from 60
to 100. To construct the confidence band, we first select the correlation structure
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Fic 2. Plot of mortality rates in Australia and Iceland from year 1992 to year 2005.

using the resampling method in Section 4, and “AR-1" gives the closest coverage
rate to the nominal level based on 1000 resampling data. “IND” and “AR-1”
supply the same estimated derivative function p(); see the middle solid line
in Figure 3. To explore the comparison of the bands under different structure
assumptions, in Figure 3 we present both the “IND”-type of band (upper and
lower dot-dashed lines) and the “EC”-type of band (upper and lower dashed
lines) at 95% confidence level. As shown in Figure 3, the estimated derivative
function of mortality rate is increasing quickly from 0, which corroborates with
the convex trends in Figure 2.

6.2. Two-sample test for the difference between male and female
mortality rates

We further compare the mortality velocity of female and male subjects. From
the Human Mortality Database (www.mortality.org), we obtain the lifetables
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FiG 3. Cubic spline estimator (middle solid line) iV) (s) and its 95% confidence bands (3.2)
using “AR-17 structure (upper and lower dashed lines) and “IND” structure (upper and lower
dot-dashed lines).

for female and male subjects respectively. We focus on the same 41 countries
and areas analyzed in Section 6.1 from the calendar year 1992 to year 2005. Our
hypothesis of interest is:

Hy : ug\i[)(s) = ug)(s), Vs € [60,100] «— H, : ug\?(s) # ug)(s), Js € [60, 100],
where ,ug\}j) (s) and ug)(s) are the first derivative functions of mortality rates for
males and females in these n; = no = 41 countries and areas respectively.

Figure 4 depicts the cubic spline confidence bands at confidence level 0.99
(upper and lower dashed lines), with the center dashed-dotted line representing

the spline estimator NE\Z)(S) — ﬂg)(s) and a solid line representing zero. Re-
sampling method in Section 4 chooses “AR-1" and “EC” as proper correlation
structures for male and female groups respectively. The 99% confidence band
increases slightly above the zero line and is relatively flat. After the single tuning
point around age 90, it decreases under zero fairly fast. Due to few data collected
for aged population, Figure 4 also indicates the variation of the discrepancy in-
creases when people become aged. By comparing the 99% confidence band and
zero reference line, the difference between male and female death rates velocity
is extremely significant and female elders has lower mortality velocity than male
elders at the same age before age around 90 and after this tuning point male has
lower mortality velocity. To our best knowledge, there has been no demographic
literature discussing the similar findings. Hence, a potentially interesting exten-
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Fic 4. Cubic spline estimator [LS&I) (s) — [LE,I)(S) (dashed-dotted line) and the corresponding
99% confidence band (dashed lines). The solid line represents zero reference.

sion of this work is to consider including some demographic variables and study
the relationship of the mortality rate and these demographic regressors.
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Appendix
For any vector a = (ay,...,a;) € R¥, denote the norm ||a|, = (Jai|” + - +
lar|)M7, 1 < r < 400, ||allee = max(|ai],..., |ax|). For any function ¢ on [0, 1],

denote [|¢lco = supsejo 17 [¢(s)]. We use C' to denote a generic positive constant
unless otherwise stated.

A.1. Technical assumptions

In this paper we restrict our attention to splines with equally spaced knots.
Denote t; = Jh,, 0 < J < N, and let h, = 1/(N, + 1) be the distance
between neighboring knots.

For any § € (0,1] and nonnegative integer ¢, let C%9[0,1] be the space of
functions with §-Holder continuous g-th order derivatives on [0, 1], i.e.

cr0[0,1] = {d): Il 5= sup [t—s|71el? (1) = 6@ (s)| < +OO} :

t#s,t,s€[0,1]

The technical assumptions we need are as follows:
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(A1) The regression function p € CP~51[0,1], i.e., u®=1 € %10, 1].

(A2) Let I'j;(s) be the (4, j')-th entry of I'(s), and I';;(s) € C%[0, 1] for some
d € (0,1].

(A3) The number of observations for each trajectory N > n’ for some 6 >

1
2};‘72’;) ; the number of interior knots satisfies n=@— < N,, < (N/log n)rlb,

n% < Ng < no.
(A4) There exists Cg > 0, for j,7' = 1,...,m, such that G,; (s,s) > Cg,
56[O,l];fork6{1,...,/{},V:O,l,...,p—2andj:1,...,m,¢)§2)(s)6

€O910,1], S5y 1657 oo < 00 and as n — oo, k8 S0 (167 [lo.s = o(1)
for a sequence {k,}52; of increasing integers, with lim,_, £k, = £ and
the constant ¢ € (0, 1] as in Assumption (A2).

(A5) There exist 71,72 > 4, such that E|&,|™ + E |ei|™ < o0, for 1 <i <
00,1 <j<m,1<k<k,1<I[<oo. The number k of nonzero eigenval-
ues is finite or & is infinite while the random vectors & = (Si1ky - - -5 Cimk) ™
are i.i.d. for 1 <i < oo, 1 <k <k.

Assumptions (A1)—(A2) are typical conditions for spline smoothing; see [16,
3, 2]. In fact, (A1) and (A2) ensures the convergence rates of 4(*). Assumption
(A3) concerns the relationship among the number of subjects, the number of
observations with each trajectory and the number of knots of B-splines. As-
sumption (A4) guarantees that the derivatives of principal components have
collectively bounded smoothness. If v = 0, (A4) is the same as Assumption
(A4) in [2]. Assumption (A5) is necessary for applying Gaussian approximation
of estimation error process.

A.2. Error decomposition for the spline estimators

In this section, we break the estimation error i(*)(s) — u*)(s) into three terms.
We begin by discussing the representation of the spline estimator 1*)(s) in (2.2).

Define B(s) = (Bi—p(5), - -, BN, (8))", X (N, 1) = (B(L/N),...,B(N/N))"
and V=N"1X"X = ((By, BJ/>27N)y‘},:1_p. Projecting the relationship in model
(2.1) onto the linear subspace of RNuTP spanned by {B(I/N)}1<i<n, We obtain
the following decomposition:

AP (s) = 1 (s) + & (s) + £V (s), (A.1)
where
N, Ny
i(s) = BsBY(s), E¥(s) = asBY(s),
J=1-p J=1-p
K Nu
EW(s) = V), €7) = Y. AaBY(s). (A-2)
k=1 J=1-p

and the vectors {Bl_p, .. ,BNNM}T, {a1p,...,an,}" and {T1—p, -, TeN, } T
in (A.2) are solutions to (2.3) with Y;;; replaced by w(l/N), €;;(I/N) and
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¢Jk(l/N) respectively. Alternatlvely, i)(s) = N1BM (s)V-1XTp, 60 (s) =

N-IBW(s)V-1XTe, £ (s) = NT1B®(5)V1XT¢y, for 1 < k < k, where
p) = (M (1/N), ...,y (N/N))* is the signal vector, e = (&.1,...,&.8)"
withé.; = (nm)*1 S ZT 1€i5(L/N), 1 <1 < N, is the noise vector, and vec-

tor ¢ = (nm) ™1 3T 3300 Likik with éj = (¢5k(1/N), ..., ¢u(N/N))™.

In the following, we denote by Qw (1) the p-th order quasi-interpolant of u
corresponding to the knots w, see equation (4.12), page 146 of [10]. According
to Theorem 7.7.4 in [10], the following lemma holds.

LEMMA 1. There exists a constant C > 0, such that for 0 < v < p— 2 and
w € CP0,1],

| = Qe (1)

The next lemma concerns the bias order of i(*)(s) given in (A.1).

LEMMA 2 ([3], Proposition 1). Under Assumptions (A1) and (AS3),
supsefo, /A (5) — u®(s)] = o(1).

LEMMA 3. Under Assumptions (A2), (A3) and (A5), sup,ejo n/21eW)(s)| =
0p(1).

<ol

PRrROOF: Under Assumptions (A2), (A3) and (A5), Proposition 1 in [3] entails
that |[N~'B(s)X"e|oe = Oq.s.(n"Y2N=/211/*1og"/? n). Also under Assump-
tion (A3), Lemma A.3 in [3] leads to ||[V™1||o = O(h,;'). Hence, one has

sup n1/2‘ e (s )‘ = sup nl/Q‘N_lB(”)(s)V_lee
s€[0,1] s€[0,1]
i A I =10 SH

Og.s. (Nfl/zhljl/zﬂ’ logl/2 n) = 04.5.(1).

Thus, Lemma 3 follows from Assumption (A3).

LEMMA 4 (2], Lemma A.7). When Assumption (A5) holds and 8 € (0,1/2),
one has

Jex B (nm)” ;; €k — Zigrg)| = O(n"7h), (A.3)
P (nm)~! ;;(w —Zijie)| = Oas. (n"71).  (A4)

Also o
max (nm) 1ZZEI§WI = ( Y2 4 nf 1) (A.5)
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LEMMA 5. Under Assumptions (A2)-(A5), supe 1 n2€W) (s) — i) (s) +

W(5)] = 0p(1) and P{sup,eoq n/21E) (5)|0(s,5) /2 < Qu_a} =1~ for
any a € (0,1).

PROOF: Let x(s) = n'/2(nm)~ 1320, >t Zijk)5¢§-l,;)(s), k=1,...,k, and
define

~1/2
5(5) = {# Z Z (gukgzg’k')d) ( )¢(fk’( )} Ek(s)
Q

k=1

It is clear that ¢ (s) is a Gaussian process with mean 0, variance 1 and covariance
EC(s)((t) = Q(s, s)"1/2Q(t, 1)~ /%Q(s, t), for any s,t € [0, 1]. Thus, ((s) has the
same distribution as ((s) over s 6 [0,1].

copll 8 lloe and 35 — &0 <
m. Applying (A.5) and Assumptions

According to Lemma 1, ||¢ ||oo

Co 6D lostf 1< b < 51 < 5
(A3), (A4), one has

Enl/? sup |(nm) 12225@ 5) =3 ()}

s€[0,1]

<
<

=1 j=1 k=1
< Cn'/?(nm) IZZ{ ()’}
i=1 j=1 (k=1 s€[0,1]
1/2 . n m Kn ) @) s K ) @)
< Cn*'*(nm) ZZ{ o) O,Jh”+ Z P, OO}
i=1 j=1 (k=1 k=rkn+1
<C Z§N¢HMW+Z Z|wnw:wm,
j=1 k=1 j=1 k=krn+1

hence

K

n'/? sup Q(s, s) 1/2 122 51;k{¢]k 925 ()} =op(1).

s€[0,1] i=1 j=1k=1

In addition, (A.3) and Assumptions (A3), (A4) entail that

n K

1 . v
En'/? sup Q(s, s) e ZZ Zijk,e —gijk)¢§k) (s)

nm
s€[0,1] i=1 j=1 k=1

< OnP~ WZZHGﬁ loo = o(1).

j=1 k=1
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Therefore,

K

n'/2 sup Q(s,5) 72 {(nm) Y0NS (Zijre — )l ()| = op(1).

s€[0,1] i=1 j=1 k=1
(A7)
Note that
A (5) — ) (s) — E0)(s) Y Z & {855 () = 05 ()},

n=12Qs, 5)1/25(8)—{11(”)(5) - u(”)(S)} = % SN Zigre—Ein) i ().

i=1 j=1 k=1
Hence according to (A.6) and (A.7),
'/ sup Q(s,s)"2 Y (s) = pt(s) = €W (s)| = op(D),
s€10,1]
sup [(¥)(s) —n'/2Q(s,8) 7 2{a (s) = ()} = op(D),

s€10,1]
which leads to the desired results.

ProOOF OF THEOREM 1: Theorem 1 follows directly from the decomposition in
(A.1) and Lemmas 2-5.

A.3. Proof of Theorem 3

We first show asymptotic consistency of (;352) and {Aijk, for £ > 1, in the following
lemma.

LEMMA 6. Under Assumptions (A1)-(A5), one has ||jx — djklloo = HQAS;Z) -
e = 0p(1), k>1,j=1,2,...m andv=1,...p—2.

PROOF: For any fixed j = 1,2,...m, the proof is analogue of Lemma A8 and
Theorem 4 in [3], thus omitted.

LEMMA 7. Under Assumptions (A1)-(A5), one has |Ejx — Eiji] = op(1), k > 1,
i=1,2,...m

PROOF: Note that

&ijk — &gk

050 = i) b (s = [ (X (9) = () 0 ()

IN

[ 059 = 6 (i () = 036 ) s

+ / (¥ (5) — 1 (5)) by (5) ds — / (s () — 1 (5)) by (s) dis
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< <|ﬂ — il + el +/ Zfz‘jkéf)jk (s)
k=1

= (A= pllee + llellc) 105k Nl -

i) - o]

Since X;;(s) is an Lo process, one has [ [>°77 &jkdin(s)]ds < oo. According
to Theorem 2.1 and Proposition 3.3 in [4], one has || — ul|,, = op(n~1/?) and
le|l, = op(n~'/?). Hence, Lemma 6 leads to Lemma 7 directly.

PROOF OF THEOREM 3: Theorem 3 follows directly from Lemmas 6 and 7.
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