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Abstract: In this work, consistent estimators and simultaneous confidence
bands for the derivatives of mean functions are proposed when curves are re-
peatedly recorded for each subject. The within-curve correlation of trajecto-
ries has been considered while the proposed novel confidence bands still en-
joys semiparametric efficiency. The proposed methods lead to a straightfor-
ward extension of the two-sample case in which we compare the derivatives
of mean functions from two populations. We demonstrate in simulations
that the proposed confidence bands are superior to existing approaches
which ignore the within-curve dependence. The proposed methods are ap-
plied to investigate the derivatives of mortality rates from period lifetables
that are repeatedly collected over many years for various countries.
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1. Introduction

Advanced data collection technology has evolved over the last decade so as to
permit observations densely sampled over time, space, and other continua. These
observed data are often sets of functions represented in the form of curves, im-
ages or shapes; they meanwhile demand more powerful and flexible statistical
analysis techniques. As a result, functional data analysis (FDA), which addresses
emerging issues in the analysis of these complex data, has seen significant de-
velopment in theory, methods, and computation. We refer to [15] and [11] for
monographs on FDA. In the field of FDA, statistical tools are mainly investi-
gated under the situations of independently sampled functions. In recent years,
many longitudinal studies are collecting functional measurements at each visit,
for example, mortality data [5] in which the age specific lifetables are recorded
over years for various countries; longitudinal diffusion tensor imaging (DTI) [20]
and repeated white matter tract data [18].

Our objective is to conduct estimation and simultaneous inference of deriva-
tives of repeatedly observed random trajectories. In the fields of engineering
and biomedical science, the inference of velocity or acceleration is also highly
needed, for example, magnetic gradients and white matter tract. This work
is motivated by characterizing the velocity of mean curves for mortality data
in [5]. The derivative function reflects the overall trend or direct estimation of
an underlying population progress and can be used as an important index for
the population response. Hence, it is of particular interest in data analysis to
construct simultaneous confidence bands (SCB) for the derivative functions in-
stead of point-wise confidence intervals and to develop global test statistics for
the general hypothesis testing problem on the derivative functions. In the previ-
ous works, the theoretical focus has mainly been on obtaining consistency and
asymptotic normality of the nonparametric estimators, thereby providing the
necessary ingredients to construct pointwise confidence intervals for the deriva-
tive functions [14]. Most SCB construction studied in the existing FDA literature
only considers independent and no repeatedly observed trajectories cases. Par-
ticularly, [3] constructed asymptotic SCB for the derivative of mean curves in
function data analysis without considering any within-curve dependence. [1, 8]
and [4] considered asymptotic SCB for mean functions of the functional regres-
sion model when within-curve dependence is not present.

Recently, there have been some attempts to study such dependent func-
tional data in various models. For instance, [9] emphasised a general hierarchical
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model. [5] proposed a flexible longitudinally observed functional model and pro-
vided consistency results and asymptotic convergence rates for the estimated
model components. [20] established the uniform convergence rate and confi-
dence band for each estimated individual effect curve in multivariate varying
coefficient models. [18] developed a functional mixed effects modeling frame-
work to delineate the dynamic changes of diffusion properties along major fiber
tracts and the structure of the variability of these white matter tract proper-
ties in various longitudinal studies. More recently, [2] studies polynomial spline
confidence bands for mean curves of dependent functional data. However, we
note that all currently available statistical nonparametric methods cannot be
immediately used for constructing SCB for derivatives of mean functions when
curves are repeatedly recorded.

To develop simultaneous inference for dependent functional responses, we en-
counter many new challenges. First, the greater technical difficulty to formulate
SCB for infinite dimensional functional response and establish their theoretical
properties. Second, unlike the scenarios considered in the classical FDA liter-
ature where the data consist of n independent units, in out settings, however,
there is complex within-subject or spatial-temporal correlation structure. In this
work we use polynomial splines to approximate the derivative functions. We
show that the proposed spline confidence bands are asymptotically correct and
satisfying semiparametric efficiency in the sense that they are asymptotically the
same as if all random trajectories are fully recorded and without measurement
errors as in [3]. In this context, we further extend the simultaneous inference to
the two-sample case and evaluate the equality of derivative functions from two
groups. Our Monte Carlo results show that the proposed bands are superior to
existing methods which ignore the dependence within the repeatedly observed
curves.

The paper is organized as follows. Section 2 states the model and intro-
duces the spline estimates of the derivative functions for dependent functional
data. Section 3.1 describes the asymptotic distribution of the spline derivative
estimator in the framework of allowing unknown within-curve dependence of
the trajectories. Using this asymptotic result, we construct SCB for derivative
functions. Section 3.2 develops the confidence bands to study the difference of
derivative functions from two populations. The actual steps to implement the
confidence bands are provided in Section 4. A simulation study is presented in
Section 5. We present applications to age-specific human mortality datasets in
Section 6.

Technical proofs are collected in the Appendix.

2. The model and estimates

2.1. Background on dependent functional data

The sample of functions that give rise to the data are viewed as realizations of a
smooth and square integrable random process {Xij(s), s ∈ X} for i = 1, . . . , n,
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j = 1, . . .mi, where X is a compact interval, i is the subject index, and j is the
repeated observation index for the i-th subject. Without loss of generality, let
X = [0, 1] and mi = m for i = 1, . . . , n. If the repeated sizes are not equal, we
do transformation of the data, which is discussed in details in Section 4.

The process Xij(s) is assumed to have covariance function Cov(Xij(s),
Xij′ (t)) = Gjj′ (s, t), where j, j′ = 1, . . . ,m and s, t ∈ [0, 1] and G(s, t) =
{Gjj′ (s, t)}mj,j′=1 is an m×m matrix of symmetric, positive definite, and contin-
uous function. Therefore,G(s, t) mainly characterizes within-subject correlation
structure. For each (i, j), random process Xij(s) can be viewed as an L2 process
on [0, 1], and hence by the Karhunen-Loève expansion,

Xij(s) = µ(s) +

∞
∑

k=1

ξijkλ
1/2
jk ψjk(s) = µ(s) +

∞
∑

k=1

ξijkφjk(s),

where µ(s) = E{Xij(s)}, ψjk(·)’s are orthonormal eigenfunctions of the co-
variance function Gjj(s, t) and for each fixed (i, j), the ξijk’s are uncorrelated
random coefficients with mean 0 and variance 1. The random coefficients ξijk’s
are also referred to as the (jk)-th functional principal component (FPC) scores
of the i-th subject. We assume that ψjk(·)’s are kept in a descending order of
λjk’s, i.e. λj1 ≥ λj2 ≥ · · · ≥ 0. The number of principal components is∞ in our
theories, but is often assumed to be finite for practical considerations.

In practice, one often observes measurements Yij(s) = Xij(s) + εij(s), and
εi(s) = (εi1(s), . . . , εim(s))T are mean zero measurement errors. Measurement
errors εi(s) are mutually independent of {Xij(s)}mj=1 and εi(s) are i.i.d. copies
of stochastic processes with mean vector 0 and covariance functions Γ(s, t).
Random processes εi(s) and εi(t) are assumed to be independent when s 6= t,
and Γ(s, t) = Γ(s)I(s = t), where Γ(s) is an m × m matrix of functions of
s and I(·) is an indicator function. Let Yi(s) = (Yi1(s), Yi2(s), . . . , Yim(s))T,
i = 1, . . . , n. The covariance structure of Yi(s) is characterized as Σ(s, t) =
G(s, t) + Γ(s)I(s = t).

We consider a typical functional data setting where Yi(s) is measured at
the same grid of equidistant location points, i.e., s = l/N , l = 1, 2, . . . , N , for
each subject. The above leads to the following model for dependent functional
measurements

Yijl = µ (l/N)+

∞
∑

k=1

ξijkφjk (l/N)+ εij (l/N) , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ N.

(2.1)
The sequences {λjk}m,∞

j,k=1, {φjk(·)}
m,∞
j,k=1 and the random coefficients ξijk’s only

exist mathematically and they are unknown and unobservable respectively. The
problem addressed here is estimation and inference of ν-th order derivative
function µ(ν)(s). A similar model has been considered in [2].

2.2. Estimation procedure

We propose an estimation procedure that approximates the derivative of mean
functions by polynomial splines. Let ω0 = 0 < ω1 < ω2 · · · < ωNµ

< 1 =
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ωNµ+1 be equally-spaced points over [0, 1], called interior knots, in which ωJ =
Jhµ, 0 ≤ J ≤ Nµ, and hµ = 1/(Nµ + 1) is the distance between neighboring
knots. Denote H(p−2) the p-th order spline space, i.e., p− 2 times continuously
differentiable functions on [0, 1] that are polynomials of degree p−1 on [tJ , tJ+1],
J = 0, . . . , Nµ.

Following [2], we propose to approximate the mean function µ(·) by a linear
combination of spline basis:

µ̂(s) =

Nµ
∑

J=1−p

β̂JBJ(s), (2.2)

where BJ be the J-th B-spline basis of order p defined in [7] and coefficients

{β̂1−p, . . . , β̂Nµ
}T are the solutions of the following least squares problem

{

β̂1−p, . . . , β̂Nµ

}T

= argmin{β1−p,...,βNµ}∈RNµ+p

n
∑

i=1

m
∑

j=1

N
∑

l=1







Yijl −
Nµ
∑

J=1−p

βJBJ (l/N)







2

. (2.3)

Let Y(s) = (Ȳ·1(s), Ȳ·2(s), . . . , Ȳ·m(s))T. Applying elementary algebra, one
obtains

µ̂ (s) = Bp(s) (B
TB)

−1
BTY (2.4)

in which Bp(s)=(B1−p,p(s), . . . , BNµ,p(s)) and B=(BT
p (1/N), . . . ,BT

p (N/N))T

is the design matrix.
Given the estimation of mean function µ̂(s), we consider µ̂(ν)(s) as the esti-

mator of µ(ν)(s), for any ν = 1, . . . , p− 2, i.e.

µ̂(ν) (s) = B(ν)
p (s) (BTB)

−1
BTY, (2.5)

where B
(ν)
p (s) = (B

(ν)
1−p,p(s), . . . , B

(ν)
Nµ,p

(s)). According to B-spline property in

de Boor (2001), for p > 2 and 1− p ≤ J ≤ Nµ,

d

ds
BJ,p (s) = (p− 1)

(

BJ,p−1 (s)

ωJ+p−1 − ωJ
− BJ+1,p−1 (s)

ωJ+p − ωJ+1

)

.

Therefore,B
(ν)
p (s) = Bp−ν(s)D

T

(ν), in which D(ν) = D1 · · ·Dν−1Dν , and matrix

Dl, 1 ≤ l ≤ ν ≤ p− 2, is defined the same as equation (6) in [19].

3. Confidence bands

3.1. Asymptotic confidence bands

First we study the asymptotic properties of the spline estimator given in (2.2).

Pretending X
(ν)
ij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m is known, the “ideal” or “infea-
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sible” [3, 2] estimator of µ(ν) is

µ̄(ν)(s) = X̄(ν)(s) = (nm)−1
n
∑

i=1

m
∑

j=1

X
(ν)
ij (s), s ∈ [0, 1]. (3.1)

Theorem 1 below shows that the spline estimator µ̂(ν) in (2.2) is asymptotically
equivalent to the “ideal” estimator µ̄(ν) in (3.1) with

√
n-rate, which is the same

rate of convergence in the parametric setting. Thus, we have the oracle efficiency
of the nonparametric estimator µ̂(ν).

We need more notations for Theorem 1. Define the derivative of covariance
function Gjj′ (s, t) as G

(ν)
jj′ (s, t) = Vjj′,kφ

(ν)
jk (s)φ

(ν)
j′k(t), where Vjj′ ,k = Cov(ξ1jk,

ξ1j′k), j, j
′ = 1, . . . ,m. Denote the average of all entries in derivative of covari-

ance function G(ν)(s, t) by Ω(s, t) = m−2
∑m

j,j′=1G
(ν)
jj′ (s, t). Let ζ(s), s ∈ [0, 1],

be a standardized Gaussian process satisfying Eζ(s) = 0, Eζ2(s) = 1 and
Eζ(s)ζ(t) = Ω−1/2(s, s)Ω(s, t)Ω−1/2(t, t), s, t ∈ [0, 1]. For any α ∈ (0, 1), we
denote Q1−α the 100(1− α)-th percentile of the absolute maxima distribution
of ζ(s), i.e., P [sups∈[0,1] |ζ(s)| ≤ Q1−α] = 1− α and z1−α/2 the 100(1−α/2)-th
percentile of the standard normal distribution.

Theorem 1. Suppose Assumptions (A1)–(A5) in Appendix hold. For any α ∈
(0, 1), as n→∞, the “infeasible estimator” µ̄(ν) converges to µ(ν) uniformly at
the
√
n rate

P

{

sup
s∈[0,1]

√
n
∣

∣

∣
µ̄(ν)(s)− µ(ν)(s)

∣

∣

∣
Ω(s, s)−1/2 ≤ Q1−α

}

→ 1− α,

P
{√

n
∣

∣

∣
µ̄(ν)(s)− µ(ν)(s)

∣

∣

∣
Ω (s, s)

−1/2 ≤ z1−α/2

}

→ 1− α, ∀s ∈ [0, 1],

while the spline estimator µ̂(ν) is asymptotically equivalent to µ̄(ν) up to
√
n

order, i.e.

sup
s∈[0,1]

√
n
∣

∣

∣
µ̄(ν)(s)− µ̂(ν)(s)

∣

∣

∣
= oP (1).

The oracle efficiency in Theorem 1 immediately indicates the following result,
which can be used to construct SCB or pointwise confidence intervals for µ(ν)(s),
s ∈ [0, 1].

Corollary 1. Under Assumptions (A1)–(A5) in Appendix, for any α ∈ (0, 1),
as n → ∞, an asymptotic 100(1 − α)% correct confidence band for µ(ν)(s),
s ∈ [0, 1], is

µ̂(ν)(s)± n−1/2Ω(s, s)1/2Q1−α, (3.2)

while an asymptotic 100(1− α)% pointwise confidence interval for µ(ν)(s), s ∈
[0, 1], is

µ̂(ν)(s)± n−1/2Ω (s, s)1/2 z1−α/2.
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3.2. Confidence bands for the difference between two derivative
functions

In this section, we focus our review on the statistical inference for the derivative
functions in the two-sample problems drawn from dependent function data sets.
The aforementioned confidence bands for one sample derivative function can
be extended to the two-sample case. Analogous to the previous notations, we
denote two samples indicated by d = 1, 2, which satisfy

Yijl,d = µd (l/N) +

∞
∑

k=1

ξijk,dφjk,d (l/N) + εij,d (l/N) ,

where 1 ≤ i ≤ nd, 1 ≤ j ≤ md and 1 ≤ l ≤ N . Define the ratio of two-sample
sizes as τ̂ = n1/n2 and assume that limn1→∞ τ̂ = τ > 0.

For d = 1, 2, let µ̂
(ν)
d be the spline estimate of derivative function µ

(ν)
d as given

in (2.2), and define Ωd(s, t) = m−2
d

∑md

j,j′=1G
(ν)
jj′ ,d(s, t). Next let ζdiff(s) be a stan-

dardized Gaussian process on [0, 1] such that Eζdiff(s) = 0, Eζ2diff(s) = 1 and

Eζdiff(s)ζdiff (t) =
Ω1 (s, t) + τΩ2 (s, t)

{Ω1(s, s) + τΩ2(s, s)}1/2 {Ω1 (t, t) + τΩ2 (t, t)}1/2
,

for s, t ∈ [0, 1]. Next denote Qdiff,1−α the (1 − α)-th quantile of the absolute
maxima deviation of ζdiff(s), s ∈ [0, 1] as above. We mimic the two-sample t-test
and state the following theorem whose proof is analogous to that of Theorem 1.

Theorem 2. If Assumptions (A1)–(A5) in Appendix are modified for each
group accordingly, then for any α ∈ (0, 1), as n1 →∞, τ̂ → τ > 0,

P







sup
s∈[0,1]

n
1/2
1

∣

∣

∣

(

µ̂
(ν)
1 − µ̂(ν)

2 − µ(ν)
1 + µ

(ν)
2

)

(s)
∣

∣

∣

{(Ω1 + τΩ2) (s, s)}1/2
≤ Qdiff,1−α







→ 1− α.

Theorems 2 yields the following asymptotic SCB for µ
(ν)
1 (s) − µ(ν)

2 (s), s ∈
[0, 1].

Corollary 2. If Assumptions (A1)–(A5) in Appendix are modified for each
group accordingly and limn1→∞ τ̂ = τ > 0, then for any α ∈ (0, 1), an 100(1−
α)% asymptotically correct confidence band for µ

(ν)
1 − µ

(ν)
2 is (µ̂

(ν)
1 − µ̂(ν)

2 )(s)±
n
−1/2
1 Qdiff,1−α{(Ω1 + τΩ2)(s, s)}1/2, s ∈ [0, 1].

4. Implementation

To apply the proposed confidence bands, there are a number of important func-
tion and parameter estimation issues that need to be addressed, such as the un-
known function Ω(·, ·) and the quantiles Q1−α and Qdiff,1−α, as well as choosing
the number of principal components.

In practice, very often the repeated sizes are not equal, and we suggest the
following specific data transformation. For 1 ≤ j ≤ max1≤i≤nmi = m, we
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define Y †
ij(·) = Yij(·), ξ†ijk = ξijk , ε

†
ij(·) = εij(·) and φ†jk(·) = φjk(·), if Yij(·) is

observed and Y †
ij(·) = 0, ξ†ijk = 0, ε†ij(·) = 0 and φ†jk(·) = 0, if Yij(·) is missing.

Further let rij = I(Yij(·) is observed), thus,
∑n

i=1

∑m
j=1 rij =

∑n
i=1mi = nm.

In the following, for simple notations we do not distinguish Yij(·), ξijk, εij(·)
and φjk(·) from Y †

ij(·), ξ
†
ijk , ε

†
ij(·) and φ

†
jk(·), respectively.

4.1. Estimating Ω(s, s)

We first apply tensor product spline approach addressed in [3] to estimate the
covariance function Gjj(s, t). The pilot spline estimator of Gjj(s, t) is

G̃jj (s, t) =

NG
∑

J,J′=1−p

b̃JJ′BJ(s)BJ′ (s) , (4.1)

where NG is the number of interior knots used to build the tensor product
B-spline basis and the spline coefficients

{

b̃J,J′

}NG

J,J′=1−p

= argminRNG+p⊗RNG+p

N
∑

l 6=l′







C̄·ll′ −
∑

1−p≤J,J′≤NG

bJJ′BJ (l/N)BJ′ (l′/N)







2

,

and C̄·ll′ = n−1
m

∑n
i=1

∑m
j=1 rij{Yijl − µ̂(l/N)}{Yijl′ − µ̂(l′/N)}, 1 ≤ l 6= l′ ≤ N .

The estimation procedure of eigenvalues λ̂jk, eigenfunctions ψ̂jk and FPC ξ̂ijk
follows standard method discussed in [17]. We focus on estimation of the ν-th

derivative of eigenfunctions ψ̂
(ν)
jk . According to [3], one has the eigenequation

dν

dtν

∫ 1

0

G̃jj(s, t)ψ̂jk (s) ds =

∫ 1

0

∂ν

∂tν
G̃jj(s, t)ψ̂jk (s) ds = λ̂jkψ̂

(ν)
k (t) , (4.2)

where ψ̂jk are subject to
∫ 1

0 ψ̂
2
jk(s)ds = 1 and

∫ 1

0 ψ̂jk(s)ψ̂jk′ (s)ds = 0 for
k′ < k. If N is sufficiently large, the left hand side of (4.2) can be approximated

by 1
N

∑N
l=1 G̃

(ν)
jj′ (

l
N ,

l′

N )ψ̂jk(
l
N ). Then we estimate G

(ν)
jj (s, t) by G̃

(ν)
jj (s, t) =

∑κ
k=1 λ̂jkψ̂

(ν)
jk (s)ψ̂

(ν)
jk (s).

For j 6= j′, note that Gjj′ (s, t) =
∑∞

k=1

∑∞
k′=1E(ξ1jkξ1j′k′ )φjk(s)φj′k′ (t), so

we can estimate G
(ν)
jj′ (s, t) by

G̃
(ν)
jj′ (s, t) =

1
∑n

i=1 rijrij′

n
∑

i=1

∞
∑

k=1

∞
∑

k′=1

ξ̂ijk ξ̂ij′k′ φ̂
(ν)
jk (s)φ̂

(ν)
j′k′(t).

Thus, Ω(s, s) can be estimated by

Ω̃(s, s) = m−2
m
∑

j,j′=1

G̃
(ν)
jj′ (s, s). (4.3)
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The following theorem shows that Ω̃(·, ·) and Ω(·, ·) are asymptomatically
equivalent.

Theorem 3. Under Assumptions (A1)–(A5), one has

sup
(s,t)∈[0,1]2

∣

∣

∣
Ω̃(s, t)− Ω(s, t)

∣

∣

∣
= oP (1) .

The proof of Theorem 3 is given in Appendix A.3.
According to our experience, the aforementioned approach is less efficient

than imposing a structure on the within-curve correlation. For example, ex-
changeable (EC), first-order autoregressive (AR-1) and toeplitz (TOEP) are
some common options of the structure. Similar methods are introduced in the
repeated measurement studies [13, 2]. In the following we assume the covariance
structure between ξ1jk and ξ1j′k,

Cov (ξ1jk, ξ1j′k) = ρjj′λ
1/2
jk λ

1/2
j′k I (j 6= j′) + λ

1/2
jk λ

1/2
j′k I (j = j′) ,

where 0 ≤ ρjj′ < 1 for any j 6= j′. Let Ȳ··l = n−1
m

∑n
i=1

∑m
j=1 rijYijl, 1 ≤ l ≤ N .

Define the empirical version of with-subject covariance as

Σ̂jj′ =
1

N2
∑n

i=1 rijrij′

n
∑

i=1

N
∑

l,l′=1

rijrij′ (Yijl − Ȳ··l)(Yij′ l′ − Ȳ··l′).

Without loss of generality and for notation simplicity, let us assume λjk = λk,
ψjk = ψk, and estimate ρjj′ under three popular correlation structures: EC, AR-
1 and TOEP. For any j 6= j′, the estimator of ρjj′ can be defined as

ρ̂jj′

=















ρ̂|j−j′| = {(RTR)−1RTD}|j−j′|, AR-1

ρ̂ = (m− 1)−1
∑m

j 6=j′ Σ̂jj′
(
∑m

j=1 Σ̂jj

)−1
, EC

ρ̂|j−j′| = (m− |j − j′|)−1m
(
∑m−|j−j′|

r=1 Σ̂r,r+|j−j′|

)(
∑m

r=1 Σ̂rr

)−1
, TOEP

.

where RT = (Σ̂j1, Σ̂j2, . . . , Σ̂j,m−1, j = 1, . . . ,m − 1) and DT = (Σ̂j2, Σ̂j3, . . . ,

Σ̂j,m, j = 1, . . . ,m− 1). Therefore, we can estimate G
(ν)
jj′ (s, t) by

Ĝ
(ν)
jj′ (s, t) =

{

∑∞
k=1 λ̂kψ̂

(ν)
k (s)ψ̂

(ν)
k (t) , if j = j′

ρ̂jj′
∑∞

k=1 λ̂kψ̂
(ν)
k (s)ψ̂

(ν)
k (t) , if j 6= j′

,

and define Ω̂(s, s) = m−2
∑m

j,j′=1 Ĝ
(ν)
jj′ (s, s).

Remark 1. Note that under the assumption of the aforementioned with-subject
correlation structures and simple notations, Ω̂(s, s) is equivalent to Ω̃(s, s) de-
fined in (4.3). Therefore, according to Theorem 3, under Assumptions (A1)–
(A5), sup(s,t)∈[0,1]2 |Ω̂(s, t)− Ω(s, t)| = oP (1).
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4.2. Estimating the quantiles

We generate independentRm-valued Gaussian vectors,Zk,b =(Z1k,b, . . . , Zmk,b)
T

satisfying that Cov(Zjk,b, Zj′k′,b) = Vjj′ ,kδkk′ , where δkk′ = I(k = k′) and
b = 1, . . . , bM . Here bM is a preset large integer, the default of which is 1000.
Let

ζ̂b(s) = Ω̂(s, s)−1/2







m−1
m
∑

j=1

∞
∑

k=1

Zjk,bψ̂
(ν)
k (s)







.

One estimates Q1−α by the empirical quantile Q̂1−α of these maximal absolute
value for each copy of ζ̂b(s).

In two-sample situation, for d = 1, 2, one generates independent Rmd -valued
Gaussian vectors, Zk,b,d = (Z1k,b,d, . . . , Zmdk,b,d)

T

satisfying that

Cov(Zjk,b,d, Zj′k′,b,d) = Vjj′ ,k,dδkk′ . Similarly to ζ̂b(·), let

ζ̂diff,b(s)

=
{

(Ω̂1 + Ω̂2)(s, s)
}−1/2

×







1

m1

m1
∑

j=1

∞
∑

k=1

Zjk,b,1ψ̂
(ν)
k,1(s) +

n1

n2m2

m2
∑

j=1

∞
∑

k=1

Zjk,b,2ψ̂
(ν)
k,2(s)







.

One has Q̂diff,1−α by taking the empirical quantile of these maximum values of

ζ̂diff,b(s).

4.3. Selecting correlation/covariance structure

In the practice, an appropriate correlation matrix based on available data is
needed. To choose correlation structure, it is natural to consider bootstrap
method using the empirical coverage rates of inducing confidence bands as the
choosing criterion. Following the suggestions in [2], we select the structure which
provides the closest coverage rate to the nominal level. First, one computes the
spline estimator µ̂(ν) for observed data. Second, given a correlation structure,
one constructs the corresponding confidence band based on the bootstrap sam-
ple data for 500 times and compute the coverage rate of the confidence band
under each correlation structure from a given set of candidates. Here, µ̂(ν) is
assumed as the true underlying function when checking the empirical coverage
rate. Finally, one chooses the covariance structure whose empirical coverage rate
is the closest one to the nominal level.

4.4. Selecting spline knots and the number of eigenfunctions

The numbers of knots serve as the smoothing parameters, playing the same
role as bandwidths in the local linear method. According to Assumption (A3)
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in Appendix, the number of interior knots in estimating µ(ν)(s) is taken to be
Nµ = [n1/2(p−ν) log(n)], in which [a] denotes the integer part of a. Meanwhile,

the spline estimator G̃jj(s, t) in (4.1) is calculated with the number of interior
knots NG = [2n1/(2p) log(log(n))]. Similar knots selections are suggested in [3].
These choices of knots also satisfy Assumption (A3) in Appendix.

We choose the number of eigenfunctions using the following standard and ef-
ficient criterion: κ = argmin1≤l≤T {

∑l
k=1 λ̂k/

∑T
k=1 λ̂k > 0.95}, where {λk, k =

1, . . . , T } are the first T estimated positive eigenvalues.

5. Simulation results

To access the practical behavior of the proposed methodology, we conduct two
simulation examples to explore the performance of the proposed asymptotic
SCB.

5.1. Simulation 1: Empirical coverage rates

We take the observations to be generated from the following model

Yijl = µ (l/N)+

2
∑

k=1

ξijkφk (l/N)+εijl, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ N, (5.1)

where µ(s) = 5s + 4 sin{2π(s − 1/2)}, φ1(s) = cos(πs) and φ2(s) = sin(πs).
We generate the FPC scores ξik = (ξi1k, . . . , ξimk)

T ∼ N(0, λkΩ), λ1 = 2/3,
λ2 = 1/2 and εil = (εi1l, . . . , εiml)

T ∼ N(0, 0.12Ω). We consider the following
settings for the correlation matrix Ω = {Ωjj′}mj,j′=1.

Case 1. IND: Ωjj′ = I(j = j′);
Case 2. EC: Ωjj′ = I(j = j′) + ρI(j 6= j′), where ρ = 0.05, 0.1;

Case 3. AR-1: Ωjj′ = I(j = j′) + ρ|j−j′|I(j 6= j′), where ρ = 0.2, 0.4;
Case 4. TOEP: Ωjj′ = I(j = j′) + ρ|j−j′|I(j 6= j′), where ρ|j−j′| = ρr with

ρr = 0.2r + 0.05 and 0.3r + 0.1, r = 1, . . . ,m− 1.

We use the proposed method in (3.2) and its “oracle” version Ω̃(s, s) in
(4.3) to construct the confidence bands for µ(1)(·) under different correlation
structures: “IND”, “EC”, “AR-1” and “TOEP”. We consider two confidence
levels: 1 − α = 0.95, 0.99. The number of trajectories n is taken to be 30, 50,
100, and for each n, the number of observations on the trajectory is N = n.
Each simulation is repeated 1000 times.

For each setting, we adopt cubic spline (p = 4) smoothing and calculate the
percentage of coverage of the true function on regular grid with increments 0.01
by the bands constructed using four different correlation structures. Tables 1
and 2 summarize the percentage that the true curve µ(1)(·) is covered by the
cubic spline confidence bands respectively.

In Table 1, the true underlying within-curve correlation structure is chosen
as independent (“IND”), i.e. Ω is identity matrix. Hence, one would expect
the bands constructed using the “IND” structure to be the best performer. In
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Table 1

Empirical coverage rates of the bands using various correlation structures (Case 1)

m n α
Est. Oracle

IND EC AR-1 TOEP IND EC AR-1 TOEP

10

30
0.05 0.808 0.786 0.807 0.788 0.849 – – –
0.01 0.943 0.933 0.941 0.931 0.964 – – –

50
0.05 0.906 0.897 0.902 0.896 0.917 – – –
0.01 0.983 0.978 0.983 0.974 0.987 – – –

100
0.05 0.946 0.939 0.949 0.948 0.948 – – –
0.01 0.993 0.991 0.993 0.991 0.996 – – –

20

30
0.05 0.743 0.718 0.739 0.716 0.766 – – –
0.01 0.925 0.900 0.929 0.902 0.945 – – –

50
0.05 0.894 0.874 0.888 0.870 0.899 – – –
0.01 0.984 0.981 0.984 0.975 0.981 – – –

100
0.05 0.939 0.926 0.939 0.932 0.950 – – –
0.01 0.990 0.991 0.992 0.991 0.994 – – –

fact, Table 1 shows that the bands constructed using correlated structures are
very competitive, too. In several cases, the coverage rates of the bands with
correlated structures (“EC”, “AR-1” and “TOEP”) are very close to or even
better than the bands with “IND” structure. As we expected coverage rate of
“oracle” bands approach the nominal levels is faster than the estimated one,
but both of them converge to the nominal level clearly, which show positive
confirmation of Theorems 1 and 3. To summarize, in many correlated structure
settings, our method can lead to substantially better coverage rates than the
“naive” (“IND”)-type band, while the loss in the case of an underlying “IND”
structure is quiet small when sample sizes increase.

In Tables 2 and 3, we investigate the coverage percentages when the true
correlation structures are “EC”, “AR-1” or “TOEP”. For each true correlation
structure, we construct spline confidence bands based on all four correlation
assumptions including “IND”. As expected, the coverage percentages for the
confidence bands are close to the nominal levels when applying the correct cor-
relation structure. The bands obtained by “IND” have significantly smaller cov-
erage rates than the nominal levels regardless of the sample sizes and correlation
structures. Particularly, when the correlation structure becomes stronger, for ex-
ample, increasing ρjj′ in Ωjj′ , the “IND”-type of band performs much worse than
its counterparts. While the advantage of applying our proposed bands over the
“naive” band seems to persist across the table, it is more evident in the situation
with stronger correlation structure, i.e., increasing ρjj′ in Ωjj′ . From Tables 2
and 3, we can see that in most of the scenarios the “oracle” confidence bands
outperform the estimated bands, and the “oracle” bands approach the nominal
coverage with sample sizes increasing. In Tables 1 to 3, when nominal level is
0.05, the standard error for each empirical coverage rate ranges from 0.0001 to
0.00025 and the average standard error is around 0.0002. When nominal level
is 0.01, the standard errors of empirical coverage rates are less than 0.0001.

We depict a typical comparison between two 95% confidence bands con-
structed using “IND” and “TOEP” correlation structures in Figure 1. The true
correlation structure is “TOEP” (with ρ = 0.3r + 0.1). This plot is based on
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Table 2

Empirical coverage rates of the bands using various correlation structures (Cases 2, 3
and 4) and each trajectory is repeatedly observed m1 = m2 = 10 times

True Structure
n α

Est. Oracle
(true ρ) IND EC AR-1 TOEP IND EC AR-1 TOEP

EC(0.05)

30
0.05 0.693 0.812 0.736 0.811 – 0.866 – –
0.01 0.887 0.938 0.899 0.942 – 0.976 – –

50
0.05 0.805 0.887 0.835 0.881 – 0.911 – –
0.01 0.934 0.981 0.948 0.978 – 0.987 – –

100
0.05 0.857 0.944 0.882 0.944 – 0.947 – –
0.01 0.970 0.994 0.976 0.992 – 0.994 – –

EC(0.10)

30
0.05 0.611 0.826 0.699 0.821 – 0.881 – –
0.01 0.813 0.951 0.869 0.947 – 0.979 – –

50
0.05 0.715 0.922 0.797 0.922 – 0.930 – –
0.01 0.904 0.988 0.941 0.986 – 0.995 – –

100
0.05 0.762 0.954 0.841 0.956 – 0.962 – –
0.01 0.934 0.992 0.973 0.993 – 0.994 – –

AR-1(0.2)

30
0.05 0.693 0.794 0.821 0.807 – – 0.859 –
0.01 0.879 0.936 0.952 0.937 – – 0.970 –

50
0.05 0.807 0.898 0.906 0.896 – – 0.919 –
0.01 0.932 0.979 0.983 0.980 – – 0.988 –

100
0.05 0.857 0.950 0.946 0.943 – – 0.950 –
0.01 0.972 0.997 0.997 0.994 – – 0.997 –

AR-1(0.4)

30
0.05 0.554 0.840 0.840 0.839 – – 0.881 –
0.01 0.780 0.950 0.956 0.951 – – 0.976 –

50
0.05 0.673 0.914 0.921 0.918 – – 0.938 –
0.01 0.858 0.990 0.991 0.992 – – 0.997 –

100
0.05 0.725 0.946 0.954 0.954 – – 0.955 –
0.01 0.907 0.992 0.995 0.992 – – 0.997 –

30
0.05 0.627 0.850 0.813 0.851 – – – 0.901
0.01 0.841 0.950 0.937 0.953 – – – 0.976

TOEP
50

0.05 0.712 0.919 0.894 0.921 – – – 0.935
(0.2r + 0.05) 0.01 0.902 0.983 0.977 0.981 – – – 0.992

100
0.05 0.763 0.944 0.912 0.946 – – – 0.955
0.01 0.930 0.994 0.983 0.992 – – – 0.994

30
0.05 0.496 0.863 0.810 0.867 – – – 0.908
0.01 0.703 0.962 0.946 0.961 – – – 0.982

TOEP
50

0.05 0.572 0.882 0.864 0.882 – – – 0.945
(0.3r + 0.1) 0.01 0.798 0.970 0.952 0.968 – – – 0.993

100
0.05 0.596 0.930 0.884 0.926 – – – 0.947
0.01 0.818 0.986 0.984 0.986 – – – 0.998

n = 30, m = 10, 20. In Figure 1, one sees that the “IND” and “TOEP” produce
the same estimator for the true curve µ(1)(·), however, the confidence bands ob-
tained are very different. From Figure 1, one sees that the true curve µ(1)(·) lies
completely inside the “TOEP”-type of band, but it can not be covered entirely
by the “IND”-type of band.

5.2. Simulation 2: Empirical sizes and power

We conduct a numerical study to evaluate the empirical size and power of hy-
pothesis tests for the derivative functions based on the proposed confidence
bands. We compare the results of the bands developed under the “IND” as-
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Table 3

Empirical coverage rates of the bands using various correlation structures (Cases 2, 3 and
4) and each trajectory is repeatedly observed m1 = m2 = 20 times

True Structure
n α

Est. Oracle
(true ρ) IND EC AR-1 TOEP IND EC AR-1 TOEP

EC(0.05)

30
0.05 0.493 0.782 0.547 0.788 – 0.841 – –
0.01 0.757 0.923 0.806 0.928 – 0.961 – –

50
0.05 0.675 0.899 0.728 0.905 – 0.915 – –
0.01 0.880 0.982 0.906 0.983 – 0.992 – –

100
0.05 0.709 0.930 0.775 0.934 – 0.942 – –
0.01 0.911 0.992 0.935 0.992 – 0.995 – –

EC(0.10)

30
0.05 0.386 0.849 0.518 0.852 – 0.900 – –
0.01 0.658 0.975 0.789 0.975 – 0.984 – –

50
0.05 0.495 0.913 0.640 0.909 – 0.931 – –
0.01 0.751 0.982 0.856 0.981 – 0.987 – –

100
0.05 0.555 0.951 0.723 0.955 – 0.961 – –
0.01 0.810 0.998 0.907 0.999 – 0.998 – –

AR-1(0.2)

30
0.05 0.592 0.752 0.762 0.750 – – 0.804 –
0.01 0.834 0.909 0.929 0.903 – – 0.952 –

50
0.05 0.798 0.890 0.905 0.893 – – 0.912 –
0.01 0.938 0.980 0.985 0.982 – – 0.989 –

100
0.05 0.815 0.932 0.938 0.934 – – 0.943 –
0.01 0.970 0.993 0.995 0.991 – – 0.994 –

AR-1(0.4)

30
0.05 0.466 0.830 0.859 0.835 – – 0.881 –
0.01 0.749 0.960 0.971 0.959 – – 0.980 –

50
0.05 0.625 0.913 0.918 0.910 – – 0.930 –
0.01 0.848 0.980 0.985 0.984 – – 0.992 –

100
0.05 0.685 0.943 0.947 0.944 – – 0.958 –
0.01 0.896 0.997 0.997 0.997 – – 0.999 –

30
0.05 0.481 0.836 0.726 0.842 – – – 0.893
0.01 0.729 0.950 0.900 0.945 – – – 0.968

TOEP
50

0.05 0.564 0.899 0.805 0.900 – – – 0.915
(0.2r + 0.05) 0.01 0.902 0.983 0.977 0.981 – – – 0.984

100
0.05 0.650 0.935 0.853 0.937 – – – 0.945
0.01 0.858 0.992 0.964 0.994 – – – 0.992

30
0.05 0.338 0.877 0.736 0.875 – – – 0.906
0.01 0.576 0.963 0.905 0.961 – – – 0.979

TOEP
50

0.05 0.398 0.922 0.817 0.928 – – – 0.955
(0.3r + 0.1) 0.01 0.672 0.989 0.957 0.985 – – – 0.994

100
0.05 0.476 0.953 0.851 0.955 – – – 0.960
0.01 0.724 0.993 0.972 0.994 – – – 0.996

sumption with those taking into account the within-curve correlations. In order
to mimic the two-sample testing problems, we consider the following hypothesis
test:

H0 : µ
(1)
1 (s) = µ

(1)
2 (s), ∀s ∈ [0, 1]←→ Ha : µ

(1)
1 (s) 6= µ

(1)
2 (s), ∃s ∈ [0, 1]. (5.2)

We generate two groups of data from the model given in (5.1) with µ1(s) =
5s + δs + 4 sin{2π(s − 1/2)} and µ2(s) = 5s + 4 sin{2π(s − 1/2)}, and all the
remaining settings are the same as in Example 1 under the same parameter
values. The constant δ takes 6 values {0, 0.25, 0.5, . . . , 1.25}. We choose the
sample sizes n1 = n2 = 100, and the number of observation points of each
curve N = 100. For each subject, the noisy trajectory is repeatedly observed
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Fig 1. The estimated derivative function (middle dashed line), the true derivative function
(middle solid line) and its 95% confidence bands (3.2) using “TOEP” structure (upper and
lower dotted lines) and using “IND” structure (upper and lower dot-dashed lines).

m1 = m2 = 10 times under three true correlation structures:“AR-1” (ρ = 0.2),
“EC” (ρ = 0.05) and “TOEP” (ρr = 0.2r + 0.05, r = 1, . . . ,m − 1). For each
simulation, the significance level was set at α = 0.05, and 500 replications were
used to estimate the rejection rates. Indeed, large values of δ shift the derivative
of mean function for the first group data further away from second one, therefore
the rejection rates increase with the values of δ.

Table 4 summarizes the empirical type I errors and powers of the hypothesis
test in (5.2) under different true correlation structures respectively. For each
correlation structure, we compare the performance of the “IND”-type band and
the band using the true structure at 5% nominal level. It can be seen from Ta-
ble 4, when δ = 0, the “IND” does not maintain its sizes regardless of the true
correlation structures and sample sizes. This finding also correspond with its



2654 G. Cao

Table 4

Empirical type I errors and powers for hypothesis testing (5.2) at 5% nominal levels with
various correlation structures. For each case, sample sizes are n1 = n2 = N = 100 and each

trajectory is repeatedly observed m1 = m2 = 10 times

True Structure (true ρ) Applied Structure
δ

0.00 0.25 0.50 0.75 1.00 1.25

TOEP(ρr = 0.2r + 0.05)
TOEP 0.056 0.124 0.332 0.642 0.966 1.000
IND 0.241 0.422 0.790 0.981 1.000 1.000

EC(0.05)
EC 0.061 0.153 0.424 0.796 0.995 1.000
IND 0.129 0.318 0.723 0.973 1.000 1.000

AR-1(0.20)
AR-1 0.057 0.148 0.426 0.808 0.998 1.000
IND 0.135 0.309 0.699 0.978 1.000 1.000

low coverage rates in Tables 2 and 3. Therefore, although the power of “IND”
is larger than our proposed method, it is not recommended for practical appli-
cations. Overall, the tests based on our proposed method maintain their sizes
at 5% nominal level, while increasing values of δ and sample sizes improve the
power of detecting the alternatives.

6. Real data analysis

6.1. Confidence bands for derivative function of human mortality
rates

Assessing demographic trends in mortality is of growing interest due to the
demographic impacts of aging and extended longevity on the future viability
of social security and retirement systems [6]. Such trends not only raise basic
biodemographic questions about the nature and the limits of human lifespan
but also about the demographic future of aging societies. Our dataset contains
the lifetables for 41 countries and areas from the calendar year 1992 to year 2005
obtained from the Human Mortality Database [12] (www.mortality.org). Fig-
ure 2 depicts mortality rates within age 60 to age 100 in two countries (Australia
and Iceland) from year 1992 to year 2005. It can be found that the mortality
rate decreases slightly over the years in Australia, while there are no clear trends
happening in Iceland during these years. Various approaches have been proposed
for the modeling of mortality data including i.i.d. functional approach [6] and
two-dimensional functional principal analysis approach [5]. There is one inter-
esting issue: the analysis of recurring mortality patterns and their structure. In
our analysis, we focus on the estimation and inference of the first order deriva-
tive of mortality rate over calendar years for elder population. We also apply
the proposed confidence bands to period lifetables to recur mortality trends.

Let Yij(s) denote the mortality rate observed for the ith country, jth calendar
year at age s, where i = 1, . . . , 41, j = 1992, . . . , 2005. We focus on the older
individuals within the age range 60 ≤ s ≤ 100.

Applying cubic spline smoothing to the dataset, we obtain the estimated
overall first order derivative function of mortality rates µ̂(1)(·) for age from 60
to 100. To construct the confidence band, we first select the correlation structure

www.mortality.org
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Fig 2. Plot of mortality rates in Australia and Iceland from year 1992 to year 2005.

using the resampling method in Section 4, and “AR-1” gives the closest coverage
rate to the nominal level based on 1000 resampling data. “IND” and “AR-1”
supply the same estimated derivative function µ(1); see the middle solid line
in Figure 3. To explore the comparison of the bands under different structure
assumptions, in Figure 3 we present both the “IND”-type of band (upper and
lower dot-dashed lines) and the “EC”-type of band (upper and lower dashed
lines) at 95% confidence level. As shown in Figure 3, the estimated derivative
function of mortality rate is increasing quickly from 0, which corroborates with
the convex trends in Figure 2.

6.2. Two-sample test for the difference between male and female
mortality rates

We further compare the mortality velocity of female and male subjects. From
the Human Mortality Database (www.mortality.org), we obtain the lifetables

www.mortality.org
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Fig 3. Cubic spline estimator (middle solid line) µ̂(1)(s) and its 95% confidence bands (3.2)
using “AR-1” structure (upper and lower dashed lines) and “IND” structure (upper and lower
dot-dashed lines).

for female and male subjects respectively. We focus on the same 41 countries
and areas analyzed in Section 6.1 from the calendar year 1992 to year 2005. Our
hypothesis of interest is:

H0 : µ
(1)
M (s) = µ

(1)
F (s), ∀s ∈ [60, 100]←→ Ha : µ

(1)
M (s) 6= µ

(1)
F (s), ∃s ∈ [60, 100],

where µ
(1)
M (s) and µ

(1)
F (s) are the first derivative functions of mortality rates for

males and females in these n1 = n2 = 41 countries and areas respectively.
Figure 4 depicts the cubic spline confidence bands at confidence level 0.99

(upper and lower dashed lines), with the center dashed-dotted line representing

the spline estimator µ̂
(1)
M (s) − µ̂

(1)
F (s) and a solid line representing zero. Re-

sampling method in Section 4 chooses “AR-1” and “EC” as proper correlation
structures for male and female groups respectively. The 99% confidence band
increases slightly above the zero line and is relatively flat. After the single tuning
point around age 90, it decreases under zero fairly fast. Due to few data collected
for aged population, Figure 4 also indicates the variation of the discrepancy in-
creases when people become aged. By comparing the 99% confidence band and
zero reference line, the difference between male and female death rates velocity
is extremely significant and female elders has lower mortality velocity than male
elders at the same age before age around 90 and after this tuning point male has
lower mortality velocity. To our best knowledge, there has been no demographic
literature discussing the similar findings. Hence, a potentially interesting exten-
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Fig 4. Cubic spline estimator µ̂
(1)
M

(s) − µ̂
(1)
F

(s) (dashed-dotted line) and the corresponding
99% confidence band (dashed lines). The solid line represents zero reference.

sion of this work is to consider including some demographic variables and study
the relationship of the mortality rate and these demographic regressors.
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Appendix

For any vector a = (a1, . . . , ak) ∈ Rk, denote the norm ‖a‖r = (|a1|r + · · · +
|ak|r)1/r, 1 ≤ r < +∞, ‖a‖∞ = max(|a1|, . . . , |ak|). For any function φ on [0, 1],
denote ‖φ‖∞ = sups∈[0,1] |φ(s)|. We use C to denote a generic positive constant
unless otherwise stated.

A.1. Technical assumptions

In this paper we restrict our attention to splines with equally spaced knots.
Denote tJ = Jhµ, 0 ≤ J ≤ Nµ, and let hµ = 1/(Nµ + 1) be the distance
between neighboring knots.

For any δ ∈ (0, 1] and nonnegative integer q, let Cq,δ[0, 1] be the space of
functions with δ-Hölder continuous q-th order derivatives on [0, 1], i.e.

Cq,δ[0, 1] =
{

φ : ‖φ‖q,δ = sup
t6=s,t,s∈[0,1]

|t− s|−δ|φ(q)(t)− φ(q)(s)| < +∞
}

.

The technical assumptions we need are as follows:
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(A1) The regression function µ ∈ Cp−1,1[0, 1], i.e., µ(p−1) ∈ C0,1[0, 1].
(A2) Let Γjj′ (s) be the (j, j′)-th entry of Γ(s), and Γjj′ (s) ∈ C0,δ[0, 1] for some

δ ∈ (0, 1].
(A3) The number of observations for each trajectory N ≫ nθ for some θ >

1+2ν
2(p−ν) ; the number of interior knots satisfies n

1
2(p−ν) ≪Nµ≪ (N/ logn)

1
1+2ν ,

n
1
2p ≪ NG ≪ n

1
2+2ν .

(A4) There exists CG > 0, for j, j′ = 1, . . . ,m, such that Gjj′ (s, s) ≥ CG,

s ∈ [0, 1]; for k ∈ {1, . . . , κ}, ν = 0, 1, . . . , p−2 and j = 1, . . . ,m, φ
(ν)
jk (s) ∈

C0,δ[0, 1], ∑κ
k=1 ‖φ

(ν)
jk ‖∞ < ∞ and as n → ∞, hδµ

∑κn

k=1 ‖φ
(ν)
jk ‖0,δ = o(1)

for a sequence {κn}∞n=1 of increasing integers, with limn→∞ κn = κ and
the constant δ ∈ (0, 1] as in Assumption (A2).

(A5) There exist η1, η2 > 4, such that E|ξijk |η1 + E |εijl|η2 < +∞, for 1 ≤ i <
∞, 1 ≤ j ≤ m, 1 ≤ k ≤ κ, 1 ≤ l <∞. The number κ of nonzero eigenval-
ues is finite or κ is infinite while the random vectors ξik = (ξi1k, . . . , ξimk)

T

are i.i.d. for 1 ≤ i <∞, 1 ≤ k ≤ κ.
Assumptions (A1)–(A2) are typical conditions for spline smoothing; see [16,

3, 2]. In fact, (A1) and (A2) ensures the convergence rates of µ̂(ν). Assumption
(A3) concerns the relationship among the number of subjects, the number of
observations with each trajectory and the number of knots of B-splines. As-
sumption (A4) guarantees that the derivatives of principal components have
collectively bounded smoothness. If ν = 0, (A4) is the same as Assumption
(A4) in [2]. Assumption (A5) is necessary for applying Gaussian approximation
of estimation error process.

A.2. Error decomposition for the spline estimators

In this section, we break the estimation error µ̂(ν)(s)−µ(ν)(s) into three terms.
We begin by discussing the representation of the spline estimator µ̂(ν)(s) in (2.2).

DefineB(s)= (B1−p(s), . . . , BNµ
(s))T,XN×(Nµ+p) =(B(1/N), . . . ,B(N/N))

T

and V̂=N−1XTX=(〈BJ , BJ′〉2,N )
Nµ

J,J′=1−p. Projecting the relationship in model

(2.1) onto the linear subspace of RNµ+p spanned by {B(l/N)}1≤l≤N , we obtain
the following decomposition:

µ̂(ν)(s) = µ̃(ν)(s) + ẽ(ν)(s) + ξ̃(ν)(s), (A.1)

where

µ̃(ν)(s) =

Nµ
∑

J=1−p

β̃JB
(ν)
J (s), ε̃(ν)(s) =

Nµ
∑

J=1−p

ãJB
(ν)
J (s),

ξ̃(ν)(s) =

κ
∑

k=1

ξ̃
(ν)
k (s), ξ̃

(ν)
k (s) =

Nµ
∑

J=1−p

τ̃k,JB
(ν)
J (s). (A.2)

and the vectors {β̃1−p, . . . , β̃Nµ
}T, {ã1−p, . . . , ãNµ

}T and {τ̃k,1−p, . . . , τ̃k,Nµ
}T

in (A.2) are solutions to (2.3) with Yijl replaced by µ(l/N), εij(l/N) and
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φjk(l/N) respectively. Alternatively, µ̃(ν)(s) =N−1B(ν)(s)V̂−1XTµ, ẽ(ν)(s) =

N−1B(ν)(s)V̂−1XTe, ξ̃
(ν)
k (s) =N−1B(ν)(s)V̂−1XTφk, for 1 ≤ k ≤ κ, where

µ(ν) = (µ(ν)(1/N), . . . , µ(ν)(N/N))T is the signal vector, e = (ε̄··1, . . . , ε̄··N)T

with ε̄··l = (nm)−1
∑n

i=1

∑m
j=1 εij(l/N), 1 ≤ l ≤ N , is the noise vector, and vec-

tor φk = (nm)−1
∑n

i=1

∑m
j=1 ξijkφjk with φjk = (φjk(1/N), . . . , φjk(N/N))T.

In the following, we denote by Q̟(µ) the p-th order quasi-interpolant of µ
corresponding to the knots ̟, see equation (4.12), page 146 of [10]. According
to Theorem 7.7.4 in [10], the following lemma holds.

Lemma 1. There exists a constant C > 0, such that for 0 ≤ ν ≤ p − 2 and
µ ∈ Cp,1[0, 1],

∥

∥

∥
(µ−Q̟ (µ))(ν)

∥

∥

∥

∞
≤ C

∥

∥

∥
µ(p)

∥

∥

∥

∞
hp−ν
µ .

The next lemma concerns the bias order of µ̃(ν)(s) given in (A.1).

Lemma 2 ([3], Proposition 1). Under Assumptions (A1) and (A3),
sups∈[0,1] n

1/2|µ̃(ν)(s)− µ(ν)(s)| = o(1).

Lemma 3. Under Assumptions (A2), (A3) and (A5), sups∈[0,1] n
1/2|ẽ(ν)(s)| =

oP (1).

Proof: Under Assumptions (A2), (A3) and (A5), Proposition 1 in [3] entails

that ‖N−1B(s)XTe‖∞ = Oa.s.(n
−1/2N−1/2h

1/2
µ log1/2 n). Also under Assump-

tion (A3), Lemma A.3 in [3] leads to ‖V̂−1‖∞ = O(h−1
µ ). Hence, one has

sup
s∈[0,1]

n1/2
∣

∣

∣
ẽ(ν)(s)

∣

∣

∣
= sup

s∈[0,1]

n1/2
∣

∣

∣
N−1B(ν)(s)V̂−1XTe

∣

∣

∣

= n1/2h−ν
µ

∥

∥

∥
V̂−1

∥

∥

∥

∞

∥

∥N−1B(s)XTe
∥

∥

∞

= Oa.s.

(

N−1/2h−1/2−ν
µ log1/2 n

)

= oa.s.(1).

Thus, Lemma 3 follows from Assumption (A3).

Lemma 4 ([2], Lemma A.7). When Assumption (A5) holds and β ∈ (0, 1/2),
one has

max
1≤k≤κ

E

∣

∣

∣

∣

∣

∣

(nm)−1
n
∑

i=1

m
∑

j=1

(ξijk − Zijk,ξ)

∣

∣

∣

∣

∣

∣

= O
(

nβ−1
)

, (A.3)

max
1≤l≤N

E

∣

∣

∣

∣

∣

∣

(nm)−1
n
∑

i=1

m
∑

j=1

(εijl − Zijl,ε)

∣

∣

∣

∣

∣

∣

= Oa.s.
(

nβ−1
)

. (A.4)

Also

max
1≤k≤κ

(nm)−1
m
∑

j=1

n
∑

i=1

E |ξijk | = O
(

n−1/2 + nβ−1
)

. (A.5)
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Lemma 5. Under Assumptions (A2)–(A5), sups∈[0,1] n
1/2|ξ̃(ν)(s) − µ̄(ν)(s) +

µ(ν)(s)| = oP (1) and P{sups∈[0,1] n
1/2|ξ̃(ν)(s)|Ω(s, s)−1/2 ≤ Q1−α} → 1− α for

any α ∈ (0, 1).

Proof: Let ζ̃·k(s) = n1/2(nm)−1
∑n

i=1

∑m
j=1 Zijk,ξφ

(ν)
jk (s), k = 1, . . . , κ, and

define

ζ̃(s) =







1

nm2

κ
∑

k,k′=1

n
∑

i=1

m
∑

j,j′=1

E (ξijkξij′k′ )φ
(ν)
jk (s)φ

(ν)
j′k′(s)







−1/2
κ
∑

k=1

ζ̃·k(s)

= Ω(s, s)−1/2
κ
∑

k=1

ζ̃·k(s).

It is clear that ζ̃(s) is a Gaussian process with mean 0, variance 1 and covariance
Eζ̃(s)ζ̃(t) = Ω(s, s)−1/2Ω(t, t)−1/2Ω(s, t), for any s, t ∈ [0, 1]. Thus, ζ̃(s) has the
same distribution as ζ(s) over s ∈ [0, 1].

According to Lemma 1, ‖φ̃(ν)jk ‖∞ ≤ cφ,p‖φ(ν)jk ‖∞ and ‖φ̃(ν)jk − φ
(ν)
jk ‖∞ ≤

C̃0,ν‖φ(δ)jk ‖0,δhνµ, 1 ≤ k ≤ κ, 1 ≤ j ≤ m. Applying (A.5) and Assumptions
(A3), (A4), one has

En1/2 sup
s∈[0,1]

∣

∣

∣

∣

∣

∣

(nm)−1
n
∑

i=1

m
∑

j=1

κ
∑

k=1

ξijk

{

φ
(ν)
jk (s)− φ̃(ν)jk (s)

}

∣

∣

∣

∣

∣

∣

≤ Cn1/2(nm)−1
n
∑

i=1

m
∑

j=1

{

κn
∑

k=1

E |ξijk | sup
s∈[0,1]

∣

∣

∣
φ
(ν)
jk (s)

∣

∣

∣

}

≤ Cn1/2(nm)−1
n
∑

i=1

m
∑

j=1

{

κn
∑

k=1

E |ξijk |
∥

∥

∥
φ
(ν)
jk

∥

∥

∥

0,δ
hδµ +

κ
∑

k=κn+1

E |ξijk|
∥

∥

∥
φ
(ν)
jk

∥

∥

∥

∞

}

≤ C







m
∑

j=1

κn
∑

k=1

‖φ(ν)jk ‖0,δhδµ +

m
∑

j=1

κ
∑

k=κn+1

‖φ(ν)jk ‖∞







= o(1),

hence

n1/2 sup
s∈[0,1]

Ω(s, s)−1/2

∣

∣

∣

∣

∣

∣

(nm)−1
n
∑

i=1

m
∑

j=1

κ
∑

k=1

ξijk{φ(ν)jk (s)− φ̃(ν)jk (s)}

∣

∣

∣

∣

∣

∣

= oP (1).

(A.6)
In addition, (A.3) and Assumptions (A3), (A4) entail that

En1/2 sup
s∈[0,1]

Ω(s, s)−1/2

∣

∣

∣

∣

∣

∣

1

nm

n
∑

i=1

m
∑

j=1

κ
∑

k=1

(Zijk,ξ − ξijk)φ(ν)jk (s)

∣

∣

∣

∣

∣

∣

≤ Cnβ−1/2
m
∑

j=1

κ
∑

k=1

‖φ(ν)jk ‖∞ = o(1).
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Therefore,

n1/2 sup
s∈[0,1]

Ω(s, s)−1/2

∣

∣

∣

∣

∣

∣

(nm)−1
n
∑

i=1

m
∑

j=1

κ
∑

k=1

(Zijk,ξ − ξijk)φ(ν)jk (s)

∣

∣

∣

∣

∣

∣

= oP (1).

(A.7)
Note that

µ̄(ν)(s)− µ(ν)(s)− ξ̃(ν)(s) = (nm)−1
n
∑

i=1

m
∑

j=1

κ
∑

k=1

ξijk{φ(ν)jk (s)− φ̃(ν)jk (s)},

n−1/2Ω(s, s)1/2ζ̃(s)−
{

µ̄(ν)(s)− µ(ν)(s)
}

=
1

nm

n
∑

i=1

m
∑

j=1

κ
∑

k=1

(Zijk,ξ−ξijk)φ(ν)jk (s).

Hence according to (A.6) and (A.7),

n1/2 sup
s∈[0,1]

Ω(s, s)−1/2|µ̄(ν)(s)− µ(ν)(s)− ξ̃(ν)(s)| = oP (1),

sup
s∈[0,1]

|ζ̃(ν)(s)− n1/2Ω(s, s)−1/2{µ̄(ν)(s)− µ(ν)(s)}| = oP (1),

which leads to the desired results.

Proof of Theorem 1: Theorem 1 follows directly from the decomposition in
(A.1) and Lemmas 2–5.

A.3. Proof of Theorem 3

We first show asymptotic consistency of φ̂
(ν)
jk and ξ̂ijk, for k ≥ 1, in the following

lemma.

Lemma 6. Under Assumptions (A1)–(A5), one has ‖φ̂jk − φjk‖∞ = ‖φ̂(ν)jk −
φ
(ν)
jk ‖∞ = oP (1), k ≥ 1, j = 1, 2, . . .m and ν = 1, . . . p− 2.

Proof: For any fixed j = 1, 2, . . .m, the proof is analogue of Lemma A8 and
Theorem 4 in [3], thus omitted.

Lemma 7. Under Assumptions (A1)–(A5), one has |ξ̂ijk−ξijk| = oP (1), k ≥ 1,
j = 1, 2, . . .m.

Proof: Note that

∣

∣

∣
ξ̂ijk − ξijk

∣

∣

∣
=

∣

∣

∣

∣

∫

(Yij (s)− µ̂ (s)) φ̂jk (s) ds−
∫

(Xij (s)− µ (s))φjk (s) ds
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

(Yij (s)− µ̂ (s))
(

φ̂jk (s)− φjk (s)
)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

(Yij (s)− µ̂ (s))φjk (s) ds−
∫

(Xij (s)− µ (s))φjk (s) ds
∣

∣

∣

∣
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≤
(

‖µ̂− µ‖∞ + ‖e‖∞ +

∫

∣

∣

∣

∣

∣

∞
∑

k=1

ξijkφjk (s)

∣

∣

∣

∣

∣

ds

)

∥

∥

∥
φ̂jk − φjk

∥

∥

∥

∞

− (‖µ̂− µ‖∞ + ‖e‖∞) ‖φjk‖∞ .

Since Xij(s) is an L2 process, one has
∫

|∑∞
k=1 ξijkφjk(s)| ds < ∞. According

to Theorem 2.1 and Proposition 3.3 in [4], one has ‖µ̂− µ‖∞ = oP (n
−1/2) and

‖e‖∞ = oP (n
−1/2). Hence, Lemma 6 leads to Lemma 7 directly.

Proof of Theorem 3: Theorem 3 follows directly from Lemmas 6 and 7.
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