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Abstract: We study the problem of constructing uniform and adaptive
confidence intervals for the tail coefficient in a second order Pareto model,
when the second order coefficient is unknown. This problem is translated
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minimax optimal up to a logarithmic factor.
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1. Introduction

The Pareto model for the tail of a distribution is a useful tool to understand ex-
tremal phenomena. Indeed, the Fisher–Tippett–Gnedenko theorem states that
a necessary and sufficient condition for the convergence in law of the (rescaled)
maximum of i.i.d. samples to a Fréchet distribution is that the tail of the dis-
tribution of the sample is regularly varying. We say that the distribution F is
regularly varying with parameter τ in the tail if the following holds:

1− F (x) = x−τ l(x), (1)

where l(x) is slowly varying at infinity, that is, such that for any x > 0,
limt→∞ l(tx)/l(t) = 1.

There has been considerable work on estimating τ , and many estimators
(Hill’s estimator of Hill (1975), Pickands’ estimator of Pickands (1975) for in-
stance) have been suggested. Such estimators are consistent for the true param-
eter τ for distributions in the model (1). In order to obtain a rate of convergence
for these estimators, some additional assumptions have to be made. A typical
one is the so-called (exact) Hall condition 1 − F (x) − Cx−τ = C′x−τ(β+1) +
o(x−τ(β+1)), where τ > 0 is the first order parameter, and β > 0 is the sec-
ond order parameter. The second order parameter characterizes the degree of
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proximity of the set of distributions to the exact Pareto distribution with pa-
rameters τ, C. Here we assume a more general condition that we will call the
second order Pareto assumption. That is, one considers the set of distributions
F that satisfies for some C,C′

|1− F (x)− Cx−τ | ≤ C′x−τ(β+1). (2)

This condition is a relaxation of the exact Hall condition in that the tail of the
distribution does not have to satisfy the limiting form in the exact Hall model.
We write S(τ, β, C, C ′) =: S(τ, β) for the set of distributions satisfying (2).

Assuming that the parameter β is known, a classical result (for instance, see
Drees, 2001) under the exact Hall model states that Hill or Pickands’ estimators
using the information of β satisfy (for ǫ > 0)

sup
F∈

⋃
τ>ǫ S(τ,β)

|τ̂ − τ | = OP (γn) = OP (n
−β/(2β+1)). (3)

Limiting distributions under the second order Pareto condition (2) are obtained
in Hall (1982) and Hall and Welsh (1984). Also, a matching lower bound for
this rate of estimation is proved in Hall and Welsh (1984) and Drees (2001).
Moreover, this type of bound (3) can be used in order to create a confidence
interval for τ of width of order γn with known β (for the asymptotic confidence
interval under the exact Hall model, see Cheng and Peng, 2001; Haeusler and
Segers, 2007).

However, β is unknown in general. There has been some work on estimating
τ under various other assumptions in this case (e.g. see Hall and Welsh, 1985;
Drees and Kaufmann, 1998; Danielsson et al., 2001; Carpentier and Kim, 2013).
In particular, under the second order Pareto model (2), Carpentier and Kim
(2013) prove that it is possible to construct adaptive estimator of τ whose risk

is the same (up to a (log log(n))
β

2β+1 factor) as the oracle rate γn = n− β
2β+1

which is the optimal rate when β is known.
The goal of this paper is to construct uniform and adaptive confidence in-

tervals for τ when β is unknown. That is, we want to build confidence intervals
that have controlled coverage and optimal width γn := γn(β) (adaptively to the
“true” β of the function) uniformly over the set of second order Pareto distri-
butions. This question is closely related to the problem of estimating β. One
possible approach for estimating β is to restrict the set of distributions to those
verifying a third order condition, which is more restrictive than both conditions
(2) and the exact Hall condition. Under the third order condition, it is possible to
estimate β with a rate depeding on the third order parameter (for more details,
see Beirlant et al., 2008; Gomes et al., 2008), which might be used to construct
the confidence interval. However, it is not clear which types of conditions for
the parameter space are necessary for our goal. In fact, it has been an open
question whether it is possible to construct uniform and adaptive confidence
intervals for τ with unknown β under the relaxed condition (2). Using informa-
tion theoretic bounds, this paper reveals the minimal conditions under which
uniform and adaptive confidence intervals can be constructed. We discover that
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both the exact Hall condition and the third order condition are not required for
this task by showing that the model we consider is strictly larger than those two
cases (see Subsection 3.3 for more details). Although we do not provide tight
constants, our result is minimax optimal (up to a logarithmic term).

Related issues were considered in the domain of non-parametric functional
estimation (e.g. Low, 1997; Juditsky and Lambert-Lacroix, 2003; Robin and
van der Vaart, 2006; Giné and Nickl, 2010; Hoffmann and Nickl, 2011; Bull and
Nickl, 2013; Carpentier, 2013). In this area, one wants to construct a confidence
set around a smooth function with the smoothness parameter s. Similar to the
case where estimating τ will depend on the unknown second order parameter
β, the minimax rate of estimation over the set of s−smooth functions depends
on the unknown smoothness s. Then, the oracle width of a confidence interval
should depend on s. These papers investigate the case where s is not available.
In a first instance, they consider a simpler but related problem where one wants
to decide between only two possible smoothness s0 > s1 > 0. They state that it
is neither possible to test between s0 and s1 uniformly over the set of smooth
functions, nor to construct uniform and adaptive confidence sets on the whole
model. However, it is uniformly possible on a restricted model where one removes
some functions (a ring around the set of s0−smooth functions, that is, functions
that are s1 smooth but close to s0 smooth functions). These papers prove the
minimax-optimal size of the set of functions that one has to remove.

In this paper, we construct an adaptive confidence interval for τ based on a
testing procedure on the second order parameter, and show that this is minimax
optimal up to a logarithmic factor. We first consider the testing problem between
H0 : F ∈ S(τ, β0) and H1 : F ∈ S(τ, β1) for β0 > β1 > 0, and propose a test
statistic for solving this problem (see Equation (33)). As we will prove in Section
3, it is impossible to test between H0 and H1 uniformly over the whole set of β1

second order Pareto distributions, and also impossible to construct an adaptive
and uniform confidence interval for τ . However, by removing a specific region
of the set of second order Pareto distributions, we characterize a model that is
maximal in a minimax sense, and for which the constructed confidence interval
is uniform and adaptive over the class (8) of distributions. We then use this test-
ing idea developed in the two-points case for treating the case of a continuum of
β. We provide, also in this case, a construction of an adaptive and uniform confi-
dence interval for τ . The model on which we prove that an uniform and adaptive
confidence interval for τ exists is larger than the models considered in previous
works such as Beirlant et al. (2008); Gomes et al. (2008, 2012). Moreover, we
explain how to modify our method to consider a wider class of distributions such
that the second order term is regularly varying in the tail. Finally we illustrate
how to construct our adaptive intervals and compare several confidence intervals
based on Hill’s estimator with various sample fractions by simulations.

2. Setting

Let D be the set of distributions on R+ that are càdlàg (continuous on the right,
limit on the left). We define the following subset of heavy tailed distributions
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(often referred to as second order Pareto distributions in the literature) given
four parameters τ, β, C, C′ > 0.

S(τ, β,C, C ′)

:=
{
F ∈ D : ∀x s.t. F (x) ∈ (0, 1], |1− F (x)− Cx−τ | ≤ C′x−τ(β+1)

}
.

From the definition, F ∈ S(τ, β, C, C ′) satisfies a Pareto-like tail condition when
x → ∞, that is, 1− F (x) ∼ x−τ with the first order parameter τ . In addition,
we note that β characterizes the proximity of the distributions to the exact
τ -Pareto distribution. Indeed, if β is large, then the distribution is close to the
τ -Pareto distribution, while if β is small, it is further away from the exact τ -
Pareto distribution. Note that in the particular case β = ∞, S(τ, β, C, C′) boils
down to containing only one function F0(x) = 1− Cx−τ for x ≥ C1/τ .

Let us first consider the simple case of distinguishing between two given
second order parameters β0 and β1. We let β0 > β1 > 0, and consider two sets
of second order Pareto distributions S(τ, β0, C, C

′) and S(τ, β1, C, C
′). Since

S(τ, β0, C, C
′) ⊂ S(τ, β1, C, C

′), there does not exist a uniformly consistent test
(see Definition 2.1) for the following hypotheses

H0 : F ∈ S(τ, β0, C, C
′) vs. H1 : F ∈ S(τ, β1, C, C

′).

In order to get around this problem, we restrict the set S(τ, β1, C, C
′) to distri-

butions which are not too close to S(τ, β0, C, C
′). Closeness is measured in the

following sense,

‖F − F0‖∞,τ := sup
x:F (x)∈(0,1)

|xτ (1 − F (x))− xτ (1 − F0(x))| .

Then, the modified set of S(τ, β1, C, C
′) is defined as

S̃(τ, β1, β0, C, C
′, ρn) := {F ∈ S(τ, β1, C, C

′) : ‖F − S(τ, β0, C, C
′)‖∞,τ ≥ ρn} .

(4)
It is straightforward to check that S̃(τ, β1, β0, C, C

′, 0) = S(τ, β1, C, C
′), but for

ρn > 0, these sets are proper subsets of S(τ, β1, C, C
′)\S(τ, β0, C, C

′).
Consider now the modified testing problem

H ′
0 : F ∈ S(τ, β0, C, C

′) vs. H ′
1 : F ∈ S̃(τ, β1, β0, C, C

′, ρn).

We recall that a statistical test Ψn is a measurable function that takes values
in {0, 1} of n i.i.d. observations X1, . . . , Xn from some distribution F . We say
that a test is uniformly consistent if the rejection probability supF∈H0

EFΨn

under the null hypothesis and non-rejection probability supF∈H1
EF (1 − Ψn)

under the alternative hypothesis become small when n increases. In other words,
for a uniformly consistent test, both the type I error and type II error are
uniformly well controlled by some predetermined level, which is denoted as α.
More formally, we define an α-uniformly consistent test in Definition 2.1.
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Definition 2.1 (α-uniformly consistent test). A test Ψn between two hypothe-
ses H0 and H1 is α-uniformly consistent if for n large enough, we have

sup
F∈H0

EFΨn + sup
F∈H1

EF (1 −Ψn) ≤ α.

In order for a test to verify this condition, we emphasize that both errors
should be bounded in the worst case, that is, in a minimax sense, not only in
a pointwise sense. This problem is related to uniformly consistent estimation of
the parameter β of a distribution F . Indeed, if one can construct many such
tests on refined grids of an interval [b, B], one can deduce from the outcome of
these tests an estimate of β that will be uniformly consistent for a model that
will depend on ρn (see Subsection 3.3).

α-uniformly consistent test can be useful for constructing an α-adaptive and
uniform confidence interval for τ over a model Pn, and for a set Ib of parameters
β. We let I1 be the possible range of τ and I2 be the possible range of C.
A confidence interval Cn is a subset of [0,∞), and the diameter |Cn| of Cn

is the length of the interval Cn. We now provide the following definition of
α-adaptive and uniform confidence interval for τ .

Definition 2.2 (α-adaptive and uniform confidence interval for τ). A confi-
dence interval Cn for τ is α-adaptive and uniform for a model Pn, two sets
I1, I2 and a constant C′ over a set Ib, if there exists a constant M such that
for n large enough, the following two conditions are satisfied simultaneously.

sup
β∈Ib

sup
F∈⋃

τ∈I1,C∈I2
{S(τ,β,C,C′)

⋂Pn}
PF (|Cn| > Mn− β

2β+1 ) ≤ α, (5)

and

inf
F∈Pn

PF (τ ∈ Cn) ≥ 1− α. (6)

Inequality (5) implies that the diameter of the confidence interval is not
larger than the oracle diameter, where the oracle diameter is the same as the
minimax-optimal rate of estimation of the parameter τ under the correct model
for β. In other words, it means that the confidence interval is adaptive to β.
When β can take only two values, for instance Ib = {β0, β1}, such a confidence
interval is adaptive over the two points β0 and β1. One could also consider a
continuous range of β, for instance Ib = [b, B] where 0 < b < B, such that a
confidence interval would be adaptive over a continuum of parameters. In both
cases, the model Pn has to be restricted in order to ensure the existence of such
a test, and is typically smaller than respectively

⋃
τ∈I1,C∈I2

S(τ, β1, C, C
′) and⋃

τ∈I1,C∈I2
S(τ, b, C, C′). Inequality (6) implies that the confidence interval con-

tains the true parameter with high probability. Again, this definition demands
uniformity over the whole model Pn. In the two points case Ib = {β0, β1}, we
will consider Pn =

⋃
τ∈I1,C∈I2

(S(τ, β0, C, C
′)
⋃ S̃(τ, β1, β0, C, C

′, ρn)) where ρn
is specified later. In the more general case Ib = [b, B], the definition of Pn will
be more involved and described later.
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3. Main results

We consider two settings. In a first instance, we assume preliminary knowl-
edge of τ and C. This is rather a toy setting, but it is useful for us to un-
derstand precisely the mechanisms of the problem. In a second instance, we
extend the ideas used for this simple setting to the case where τ and C are
unknown.

3.1. α-uniformly consistent test when τ, C are known

We consider in this subsection only two possible values for the parameter β,
that we write β0, β1 with 0 < β1 < β0.

We first assume that (τ, C) are available, as well as C′ (which should be
upper bounded). In this setting, the problem of building uniform and adaptive
confidence intervals for τ is meaningless. But we can still cast in a meaningful
way the problem of building a uniformly consistent test between

S0(τ, C) := S(τ, β0, C, C
′) and S̃1(τ, C, ρn) := S̃(τ, β1, β0, C, C

′ρn). (7)

We consider the following testing problem

H0 : F ∈ S0(τ, C) vs. H1 : F ∈ S̃1(τ, C, ρn),

and we are interested in the minimal order of ρn such that there exists a uni-
formly consistent test for this problem.

Theorem 3.1. Let α > 0, τ, C > 0, and β0 > β1 > 0 (and it may be that
β0 = ∞) be given. Then,

A. An α-uniformly consistent test exists for some sequence (ρn)n such that

lim sup
n→∞

ρnn
β1/(2β1+1) < ∞.

B. If there exists an α-uniformly consistent test, then necessarily

lim inf
n→∞

ρnn
β1/(2β1+1) > 0.

Theorem 3.1 states that n−β1/(2β1+1) is the minimax-optimal order which
ensures the existence of an α-uniformly consistent test between H0 and H1.
Note that this ρn is the same as the rate of estimation under the alternative
hypothesis. The test statistic we propose in this setting is based on a simple
idea: estimating 1−F (x) by p̂(x), and then testing whether there exists a point
x such that with a small constant c,

|xτ p̂x − C| ≥ C′x−τβ0 + cρn.

In other words, we test if the empirical distribution belongs to a small enlarge-
ment of S0(τ, C), where this enlargement does not intersect with S̃1(τ, C, ρn).
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3.2. Uniform and adaptive confidence interval for τ over two points
β0, β1

In this subsection, we still consider only two possible values β0, β1 for the param-
eter β, and the associated sets S0(τ, C) := S(τ, β0, C, C

′) and S̃1(τ, C, ρn) :=
S̃(τ, β1, β0, C, C

′ρn). But we extend the previous toy example results for the case
where τ, C are not available (upper bound on the parameter C′ is available).
Then we are interested in testing

H0 : F ∈
⋃

τ∈I1,C∈I2

S0(τ, C) vs. H1 : F ∈
⋃

τ∈I1,C∈I2

S̃1(τ, C, ρn),

where I1, I2 are two closed intervals of (0,∞).
A natural idea in this case is to plug estimators of τ and C in the test statistics

which are used in the case where τ and C are known. Doing this leads to the
following theorem.

Theorem 3.2. Let α > 0 and β0 > β1 > 0 (and it may be that β0 = ∞)
be given. Let τ ∈ I1, C ∈ I2 be two unknown parameters. An α-uniformly
consistent test exists for some sequence (ρn)n such that

lim sup
n→∞

ρn
nβ1/(2β1+1)

log(n)
< ∞.

We lose a log(n) factor with respect to the previous result. This comes from
the fact that we have to estimate τ and C. Even though we do not know whether
this factor is necessary or not, we know from Theorem 3.1 that it is not possible
to deviate more than this log(n) factor (the lower bound of Theorem 3.1 applies
a fortiori to this enlarged model).

The previous result is immediately translated into the existence of adaptive
and uniform confidence intervals for τ .

Theorem 3.3. Let α > 0 and β0 > β1 > 0 (and it may be that β0 = ∞) be
given. Let τ ∈ I1, C ∈ I2 be two unknown parameters. Also with the notation
(4) and (7), we set the model as follows.

Pn =
( ⋃

τ∈I1,C∈I2

S0(τ, C)
)⋃( ⋃

τ∈I1,C∈I2

S̃1(τ, C, ρn)
)
. (8)

Then,

A. An α-adaptive and uniform confidence interval for τ in the model Pn over
Ib = {β0, β1} exists for some sequence (ρn)n such that

lim sup
n→∞

ρn
nβ1/(2β1+1)

log(n)
< ∞.

B. If there exists an α-adaptive and uniform confidence interval for τ in the
model Pn over Ib = {β0, β1}, then necessarily

lim inf
n→∞

ρnn
β1/(2β1+1) > 0.
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In Theorem 3.3, the first claim A. follows from Theorem 3.2. Indeed, pro-
vided an α-uniformly consistent test between H0 and H1, one is able to choose
adaptively the sample fraction for estimating τ (see Section 6.3). Then the risk

of this estimate depends on the β, that is, the risk is of order n− β
2β+1 where

β ∈ {β0, β1} is the “true” parameter. On the other hand, B. follows easily from
the previously established lower bound.

Remark: The upper bounds in both Theorems 3.2 and 3.3 are not matching
the lower bounds in Theorems 3.1 and 3.3 by a log(n) factor. It is unclear to
us whether this log(n) is necessary or not, but we conjecture that at least some
power of log(n) is necessary, because of the uncertainty on τ, C. Indeed, it is
the use of estimators for τ and C that causes this log(n) factor. We however
believe that proving a matching lower bound with this additional log(n) factor
is very involved, since one would need to consider a composite alternative and a
composite null hypothesis in the construction of the lower bound (if one of these
two is not composite, it is actually possible to construct a test and a confidence
interval without the additional log(n) factor in ρn). We leave this as an open
problem for a future research.

3.3. Uniform and adaptive confidence interval for τ over a
continuum of parameter β ∈ [b, B]

In this subsection, we extend the results in the two classes to the case of a
continuous set of parameters such that β ∈ [b, B], where 0 < b < B. The
key idea is to discretize the set [b, B] into about log(n) number of disjoint
intervals and do the successive testings. Let the number of grid points be
Mn := ⌊log(n)/ξ⌋ with a positive constant ξ. We first discretize the inter-
val [b, B] by a grid of points that are 1/Mn-apart from each other. That is,

we let βi = B − i(B−b)
Mn

such that B = β0 > β1 > β2 > · · · > βMn =
b. Separation rate ρn(β) is defined as a function of β, such that ρn(β) =

max {2(E(α/(9Mn)) log(n) +D log((9Mn)/α), 2C
′}n− β

2β+1 , similarly as we de-
fined in (34) in the two points test. We also extend the definition of the modified
set S̃ in (4) by introducing S̃(τ, βi+2, βi, C, C

′, ρn(βi+2)) to be the set of βi+2-
second order Pareto distributions that is ρn(βi+2) away from S(τ, βi, C, C

′),

S̃(τ, βi+2, βi, C, C
′, ρn(βi+2))

:= {F ∈ S(τ, βi+2, C, C
′) : ‖F − S(τ, βi, C, C

′)‖∞,τ ≥ ρn(βi+2)} . (9)

Consider the model

Pn =
⋃

τ∈I1,C∈I2

(
S(τ, B,C,C ′)

⋃(Mn−2⋃

i=0

S̃(τ, βi+2, βi, C, C
′, ρn(βi+2))

))
,

(10)
where I1, I2 be two closed sets of (0,∞).
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Let us define, for a given distribution F ∈ S(τ, b, C, C′), the index β∗ :=
β∗(F ) as

β∗(F ) = sup
β∈[b,B]

{β : F ∈ S(τ, β, C, C ′)}. (11)

This supremum is well defined since it is upper bounded by B, and the set
{β : F ∈ S(τ, β, C, C ′)} is non-empty since it contains b. This β∗(F ) can be
thought of as the “intrinsic” β of F , i.e. the one that characterizes the complexity
of the model to which F belongs.

Theorem 3.4. Let α > 0, and let Pn be the model defined in (10). For a positive
constant ξ, there exists a sequence (ρn(βi))n,i such that

lim sup
n→∞

sup
0≤i≤⌊log(n)/ξ⌋

ρn(βi)
nβi/(2βi+1)

log(n) log log(n)3/2
< ∞, (12)

such that there exists an estimate β̂ of β∗(F ) which satisfies

lim sup
n→∞

sup
F∈Pn

PF

(
|β̂ − β∗(F )| ≥ 4ξ

(B − b)

log(n)

)
≤ α.

Theorem 3.4 states that on the model Pn defined in (10), it is possible to
estimate β∗ with the rate 1/ log(n). On the one hand, this rate seems very slow;
but it is the price to pay for considering a rather wide model. On the other hand,
as we will see in the next Theorem, it is actually sufficient in order to obtain
an adaptive and uniform confidence set. The idea in the proof of Theorem 3.4
is somewhat similar to the successive testing procedure considered in Hoffmann
and Nickl (2011, Section 2.5).

Theorem 3.5. Let α > 0. There exists a sequence (ρn(βi))n,i satisfying (12)
and such that on the model Pn defined in (10) over Ib = [b, B], there exists an
α-adaptive and uniform confidence interval Cn for τ .

The model (10) is not very easy to interpret as such, but it is actually a
rather general model. In particular, consider a class G of distributions defined
for 0 < C1 < C′ and D > 0 as

G :=
⋃

β∈[b,B−2(B−b)/Mn],τ∈I1,C∈I2

{
F ∈ S(τ, β, C, C ′) :

C1x
−τ(β+1) ≤ |1− F (x)− Cx−τ | ≤ C′x−τ(β+1) for x > D

}
. (13)

Then it is possible to prove that G is included in the set (10) when we pick ξ
large enough for a sufficiently large n as shown below.

Lemma 3.1. Let (ρn(βi))n,i be a sequence satisfying (12). Then if ξ is chosen
such that

(
C1 − 2C′e−ξ(B−b)/(2(2B+1))

)
> 0, then for n large enough, we have

G ⊂ Pn.
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For the constant in the grid points, large ξ means that we use coarse grids
so that we remove smaller regions of the parameter space. That is, large ξ
corresponds to the large model so that it yields a wide confidence interval for τ .
Nevertheless, this large choice of ξ will soften the requirements on the choice of
C1 and C′ such that G is contained in the model (10). This set G is actually
larger than the set of distributions verifying the third order condition in the
literature (e.g. Gomes et al., 2012), i.e. the set of distributions that verify for
γ > 0

|1− F (x)− Cx−τ − C1x
−τ(β+1)| ≤ C′x−τ(γ+β+1), (14)

since convergence in the tail to a distribution of the form 1 − F (x) − Cx−τ −
C1x

−τ(β+1) is not imposed. The set G is also larger, when n grows to ∞, than
the set of distributions that satisfy the exact Hall condition,

1− F (x) = Cx−τ + C̃x−τ(β+1) + o(x−τ(β+1)). (15)

This implies in particular that our model Pn is much larger than usual mod-
els where adaptive estimators or adaptive and uniform confidence intervals are
derived. In fact, G can be understood as an analogue to the set of self-similar
functions (see Condition 3 of Giné and Nickl, 2010).

4. Discussion

4.1. Construction of the test statistic and the confidence interval

The test statistics (33) involves the empirical distribution of data and estimators
of τ and C. For instance, in the two classes testing, we can use Hill’s estimate
and the associated estimate of C with the sample fraction corresponding to
the null (if Ψn = 0) or alternative hypotheses (if Ψn = 1). Another option
is to consider an adaptive estimate of τ and construct an adaptive confidence
interval centred on this estimate. We illustrate the practical construction of the
estimate we propose in Algorithm 1, in the case of a continuum of parameters β
(Theorem 3.5).

The choice of B and b depends on the belief of the user about the magnitude
of the parameter β, i.e. of the models one wishes to consider. The parameter ξ
corresponds to the desired precision on β. The choice of the constant c̃1(α, i)
is in practice made following methods (Cheng and Peng, 2001; Haeusler and
Segers, 2007) combined with a delta-method, and is thus chosen lower than
the bound derived in the proofs of this paper, which is conservative. Finally,
α corresponds to the desired coverage of the confidence set. These parameters
can be fixed arbitrarily according to the user’s preference. However, there is no
simple answer for how to choose the constant C′. We recall that the larger C′

is, the larger the class of β−second order Pareto distributions becomes. This
implies that the theory would be more complete if we could handle the class
of β−second order Pareto distributions with the second order condition for any
C′ < ∞. But then, a larger C′ would yield a larger separation zone ρn as well
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Algorithm 1 Practical construction of the confidence interval for τ

Parameters: For given B, b(≥ 0.5), C′, α, ξ, we let βi = B − i(B−b)
Mn

where Mn :=

⌊log(n)/ξ⌋, and

ρn(βi) = (log log(n))n−βi/(2βi+1).
for i := Mn : 2 do

Estimates: Estimate τ, C by τ̂i, Ĉi with the sample fraction associated to βi (for in-
stance, for τ̂i, we can use the inverse of Hill’s estimator computed with the ⌊n2βi/(2βi+1)⌋

largest samples, or the adaptive estimate (Carpentier and Kim, 2013); for Ĉi, we can use
n1/(2βi+1)

∑n
i=1 1{Xi>n1/(τ̂i(2βi+1))}

/n).

Set B̂i = n1/ϑi where ϑi = (τ̂i + (log log(n))n
−

βi
2βi+1 c̃1(α, i))(2βi + 1) with c̃1(α, i) =

q1−α/2τ̂i where q1−α/2 is the α/2 quantile of a N (0, 1) (following Cheng and Peng, 2001;
Haeusler and Segers, 2007, combined with a delta method)
Set p̂x := 1

n

∑n
i=1 1{Xi>x}

Set Tn(i) = supx≤B̂i
(|xτ̂i p̂x − Ĉi| − C′x−τ̂iβi−2).

Set Ψn(i) = 1{Tn(i) ≥ ρn(βi)/2}.
if Ψn(i) = 1 then

Set d(Cn) = c̃1(α, i)(log log(n))n−βi/(2βi+1).
Set τ̃ = τ̂i
Set Cn = [τ̃ − d(Cn), τ̃ + d(Cn)].

end if

end for

Return Cn.

as the necessity of considering wider confidence intervals for τ . We believe that
the choice of the upper bound for C′ should depend on the specific problem
considered, and also on whether one is interested in asymptotic rates (in which
case C′ has to slowly go to infinity with n), or in the final width of the confidence
set for not-too-small tail probabilities (in which case C′ has to be of reasonably
small magnitude). A reasonable heuristic for fixing C′ is as follows. For each
candidate βi, we fix

C′ := sup
1≤x≤B̂i

|xτ̂i p̂x − Ĉi|(1 + cn) + 0.2,

where cn is a confidence bound as e.g. cn =
√
log(1/α)n−βi/(2βi+1) and 0.2

makes C′ not-too-small. This heuristic is efficient, in particular if the model
error is maximized for small x, which is often the case in practice, and in usual
parametric heavy tailed models (Fréchet, Student, etc).

The choices of βi, Ĉi from the threshold ⌊n2βi/(2βi+1)⌋ follow from the
theory, and with these choices, the results are minimax-optimal up to a
log(n)(log log(n))3/2 factor (see Theorem 3.3 and 3.4). Ideally, to obtain bet-
ter constants in the bounds, one would like to tune the constants in all these
quantities. In order to do this, however, it is necessary to estimate the model
bias (i.e. the deviance with respect to Pareto distribution) precisely. This is
possible in more restrictive models than ours (e.g. Gomes et al., 2012), since
they assume the third order condition for the model bias (definite shape order
plus a negligible term). It is thus possible to estimate this model bias with few
parameters from a finite sample size using the information regarding the bias
whose shape is guaranteed to hold on the entire tail.
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In contrast, we consider a setting which is much broader than this one, and
where the model bias is only upper bounded, which implies that the bias in
our setting does not have any definite shape. It is thus not possible to infer
from a finite sample the shape of the (far right) tail of the model bias, which
makes it difficult to tune the constants without having an oracle knowledge of
the distribution. Although we agree on the practical impact for more refined
tuning, we believe that it is not possible in this broader model to tune exactly
without a priori knowledge of the problem; this is the price to pay for a broader
model, which is particularly relevant for discrete distributions.

4.2. Distributions that are in Pn but not in the models (14)
and (15)

We have shown in Section 3.3 that our model Pn (c.f. Equation (10)) is strictly
larger than the usual models such as (14) and (15) as well as the set of self-
similar distributions (see Equation (13)). Then it is of interest to see if there
are useful models in applications that belong to our model, but that are out
of the more restrictive classes previously considered. To that end, we consider
the class of heavy tailed distributions that take only a countable set of values,
i.e. discrete distributions. There are many examples of such discrete heavy tailed
distributions; either for “natural” reasons (e.g. the distributions of wages in a
population) or for rounding issues (e.g. hydrology measures). Thus for practical
applications, it is very important to consider these distributions.

We claim here that many discrete distributions that are in the domain of
attraction of a Fréchet distribution are not in the models (14) and (15), while
some of them are in our model Pn. Let us write H for the distributions that sat-
isfy Equation (15) (and who thus also satisfy (14)). The following lemma states
that distributions which are discretized (with equally spaced grids) versions of
distributions in H are not in H.

Lemma 4.1. Let F ∈ H with parameters τ, β > 0. Let a0 ≥ 1, t > 0, and set
ai = a0 + it for any i ∈ N. Let F̃ be the discretized version of F according
to (aj)j , i.e. for all x ≥ 1, F̃ (x) = F (ai) where ai is the largest element of
{aj, j ∈ N} smaller than or equal to x.

If β > 1/τ , then

F̃ 6∈ H.

On the other hand, if min(β, 1/τ) ∈ (b, B), then for n large enough,

F̃ ∈ Pn,

where Pn is defined in (10).

The proof of this lemma is in Subsection 6.8.
In order to illustrate this lemma, we consider the distribution

F̃ : x ∈ [1,∞] → 1− ⌊x⌋−τ , (16)
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which puts mass only on integers, and is equal to a τ−Pareto distribution on
these integers. Clearly, this distribution is such that 1 − F̃ (x) = x−τ + o(x−τ )
so it is in the domain of attraction of a Fréchet distribution. Lemma 4.1 implies
that this distribution does not belong to H, i.e. to the models (14) and (15),
for any constants β,C,C1, C

′, C̃. This reveals that even simple heavy tailed
discrete distributions are not in the usually considered models (14) and (15).
On the other hand, this distribution is in the model Pn defined in Equation (10)
by Lemma 4.1. Lemma 4.1 holds for many other discrete distributions as well
as this simple discrete distribution.

4.3. Extension to the case of a regularly varying second-order term

Condition (1) is a necessary and sufficient condition for a distribution F to be in
the domain of attraction of a Fréchet distribution. However, as mentioned in the
introduction, this model is too broad to allow for uniform rates of convergence
for an estimate of τ .

Setting (2) was introduced to characterize a set of parameters in which it is
possible to estimate τ at a uniform rate. This rate depends on the second order
parameter β that characterizes the maximal distance between a distribution
included in (2) and the exact Pareto distribution.

As an alternative to the setting (2), we might consider the set of distributions
F which satisfy

1− F (x) = Cx−τ (1 +R(x)), (17)

where |R| is upper bounded by a τβ-regularly varying function at +∞ (see
Lemma 2.3.2 of Dekkers and De Haan, 1993).

From the form of (17), we know that this alternative setting is an extension
of the exact Hall condition (15), i.e. R(x) = C̃x−τβ + o(x−τβ). In addition,
by definition of regularly varying functions, if a function verifies Equation (17)
(where R is τβ-regularly varying), then it verifies

|R(x)| ≤ Dx−τβ+φ(x), (18)

where D is a constant, and φ is a function such that limx→∞ φ(x) = 0. This
condition is slightly weaker than Equation (17), but these two conditions are
very much related.

The condition (2) we consider in this paper for the two points test and con-
fidence interval is weaker than the exact Hall condition (15) (although it is
stronger than (18) since it requires φ(x) = 0). Indeed, condition (15) implies

lim
x→∞

1− F (x)− Cx−τ

x−τ(1+β)
= C̃,

while our condition (2) does not impose the existence of this limit; it gives just
an upper bound on the distance to the exact Pareto distribution. Moreover,
we have proved that up to a log(n) factor, the model Pn that we derive from
the condition (2) is the largest possible in a minimax sense for studying the
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question of uniform and adaptive confidence intervals. In the case of a continuum
of parameters β, the model (10) that we define for constructing adaptive and
uniform confidence intervals contains the set of distributions that verify the
exact Hall condition. It is larger (see Lemma 3.1) than the set (13), which
clearly includes the set of distributions in the exact Hall model. We emphasize
that most papers considering estimation of β actually consider a more restrictive
setting than the exact Hall condition (15), as e.g. the third order condition (see
Gomes et al., 2012, for instance).

Before considering our method in the more general setting (18), we want to
make an important remark. In the setting (18), β does not characterize the
uniform rates of convergence for the estimator of τ anymore (see Drees, 1998,
2001). Indeed, if φ converges to 0 too slowly, the distance between F and the

exact Pareto distribution can become too large, and the rate n− β
2β+1 for esti-

mating τ is then out of reach. The main reason why we are interested in testing
β in the model (2) is because in this model, β characterizes the complexity
of the model to which F belongs. More specifically, β controls the bias to an

exact Pareto distribution, and yields the estimation error being n− β
2β+1 . Also,

through this complexity, knowing β should allow us to (a) compute the opti-
mal sample fraction for obtaining optimal estimators of τ and (b) have an idea
of the precision of these estimators so that we can build a confidence interval
for τ . However, under condition (18), the role of β is less clear, in particular if φ
decays very slowly to 0—actually, as soon as limx→∞ | log(x)φ(x)| = ∞. In this
case, the minimax-optimal rate of estimation for τ and the optimal width of the

confidence interval is not n− β
2β+1 , but it is larger (see Drees, 1998, 2001). Thus,

testing whether β = β0 or β = β1, or estimating β under the general model (18)
does not provide an answer for confidence statements.

To closer look at the construction of uniform confidence interval in this al-
ternative setting (18), let us consider the wider model

|R(x)| ≤ x−τβ+φ(x).

In the extreme case |R(x)| = x−τβ+φ(x) and if limx→∞ | log(x)φ(x)| = ∞, as
mentioned above, β is not driving the rate of convergence of an optimal estimate
of τ and the length of the associated confidence interval. The quantity that is
driving the optimal rate can depend on n and is defined as follows. Let n > 0
be the number of samples. Let xn be the point such that it equalizes the bias
and the standard deviation of an estimate (as the one in Carpentier and Kim,
2013) computed only with the samples larger than this point, i.e. xn be such
that √

1

(1− F (xn))n
= |R(xn)|.

Let βn be such that n− βn
2βn+1 is equal to the risk of this estimate (or equiva-

lently, let βn be such that xn = n
1

τ(2βn+1) ). Then we define β∗
n = infN≥n βN .

This β∗
n is actually the quantity of importance (and not β): it is the quantity

that characterizes the performance of the estimate for a fixed n. And although



2080 A. Carpentier and A. K. H. Kim

β∗
n → β as n → ∞, the rate of convergence of this quantity can be arbitrarily

slow depending on how slowly φ(x) goes to 0—when this convergence is too slow

and | log(x)φ(x)| → ∞, the rate is not n− β
2β+1 . Hence, in this setting and for a

fixed n, one does not want to test β (or do confidence intervals according to β),
but we want to test the quantity β∗

n (and build confidence intervals accord-
ing to β∗

n). Actually, the estimate defined in Carpentier and Kim (2013) com-

puted with all the points larger than n
1

τ(2β∗
n+1) attains the optimal risk n

− β∗
n

2β∗
n+1

(as the one defined in Drees, 1998). And if one does not know β (and also β∗
n), by

modifying slightly the proof of Theorem 3.6 in the paper (Carpentier and Kim,
2013), one can prove that the adaptive estimate τ̂ from the paper (Carpentier
and Kim, 2013) satisfies that with high probability,

|τ̂ − τ | = O
(( n

log log(n)

)− β∗
n

2β∗
n+1

)
.

There is then an easy extension of our procedure to test whether β∗
n equals

β0 or β1. The only change with respect to the procedure we proposed is in the
definition of the test statistic Tn introduced in Section 5.1, which should be
defined as

T̃n = sup

x:[n
1

τ(2β0+1) ,n
1

τ(2β1+1) ]

(
|xτ p̂x − C| − C′x−τβ0

)
,

i.e. the distance to the model is considered only for large enough x. This test will
be consistent if the alternative hypothesis is restricted to distributions which are

at least n
− β1

2β1+1 away from distributions such that β∗
n = β0. The idea behind this

change is to test deviations from the exact Pareto distribution only for large x so
that R(x) is small enough under the null hypothesis (under the condition (2),
R(x) is always properly bounded for any x). To extend the case where τ is
unknown, the test statistic should be replaced by an estimate similar to (33) as
in the proof of Theorems 3.2.

5. Numerical experiments

5.1. Experiments on continuous distributions

We consider usual parametric extreme value distributions:

• τ -Pareto distributions on [1,∞) with τ ∈ {1, 2}. We remind that the
τ -Pareto distribution FP

τ (x) = 1− x−τ is included in S(τ,∞, 1, 0).
• τ -Fréchet distributions on [0,∞) with τ ∈ {1, 2}. The τ−Fréchet distribu-
tion FF

τ (x) = exp(−x−τ ) is included in S(τ, 1, C, C ′) for some constants
C,C′.

• τ -Student distributions with τ degrees of freedom on R with τ ∈ {1, 2}.
This distribution is in S(τ, 1/(2τ), C, C ′) for some constants C,C′.

• Cauchy distribution on R. The standard Cauchy distribution f(x) =
1
π

1
1+x2 is included in S(1, 2, C, C′) for some constants C,C′.
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The last two distributions are symmetric at 0 and defined on R, so we consider
the absolute value of the samples so that Hill’s estimate with large sample
fraction still exists (τ and β do not change).

We compute confidence sets around 1/τ (not around τ), since most empirical
studies in the literature focus on 1/τ , which enables us to compare more easily
to these results. We follow the algorithm in Algorithm 1 for computing 1/τ̂i

for each βi (using Hill’s estimate with the ⌊n
2βi

2βi+1 ⌋ largest samples). For the

estimation of 1/τ , the corresponding c̃1(α, i) is q1−α/21̂/τi, but not q1−α/2τ̂i
(see Cheng and Peng, 2001; Haeusler and Segers, 2007). We fix C′ according to
the heuristic discussed in Section 4, and consider [b, B] = [0.5, 10], ξ = log(n)/95
and α = 0.05. We denote our confidence interval as AdapCI.

The other methods we choose to compare are derived according to Haeusler
and Segers (2007) and Cheng and Peng (2001). We first estimate β by β̂ as
discussed in Cheng and Peng (2001, §3). We then use it to compute the number

of the largest samples k̂ that we will consider. We will consider three different
values k̂∗, k̃, kCP of k̂. We first consider the optimal estimated sample number

k̂∗ := ⌊n2β̂/(2β̂+1)⌋. This sample fraction should provide the best results in terms

of estimating 1/τ . Second, we use a sample number that is a o(k̂∗), namely k̃ :=

⌊k̂∗/√logn⌋. The rational behind this heuristic is that the asymptotic normality
of Hill estimate with known constants (i.e. with negligible bias) holds if and only
if the sample number is o(n2β/(2β+1)), and in this case exact asymptotic coverage

of the confidence interval can be achieved. Third, we use k̂CP suggested in Cheng
and Peng (2001, §3). The idea behind this heuristic is to provide a coverage that
is as close to the theoretic coverage 1− α as possible.

The confidence interval will then be computed using the k̂ largest samples,
according to two methods discussed in Haeusler and Segers (2007): the Wald
and score type confidence intervals. A first step is to estimate 1/τ by Hill’s

estimate ̂1/τ(k̂) with the sample number k̂. The confidence intervals will then
be centred on this estimate. The Wald type confidence interval is obtained by
Haeusler and Segers (2007, p.177)

(
(1 − k̂−1/2q1−α/2)

̂1/τ(k̂), (1 + k̂−1/2q1−α/2)
̂1/τ(k̂))

)
,

where

̂1/τ(k̂) :=
1

k̂

k̂∑

i=1

logX(n−i+1) − logX(n−k̂)

X(n−k) ≤ X(n−k+1) ≤ · · · ≤ X(n).

The score type confidence interval is obtained by
(
(1 + k̂−1/2q1−α/2)

−1 ̂1/τ(k̂), (1− k̂−1/2q1−α/2)
−1 ̂1/τ(k̂)

)
.

We denote these confidence intervals Wk̂∗ ,Wk̃,WCP for Wald, and similarly
Sk̂∗ , Sk̃, SCP for score method.
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Table 1

Coverage probabilities (first row), sizes (second row) of the confidence intervals for 1/τ for
underlying τ -Pareto distributions

τ = 1 τ = 2

n 100 200 1000 104 100 200 1000 104

AdapCI 100 100 97 85 99 100 99 96

0.66 0.52 0.34 0.27 0.34 0.27 0.20 0.16

Wk̂∗ 93 93 93 94 90 93 96 92

0.86 0.64 0.36 0.16 0.90 0.69 0.24 0.06

Wk̃ 93 92 94 94 86 91 91 96

1.30 1.01 0.59 0.28 0.90 0.87 0.39 0.11

WCP 91 91 93 90 85 87 91 98

1.18 0.95 0.63 0.36 0.97 0.92 0.56 0.18

Sk̂∗ 96 96 96 95 98 97 93 94

1.14 0.72 0.38 0.16 4.45 3.66 0.26 0.06

Sk̃ 96 95 96 96 98 94 93 97

5.15 1.39 0.65 0.29 7.21 6.18 0.50 0.11

SCP 97 92 97 92 97 94 93 99

3.33 1.25 0.70 0.37 8.72 7.99 2.16 0.19

We iterate these procedures 100 times, and compute the number of times that
obtained confidence intervals contain the true 1/τ (coverage) and the average of
length of intervals (size). In order to compare these 7 methods, both coverage
and size have to be taken into account, and the ranking of the methods we
analyse is not straightforward. A good confidence interval should have high
coverage and small size, but there is a trade-off between these two quantities.
Although our focus is to provide confidence intervals, for the readers’ interests,
we also provide their mean values and MSEs from 100 iterations (see Table 5,
6, 7, and 8).

A natural competitor would also be the method presented in Gomes et al.
(2012, Table 5) since it is the only method (to the best of our knowledge)
that is proven to be adaptive to the second order parameter—the results of
Haeusler and Segers (2007) and Cheng and Peng (2001) are proven for a fixed
sample fraction, and some fixed oracle sample fractions are discussed. They are
however not proven for an adaptive sample fraction, and only heuristics with
adaptive sample fractions are proposed in these papers. However, Gomes et al.
(2012) describe their method as a “terribly time-consuming algorithm”, and they
display computational results with size and coverage of the confidence set only
for a Student distribution of parameter 2, for n ∈ {100, 200, 1000} (see Table
5 in Gomes et al., 2012). Moreover, we found that our method, as well as the
score and Wald methods, give much better results in this case, simultaneously
in terms of size and coverage (see Table 2). Thus we do not implement the
method of Gomes et al. (2012) on our experiments as a competitor, but we can
still compare the results for the Student distribution of parameter 2.

We provide the simulation results on the coverage and size of the confidence
intervals in Tables 1 (Pareto), 2 (Student), 3 (Fréchet) and 4 (Cauchy). We can
see that our adaptive method AdapCI gives fairly stable and small confidence
intervals in terms of both the coverage and the size, and is particularly efficient
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Table 2

Coverage probabilities (first row), sizes (second row) of the confidence intervals for 1/τ for
underlying τ -Student distributions

τ = 1 τ = 2

n 100 200 1000 104 100 200 1000 104

AdapCI 80 80 55 93 100 100 98 96

0.55 0.48 0.39 0.33 0.41 0.33 0.33 0.24

Wk̂∗ 56 67 55 47 83 86 74 70

0.55 0.46 0.26 0.12 0.36 0.28 0.13 0.18

Wk̃ 79 82 85 91 84 86 66 84

0.87 0.76 0.46 0.22 0.47 0.42 0.20 0.31

WCP 70 79 85 96 82 84 80 87

0.71 0.67 0.46 0.27 0.57 0.50 0.26 0.41

Sk̂∗ 81 81 63 47 91 95 80 73

0.65 0.50 0.27 0.12 0.55 0.60 0.14 0.31

Sk̃ 94 94 95 94 95 95 73 91

1.26 0.92 0.48 0.22 1.45 1.84 0.29 0.95

SCP 89 90 93 97 93 96 88 91

1.10 0.78 0.49 0.27 2.91 1.84 0.37 1.11

Table 3

Coverage probabilities (first row), sizes (second row) of the confidence intervals for 1/τ for
underlying τ -Fréchet distributions

τ = 1 τ = 2

n 100 200 1000 104 100 200 1000 104

AdapCI 98 93 85 96 81 81 84 95

0.62 0.51 0.40 0.37 0.34 0.38 0.44 0.32

Wk̂∗ 83 89 95 88 50 35 47 86

0.70 0.56 0.33 0.15 0.35 0.29 0.32 0.28

Wk̃ 92 87 98 98 75 60 67 93

1.09 0.89 0.55 0.27 0.50 0.43 0.46 0.51

WCP 88 88 95 96 79 69 76 91

0.99 0.86 0.60 0.36 0.63 0.51 0.56 0.66

Sk̂∗ 97 95 96 90 75 49 56 92

0.83 0.62 0.34 0.15 1.46 1.18 1.85 0.94

Sk̃ 95 95 99 99 96 81 80 97

0.67 1.13 0.59 0.28 1.60 2.04 3.20 2.62

SCP 96 95 98 93 97 90 91 95

1.39 1.07 0.66 0.38 3.62 2.71 3.72 2.82

for small sample sizes. The Wald method provides also good results, both in
terms of size and coverage, in particular with k̂∗ number of samples (which
provides the smallest confidence interval, with almost always good coverage).
Our method is in most cases comparable to the associated method Wk̂∗ . In
contrast, the score method gives often a too wide confidence interval for small
sample sizes n = 100, 200. For the case τ = 2 in Table 2, we can compare our
result with Gomes et al. (2012, Table 5). The results in Gomes et al. (2012,
Table 5) are almost always worse both in terms of coverage and size than the
results of Table 2.
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Table 4

Coverage probabilities (first row), sizes (second row) of the confidence intervals for 1/τ ≡ 1
for underlying Cauchy distributions

τ = 1

n 100 200 1000 104

AdapCI 78 80 52 94

0.57 0.46 0.36 0.37

Wk̂∗ 63 67 61 48

0.58 0.48 0.26 0.12

Wk̃ 81 89 89 89

0.94 0.80 0.45 0.22

WCP 76 82 89 91

0.78 0.69 0.46 0.27

Sk̂∗ 80 76 69 52

0.77 0.52 0.27 0.12

Sk̃ 95 93 94 91

1.44 0.98 0.37 0.22

SCP 88 90 93 94

1.11 0.81 0.48 0.27

Table 5

Means (first row), MSEs (second row) of the estimates of 1/τ for τ -Pareto distributions

τ = 1 τ = 2

n 100 200 1000 104 100 200 1000 104

̂1/τ(k̂) 0.995 0.998 0.977 0.970 0.496 0.499 0.489 0.487

0.013 0.007 0.009 0.005 0.003 0.002 0.002 9.4 .14

̂1/τ(k̂∗) 0.936 0.987 0.989 0.997 0.492 0.512 0.512 0.502

0.051 0.030 0.009 0.001 0.044 0.024 0.004 2.6 .14

̂1/τ(k̃) 0.929 0.960 1.000 0.996 0.486 0.503 0.504 0.501

0.103 0.055 0.027 0.004 0.065 0.059 0.011 6.8 .14

̂1/τ(kCP ) 0.923 0.966 1.001 0.989 0.479 0.497 0.492 0.500

0.087 0.046 0.029 0.008 0.060 0.067 0.019 0.002

Table 6

Means (first row), MSEs (second row) of the estimates of 1/τ for τ -Student distributions

τ = 1 τ = 2

n 100 200 1000 104 100 200 1000 104

̂1/τ(k̂) 0.860 0.837 0.872 0.927 0.584 0.565 0.463 0.465

0.030 0.032 0.021 0.007 0.010 0.006 0.007 0.008

̂1/τ(k̂∗) 0.855 0.840 0.897 0.934 0.467 0.460 0.471 0.466

0.054 0.044 0.017 0.005 0.019 0.009 0.002 0.004

1̂/τ(k̃) 0.923 0.891 0.955 0.965 0.455 0.429 0.452 0.480

0.085 0.056 0.016 0.004 0.041 0.020 0.007 0.007

̂1/τ(kCP ) 0.890 0.889 0.956 0.976 0.456 0.441 0.463 0.480

0.076 0.051 0.016 0.005 0.053 0.024 0.009 0.013
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Table 7

Means (first row), MSEs (second row) of the estimates of 1/τ for τ -Fréchet distributions

τ = 1 τ = 2

n 100 200 1000 104 100 200 1000 104

̂1/τ(k̂) 0.903 0.903 0.941 0.954 0.424 0.414 0.440 0.461

0.018 0.016 0.009 0.007 0.009 0.014 0.007 0.007

̂1/τ(k̂∗) 0.930 0.926 0.961 0.982 0.408 0.416 0.415 0.465

0.037 0.027 0.008 0.002 0.019 0.022 0.015 0.011

1̂/τ(k̃) 0.939 0.951 0.997 0.986 0.434 0.418 0.433 0.475

0.076 0.046 0.015 0.005 0.029 0.027 0.021 0.026

̂1/τ(kCP ) 0.939 0.954 0.998 0.983 0.455 0.424 0.436 0.505

0.066 0.047 0.020 0.009 0.036 0.031 0.031 0.038

Table 8

Means (first row), MSEs (second row) of the estimates of 1/τ for τ -Cauchy distributions

τ = 1

n 100 200 1000 104

̂1/τ(k̂) 0.846 0.848 0.874 0.935

0.033 0.029 0.021 0.007

̂1/τ(k̂∗) 0.847 0.876 0.895 0.940

0.058 0.037 0.017 0.004

1̂/τ(k̃) 0.904 0.944 0.969 0.977

0.087 0.060 0.020 0.004

̂1/τ(kCP ) 0.870 0.938 0.969 0.986

0.073 0.055 0.020 0.005

5.2. Experiments on discretized distributions

As we claim in Subsection 4.2, our model contains discretized Pareto distribu-
tions which are not contained in usual models previously considered. In this
Subsection, we thus consider the model (16) F : x ∈ [1,∞) → 1 − ⌊x⌋−τ . As
discussed in Subsection 4.2, F ∈ S(τ, 1/τ, 1, C′) for C′ large enough depending
on τ . We perform the experiments for the seven methods discussed in the last
subsection, and for sample sizes n ∈ {100, 200, 1000, 104, 105}, and for τ ∈ {1, 2}.

Table 9 shows the results for these class discretized distributions. All methods
perform correctly in the case τ = 1. However, for τ = 2, the coverage proba-
bility of all the Wald and score methods are very small for a large sample size
n ∈ {104, 105}. This comes from the fact that these methods over-estimate β
(which is 1/τ = 1/2 in this case), which implies the size of the confidence inter-
val is too small for guaranteeing a good coverage. This problem is more acute for
τ = 2 that for τ = 1 since β = 1/τ is smaller for τ = 2. Our method AdapCI,
on the other hand, detects that the complexity of this model is higher than in
the case of the exact Pareto distribution, and increases the size of the confi-
dence intervals, which guarantees a good coverage for the resulting confidence
interval.
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Table 9

Coverage probabilities (first row), sizes (second row) of the confidence intervals for 1/τ for
underlying discretized τ -Pareto distributions

τ = 1 τ = 2

n 100 200 1000 104 105 100 200 1000 104 105

AdapCI 97 99 97 96 99 60 96 96 99 100

0.68 0.65 0.62 0.43 0.39 0.47 0.54 0.47 0.35 0.27

Wk̂∗ 91 91 92 87 94 45 63 86 16 7

0.94 0.70 0.62 0.29 0.07 0.37 0.46 0.62 0.07 0.01

Wk̃ 90 91 87 70 94 75 75 87 55 12

1.38 1.02 1.01 0.44 0.13 0.59 0.68 0.83 0.12 0.03

WCP 92 93 89 93 99 71 76 90 67 30

1.30 0.94 1.04 0.51 0.20 0.54 0.57 0.75 0.13 0.03

Sk̂∗ 89 93 94 87 94 51 60 86 16 7

2.10 0.84 0.70 0.33 0.07 0.92 1.25 3.51 0.07 0.01

Sk̃ 96 94 94 96 93 51 72 90 50 12

4.74 2.35 1.81 1.44 0.13 2.46 2.15 4.97 0.12 0.03

SCP 95 95 96 95 96 59 73 91 62 31

3.00 1.84 2.12 2.58 0.21 1.25 1.76 4.11 0.14 0.03

Table 10

Means (first row), MSEs (second row) of the estimates of 1/τ for discretized τ -Pareto
distributions

τ = 1 τ = 2

n 100 200 1000 104 105 100 200 1000 104 105

̂1/τ(k̂) 1.006 1.020 0.999 0.906 0.981 0.371 0.444 0.467 0.421 0.416

0.022 0.015 0.015 0.056 0.002 0.027 0.011 0.008 0.019 0.019

̂1/τ(k̂∗) 1.061 1.035 1.020 1.031 1.007 0.511 0.588 0.530 0.556 0.456

0.068 0.033 0.025 0.010 4.4 .15 0.040 0.051 0.028 0.017 0.006

1̂/τ(k̃) 1.064 1.025 1.026 1.016 0.999 0.630 0.592 0.578 0.528 0.493

0.121 0.070 0.076 0.022 8.5 .14 0.081 0.065 0.059 0.005 0.008

̂1/τ(kCP ) 1.074 1.039 1.038 1.031 0.994 0.631 0.612 0.551 0.524 0.512

0.127 0.059 0.085 0.035 0.002 0.071 0.056 0.037 0.004 0.002

6. Technical proofs

6.1. Proof of the upper bound in Theorem 3.1 (Proof of [A.])

In this Subsection, we write for simplicity S0 = S0(τ, C), S1 = S1(τ, C) and
S̃1 = S̃1(τ, C, ρn).

Let X1, . . . , Xn be an i.i.d. random sample from a distribution F ∈ S1. We
write, for any x ∈ R+,

px := P(X > x) = 1− F (x),

and its empirical estimate that we define for all x rationals (we write Q for the
rationals) larger than 0

p̂x :=
1

n

n∑

i=1

1{Xi>x}.
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For the x that are non rational, we set p̂x = limy∈Q,y>x,y→x p̂y.

We propose the following test statistic

Tn = sup

x≤n
1

τ(2β1+1)

(
|xτ p̂x − C| − C′x−τβ0

)
.

The test is of the form

Ψn = 1{Tn≥ρn/2},

where ρn ≥ max(4D log(1/α), 2C′)n− β1
2β1+1 with a universal constant D in

Lemma 6.2. Then, we reject the null if Ψn = 1, and vice versa.

The following results in Lemma 6.1 show that the test statistics Tn is a rea-
sonable criterion for this testing problem. Lemma 6.2 proves that the difference
between empirical estimate and the true probability is controlled uniformly well.

Lemma 6.1. Assume that ρn ≥ 2C′n− β1
2β1+1 . Then

(i) F ∈ H0 implies supx(|xτpx − C| − C′x−τβ0) ≤ 0.
(ii) F ∈ H1 implies that sup

x≤n
1

τ(2β1+1)
(|xτpx − C| − C′x−τβ0) ≥ ρn.

Lemma 6.2. Suppose we have an iid sample from F ∈ S1. With probability
larger than 1− α, we have

sup

x≤n
1

τ(2β1+1)

xτ |p̂x − px| ≤ Dn− β1
2β1+1

√
log
( 1
α

)
+ n− 2β1

2β1+1 log
( 1
α

)

≤ 2Dn
− β1

2β1+1 log
( 1
α

)
,

where D is some constant that depends only on β1, on a lower bound on τ and
on an upper bound on C,C′.

Now, we combine the results obtained in Lemma 6.1 and 6.2 by considering
two hypotheses separately. Let α > 0.

Under H0: We obtain that with probability larger than 1− α

sup

x≤n
1

τ(2β1+1)

(
|xτ p̂x − C| − C′x−τβ0

)
≤ 2Dn− β1

2β1+1 log(1/α) < ρn/2.

Under H1: We obtain that with probability larger than 1− α

sup

x≤n
1

τ(2β1+1)

(
|xτ p̂x − C| − C′x−τβ0

)
≥ ρn − 2Dn

− β1
2β1+1 log(1/α) > ρn/2.

This concludes the proof of the upper bound in Theorem 3.1.
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Proof of Lemma 6.1. (i) is clear by definition of H0, but proof of (ii) is more
involved.

First, we define three regions R = {x : |1 − F (x) − Cx−τ | ≤ C′x−τ(1+β0)},
R+ = {x : 1 − F (x) ≥ Cx−τ + C′x−τ(1+β0)}, and R− = {x : 1 − F (x) ≤
Cx−τ − C′x−τ(1+β0)}. Then for any F ∈ H1, we define F̃ as follows,

F̃ (x) = F (x)1{x∈R} + (1− Cx−τ − C′x−τ(1+β0))1{x∈R+}

+ (1− Cx−τ + C′x−τ(1+β0))1{x∈R−}.

We have F̃ ∈ S0 by definition.
By definition of F̃ , we have

∣∣xτ (F̃ (x) − F (x))
∣∣ =

∣∣∣xτ [(1− F (x)) − (Cx−τ + C′x−τ(1+β0))]
∣∣∣1{x∈R+}

+
∣∣∣xτ [(1− F (x)) − (Cx−τ − C′x−τ(1+β0))]

∣∣∣1{x∈R−}

=
(
xτpx − C − C′x−τβ0

)1{x∈R+} +
(
C − xτpx − C′x−τβ0

)1{x∈R−}. (19)

But then, by the fact that F ∈ S1, by using the upper bound for xτpx ≤
C + C′x−τβ1 and the lower bound for xτpx ≥ C − C′x−τβ1 , (19) can be upper
bounded as follows,

(19) ≤ 2(C′x−τβ1 − C′x−τβ0) ≤ 2C′x−τβ1 .

Recall that by definition of S̃(β1, ρn), for any F0 ∈ S0, there exists x0 such that

|xτ
0 [(1− F (x0))− (1 − F0(x0))]| ≥ ρn.

Thus, we can restrict the set of x0 such that

ρn ≤ 2C′x−τβ1

0 ⇔ x0 ≤
(
2C′

ρn

)−1/(τβ1)

≤ n1/(τ(2β1+1).

Since F̃ ∈ S0, this implies that there exists x0 ≤ n1/(τ(2β1+1) such that

|xτ
0 [(1− F (x0))− (1 − F̃ (x0))]| ≥ ρn.

Combining this with Equation (19), it is clear that the maximum point should
be either in R+ or R−. Either way, we have found that there exists x0 such that

|xτ
0px0 − C| − C′x−τβ0

0 ≥ ρn.

This concludes the proof of Lemma 6.1.

Proof of Lemma 6.2. For notational convenience, let B := n1/(τ(2β1+1)).
First, we split the interval [1, B] intoK := ⌊logB⌋ number of disjoint intervals

such that I0 := [e0, e1), I1 = [e1, e2), . . . , Ik = [ek, ek+1), . . . , IK−1 = [eK−1, eK).
The proof is based on the Talagrand’s inequality (Talagrand, 1996) of the

form in Bousquet (2003, Theorem 7.3) and Bull and Nickl (2013, Equation (13))
after using the fact that (1 + t) log(1 + t) − t ≥ min(t2/3, t/2) for t ≥ 0. See
also (van der Vaart and Wellner, 1996; Boucheron et al., 2013).
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Theorem 6.1 (Talagrand’s inequality). Let F be a countable set of functions
from Ω to R and assume that all functions f in F are measurable and takes
values in [−1/2, 1/2]. Denote

Z = sup
f∈F

∣∣∣∣∣
n∑

i=1

(f(Xi)− Ef(X))

∣∣∣∣∣ .

Let σ ≤ 1/2, and V be any two numbers satisfying

σ2 ≥ sup
f∈F

Ef2, V ≥ nσ2 + 2EZ.

Then for all t ≥ 0,

P (Z ≥ E(Z) + t) ≤ exp

(
−min

[
t2

3(nσ2 + 2E(Z))
,
t

2

])
.

Here we set f(Xi) = fx(Xi) =
1
21{Xi > x}, and F = {fx, x ∈ Ik

⋂
Q}. For

this class of functions, we have 1
n

∑n
i=1 fx(Xi) = p̂x/2 and Efx(Xi) = px/2.

Also, we can let σ2 = 1
4 supx∈Ik [px] ≤ min( (C+C′)

4 e−kτ , 1/4).
The following result is obtained by applying the last theorem to the class F ,

and by rescaling. Denoting µk := E supx∈Ik
⋂

Q |p̂x − px|, we have

P

(
sup

x∈Ik
⋂

Q

|p̂x − px| > µk + t

)
≤ exp

(
− 1

12

(
min

( nt2

(σ2 + 2µk)
, nt
)))

.

Since the function F is cadlag, and since the rationals are dense in the real
line, by construction of p̂x, the last inequality implies the following corollary.

Corollary 6.1. Denoting µk := E supx∈Ik
⋂

Q |p̂x − px| = E supx∈Ik |p̂x − px|,
we have

P

(
sup
x∈Ik

|p̂x − px| > µk + t

)
≤ exp

(
− 1

12

(
min

( nt2

(σ2 + 2µk)
, nt
)))

.

Proof. For any x 6∈ Q (and in Ik), we have by definition of p̂x and since F (and
thus p) is cadlag

|p̂x − px| = lim
y∈Q,y>x,y→x

|p̂y − py|.

This above equality implies both

µk := E sup
x∈Ik

⋂
Q

|p̂x − px| = E sup
x∈Ik

|p̂x − px|,

and

P

(
sup
x∈Ik

|p̂x − px| > µk + t

)
= P

(
sup

x∈Ik
⋂

Q

|p̂x − px| > µk + t

)
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≤ exp

(
− 1

12

(
min

( nt2

(σ2 + 2µk)
, nt
)))

.

This concludes the proof.

In order to use Corollary 6.1, we want to bound µk, and the following result
proves the upper bound for µk.

Lemma 6.3. There exists a constant D1 that depends only on β1, on a lower
bound on τ and on an upper bound on C,C′, and that is such that

µk = E sup
x∈Ik

|p̂x − px| ≤ D1

√
e−kτ

n
.

Let k be such that δk > 0 and δk ≤ exp(−D2
1/12). By plugging the result of

Lemma 6.3 into Corollary 6.1, with t = 12(
√

e−kτ log(1/δk)
n + log(1/δk)

n ), we obtain

the inequality

P

(
sup
x∈Ik

|p̂x − px| > D2

(√
e−kτ log(1/δk)

n
+

log(1/δk)

n

))
≤ δk, (20)

where D2 = max(12, D1).
By multiplying by xτ (since on Ik, x

τ ≤ e(k+1)τ ) in the probability in (20),
we have

P

(
sup
x∈Ik

xτ |p̂x − px| > eD2

(√
ekτ log(1/δk)

n
+

ekτ log(1/δk)

n

))
≤ δk.

Let ∆ > 0. Set δk = ∆exp(− exp((K−k)τ))
E , where E =

∑K
k=1 exp(− exp((K −

k)τ)) < ∞ and depends on τ only (since it is a hypergeometric sum). Plugging
this δk in the last inequality yields

P
(
sup
x∈Ik

xτ |p̂x − px| > eD2

(√eKτ log(E/∆)

n
+

eKτ log(E/∆)

n

))

≤ ∆exp(− exp((K − k)τ))

E
,

which implies by definition of K and by denoting ζ := n
− β1

2β1+1
√
log(E/∆) +

n
− 2β1

2β1+1 log(E/∆)

P
(
sup
x∈Ik

xτ |p̂x − px| > 2eD2ζ
)
≤ ∆exp(− exp((K − k)τ))

E
.

By combining the last equation for all k = 1, . . . ,K, we obtain

P


 sup

x≤n
1

τ(2β1+1)

xτ |p̂x − px| > 2eD2ζ


 ≤ ∆.

This concludes the proof of Lemma 6.2.
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Proof of Lemma 6.3. Here we use the same notation for B,K, Ik used in the
proof of Lemma 6.2. Let k ≤ K. Consider the grid of points of Ik, that we write
χk := (x1, . . . , xi, . . . , xΥk−1), that are rationals, and that are such that p1 = ek

(or arbitrarily close rational to ek) and otherwise

pxi − pxi+1 = c/n,

(or arbitrarily close rationals that verify this) until we reach ek+1, and where c
is the smallest constant larger than 1 such that log(Υk) is an integer.

Step 1. We claim that for any x, y ∈ χ2
k such that x ≤ y, the tail probability

of p̂x − p̂y is upper bounded by an sub-exponential bound plus a sub-Gaussian

bound with a distance function d(x, y) =
√

px−py

n . That is, by denoting Ux,y =

p̂x − p̂y − (px − py),

P
(
|Ux,y| ≥ u

)
≤ 2 exp

(
− u

d(x, y)

)
+ 2 exp

(
−1

2

u2

d(x, y)2

)
.

Note that p̂x − p̂y = 1
n

∑n
i=1 1{x ≤ Xi ≤ y} is the average of Binomial

random variable with parameters (n, px − py) where px − py ≥ 1/n since x, y
are points of χk. Then, by Bernstein inequality,

P (|Ux,y| ≥ u) ≤ 2 exp

(
−1

2

nu2

(px − py) +
u
3

)

≤ 2 exp

(
−3

2
nu

)
+ 2 exp

(
−1

2

nu2

(px − py)

)
.

This implies (since px − py ≥ 1/n)

P (|Ux,y| ≥ u) ≤ 2 exp

(
−

√
nu√

px − py

)
+ 2 exp

(
−1

2

nu2

(px − py)

)
. (21)

Thus, the claim is proved.

Step 2. In this step, we bound the expectation of the supremum when x and
y can take possible m number of values xj and yj in χk, that is, E(supj≤m |p̂xj −
p̂yj − (pxj − pyj )|) such that px − py ≤ d2.

Equation (21) implies in particular that for (x, y) ∈ χ2
k, we can express Ux,y

as a sum of a sub-Gaussian random variable Ux,y plus a sub-exponential random
variable Vx,y, i.e. Ux,y = Ux,y + Vx,y and that are such that

‖Ux,y‖Ψ2 ≤ D3

√
px − py

n
, ‖Vx,y‖Ψ1 ≤ D4

√
px − py

n

where ‖ · ‖Ψ1 and ‖ · ‖Ψ2 are the Orlicz norms 1 and 2.
Consider m pairs (xj , yj) ∈ χ2

k such that px − py ≤ d2. By definition of the
Orlicz norms,

‖ sup
j≤m

|Uxj ,yj |‖Ψ2 ≤ D3Ψ
−1
2 (m)

√
px − py

n
≤ D3

√
2 log(m) + 1

√
d2

n
,
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and

‖ sup
j≤m

|Vxj ,yj |‖Ψ1 ≤ D4Ψ
−1
1 (m)

√
px − py

n
≤ D4(log(m) + 1)

√
d2

n
.

This implies that

P
(
sup
j≤m

|Uxj ,yj | ≥ u
)
≤ exp

(
−u2 n

2D2
3d

2(2 log(m) + 1)

)
,

and

P
(
sup
j≤m

|Vxj ,yj | ≥ u
)
≤ exp

(
−u

√
n

d2
1

D4(log(m) + 1)

)
.

These two equations give the following results, using EX =
∫∞
0 P(X ≥ u)du,

that

E
(
sup
j≤m

|Uxj ,yj |
)
≤
∫ ∞

0

exp

(
−u2 n

2D2
3d

2(2 log(m) + 1)

)
du

=

√
π

2

√
2D2

3d
2(2 log(m) + 1)

n
< 1.5

√
D2

3d
2(2 log(m) + 1)

n
,

and

E
(
sup
j≤m

|Vxj ,yj |
)
≤
∫ ∞

0

exp

(
−u

√
n

2d2
1

D4(log(m) + 1)

)
du

= D4(log(m) + 1)

√
2d2

n
< 1.5D4(log(m) + 1)

√
d2

n
.

Combining the above ideas, we have

E
(
sup
j≤m

|p̂xj − p̂yj − (pxj − pyj )|
)
≤ E

(
sup
j≤m

|Uxj,yj |
)
+ E

(
sup
j≤m

|Vxj ,yj |
)

≤ 3D4(2 log(m) + 1)

√
d2

n
. (22)

Step 3. Now, we bound E supx∈χk
|p̂x − px| using the results in Step 2 by a

chaining argument. For any 1 ≤ i ≤ log2(Υk), we define chaining set Ai by a
sequence of finite subsets

Ai = {x⌊jΥk/2i⌋, for j ∈ N, 0 < j < 2i}.

A1 contains only one element (e.g. if Υk/2 is an integer, A1 = {xΥk/2}), and the
cardinality of Ai is 2i. Note that Ai ⊆ χk, and the last set Alog2(Υk) becomes
{x1, . . . , xΥk−1} =: χk. Also by definition of these sets, for any point x ∈ χk,
there exists a chain (y1, . . . , yΥk

) such that yi ∈ Ai and

|pyi+1 − pyi | ≤
|pek − pek+1 |

2i+1
≤ (C + C′) exp(−kτ)2−i,
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and such that x = yΥk
. Note that given yi+1, there is only two choices of yi

which are possible (because of the previous equation). Let us write Bi+1 for such
possible pairs (i.e. that are at a distance less than |pek − pek+1 |/2i+1), and by
definition there are less than 2× 2i+1 such pairs.

By using the triangle inequality, |p̂x − px| ≤ |p̂y1 − py1 | +
∑

2≤i≤Υk
|p̂yi+1 −

p̂yi − (pyi+1 − pyi)|. It follows that by denoting Ui = p̂yi+1 − p̂yi − (pyi+1 − pyi),

E
[
sup
x∈χk

|p̂x − px|
]
≤ E sup

chain (y1,...,yΥk
)

(
|p̂y1 − py1 |+

∑

1≤i≤Υk

|Ui|
)

≤ E sup
y1∈A1

|p̂y1 − py1 |+
∑

1≤i≤Υk

E sup
(yi+1,yi)∈Bi+1

|Ui|.

Using Equation (22) on Bi+1 which contains at most 2× 2i+1 pairs satisfying
pyi+1 − pyi ≤ (C + C′) exp(−kτ)2−i, we get

E
[

sup
(yi+1,yi)∈Bi+1

|Ui|
]
≤ 3D4(2(i+ 2) + 1)

√
(C + C′) exp(−kτ)2−i

n

≤ 9D4

√
C + C′

√
exp(−kτ)

n
(i + 2)2−i/2.

Also since there is only one element in A1, we have

E sup
y1∈A1

|p̂y1 − py1 | ≤ E|p̂y1 − py1 | ≤
√
E(p̂y1 − py1)

2 ≤
√

(C + C′) exp(−kτ)

n
.

By plugging the above both equations in the chaining equation, we obtain

E sup
x∈χk

|p̂x − px| ≤
√

(C + C′) exp(−kτ)

n

+
∑

1≤i≤Υk

9D4

√
C + C′

√
exp(−kτ)

n
(i + 2)2−i/2

≤
√
C + C′

√
exp(−kτ)

n

(
1 + 9D4

∞∑

i=1

(i + 2)2−i/2

)

≤ D5

√
C + C′

√
exp(−kτ)

n
,

where D5 = (1 + 9D4

∑∞
i=1(i + 2)2−i/2) < ∞.

Step 4. In this final step, we extend the above inequality to any x ∈ Ik not
necessarily on the grid point.

Note that for any x ∈ Ik, there exist x, x̄ ∈ χ2
k such that x ≤ x ≤ x̄,

px̄ ≤ px ≤ px and p̂x̄ ≤ p̂x ≤ p̂x where px − px̄ = c/n. Then for any x ∈ Ik,

E|p̂x − px| ≤ E
(
(p̂x − px̄)1{p̂x ≥ px}+ (px − p̂x̄)1{p̂x ≤ px}

)



2094 A. Carpentier and A. K. H. Kim

≤ E|p̂x − px̄|+ E|px − p̂x̄|
≤ E|p̂x − px|+ E|px̄ − p̂x̄|+ 2E|px̄ − px|

≤ 2D5

√
C + C′

√
exp(−kτ)

n
+

2c

n

≤ 4D5

√
C + C′

√
exp(−kτ)

n
,

where the last inequality is followed since for k ≤ K, we know that exp(−kτ) ≥
exp(−Kτ) = n−1/(2β1+1) ≥ 1/n. This concludes the proof.

6.2. Proof of Theorem 3.2

Let X1, . . . , Xn be an i.i.d. random sample from a distribution F ∈ S1.
Let τ̂ be an estimator of τ such that for any τ ∈ I1, we have with probability

at least 1− η

|τ̂ − τ | ≤ n− β1
2β1+1 c1(η), (23)

where c1 is a function defined on (0, 1). For instance, Theorem 1 in (Cheng and
Peng, 2001) implies that with Hill estimator τ̂H , we can choose (asymptotically)
c1(η) as q1−η/2τ̂H , where q1−α/2 is such as P(|N (0, 1)| ≥ q1−α/2) = α (where N
is the standard Gaussian distribution). See also Theorem 3.6 and Remark 3.7
of Carpentier and Kim (2013) for another estimator for which c1(η) ∼

√
log(1/η)

is well defined with a finite n.
Also we define Ĉ as an estimator of C such that for any C ∈ I2, we have

with probability at least 1− η

|Ĉ − C| ≤ log(n)n− β1
2β1+1 c2(η), (24)

where c2 is a function defined on (0, 1).
For instance, we can define Ĉ as follows,

Ĉ = n
1

2β1+1 p̂B̂,

where

B̂ = n1/ϑ̂, ϑ̂ = (τ̂ + n− β1
2β1+1 c1(η))(2β1 + 1). (25)

From (23), for a sufficiently large n (such that 2 log(n)n− β1
2β1+1 c1(η)/τ ≤ 1/2,

for any τ ∈ I1)), we know with probability 1− η,

1

2
n

1
τ(2β1+1) ≤

(
1− 2 log(n)n− β1

2β1+1 c1(η)(
τ(2β1 + 1)

)
)
n

1
τ(2β1+1) ≤ B̂ ≤ n

1
τ(2β1+1) . (26)

To prove such c2(η) exists in (24), we first split Ĉ−C into the two summations,

Ĉ − C = n
1

2β1+1 p̂B̂ − C = n
1

2β1+1 (p̂B̂ − pB̂) + (n
1

2β1+1 pB̂ − C) =: (∗) + (∗∗).
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Then, using Lemma 6.2 and (26), with probability 1− 2η,

(∗) := n
1

2β1+1 (p̂B̂ − pB̂) ≤ 2Dn− β1
2β1+1 log(1/η).

The second term (∗∗) can be bounded by the definition of the second order
Pareto distributions,

(∗) = n
1

2β1+1 pB̂ − C ≤ n
1

2β1+1

(
CB̂−τ + C′B̂−τ(β1+1)

)
− C

= C
(
n

1
2β1+1 B̂−τ − 1

)
+ C′n

1
2β1+1 B̂−τ(β1+1)

≤ C
(
n

n
−

β1
2β1+1 2c1(η)/τ

2β1+1 − 1
)
+ C′n− β1

2β1+1n
n
−

β1
2β1+1 2c1(η)

τ(2β1+1) (27)

≤ 2(C + C′) log(n)
n− β1

2β1+1 c1(η)/τ

2β1 + 1
, (28)

for n large enough so that 2n− β1
2β1+1 c1(η)/τ ≤ 1/2, where the first term in (27)

is obtained with probability 1− η as follows,

n
1

2β1+1 B̂−τ ≤ n
1

2β1+1n

−τ(
τ+2n

−
β1

2β1+1 c1(η)

)
(2β1+1)

≤ n
1

2β1+1n− 1
2β1+1

(
1−n

−
β1

2β1+1 2c1(η)

τ

)
.

The second term in (27) is upper bounded similarly. Then (28) is followed by
the taylor expansion. Using the exact same ideas for the lower bound of Ĉ −C,
we have proved (24) with probability 1− η,

c2(η) = 2D log(3/η) + 2(C + C′)
c1(η/3)/τ

2β1 + 1
. (29)

Using large deviation results from (23) and Lemma 6.2, we can obtain with

probability at least 1− 2η, for any x ≤ n
1

τ(2β1+1) =: B,

|xτ̂ p̂x−xτ p̂x| = xτ p̂x|xτ̂−τ − 1| ≤ xτ p̂x|xn
−

β1
2β1+1 c1(η) − 1|

≤ 2xτ p̂x log(x)n
− β1

2β1+1 c1(η)

≤ 4

τ(2β1 + 1)
(C + C′ +D log(1/η)) log(n)n− β1

2β1+1 c1(η) =: (⋆). (30)

Large deviation property for τ̂ in (23) implies also that with probability at

least 1− η, for any x ≤ n
1

τ(2β+1) , we have

|C′x−τ̂β0 − C′x−τβ0 | ≤ C′x−τβ0 |x(τ−τ̂)β0 − 1|

≤ C′x−τβ0 |xn
−

β1
2β1+1 c1(η)β0 − 1|
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≤ C′x−τβ0 log(x)n− β1
2β1+1 c1(η)β0

≤ C′

τ(2β1 + 1)
log(n)n

− β1
2β1+1 c1(η)β0. (31)

Combining these equations (30), (31), and (24), with probabibility at least
1− 3η, we have

∣∣∣
(
|xτ̂ p̂x − Ĉ| − C′x−τ̂β0

)
−
(
|xτ p̂x − C| − C′x−τβ0

)∣∣∣

≤ (⋆) +
C′β0c1(η)

τ(2β1 + 1)
log(n)n− β1

2β1+1 + log(n)n− β1
2β1+1 c2(η)

≤ E(η) log(n)n
− β1

2β1+1 ,

where

E(η) =
4(C + C′D log(1/η))c1(η)

τ(2β1 + 1)
+

C′β0c1(η)

τ(2β1 + 1)
+ c2(η).

This implies, together with Lemma 6.2, that for any x ≤ n
1

τ(2β1+1) with proba-
bibility at least 1− 3η

∣∣∣
(
|xτ̂ p̂x − Ĉ| − C′x−τ̂β0

)
−
(
|xτpx − C| − C′x−τβ0

)∣∣∣

≤ (E(η) log(n) +D log(1/η))n− β1
2β1+1 . (32)

Based on these previous results, with τ̂ satisfying (23), Ĉ satisfying (24), and
B̂ as in (25), we propose the following test statistic

Tn = sup
x≤B̂

(
|xτ̂ p̂x − Ĉ| − C′x−τ̂β0

)
. (33)

The test is of the form (similar to the case in Theorem 3.1)

Ψn = 1{Tn ≥ ρn/2},

where

ρn ≥ max (2(E(η) log(n) +D log(1/η)), 2C′)n− β1
2β1+1 . (34)

Recall that H0 : F ∈ ⋃τ∈I1,C∈I2
S0(τ, C) and H1 : F ∈ ∪τ∈I1,C∈I2S̃1(τ, C, ρn).

Again, we reject the null if Ψn = 1, and vice versa.

Set ρn ≥ 2C′n− β1
2β1+1 . By Lemma 6.1, we know that

(i) F ∈ H0 implies supx(|xτpx − C| − C′x−τβ0) ≤ 0.
(ii) F ∈ H1 implies that sup

x≤n
1

τ(2β1+1)
(|xτpx − C| − C′x−τβ0) ≥ ρn.

This implies together with Equation (32) that with probabibility at least 1− 4η

(i) F ∈ H0 implies Tn ≤ sup
x≤n

1
τ(2β1+1)

(|xτ̂ p̂x − Ĉ| − C′x−τ̂β0) < ρn/2.

(ii) F ∈ H1 implies that Tn ≥ sup
x≤ 1

2n
1

τ(2β1+1)
(|xτ̂ p̂x− Ĉ|−C′x−τ̂β0) ≥ ρn/2.
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Using Equation (26), we have

sup
F∈H0

PFΨn + sup
F∈H1

(1−Ψn) ≤ 1− 9η.

This concludes the proof by setting α = 9η.

6.3. Proof of Theorem 3.3

Proof of [A.] We use the same η and test statistics Tn, and test Ψn from the
previous section.

Denote G(β) := c1(η)n
−β/(2β+1) where c1(η) is defined such that for a sample

from F ∈ Hi, we have |τ̂ − τ | ≤ c1(η)n
−βi/(2βi+1) (when i = 0 or i = 1). Now

we consider the confidence interval based on the test:

Cn = {τ ′ : |τ̂ − τ ′| ≤ G(β0)(1−Ψn) +G(β1)Ψn} ,
Note that β0 > β1 means G(β0) < G(β1), and recall that

Pn = {F : F ∈ H0 ∪H1} =
( ⋃

τ∈I1,C∈I2

S0(τ, C)
)⋃( ⋃

τ∈I1,C∈I2

S̃1(τ, C, ρn)
)
.

First, under the null,

sup
F∈⋃

τ>0,C>0 S0(τ,C)
⋂Pn

PF (|Cn| > G(β0)) ≤ sup
F∈⋃

τ∈I1,C∈I2
S0(τ,C)

PF (Ψn = 1)

≤ 4η =
4α

9

by definition of Cn.
Second, under the alternative,

sup
F∈⋃

τ>0,C>0 S(τ,β1,C,C′)
⋂Pn

PF (|Cn| > G(β1)) = 0.

The third condition in Definition of 2.2 is shown using the last calculation in
the proof of Theorem 2,

inf
F∈Pn

PF (τ ∈ Cn) ≥ min

(
inf

F∈H0

PF (τ ∈ Cn), inf
F∈H1

PF (τ ∈ Cn)

)

≥ min
(

inf
F∈H0

PF (τ̂ ∈ τ ±G(β0))PF (Ψn = 0),

inf
F∈H1

PF (τ̂ ∈ τ ±G(β1))PF (Ψn = 1)
)

≥ 1− 5η = 1− 5α

9
.

Thus, we have proved the existence of an adaptive and uniform confidence
interval for Pn (by checking the two conditions (5) and (6)).

Proof of [B.] The proof depends on the lower bound construction, which is
previously considered similarly in the papers (Drees, 2001; Novak, 2014; Car-
pentier and Kim, 2013).
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Let n ≥ 2. Let τ > 0, υ > 0, β0 > β1 > 0, and we define B = n
1

τ(2β1+1) ,

t = υB−τβ1 = υn
− β1

2β1+1 , τ0 = τ , and τ1 = τ − t = τ − n
− β1

2β1+1 . Then we
consider the Pareto with τ parameter as F0 such as 1 − F0(x) = x−τ , and for
F1 we perturb the tail larger than B so that it has heavier tail. That is, we let
1− F1(x) = x−τ1{1 ≤ x ≤ B}+B−tx−τ+t1{x > B}.

Note that F0 ∈ S0(τ, 1) ⊆ S0(τ1, B
−t) and F1 ∈ S̃1(τ1, B

−t, ρn). Let δ > 0.
Then it is known (as proved in Drees, 2001; Novak, 2014) that there exists no
δ−uniformly consistent test for distinguishing between F0 and F1 whenever n
is large enough, for small enough υ.

Now, we use a contradiction to prove our claim. Suppose 0 < α < 1/3 and
3α = δ. Assume that there exists an α-uniform and adaptive confidence interval
Cn for the first order parameter when Pn = {F0, F1}. Then we consider the test
Ψn such that

Ψn = 1− 1{τ ∈ Cn}1{|Cn| ≤ Dn− β0
2β0+1 }.

Then since Cn is uniform and adaptive, we have

EF0(Ψn) ≤ EF01{τ 6∈ Cn}+ EF01{|Cn| > Dn
− β0

2β0+1 }
≤ 2α.

Also we have

EF1(1−Ψn) ≤ EF11{τ ∈ Cn}1{|Cn| ≤ Dn
− β0

2β0+1 }
≤ EF11{τ ∈ Cn}
≤ α.

This implies that Ψn is 3α uniformly consistent for Pn = {F0, F1}. This con-
tradicts the fact that no δ−uniformly consistent test exists. This concludes the
proof.

6.4. Proof of the lower bound in Theorem 3.1 (Proof of [B.])

Here, we prove the lower bound by constructing two distributions F0 and F1

in the model with the specific ρn ∼ n−β1/(2β1+1) and by proving the distance
between Fn

0 and Fn
1 is close enough so that these two are not distinguishable as

n → ∞ (so that α-uniform consistent test does not exist).
Let τ, β1 > 0. Let F0 be the distribution such that for any x ≥ 1, we have

1− F0(x) = x−τ .

Note that F0 ∈ S(τ,∞, 1, 0).
Let υ > 0 be a small constant. Now, we construct another continuous dis-

tribution F1. Let B = n1/(τ(2β1+1)), t = υB−τβ1 = υn−β1/(2β1+1), and let
C′2 ≤ 2β1+1

(β1+1)2
1

3τ2 . Also we suppose that n is large enough such that t ≤
min(

√
3υτ

2
√
2β1+1

, τ
4 ). Then, consider B1 such that B < B1 = (1 + C̃)B where

C̃ > 0 (later it will be chosen as the smallest C̃ such that F1 is continuous).
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More precisely,

1− F1(x) = x−τ1{1 ≤ x ≤ B}+B−tx−τ+t1{B < x < B1} (35)

+ (x−τ + C′x−τ(1+β1))1{x ≥ B1}.

As we can see in the definition (35), F1 is defined to be slightly perturbed
distribution from F0 such that it is exactly Pareto with parameter τ on the
region x ≤ B, and it attains the upper bound for the second order Pareto tails
after B1, but in the middle region B ≤ x ≤ B1 it only satisfies exactly Pareto
with parameter τ − t.

Equivalently, we are testing the following two hypotheses,

H0 : F = F0 vs. H1 : F = F1,

and show that there does not exist uniform consistent test. Let β0 > β1. By
definition, F0 ∈ S(τ, β0, 1, C

′) (since it is exactly pareto).

Step 1. Checking that F1 ∈ S(τ, β1, 1, C
′). Clearly, we only need to check

the second order Pareto condition for the region {x : B < x < B1}; we need
to show that B−tx−τ+t ≤ x−τ + C′x−τ(1+β1), or, B−txt ≤ 1 + C′x−τβ1 for
{x : B < x < B1}. Trivially the inequality is true when x = B. Also, since the
LHS is an increasing function of x while the RHS is a decreasing function of x,
we verify the claim F1 ∈ S(τ, β1, 1, C

′) by choosing B1 = B + u such that

B−tBt
1 = 1 + C′B−τβ1

1 ⇔
(
1 +

u

B

)t
− 1 = C′(B + u)−τβ1. (36)

Step 2. Range of B1. For convenience, we let u =: C̃B (with C̃ > 0). Then
from (36),

(C̃ + 1)t = 1 + C′(C̃ + 1)−τβ1B−τβ1 = 1 + C′(C̃ + 1)−τβ1
t

υ
(37)

which gives the upper bound

log(C̃ + 1) ≤ 1

υ
C′(C̃ + 1)−τβ1 ≤ 1

υ
C′. (38)

Then, B1 = (1 + C̃)B ≤ exp(C′/υ)B.

Step 3. Checking that Separation condition is verified. First, we claim
that

‖xτ (1− F1(x))− 1‖∞ ≥ Mn
− β1

2β1+1 .

Indeed, since the constructed F1 is a continuous function, we just need to check
the kink point B1. Note that

B−τ
1 (1− F1(B1))− 1 = C′B−τβ1

1 = C′(C̃ + 1)−τβ1B−τβ1 ≥ C′e−
C′τβ1

υ
t

υ

where the last inequality is followed by definition of B and the upper bound

(38) for C̃. Thus ||x−τ (1− F1(x))− 1||∞ ≥ Mn−β1/(2β1+1) for M ≤ C′e−
C′τβ1

υ .



2100 A. Carpentier and A. K. H. Kim

This implies that there exists a point x0 such that

|xτ
0(1− F1(x0))− 1| ≥ (M/2)n− β1

2β1+1 .

Consider a function F ∈ S(τ, β0, 1, C
′). We know that this function is such that

|xτ
0(1− F (x0))− 1| ≤ C′n− β0

2β0+1 .

This implies in particular that

|xτ
0(1−F1(x0))−xτ

0(1−F (x0))| ≥ (M/2)n− β1
2β1+1 −C′n− β0

2β0+1 ≥ (M/4)n− β1
2β1+1 ,

for n large enough. This implies that ‖F1−S(τ, β1, 1, C
′)‖∞,τ ≥ (M/4)n− β1

2β1+1 ,

so F1 belongs to the separated set S̃1(τ, β1, C, C
′, ρn) with ρn = M/4n

− β1
2β1+1 .

Step 4. Computing the KL divergence. We define F̃1 such that 1 −
F̃1(x) = x−τ1{1 ≤ x ≤ B} + B−tx−τ+t1{x > B} with the same B =
n1/(τ(2β1+1)) and t = υB−τβ1 . From the same calculation in Carpentier and
Kim (2013, page 29), we know that,

KL(F0, F̃1) :=

∫
f0 log

f0

f̃1
≤ υ2

2τn
.

Then, from the fact that f̃1 6= f1 only for x ≥ B1, it suffices to show that
∫ ∞

B1

f0 log
f0
f1

≤
∫ ∞

B1

f0 log
f0

f̃1
, or

∫ ∞

B1

f0 log
f1

f̃1
≥ 0.

Note that
f1(x)

f̃1(x)
=

1 + C′(1 + β1)x
−τβ1

(1 − t
τ )B

−txt

which gives
∫ ∞

B1

f0 log
f1

f̃1
dx =

∫ ∞

B1

τx−τ−1 log

((B
x

)t τ

τ − t

)
dx

+

∫ ∞

B1

τx−τ−1 log
(
1 + C′(1 + β1)x

−τβ1
)
dx

=: (i) + (ii),

where

(i) = −t

∫ ∞

B1

τx−τ−1 log

(( x

B1

)(τ − t

τ

)1/t
)
dx− t

∫ ∞

B1

τx−τ−1 log

(
B1

B

)

= B−τ
1

(
log
( τ

τ − t

)
− t

τ

)
− tB−τ

1 log

(
B1

B

)
(39)

where the second eqaulity is followed by the same calculation as in the paper
by Carpentier and Kim (2013, page 29). Then we bound log(τ/(τ − t)) − t/τ



Uniform and adaptive confidence interval in the Pareto model 2101

below. Using log(1 + u) ≥ u − u2/2 for 0 < u < 1/2, since t/(τ − t) ≤ 1/2 by
t ≤ τ/4,

log
( τ

τ − t

)
− t

τ
≥ t

τ − t
− 1

2

(
t

τ − t

)2

− t

τ

=
t2

τ(τ − t)
− 1

2

(
t

τ − t

)2

=
t2

τ − t

(
1

τ
− 1

2(τ − t)

)
. (40)

Now we consider (ii). Note that x−τβ1 is decreasing in x ≥ B1 = (C̃ + 1)B.

Again, using log(1 + u) ≥ u − u2/2 for u ≤ 1/2, since C′(β1 + 1)B−τβ1

1 ≤
C′(β1 + 1)t/υ ≤ 1/2 by the upper bound assumption for t and C′,

(ii) :=

∫ ∞

B1

τx−τ−1 log
(
1 + C′(β1 + 1)x−τβ1

)
dx

≥ C′(β1 + 1)

∫ ∞

B1

τx−τ−1−τβ1dx− C′2(1 + β1)
2

2

∫ ∞

B1

τx−τ−1−2τβ1dx

= C′B−τ(β1+1)
1 − C′2(β1 + 1)2

(2β1 + 1)
B−τ−2τβ1

1

=: C′B−τ(β1+1)
1 −AB−τ−2τβ1

1 , (41)

by letting A := C′2(β1+1)2

(2β1+1) . Combining (39), (40), and (41), and using the equal-

ity log
(
B1

B

)
= log(1 + C̃)

∫ ∞

B1

f0 log
f1

f̃1
= (i) + (ii)

≥ B−τ
1

(
log
( τ

τ − t

)
− t

τ
− t log

(B1

B

)
+ C′B−τβ1

1 −AB−2τβ1

1

)

≥ B−τ
1 t2

(
1

τ − t

(
1

τ
− 1

2(τ − t)

)
−A(1 + C̃)−2τβ1

)
, (42)

where the final inequality is obtained by observing by the equality (37)

t log(C̃ + 1) = log

(
1 + C′(C̃ + 1)−τβ1

t

υ

)
≤ C′(C̃ + 1)−τβ1

t

υ
.

Then, using t ≤ τ/4 and (1 + C̃)−2τβ1 ≤ 1,

1

τ − t

(
1

τ
− 1

2(τ − t)

)
−A(1 + C̃)−2τβ1 ≥ 1

τ

1

3τ
− C′2(β1 + 1)2

(2β1 + 1)
≥ 0

by our assumption that C′2 ≤ 2β1+1
(β1+1)2

1
3τ2 .

Step 5. Conclusion. By using the result of the previous step, we have

KL(F0, F1) ≤ KL(F0, F̃1) :=

∫
f0 log

f0

f̃1
≤ υ2

2τn
.
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By definition of the KL divergence, we know

KL(Fn
0 , F

n
1 ) = nKL(F0, F1) ≤

υ2

2τ
.

This implies by Pinsker’s inequality that

max

(
|P0(Ψn = 0)− P1(Ψn = 0)|, |P0(Ψn = 1)− P1(Ψn = 1)|

)
≤
√

1

4τ
υ,

which in turn implies (using P0(Ψn = 0) = 1 − P0(Ψn = 1) and P1(Ψn = 1) =

1 − P1(Ψn = 0)) that we have P0(Ψn = 1) + P1(Ψn = 0) ≥ 1 −
√

1
4τ υ. This is

equivalent to

E0(Ψn) + E1(1−Ψn) ≥ 1−
√

1

4τ
υ,

which implies that there exists no uniformly consistent test between F0 and F1.
This concludes the proof.

6.5. Proof of Theorem 3.4

Let Mn := ⌊log(n)/ξ⌋, and we define Mn−1 number of tests indexed by i ranged
from 0 to Mn − 2 such that

H0(i) : F ∈ S(τ, βi, C, C
′) vs. H1(i) : F ∈ S̃(τ, βi+2, βi, C, C

′ρn(βi+2)),

where S̃(τ, βi+2, βi, C, C
′ρn(βi+2)) is defined in Equation (9).

Let α > 0 and we define the separation rate similarly to (34) but with
α/(9Mn) as below,

ρn(βi) = max {2(E(α/(9Mn)) log(n) +D log((9Mn)/α), 2C
′}n− βi

2βi+1 .

From the proof of Theorem 3.2 (on pages 29–32), we know that there exist
estimators of τ , C such that c1(η) ∼

√
log(1/η) and c2(η) ∼ log(1/η) thus we

have E(η) ∼ (log(1/η))3/2 uniformly over the class
⋃

τ∈I1,C∈I2
S(τ, b, C, C ′).

Then we can express ρn(βi) ∼ (log(9Mn/α))
3/2 log(n)n

− βi
2βi+1 .

Similar to the two points test, we define succesive tests for i = 0, . . . ,Mn − 2

Ψn(i) = 1{Tn(i) ≥
ρn(βi+2)

2

}
,

where

Tn(i) = sup
x≤B̂

(
|xτ̂ p̂x − Ĉ| − C′x−τ̂βi

)

B̂ = n1/ϑ̂(βi+2)
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ϑ̂(βi+2) =

(
τ̂ + n

− βi+2
2βi+2+1 c1(α/(9Mn))

)
(2βi+2 + 1).

By Theorem 3.2, we know that the ith test is (α/Mn)-uniformly consistent on
S(τ, βi, C, C

′)
⋃ S̃(τ, βi+2, βi, C, C

′ρn(βi+2)).
Let F ∈ Pn (for the Pn defined in Equation (10)), and let β∗ := β∗(F ) be the

associated index defined in (11). Let i∗ be the smallest index i (corresponding
to the largest βi) such that F is contained in S(τ, βi, C, C

′). That is, we have
βi∗ ≤ β∗ < βi∗−1 (and set by convention i∗ = 0 if β∗ > β0). If i

∗ 6= 0, this
implies that F ∈ S(τ, βi∗ , C, C

′) and F 6∈ S(τ, βi∗−1, C, C
′). For F ∈ Pn, either

(if i∗ = 0) F ∈ S(τ, B,C,C′) or (if i∗ 6= 0) there exists i ∈ {0, . . . ,Mn− 2} such
that F ∈ S̃(τ, βi+2, βi, C, C

′, ρn(βi+2)).
Now we define the estimator î for i∗ by choosing two plus the maximum index

(corresponding to the smallest β) which rejects the ith null hypothesis:

î = max
{
i ∈ {0, . . . ,Mn − 2} : Ψn(i) = 1

}
+ 2, (43)

and we set î = 0 by convention if the set {i ∈ {0, . . . ,Mn − 2} : Ψn(i) = 1} is
empty.

Case 1: i∗ 6= 0. Since, as mentioned above, we have F ∈ S(τ, βi∗ , C, C
′) and

F 6∈ S(τ, βi∗−1, C, C
′), we know that either we have

F ∈ S̃(τ, βi∗ , βi∗−2, C, C
′, ρn(βi∗−2)),

or
F ∈ S̃(τ, βi∗+1, βi∗−1, C, C

′, ρn(βi∗−1)).

This implies by Theorem 3.2 that either (i∗ − 2)th test or (i∗ − 1)th test is
4α

9Mn
-consistent. More precisely, with probability larger than 1 − 4α

9Mn
, either

Ψn(i
∗ − 2) = 1 or Ψn(i

∗ − 1) = 1.
Moreover, for any i ≥ i∗, we know that

F ∈ S(τ, βi, C, C
′).

This implies by Theorem 3.2 that for any Mn − 2 ≥ i ≥ i∗, ith test is 4α
9Mn

-
consistent. More presicely, for any Mn−2 ≥ i ≥ i∗, with probability larger than
1− 4α

9Mn
, Ψn(i) = 0 (see the proof of Theorem 3.2).

By an union bound and by the definition of î, with probability larger than
1− α, either î = i∗ or î = i∗ + 1.

Case 2: i∗ = 0. In this case, F ∈ S(τ, B,C,C ′). So for any i ≥ 0, we know
that

F ∈ S(τ, βi, C, C
′).

This implies by Theorem 3.2 that for any Mn − 2 ≥ i ≥ 0, test i is 4α
9Mn

-
consistent. More presicely, for any Mn−2 ≥ i ≥ i∗, with probability larger than
1 − 4α

9Mn
, we have Ψn(i) = 0. By an union bound and the definition of î, with

probability larger than 1− α, î = i∗ = 0.
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Conclusion. From the two previous cases, we deduce that with probability
larger than 1 − α, we have |̂i − i∗| ≤ 1. This implies in particular that with
probability larger than 1 − α, |βî − βi∗ | ≤ B−b

Mn
. Moreover, since we have |β∗ −

βi∗ | ≤ B−b
Mn

by definiton of i∗, together with the previous equation, we have that
with probability larger than 1− α,

|βî − β∗| ≤ 2
B − b

Mn
≤ 4

ξ(B − b)

log(n)
,

for n large enough so that log(n) ≥ 2ξ. The constants in the bound are inde-
pendent of F so the result holds uniformly over Pn.

6.6. Proof of Theorem 3.5

Let α > 0 and let us consider the estimate î of i∗ defined in (43).
Consider the estimator τ̂(βî+1) for τ (e.g. Hill’s estimator or adaptive estima-

tor as described before) using the sample fraction corresponding to βî+1. Then
we define the confidence interval

Cn =
{
τ ′ : |τ̂ (βî+1)− τ ′| ≤ G(βî+1)

}
,

where G(β) := c1(α/(12Mn))n
−β/(2β+1).

From the same argument in the previous Subsection 6.5, we know that |̂i −
i∗| ≤ 1 and |βî − β∗| ≤ 4 ξ(B−b)

log(n) with probability 1 − 3α/4. For notational

convenience, we write S(β) := ⋃τ∈I1,C∈I2
S(τ, β, C, C ′).

First, we show that the constructed confidence interval Cn is adaptive. By
definition of β∗, and using β∗(F ) < βi∗−1 = βi∗ + (B − b)/Mn, we have (with

notation ̺ := 12(B−b)ξ
(2b+1)2 )

sup
β∈[b,B]

sup
F∈S(β)∩Pn

PF (|Cn| > 2e̺G(β))

≤ sup
F∈Pn

PF (|Cn| > 2e̺G(β∗(F ))) ≤ sup
F∈Pn

PF (|Cn| > 2e̺G(βi∗−1))

≤ sup
F∈Pn

{
PF

(
|Cn| > 2e̺G

(
βî + 2

(B − b)

Mn

)
, |̂i− i∗| ≤ 1

)
+ PF (|̂i − i∗| > 1)

}

≤ sup
F∈Pn

{
PF

(
|Cn| > 2e̺G

(
βî+1 + 3

(B − b)

Mn

)
, |̂i− i∗| ≤ 1

)
+

3α

4

}

≤ sup
F∈Pn

{
PF

(
|Cn| > 2G(βî+1)

)
+

3α

4

}
≤ 3α

4
,

where the penultimate inequality follows by (for n large enough so that
log(n) ≥ 2ξ)

G
(
βî + 3 (B−b)

Mn

)

G(βî)
≥ n

− 6(B−b)

Mn(2β
î+1

+1)2 ≥ exp(−̺),

and the last inequality is obtained since |Cn| = 2G(βî+1) and |̂i − i∗| ≤ 1 with

probability 1− 3α
4 . Thus the confidence interval is adaptive.
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Then it suffices to prove that the confidence interval is uniform. By definition
of Cn and since |̂i− i∗| ≤ 1 with probability 1− 3α

4 ,

inf
F∈Pn

PF (τ ∈ Cn) = inf
F∈Pn

PF (|τ̂ (βî+1)− τ | ≤ G(βî+1))

≥ inf
F∈Pn

PF (|τ̂ (βî+1)− τ | ≤ G(βî+1), |̂i− i∗| ≤ 1)

= inf
F∈Pn

{
1− 3α

4
− PF

(
|τ̂ (βî+1)− τ | > G(βî+1), |̂i − i∗| ≤ 1

)}
= (∗)

Now, we consider three possible cases for î ∈ {i∗ − 1, i∗, i∗ + 1}, which gives

(∗) = inf
F∈Pn

{
1− 3α/4− PF

(
|τ̂ (βi∗)− τ | > G(βi∗)|̂i = i∗ − 1

)
PF (̂i = i∗ − 1)

− PF

(
|τ̂ (βi∗+1)− τ | > G(βi∗+1)|̂i = i∗

)
PF (̂i = i∗)

− PF

(
|τ̂ (βi∗+2)− τ | > G(βi∗+2)|̂i = i∗ + 1

)
PF (̂i = i∗ + 1)

}

≥ inf
F∈Pn

{
1− 3α/4

−
( ∑

j∈{−1,0,1}
PF

(
|τ̂ (βi∗−j)− τ | ≥ G(βi∗−j)

))
PF (|̂i− i∗| ≤ 1)

}

≥ 1− 3α

4
− 3
( α

12Mn

)(
1− 3α

4

)
≥ 1− α,

where the last inequality follows from the definition of c1(α/(12Mn)), that is,
c1(ǫ) is chosen such that |τ̂ (β) − τ | ≤ c1(ǫ)n

−β/(2β+1) with probability 1 − ǫ
(for F ∈ S(β)). This concludes the proof.

6.7. Proof of Lemma 3.1

Let F ∈ G, then for any x ≥ D, it verifies C1x
−τ(β+1) ≤ |1 − F (x) − Cx−τ | ≤

C′x−τ(β+1) by (13). Note that β∗(F ) = β ≤ B − 2 (B−b)
Mn

by definition of G.
Let i∗ be defined as in the paragraph above (43). By definition of i∗, we know

that βi∗ ≤ β < βi∗−1 = βi∗ + B−b
Mn

. Moreover, since β ≤ B − 2 (B−b)
Mn

, we know
that i∗ ≥ 2.

By definition, we know that F ∈ S(τ, βi∗ , C, C
′). Moreover, we have

‖F − S(τ, βi∗−2, C, C
′)‖τ,∞ = sup

F0∈S(τ,βi∗−2,C,C′)

sup
x

|xτF0(x)− xτF (x)|

≥ sup
F0∈S(τ,βi∗−2,C,C′)

sup
x≥D

(
|xτ (1 − F (x))− C| − |xτ (1− F0(x)) − C|

)

≥ sup
x≥D

(
|xτ (1 − F (x))− C| − sup

F0∈S(τ,βi∗−2,C,C′)

|xτ (1− F0(x)) − C|
)

≥ sup
x≥D

(
C1x

−τβ − C′x−τβi∗−2

)
= sup

x≥D

(
x−τβ

(
C1 − C′x−τ(βi∗−2−β)

))
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≥ sup
x≥D

(
x−τβ

(
C1 − C′x−τ(B−b)/Mn

))
, (44)

since β < βi∗ + B−b
Mn

and βi∗−2 − βi∗ > 0.
Now let us consider

x :=

(
n

(log(n)2 log log(n)3/2)
2β+1

β

) 1
τ(2β+1)

.

For n large enough, it is larger than D. The equation (44) implies that we have

‖F − S(τ, βi∗−2, C, C
′)‖τ,∞ ≥ log(n)2 log log(n)

3
2n− β

2β+1
(
C1 − C′x− τξ(B−b)

2 log(n)
)
.

Then we can upper bound x− τξ(B−b)
2 log(n) for n large enough such that log log(n)2 ≤

2 log(n),

x− τξ(B−b)
2 log(n) = e−

ξ(B−b)
2(2β+1)

(
(log(n))2(log log(n))

3
2

) ξ(B−b)
2β(log n)

≤ e−
ξ(B−b)
2(2β+1)

(
2

3
2 (log(n))3

) ξ(B−b)
2β(log n) ≤ 2e−

ξ(B−b)
2(2B+1) ,

where the last inequality follows by choosing n large enough so that

ξ(B − b)

2β log(n)
log
(
2

3
2 (log(n))3

)
≤ 1/2.

Also, we bound using βi∗ ≤ β < βi∗ + (B − b)/Mn,

n− β
2β+1 = n−1+ 1

2β+1 > n
−1+ 1

2(βi∗+(B−b)/Mn)+1 ≥ n
− βi∗

2βi∗+1 e−
ξ(B−b)
2(2β+1) .

Finally

‖F − S(τ, βi∗−2, C, C
′)‖τ,∞ ≥ log(n) log log(n)3/2n

− βi∗
2βi∗+1

× log(n)e−
ξ(B−b)
2(2β+1)

(
C1 − 2C′e−

ξ(B−b)
2(2B+1)

)

Since C1 − 2C′e−
ξ(B−b)
2(2B+1) is positive by assumption, log(n)(C1 −

2C′e−
ξ(B−b)
2(2B+1) ) diverges to infinity when n goes to infinity. This implies in par-

ticular that

log(n)−1 log log(n)−3/2n
βi∗

2βi∗+1 ‖F − S(τ, βi∗−2, C, C
′)‖τ,∞ → ∞,

and F ∈ S̃(τ, βi∗ , βi∗−2, C, C
′, ρn(βi∗)). This concludes the proof.

6.8. Proof of Lemma 4.1

Since F ∈ H, we have

1− F (x) = Cx−τ + C̃x−τ(1+β) + o(x−τ(1+β)).
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Let 0 ≤ u < t and k ∈ {aj , j ∈ N} be large compared to t. We have by definition

of F̃ followed by Taylor expansion,

1−F̃ (k + u) = 1− F (k) = Ck−τ + C̃k−τ(1+β) + o(k−τ(1+β))

= C(k + u)−τ (1 − u

k + u
)−τ + C̃(k + u)−τ(1+β) + o((k + u)−τ(1+β))

= C(k + u)−τ (1 +
uτ

k + u
) + o

(
(k + u)−τ(1+1/τ)

)
+ C̃(k + u)−τ(1+β)

+ o
(
(k + u)−τ(1+β)

)

= C(k + u)−τ + uτ(k + u)−τ(1+1/τ) + C̃(k + u)−τ(1+β)

+ o
(
(k + u)−τ(1+min(β,1/τ))

)
. (45)

This implies in particular that β∗(F̃ ) = min(β, 1/τ), and that

F̃ ∈ S(τ,min(β, 1/τ), C, C ′),

where C′ is a large enough constant.

Claim 1: F̃ 6∈ H if β > 1/τ . Assume that β > 1/τ . In this case, β∗(F̃ ) = 1/τ
Then by Equation (45)

1− F̃ (x) = Cx−τ + (x− k)τx−τ(1+β∗(F̃ )) + o(x−τ(1+β∗(F̃ ))),

where k is the largest element of {aj, j ∈ N} that is smaller than or equal to x.
Consider first the case where x = k ∈ {aj , j ∈ N}. Then u = 0, so

1− F̃ (x) = Cx−τ + o(x−τ(1+β∗(F̃ ))) = x−τ
(
C + o(x−τβ∗(F̃ ))

)
,

which shows that the second order term in (15) must be 0.
Consider now x = k + t/2 where k ∈ {aj , j ∈ N}. We have

1− F̃ (x) = Cx−τ +
tτ

2
x−τ(1+β∗(F̃ )) + o(x−τ(1+β∗(F̃ ))),

which shows that the second order term must be of the form (tτ/2)x−τ(1+β∗(F̃ )).
The two previous equations imply that F̃ cannot be in model (15) (and thus

also not in the model (14)).

Claim 2: F̃ ∈ Pn. Let b, B be such that β∗(F̃ ) = min(β, 1/τ) ∈ (b, B). Let
ǫ > 0. For x large enough, we have by Equation (45)

|1− F̃ (x) − Cx−τ−(x− k)τx−τ(1+1/τ) − C̃x−τ(1+β)
∣∣∣

≤ min(τt/4, |C̃|/2)x−τ(1+β∗(F̃ )). (46)

Let D be the constant such that for any x ≥ D, the above equation is satisfied.
Let i∗ be defined as in the paragraph above in (43), and n be large enough

so that i∗ ≥ 2 (which is possible since 1/τ ∈ (b, B)). We will prove F̃ ∈ Pn by
showing F̃ ∈ S̃(τ, βi∗ , βi∗−2, C, C

′, ρn(βi∗)) for n large enough.
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By definition, we know F̃ ∈ S(τ, βi∗ , C, C
′). As in the proof of Lemma 6.7,

we have for n large enough, by Equation (46)

‖F̃−S(τ, βi∗−2, 1, C
′)‖τ,∞ = sup

F0∈S(τ,βi∗−2,C,C′)

sup
x≥D

|xτF0(x)− xτ F̃ (x)|

≥ sup
F0∈S(τ,βi∗−2,C,C′)

sup
x≥D

(
|xτ (1 − F̃ (x)) − C| − |xτ (1− F0(x)) − C|

)

≥ sup
x≥D

(
min
|s|≤1

∣∣∣(x − k)τx−τ/τ + C̃x−τβ + smin(τt/4, |C̃|/2)x−τ min(β,1/τ)
∣∣∣

− sup
F0∈S(τ,βi∗−2,C,C′)

|xτ (1− F0(x)) − C|
)

≥ sup
x≥D, x∈{aj ,j∈N}+t/2

(
min(|C̃|/2, τt/4)x−τ(min(β,1/τ)) (47)

− sup
F0∈S(τ,βi∗−2,C,C′)

|xτ (1− F0(x)) − C|
)

≥ sup
x≥D, x∈{aj ,j∈N}+t/2

(
Cτx

−τβ∗(F̃ ) − C′x−τβi∗−2

)

= sup
x≥D, x∈{aj ,j∈N}+t/2

(
x−τβ∗(F̃ )

(
Cτ − C′x−τ(βi∗−2−β∗(F̃ ))

))

≥ sup
x≥D, x∈{aj ,j∈N}+t/2

(
x−τβ∗(F̃ )

(
Cτ − C′x−τ(B−b)/Mn

))
, (48)

where Equation (47) comes from the fact that for x ∈ {aj , j ∈ N}+ t/2, we have

1− F̃ (x) = Cx−τ +
t

2
τx−τ(1+1/τ) + C̃x−τ(1+β) + o(x−τ(1+min(β,1/τ))),

and where Cτ = min(|C̃|/2, τt/4), and (48) follows since β∗(F ) < βi∗ + B−b
Mn

and βi∗−2 − βi∗ > 0. By the same bounds as in § 6.7 on C′x−τ(B−b)/Mn (for a
constant ξ large enough), it follows

F ∈ S̃(τ, βi∗ , βi∗−2, C, C
′, ρn(βi∗)).

This concludes the proof by definition of Pn.
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