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Abstract: This paper concerns the relationship between the geometry of
the Inner Carotid Artery, as described by its centerline curvature and its
radius, and the location of the aneurysm for the AneuRisk65 data. Fisher
Rao curve registration is used to align the curvature of the artery, and
this alignment is then used to register both the curvature and the radius
profiles. Based on this alignment, interesting results are found regarding
the discrepancy between the arteries of patients with aneurysms at or after
the terminal bifurcation (upper group) and the arteries of subjects with
aneurysms before bifurcation, or without aneurysms (lower-no group).
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This is a discussion paper for analyzing the AneuRisk65 data found at http://
mox.polimi.it/it/progetti/aneurisk/. As Sangalli et al. (2014) details, these data
include the image reconstruction of the Inner Carotid Artery (ICA), described
in terms of the vessel’s centerline and its radius profile for many subjects. We
focus on the curvature profiles, defined pointwise as a function of the first and
the second derivatives of the vessel’s centerline, and on the radius profiles, com-
puted pointwise as the maximal inscribed sphere radius (MISR) in the vessel;
see Sangalli et al. (2009). The goal is to explore the relationship between the
geometry of the ICA – as depicted by the centerline curvature and its radius
profiles – and the location of the aneurysm. Specifically, we concentrate on the
discrepancy between arteries of patients with aneurysms at or after the termi-
nal bifurcation (upper group) and the arteries of patients with aneurysms before
bifurcation of the ICA or without aneurysms (lower-no group).
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Fig 1. Re-scaled functions of curvature (left) and MISR (right). Color represents the location
of the aneurysm (blue for upper group, red for lower-no group). The white curves indicate
mean functions.

1. Data objects

Object Oriented Data Analysis, introduced by Wang and Marron (2007), pro-
vides useful terminology for the study of the geometry of the artery, where data
objects are understood as the atoms of the statistical analysis.

An intuitive choice of data objects is the pair of curvature and MISR profiles,
estimated via multidimensional free-knot splines (see Sangalli et al. (2009) for
more information). These functions are defined on different domains, since the
ICA centerlines are of different lengths, and thus we mapped the domain of each
function linearly to [−1, 0], as a preliminary step of the analysis. Then a B-spline
interpolation is used to define these functions on a common fine grid of points
(with 100 basis functions and the smoothing parameter chosen via restricted
maximum likelihood, REML). The resulting functions of curvature and MISR
are shown in Figure 1. Further analyses are based on these rescaled functions.

The curvature and the MISR functions contain both the phase variation
and the amplitude variation. For the curvature functions, these two types of
variation are separated using the Fisher Rao curve registration method proposed
by Srivastava et al. (2011); they are captured by the resulting domain warping
functions and the aligned functions, respectively, shown in the first two panels
of Figure 2. This domain warping approach provides two types of data objects:
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Fig 2. Left: Aligned curvature functions from Fisher Rao curve registration. Middle: Domain
warping functions for aligning the curvature functions in Figure 1 (left). Right: Aligned MISR
functions obtained by applying these domain warping (middle) to the MISR functions in
Figure 1 (right). Color code is the same as that in Figure 1.



1916 A.-M. Staicu and X. Lu

warping functions for studying the phase variation, and aligned functions for
studying the amplitude variation; see Lu (2013) and Lu and Marron (2013)
for more discussion. Let hC,i be the warping functions for registration of the

curvature profiles and f̃C,i be the aligned curvatures. The MISR functions are
then aligned using the same domain warping functions, hC,i, for registering

the curvature functions; denote by f̃MISR,i the aligned MISR curves, shown in
Figure 2 (right). The following data objects are analyzed later in this paper:

(1) Aligned curvature functions, f̃C,i

(2) Aligned MISR functions, f̃MISR,i

(3) Domain warping functions for aligning curvature/MISR functions, hC,i.

2. Analysis of arteries geometry using amplitude variation

First we wish to gain insight into how the arteries vary, while accounting for the
location of the aneurysm; we consider the amplitude variation of the arteries
solely. The aligned MISR and curvature profiles are depicted in the leftmost
and rightmost plots of Figure 2 respectively, where the color reflects the group
membership: blue for the lower-no group and red for the upper group. For each
sample in part, the variation of the curves is assessed by assuming a model based
on group mean adjusted functional principal component analysis (FPCA); see
Jiang and Wang (2010). Specifically, if ci is a group indicator variable, with

ci =
′L′ for the lower-no group and ci =

′U ′ for the upper group, and f̃i(·) is
a generic random curve observed on I = [−1, 0] with group membership given

by ci, then we assume that f̃i(t) = µci(t) + ǫi(t). Here µci(·) is a smooth group
mean function, and ǫi(·) is a residual process, possibly perturbed by white noise,
which is independent of the group membership. To address the measurement
error aspect both the aligned curvature and MISR profiles are smoothed by
using B-spline basis; the model components are then estimated by using the
sample-based estimators.

Figure 3 displays the estimated mean profiles of the aligned curvatures and
MISR of the ICA for subjects in the lower-no group and upper group. On aver-
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Fig 3. Group mean profiles of the registered curvatures (left panel) and the registered MISR
(right panel). Overlayed are the corresponding group means before the registration procedure,
indicated by the dashed lines. Color code is the same as that in Figure 1.



Classification and curve registration 1917

Correlation curvature
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Fig 4. Correlation of the pooled covariance of the registered curvatures (leftmost panel) and
the registered MISR (middle). Right: density estimate of the aneurysm location along ICA.

age, the curvature of the ICA shows two main peaks (at around −0.5 and −0.3),
which have similar magnitudes in the upper group, but increasing magnitudes
for the lower-no group. The peaks correspond to the two siphon centers of the
ICA and indicate that the ICA for the upper group is less curved, especially in
the proximity of the first siphon center. Moreover the MISR graph shows that
the ICA tapers off as it gets closer to the bifurcation for both groups and that
the width of the ICA in the upper group is on average larger than its counterpart
in the lower-no group.

Next we turn to the random deviation from the group mean trajectory, for
both the curvatures and MISR, as depicted by the smooth signal captured by the
generic term ǫi(t). Instead of presenting the eigen-analysis of this deviation, we
focus on their correlation calculated from the pooled covariance, which provides
interesting information. Figure 4 shows the estimated correlation in absolute
value of the curvatures (left plot) and MISR (center) profiles. For the curva-
ture profiles, the correlation decays to zero relatively fast. On the other hand
the correlation of the MISR profiles is much stronger and furthermore seems
to indicate two separate clusters, where the separation is closely related to the
location of aneurysm. To see this, the right plot of Figure 4 shows the Gaus-
sian kernel estimate of the probability density of the location of the aneurysm,
indicating that most aneurysms are clustered into two groups.

Interestingly these results corroborate the previous findings published in San-
galli et al. (2009), which are obtained using the last 3cm of the ICA; in contrast
our analysis is based on the full available data. The two approaches rely on
different registration methods, used in the first step of the analysis.

3. Classification of aneurysms using joint analysis of amplitude and

phase variation

Now, we consider the arteries, or in fact their shape, as predictors, and we wish
to classify them according to the location of the aneurysms. In this attempt we
focus on the variability of the arteries, which is assessed through the amplitude
and phase variation jointly for the curvature curves and only the amplitude vari-
ation for the MISR curves. To reduce the large dimensionality of the predictors,
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Fig 5. Left: Overall L1ER for various truncation values for the number of scores for MISR,
KMISR and curvatures, KC . Right: Predicted probabilities of a subject with upper aneurysm
using the optimal truncation values KMISR = 5, KC = 6.

FPCA is employed (Ramsay and Silverman (2005), Crainiceanu et al. (2009),
etc). We briefly describe the procedure for the MISR curves.

Let f̃MISR,i be the aligned MISR curves, and denote by µ̂MISR(·) and by

Σ̂MISR(·, ·) the estimated mean and covariance function respectively. Further-

more, denote by φ̂MISR,k(·) and λ̂MISR,k the kth eigenfunctions and the kth

eigenvalue respectively of Σ̂MISR(·, ·). The MISR profile can be summarized by

the set of scores (ξ̂MISR,i1, ξ̂MISR,i2, . . .) where the scalar generic score ξ̂MISR,ik

gives the variation about the kth eigenfunction of the de-trended data and is
estimated as

ξ̂MISR,ik = 〈f̃MISR,i − µ̂MISR, φ̂MISR,k〉; (1)

here the inner product is defined as 〈f1, f2〉 :=
∫
f1f2.

The bivariate FPCA of the curvature curves uses a modified inner product
to account for different variability between the registered curvature functions,
and those of the warping functions (Ramsay and Silverman (2005)). Specifi-

cally, if (hC,i, f̃C,i)
T is the two-dimensional vector comprising the domain warp-

ing functions and the aligned curvatures, then the inner product for two pairs
(hC,i, f̃C,i)

T and (hC,j , f̃C,j)
T is defined as

∫
hC,ihC,j + κ

∫
f̃C,if̃C,j . Here κ is

some appropriately chosen constant; we selected κ as the ratio between the
overall variability of the warping functions and that of the aligned curvatures.
Let (ζ̂C,i1, ζ̂C,i2, . . .) be the set of estimated scores summarizing the phase and
amplitude variation of the curvatures. The R package refund (Crainiceanu et al.
(2011)) is used to fit both the bivariate FPCA and the univariate FPCA. Like
Sangalli et al. (2009), we too find different distributions of the scores corre-
sponding to the subjects in the two groups (lower-no/upper).

Thus the two sets of scores, ξMISR,ik and ζC,iℓ summarize the vessel geom-
etry of the arteries; we use them to study the relationship with the location
of the aneurysm. Regularized discriminant analysis (Friedman (1989)) is used
for this purpose. The truncated number of scores for both the radius, KMISR

and curvature profiles, KC is determined according to the leave-one-out error
rate (L1ER) criterion. In particular, we find that the choice KMISR = 5 and
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KC = 6 optimizes this criterion, with the optimal value equal to 13.8%. As
Figure 5 illustrates, these truncation estimates yield an excellent classification
performance for the subjects with upper aneurysms and 25% misclassification
rate for subjects in the lower-no group. These findings improve the prediction
results reported in Sangalli et al. (2009).

Overall our analysis, using a two-step procedure with a different registration
method (at the first step) and analysis based on the entire observed data (at the
second step) provides results that replicate the findings of Sangalli et al. (2009).
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