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Abstract: Lévy-Driven Ornstein-Uhlenbeck (or CAR(1)) processes were
introduced by Barndorff-Nielsen and Shephard [1] as a model for stochas-
tic volatility. Pham [17] developed a general formula to recover the un-
observed driving process from the continuously observed CAR(1) process.
When the CAR(1) process is observed at discrete times 0, h, 2h, · · · [T/h]h
the driving process must be approximated. Approximated increments of the
driving process are used to test the assumption that the CAR(1) process
is Lévy-driven. Asymptotic behavior of the test statistic is investigated.
Performance of the test is illustrated through simulation.
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pled process, model verification, test statistics, sample correlation.

Received October 2013.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
1.1 Future work and open problems . . . . . . . . . . . . . . . . . . 1032

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032
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1. Introduction

Univariate continuous-time autoregressive moving average (CARMA) processes
are the continuous time analogue of the widely employed discrete-time ARMA
process. CARMA(p, q) processes are the solutions of linear stochastic differential
equations of the form

DPY (t)+a1D
p−1Y (t)+ · · ·+aPY (t) = b0DL(t)+b1D

2L(t)+ · · ·+bqDq+1L(t).

They were introduced in [11] in a Gaussian setting and generalized in [3] to
include Lévy driving processes. Further extensions include multivariate CARMA
or fractionally integrated CARMA models (see e.g. [15] and [7]).

As evidenced above, the probabilistic properties of CARMA processes have
received considerable attention. However, there has been little development in
statistical inference for such models. This paper takes one of the first steps in
this direction, and complements recent work by Brockwell and Schlemm [8].
As mentioned in [8], if one decides to model a continuous time process using
the CARMA framework, three main problems arise: a) the choice of the or-
ders p and q; b) estimation of the model coefficients ai and bj ; c) choosing an
appropriate model for the Lévy driving process.

Most papers in the extant literature that deal with CARMA models assume
that their order is known, and indeed in this paper we will focus on the CAR(1)
model driven by a second order Lévy process. In particular, there are several
papers that discuss estimation of the coefficients, especially for CAR(1) models;
see e.g. [18] and the references therein. In [10], it is the asymptotic behaviour of
the sample mean and covariances of the process Y that is of interest. Assuming
that the driving process is fractional Lévy, these results can be applied to esti-
mating the Hurst parameter of L. Jongbloed et al. [14] consider the Lévy-driven
CAR(1) model in a semi-parametric framework. In [14], the goal is estimation of
the marginal distribution function of Y (0) and the density of the Lévy measure;
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the method utilizes the Markovian structure of the CAR(1) process and its mix-
ing properties. In [8] the authors address the third issue, namely estimation of
the parameters of a specified family of Lévy processes, assuming that the order
and coefficients of the model are known. In each of the preceding references, it is
assumed that the continuous time process Y is observed only at discrete times,
which is the usual situation in applications.

However, before one selects a parametric family of Lévy processes (i.e., (c))
and/or estimates the model coefficients (i.e., (b)), one should verify whether it
is reasonable to assume that the driving process is Lévy. From the point of view
of exploratory data analysis, the first step would be to plot the sample covari-
ances of the driving process L at various lags. This procedure assumes a priori
that the underlying driving process has a finite second moment. However, the
driving process is unobservable and cannot be directly recovered if the observed
CARMA process Y is sampled at discrete times. Thus, as in [8], the driving pro-
cess can only be estimated and inference must be performed with noisy data.
Hence, in this paper our main goal is to perform statistical inference on the
sample covariances of the (approximately) recovered driving process, assuming
that the second moment is finite.

To be precise, in this paper we focus on the second-order CAR(1) model only,
that is we study the unique solution Y of the stochastic differential equation

dY (t) = −aY (t)dt+ σdL(t).

We go beyond exploratory data analysis by providing a formal test of the hy-
pothesis that the driving process L has uncorrelated increments, based on a
discrete sample from the process Y . En route, we prove several results of inde-
pendent interest, including finding a precise bound on the approximation error of
the unit increments of the recovered process, as well as providing an elementary
proof of a central limit theorem for the integrated CAR(1) process.

We proceed as follows. To perform statistical analysis on the unobserved
driving process, in Section 2 we first use the inversion formula of Pham [17], that
represents the unobserved driving process in terms of the continuously observed
CAR(1) process. The same strategy was employed in [6] and in a multivariate
setting in [8], Theorem 4.3. Since the CAR(1) process is observed at discrete
times, as noted above the driving process cannot be recovered exactly and a
trapezoidal approximation is used to replace an unobservable integral.

In Section 3, we are able to provide a uniform bound on the approximation
error in the unit increments of the recovered driving process (see Lemmas 3.8 and
3.10 as well as Theorem 3.4). Our Lemma 3.8 can be compared to Theorem 5.7
in [8]. Although the result in the latter paper holds for more general multivariate
CARMA models, our bound is more precise and is uniform with respect to N ,
the length of time that the process is observed. As a consequence, we can derive
central limit theorems for partial sums and sample covariances (see Theorem
3.4 together with Corollary 3.6, and Theorem 3.14).

We note in passing that a different strategy to recover the unobserved driving
process was employed in [12]. Without assuming any particular values of p and
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q for the general CARMA model, increments of the Lévy driving process are
estimated via renormalized recovered noise from the Wold representation of the
sampled CARMA sequence. The recovered process is shown to be L2-consistent
under the assumption that the CARMA process is invertible.

In Section 4, as an important by-product, we prove a central limit theorem
for the integrated CAR(1) process. The significance of this result is that the
proof is quite elementary and does not require any mixing arguments.

We return to the problem of verifying the assumption that the driving pro-
cess is Lévy in Section 5. We propose an appropriate test statistic to test the
hypothesis that the driving process has uncorrelated increments and prove that
it is asymptotically N(0, 1) under the null hypothesis. Several simulation studies
illustrate the behaviour of the statistic under both the hypothesis and alterna-
tive.

1.1. Future work and open problems

There are a number of issues that go beyond the scope of this paper. First, in
future work, we will extend our results to functionals acting on the recovered
increments. Such results are needed to establish limit theorems for empirical
processes or nonparametric density estimators. These in turn are tools to carry
out more precise tests of goodness-of-fit once it has been concluded that the
driving process is Lévy – for example, to test whether the driving process can
be modelled as a gamma process. This approach should be contrasted with that
taken by Jacod and Protter in [13], where the functional acts on increments of
the observed process Y .

Next, our results rely on the assumption that the parameter a is known.
(Without loss of generality, the parameter σ can be assumed to be one since it
can be incorporated into a reparametrization of the Lévy noise.) It is natural to
ask if our results are valid if we replace a with an estimator. This is currently
under investigation.

Another question that arises is whether our results can be extended to general
CARMA(p, q) or at least CARMA(p, 1) models. A close inspection of our proofs
show that they rely on the inversion formula and the second order properties
of Y . Hence, our results should be extendable, but this will require a detailed
analysis.

Last, but not least, it would be desirable to extend some of our results to
CAR(1) models driven by a stable Lévy process. Clearly, the techniques devel-
oped here are not appropriate since they rely on an L2 approximation of the
noise L using the observed process Y .

2. Preliminaries

2.1. Lévy processes

Suppose we are given a stochastic base (Ω,F , (F t)0≤t≤∞, P ), where F0 contains
all the P -null sets of F and (F t) is right-continuous.
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Definition 2.1 (Lévy process). A process L = {L(t), t ≥ 0} is called a Lévy
process if it is (F t)-adapted (i.e., L(t) ∈ F t ∀ t ≥ 0) and

• L(0) = 0 a.s.
• L has independent increments, i.e., L(t)− L(s) is independent of Fs, for
any 0 ≤ s < t <∞.

• L has stationary increments, i.e., L(t+s)−L(s) has the same distribution
as L(t), for any s, t > 0.

• L is stochastically continuous, i.e. ∀ ǫ > 0 and ∀ 0 ≤ s < t <∞,

lim
s→t

P (|L(t)− L(s)| > ǫ) = 0.

• L has càdlàg (right continuous with left limits) sample paths.

Definition 2.2 (Second-Order Lévy Process). We define L to be a second-
order Lévy process if L is a Lévy process and E[L2(1)] <∞. If µ = E[L(1)] and
η2 = Var[L(1)], then by the independence and stationarity of the increments of
L(t) we have

E [L(t)] = µt, t ≥ 0,

Var (L(t)) = η2t, t ≥ 0. (2.1)

Examples of second-order Lévy processes include Brownian motion with drift,
the Poisson process, and the gamma process, characterized by

L(1) ∼ Γ(α, β) = Γ

(
µ2

η2
,
η2

µ

)
.

2.2. Lévy-driven CAR(1) models

In what follows, we assume that the process L is càdlàg with stationary incre-
ments.

Definition 2.3 (CAR(1) process). A CAR(1) process Y = {Y (t), t ≥ 0} driven
by the process L = {L(t), t ≥ 0} is defined to be the solution of the stochastic
differential equation

dY (t) = −aY (t)dt+ σdL(t), (2.2)

where a, σ ∈ R+ and Y (0) is independent of {L(t), t ≥ 0}. We call the process
L the driving process, and if L is a Lévy process then Y is called a Lévy-driven
CAR(1) process.

The unique solution (c.f. [16], Section 17) for equation (2.2) can be written
as

Y (t) = e−atY (0) + σ

∫ t

0

e−a(t−u)dL(u), t ≥ 0.
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The function f(u) = e−a(t−u) is deterministic and continuously differentiable.
Using an integration by parts formula we can define the CAR(1) process path-
wise as:

Y (t) = e−atY (0) + σL(t)− aσ

∫ t

0

e−a(t−u)L(u)du, t ≥ 0. (2.3)

The process Y is strictly stationary if L is a second-order Lévy process, a > 0,
and Y (0) is independent of L and is equal in distribution to σ

∫∞
0 e−audL(u).

Lemma 2.4 ([1]). Let Y be a strictly stationary CAR(1) process driven by a
second-order Lévy process L such that (2.1) holds. Then for s ≥ 0,

E [Y (0)] =
µσ

a
, γY (s) ≡ Cov(Y (0), Y (s)) =

σ2η2

2a
e−as. (2.4)

2.3. The sampled process

In practice, continuous time processes are usually sampled at discrete times.
In what follows, we will use the notation Y (t) when the time parameter t is
continuous, and Yt when the time parameter t is discrete.

Here we assume that the CAR(1) process is observed at equally spaced inter-
vals of length h. To be precise, let Y be a strictly stationary CAR(1) process.
For 0 ≤ s < t we have:

Y (t) = e−a(t−s)Y (s) + σ

∫ t

s

e−a(t−u)dL(u).

For h > 0 and n ∈ Z+ choose t = nh and s = (n − 1)h. Define Y
(h)
n ≡ Y (nh).

Then

Y (h)
n = e−ahY

(h)
n−1 + σ

∫ nh

(n−1)h

e−a(nh−u)dL(u).

The sampled process {Y (h)
n , n = 0, 1, 2, . . .} can be written as:

Y (h)
n = φY

(h)
n−1 + Z(h)

n , n = 0, 1, 2, . . . , (2.5)

where

φ = e−ah and Z(h)
n = σ

∫ nh

(n−1)h

e−a(nh−u)dL(u). (2.6)

Now assume that L is a Lévy process. Since L has stationary and indepen-

dent increments, {Z(h)
n , n ≥ 1} is an iid sequence. Hence, the sampled process

{Y (h)
n , n = 0, 1, 2, . . .} is a discrete-time AR(1) process. If L is a second-order

Lévy process then we can represent the noise Z
(h)
n as

Z(h)
n = Y (h)

n − φY
(h)
n−1.
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Consequently, using Lemma 2.4 and stationarity of the process Y we have

E

[
Z(h)
n

]
= E

[
Y (h)
n

]
− φE

[
Y

(h)
n−1

]
=
µσ

a
(1− φ). (2.7)

Similarly we can use E[Y 2
0 ] to compute E[(Z

(h)
n )2] as follows:

E

[(
Z(h)
n

)2]
= E

[(
Y (h)
n − φY

(h)
n−1

)2]
= (1 + φ2)E

[
Y 2
0

]
− 2φE [Y0Yh]

=
(
1− φ2

) σ2η2

2a
+ (1− φ)

2 µ
2σ2

a2
.

Hence,

Var
(
Z(h)
n

)
=

(
1− φ2

) σ2η2

2a
. (2.8)

2.4. Recovering the driving process

If the CAR(1) process Y is continuously observed on [0, T ] then the following
result from [17] (see also cf. [5]) provides an inversion formula that represents
L in terms of Y .

Theorem 2.5 (Inversion Formula). Let Y be a CAR(1) process. Then

L(t) = σ−1

[
Y (t)− Y (0) + a

∫ t

0

Y (s)ds

]
. (2.9)

Note that Theorem 2.5 does not require the assumption that L is Lévy.

2.5. Approximation of increments using the inversion formula

When the CAR(1) process Y is sampled discretely, the driving process L cannot
be recovered exactly via the inversion formula (2.9). Instead, it is necessary to
approximate the increments of L over the sampling intervals. Using the inversion
formula (2.9), the increment of L over the interval ((n − 1)h, nh], h > 0, n =
1, . . . , N , is:

∆L(h)
n = L(nh)−L((n−1)h) = σ−1

[
Y (h)
n − Y

(h)
n−1 + a

∫ nh

(n−1)h

Y (u)du

]
. (2.10)

The above increment requires the continuously observed process Y . If the
process is observed at discrete times nh, then in [5] the authors replace the
integral by a trapezoidal approximation:

∆L̂(h)
n := σ−1

[
Y (h)
n − Y

(h)
n−1 + ah

Y
(h)
n + Y

(h)
n−1

2

]
, n = 1, 2, . . . , N. (2.11)

We will refer to the above equation as the estimated increments. They have the
following properties.
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Proposition 2.6. Let Y be a strictly stationary CAR(1) process driven by a
second-order Lévy process L, E[L(t)] = µt, Var(L(t)) = η2t. Then,

(i) E[∆L̂
(h)
n ] = E[∆L

(h)
n ] = µh;

(ii) Recall that φ = e−ah. For each s ≥ 0,

γ∆L̂(h)(s) ≡ Cov
(
∆L̂

(h)
1 ,∆L̂

(h)
s+1

)

=

(
η2

a
+
aη2h2

4

)
φs +

(
aη2h2

8
− η2

2a

)(
φs−1 + φs+1

)
.

(iii) For each s ≥ 0,

ρ∆L̂(h)(s) ≡ Corr
(
∆L̂

(h)
1 ,∆L̂

(h)
s+1

)

=

(
η2

a + aη2h2

4

)
φs +

(
aη2h2

8 − η2

2a

) (
φs−1 + φs+1

)
(

η2

a + aη2h2

4

)
+
(

aη2h2

8 − η2

2a

)(
1
φ + φ

) .

The proof is given in the Appendix, Section A.1. We make several comments:

• We note that although L has independent increments, the non-zero co-
variance in (ii) appears due to the discretization error introduced by the
trapezoidal approximation.

• limn→∞ Cov(∆L̂
(h)
1 ,∆L̂

(h)
n ) = 0, for fixed h.

• For each s ≥ 0 we have limh→0 Cov(∆L̂
(h)
1 ,∆L̂

(h)
s+1) =

η2

a − η2

2a − η2

2a = 0.
Hence, as expected the discretization error disappears when h→ 0. How-
ever, the rate of convergence to zero is the same for the covariances
(s > 0) and the variance (s = 0). For this reason, it does not seem pos-
sible to test for 0 correlations of the increments of L using estimates of

Cov(∆L̂
(h)
1 ,∆L̂

(h)
s+1) as h → 0. An alternative approach is discussed in

Section 3.2.2.

3. Asymptotics for the sampled process

In this section, we consider the asymptotic properties of the sample character-
istics of the recovered driving process. We can write the estimated increments
(cf. (2.11)) as:

∆L̂(h)
n =

(
1

σ
+
ah

2σ

)
Y (h)
n +

(
ah

2σ
− 1

σ

)
Y

(h)
n−1, n ≥ 1. (3.1)

3.1. Discrete approximation of the driving process

Since L(Nh) =
∑N

n=1 ∆L
(h)
n , the estimated value L̂(h)(Nh) of L(Nh) from the

discretely observed process Y
(h)
n can be written as a partial sum:

L̂(h)(Nh) ≡
N∑

n=1

∆L̂(h)
n =

1

σ

N∑

n=1

[
Y (h)
n − Y

(h)
n−1 + ah

Y
(h)
n + Y

(h)
n−1

2

]
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=
ah

σ

N∑

n=1

Y (h)
n +

(
1

σ
− ah

2σ

)(
Y

(h)
N − Y

(h)
0

)
. (3.2)

3.2. Sample mean and covariances

We define ∆L̂(h), the sample mean of the estimated increments ∆L̂
(h)
n , n =

1, . . . , N , as

∆L̂(h) ≡ 1

N

N∑

n=1

∆L̂(h)
n =

L̂(h)(Nh)

N
,

and γ̂∆L̂(h)(k), the sample covariances of ∆L̂
(h)
n , n = 1, 2, . . . , N , at lag k ≥ 0,

as

γ̂∆L̂(h)(k) =
1

N − k

N−k∑

n=1

(
∆L̂

(h)
n+k −∆L̂(h)

)(
∆L̂(h)

n −∆L̂(h)
)
, 0 ≤ k ≤ N.

(3.3)
Furthermore, let ρ̂∆L̂(h)(k), k = 0, . . . , N , be the sample correlations of the
estimated increments.

Three discretization scenarios We will consider three discrete sampling
scenarios when investigating the asymptotic behaviour of the sample mean

∆L̂(h) and sample covariances γ̂∆L̂(h)(k). Assume that Y is observed at times
0, h, 2h, · · · [T/h]h on the interval [0, T ].

• Case (I): h is fixed, T = Nh, and N → ∞.
• Case (II): T = N remains constant, h = 1

M , and M → ∞.
• Case (III): T = N , h = 1

M , and N ∧M → ∞.

Case (I): h is fixed, T = Nh, and N → ∞ As we noticed in Proposition
2.6, the discretization with a fixed frequency h introduces an error leading to
estimated increments with non-zero covariance. Nevertheless, one can still obtain
some relevant limiting results that can be used for estimation of the model
parameters.

We recall from equation (2.5) that the sampled process Y (nh) can be viewed
as a discrete-time AR(1) process. This fact will be exploited to provide simple,
direct proofs of both Propositions 3.1 and 3.3 following; the proofs may be
found in Appendix A.2.1 and A.2.2, respectively. Alternatively, observing that
our model is a special case of that of Cohen and Lindner [10], their Theorems 2.1
and 3.5 for the sample mean and covariances of the discretely sampled process
Y could also be applied here.

Proposition 3.1. Consider a strictly stationary Lévy-driven CAR(1) process Y .
Then

(i) ∆L̂(h) p−→ ah
σ E[Y (0)] = µh as N → ∞;

(ii)
√
N(∆L̂(h) − µh)

d−→ N(0, ah
2η2

2
1+φ
1−φ ), φ = e−ah, as N → ∞.
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Remark 3.2. We indicate how this result can be used in statistical inference.
When h > 0 is known, the central limit theorem for the sample mean allows
us to construct confidence intervals for µ based on the recovered Lévy process.
Nuisance parameters η, a appear only in the variance of the limiting normal
distribution and in principle bootstrapping avoids the need to estimate these
parameters. On the other hand, if one attempts to construct a confidence interval
for µ based on the process Y , then Lemma 2.4 indicates a non-identifiability
issue.

We state a result for the sample covariances as well. However, from an ap-
plied point of view this result is not particularly useful, since the theoretical
covariances of the estimated increments do not vanish due to the discretization
error.

Proposition 3.3. Consider a strictly stationary Lévy-driven CAR(1) process Y .
Let γ̂∆L̂(h)(k) and ρ̂∆L̂(h)(k), k = 0, . . . , N , be the sample covariances and the

sample correlations, respectively, of ∆L̂
(h)
n . Then

(i) γ̂∆L̂(h)(k)
p−→ γ∆L̂(h)(k) as N → ∞;

(ii)
√
N(ρ̂∆L̂(h)(k)− ρ∆L̂(h)(k))

d−→ N(0,W 2
k ) as N → ∞, where

W 2
k =

∞∑

j=1

(
ρ∆L̂(h)(j + k) + ρ∆L̂(h)(j − k)− 2ρ∆L̂(h)(k)ρ∆L̂(h)(j)

)2
.

Case (II) and Case (III): h = 1/M , and M → ∞ We start with some
notation that will be used in Case (II) and (III). Here, we assume that h =
1/M . As in equation (3.2) we consider

L̂
(M)
N ≡ L̂(1/M)

(
NM

1

M

)
=

NM∑

n=1

∆L̂(1/M)
n . (3.4)

Note that L̂
(M)
N has a different meaning than L̂

(h)
N in (3.2). Indeed, in (3.2) we

computed the sum of N observations taken at time points h, 2h, . . . , Nh. In

other words, L̂
(h)
N approximates the Lévy process at time point Nh. Here, we

have N ×M observations sampled at 1/M, 2/M, . . . , N . In other words, L̂
(M)
N

approximates L(N). As in (3.2), we will represent L̂
(M)
N in terms of the sampled

process Y . Clearly, Y
(1/M)
n = Y n

M
. Hence,

L̂
(M)
N =

a

Mσ

NM∑

n=1

Y n

M
+

(
1

σ
− a

2Mσ

)
(YN − Y0) . (3.5)

Convergence of partial sums In case (I) we analyze the behaviour of the

partial sum L̂(h)(Nh) by representing it in terms of an AR(1) model (see Ap-
pendix A.2.1, proof of Proposition 3.1). Here, we take a different route. We
bound the difference between the estimated Lévy process and the true process
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L using the bound given in Theorem 3.4 below. This result is applicable in Case
(II) and Case (III) since the sampling error will converge to zero. This ap-
proach could not be used in the previous case, due to the sampling error coming
from a fixed h.

A result similar to Theorem 3.4 can be found in [12] (Theorem 3.2) for a zero
mean Lévy driving process L in a general CARMA process framework. How-

ever, their recovery strategy is different. In particular, their analogue to L̂
(1/M)
n

is Z
(1/M)
n /(σ

√
M), where Z

(1/M)
n is as defined in equation (2.6). Hence, if we use

these definitions in our notation, L̂
(M)
N would be defined as (σ

√
M)−1

∑NM
n=1 Z

(1/M)
n

which is different than (3.5). Theorem 3.2 of [12] yields L2 convergence of their
approximation under an assumption of invertibility. In the next theorem, we are
able to provide a precise L2 bound on the error of our approximation (3.5). This
bound is key to the results that follow.

Theorem 3.4. Let Y be a strictly stationary CAR(1) process driven by a

second-order Lévy process L such that (2.1) holds. If L̂
(M)
N is defined as in equa-

tion (3.5) then for every N,M ∈ Z+,

∥∥∥∥
1√
N

(
L(N)− L̂

(M)
N

)∥∥∥∥
L2

≤ η
√
N
√
a
(
1− e

−a

M

) 1
2

+

√
aη

2M
√
N
.

Consequently, the bound converges to 0 as N → ∞ and N/M → 0.

The proof of Theorem 3.4 relies on the following uniform bound on the differ-
ence between integrals of Y and the corresponding discretely observed process.

Lemma 3.5. Under the assumptions of Theorem 3.4, for every N,M ∈ Z+,

∥∥∥∥∥
1√
N

(∫ N

0

Y (s)ds− 1

M

NM∑

n=1

Y n

M

)∥∥∥∥∥
L2

≤
√
N
ση√
a

(
1− e

−a

M

) 1
2

. (3.6)

The bound converges to 0 as N → ∞ and N/M → 0.

Proof. In what follows we will also use the following notation. Let

Y
(M)
N (s) ≡

NM∑

i=1

Y i

M

1( i−1
M

<s≤ i

M ). (3.7)

Then

∥∥∥∥∥
1√
N

(∫ N

0

Y (s)ds− 1

M

NM∑

i=1

Y i

M

)∥∥∥∥∥

2

L2

=
1

N
E



(∫ N

0

Y (s)ds− 1

M

NM∑

i=1

Y i

M

)2



=
1

N
E

[∫ N

0

(
Y (s)− Y

(M)
N (s)

)
ds

]2

≤ E

∫ N

0

(
Y (s)− Y

(M)
N (s)

)2
ds,
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by the Cauchy-Buniakowski-Schwarz inequality. We have

∫ N

0

E

[(
Y (s)− Y

(M)
N (s)

)2]
ds =

NM∑

i=1

∫ i

M

i−1
M

E

[(
Y (s)− Y i

M

)2]
ds

=

NM∑

i=1

∫ i

M

i−1
M

(
2VarY0 − 2Cov(Y0, Y i

M
−s)
)
ds.

Hence, using (2.4)

∫ N

0

E

[(
Y (s)− Y

(M)
N (s)

)2]
ds =

NM∑

i=1

∫ i

M

i−1
M

(
2
σ2η2

2a
− 2

σ2η2

2a
e−a( i

M
−s)
)
ds

≤ σ2η2

a

NM∑

i=1

∫ i

M

i−1
M

(
1− e

−a

M

)
ds

= N
σ2η2

a

(
1− e

−a

M

)
.

This finishes the proof.

Proof of Theorem 3.4. Recall equation (3.5) and the representation of L(N)
(cf. (2.9)):

L(N) =
1

σ

[
Y (N)− Y (0)−

∫ N

0

Y (s)ds

]
.

Using the bound from Lemma 3.5 we have

∥∥∥∥
1√
N

(
L(N)− L̂

(M)
N

)∥∥∥∥
L2

=
1√
N

∥∥∥∥∥
1

σ

[
Y (N)− Y (0) + a

∫ N

0

Y (s)ds

]

− a

Mσ

NM∑

n=1

Y n

M
+

(
1

σ
− a

2Mσ

)
(YN − Y0)

∥∥∥∥∥
L2

=
1√
N

∥∥∥∥∥
a

σ

∫ N

0

Y (s)ds− a

Mσ

NM∑

n=1

Y n

M
− a

2Mσ
(YN − Y0)

∥∥∥∥∥
L2

≤ 1√
N

a

σ

∥∥∥∥∥

∫ N

0

Y (s)ds− 1

M

NM∑

n=1

Y n

M

∥∥∥∥∥
L2

+
1√
N

∥∥∥ a

2Mσ
(YN − Y0)

∥∥∥
L2

≤
√
Nη

√
a
(
1− e

−a

M

) 1
2

+
a

2M
√
Nσ

Var
1
2 (YN − Y0)
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≤
√
Nη

√
a
(
1− e

−a

M

) 1
2

+
a

2M
√
Nσ

(
σ2η2

a

) 1
2

≤
√
Nη

√
a
(
1− e

−a

M

) 1
2

+

√
aη

2M
√
N
.

Since, as N → ∞, N−1/2(L(N) − Nµ) converges to a normal distribution
with variance η2, the following corollary is immediate in Case (III).

Corollary 3.6. Consider scenario (III). Under the assumptions of Theorem
3.4, we have as N → ∞ and N/M → 0,

1√
N

(
L̂
(M)
N −Nµ

)
d→ N (0, η2).

Estimated unit increments To proceed with the sample covariances, we
look at finer properties of the estimated increments over unit intervals. Recall
now notation (2.10). In analogy we define

∆1Ln ≡ ∆L(1)
n = Ln − Ln−1 and ∆1L̂

(M)
n ≡ L̂(M)

n − L̂
(M)
n−1. (3.8)

We note that the latter notation indicates the increments over interval (n−1, n],
when the sampling frequency is M , as opposed to (2.10) where the increment
over ((n− 1)h, nh] is considered. Using the inversion formula we have

∆1Ln = Ln − Ln−1 =
1

σ

[
Y (n)− Y (n− 1) + a

∫ n

n−1

Y (s)ds

]
. (3.9)

Furthermore, we represent

∆1L̂
(M)
n = L̂(M)

n − L̂
(M)
n−1 =

a

Mσ

nM∑

i=(n−1)M+1

Y i

M

+

(
1

σ
− a

2Mσ

)
(Yn − Yn−1) .

(3.10)
That is, the estimated increment over (n− 1, n] is represented as the sum of

estimated increments over the small intervals ((n− 1), (n− 1) + 1
M ], . . . .

Properties of the estimated increments We prove some properties of the

estimated increments ∆1L̂
(M)
n , n ≥ 1 defined in (3.8).

Remark 3.7. Since Y is a strictly stationary process with a finite second mo-

ment, then it can be easily shown using (3.10) that ∆1L̂
(M)
n , n ≥ 1, is a second-

order stationary sequence.

Next, we show how closely the estimated increments ∆1L̂
(M)
n approximate the

true increments ∆1Ln, n ≥ 1. Note that Lemmas 3.8 and 3.9 mimic Theorem
3.4 and Lemma 3.5, but allow a finer analysis of the discretization error.

Lemma 3.8. Let Y be a strictly stationary CAR(1) process driven by a second-

order Lévy process L. If ∆1Ln, ∆1L̂
(M)
n are defined as in equation (3.8), then
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(i) ∀ n ∈ N, ‖∆1L̂
(M)
n −∆1Ln‖L2 ≤ η

√
a(1− e

−a

M )
1
2 + η

√
a

2M (1− e−a)
1
2 ;

(ii) ∀ n ∈ N, ‖∆1L̂
(M)
n −∆1Ln‖L2 → 0 as M → ∞.

In order to prove Lemma 3.8 we start with the following uniform approxima-
tion. The proof is given in Appendix A.2.3.

Lemma 3.9. Under the assumptions of Lemma 3.8,
∥∥∥∥∥∥
1

M

nM∑

i=(n−1)M+1

Y i

M

−
∫ n

n−1

Y (s)ds

∥∥∥∥∥∥
L2

≤ ση√
a

(
1− e

−a

M

) 1
2

.

Proof of Lemma 3.8. (i) Using equations (3.10) and (3.9) we compute the dif-

ference (∆1L̂
(M)
n −∆1Ln) as

a

σ


 1

M

nM∑

i=(n−1)M+1

Y i

M

−
∫ n

n−1

Y (s)ds


 − a

2Mσ
(Yn − Yn−1) . (3.11)

By taking the L2 norm and using Lemma 3.9 we get:
∥∥∥∆1L̂

(M)
n −∆1Ln

∥∥∥
L2

≤ a

σ

∥∥∥∥∥∥
1

M

nM∑

i=(n−1)M+1

Y i

M

−
∫ n

n−1

Y (s)ds

∥∥∥∥∥∥
L2

+
∥∥∥ a

2Mσ
(Yn − Yn−1)

∥∥∥
L2

≤ η
√
a
(
1− e

−a

M

) 1
2

+
( a

2Mσ
(2VarY0 − 2Cov(Y0, Y1))

) 1
2

.

Using Lemma 2.4 the result follows.
(ii) The result is a consequence of (i), since

η
√
a
(
1− e

−a

M

) 1
2

+

√
aη

2M

(
1− e−a

) 1
2 → 0 as M → ∞.

The following approximation result can be viewed as a corollary of Lemma 3.8.
The proof is given in Appendix A.2.4.

Lemma 3.10. Under the assumptions of Lemma 3.8, for k ≥ 0,
∥∥∥∆1L̂

(M)
n+k∆1L̂

(M)
n −∆1Ln+k∆1Ln

∥∥∥
L1

≤
(
η + E

1
2

[
∆1L̂

(M)
1

]2)(
η
√
a
(
1− e

−a

M

) 1
2

+
η
√
a

2M

(
1− e−a

) 1
2

)
.

The bound converges to 0 as M → ∞, uniformly in n and k.

Remark 3.11. We note that the bounds in Lemma 3.8 (i) and Lemma 3.10
are independent of N , so that convergence is uniform in N . As a consequence,
we can use the above estimates both in Case (II) and (III).
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Corollary 3.12. Under the assumptions of Lemma 3.8,

(i) ∀ n ∈ N, E[∆1L̂
(M)
n ] = µ;

(ii) ∀ n ∈ N, Var(∆1L̂
(M)
n ) → Var(∆1Ln) as M → ∞;

(iii) ∀ n > 1, Cov(∆1L̂
(M)
1 ,∆1L̂

(M)
n ) → 0 as M → ∞.

Proof. Parts (ii) and (iii) are immediate consequences of Lemmas 3.8(ii) and
3.10, respectively. As for (i), we have using equation (3.10) and Lemma 2.4,

E

[
∆1L̂

(M)
1

]
=

a

Mσ

M∑

i=1

E

[
Y i

M

]
+

(
1

σ
− a

2Mσ

)
E [Y1 − Y0] = µ.

3.2.1. Asymptotics for the sample mean

The next result is a simple corollary of Theorem 3.4 and Corollary 3.6. We note
that the law of large numbers requires N ∧M → ∞ only, while the central limit
theorem needs N → ∞ and N/M → 0.

Corollary 3.13. Consider scenario (III). Under the assumptions of Lemma 3.8.

Let ∆1L̂(M) and η̂2 be the sample mean and sample variance, respectively, of

∆1L̂
(M)
n , n = 1, . . . , N ; i.e.

∆1L̂(M) ≡ 1

N

N∑

n=1

∆1L̂
(M)
n and η̂2 ≡ 1

N

N∑

n=1

(
∆1L̂

(M)
n −∆1L̂(M)

)2
.

Then,

(i) ∆1L̂(M) p−→ µ as N ∧M → ∞.

(ii)
√
N(∆1L̂(M) − µ)

d−→ N(0, η2) as N → ∞ and N/M → 0.

(iii) η̂2
p−→ η2 as N ∧M → ∞.

Proof of (i). Note that

∆1L̂(M) =
1

N

NM∑

n=1

∆L̂
(M)
n

M

=
1

N
L̂
(M)
N .

By Theorem 3.4,
∥∥∥∥
1

N
L̂
(M)
N − µ

∥∥∥∥
L2

≤ 1√
N

∥∥∥∥
1√
N

(L(N)− L̂
(M)
N )

∥∥∥∥
L2

+

∥∥∥∥
L(N)

N
− µ

∥∥∥∥
L2

≤ η
√
a(1− e−a/M )1/2 +

√
aη

2MN
+

∥∥∥∥
L(N)

N
− µ

∥∥∥∥
L2

.

Let N ∧M → ∞ and (i) follows.

Proof of (ii). This is an immediate consequence of Corollary 3.6.
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Proof of (iii). We have

E

∣∣∣∣∣
1

N

N∑

n=1

(
∆1L̂

(M)
n

)2
− 1

N

N∑

n=1

(∆1Ln)
2

∣∣∣∣∣

≤ 1

N

N∑

n=1

E

∣∣∣∣
(
∆1L̂

(M)
n

)2
− (∆1Ln)

2

∣∣∣∣

→ 0 as M → ∞ (by Lemma 3.10, k = 0).

Now since,

1

N

N∑

n=1

(∆1Ln)
2 p−→ E [L1]

2 as N → ∞

then

1

N

N∑

n=1

(
∆1L̂

(M)
n

)2 p−→ E [L1]
2 = η2 + µ2 as N ∧M → ∞;

consequently the result follows by (i).

3.2.2. Asymptotics for the sample covariances

In this section we consider the sample covariances of the estimated increments:

̂γ∆1L̂(M)(k) ≡
1

N − k

N−k∑

n=1

(
∆1L̂

(M)
n+k −∆1L̂(M)

)(
∆1L̂

(M)
n −∆1L̂(M)

)
,

where

∆1L̂(M) =
1

N

N∑

n=1

∆L̂(M)
n .

Again, we note that the sample covariance here has a different meaning than
the one in (3.3). There, “lag k” means that we look at dependence between

∆L̂
(h)
n and ∆L̂

(h)
n+k (n ≥ 1), that is the estimated increment over ((n − 1)h, nh]

and the estimated increment over ((n+k− 1)h, (n+k)h]. In the present setting
we look at dependence between the estimated increments over ((n − 1), n] and
((n+k−1), (n+k)], when the CAR(1) process is sampled at frequency h = 1/M .

Theorem 3.14. Consider scenario (III). Let Y be a strictly stationary CAR(1)
process driven by a second-order Lévy process L such that (2.1) holds. Then

(i) ̂γ∆1L̂(M)(k)
p−→ 0 as N ∧M → ∞ ∀ k ≥ 1;

(ii)
√
N ̂γ∆1L̂(M)(k)

d−→ N(0, η4) as N → ∞ and N/M → 0 ∀ k ≥ 1.

The proof is given in Appendix A.2.5. We proceed with two remarks.

Remark 3.15.

(i) We can assume without loss of generality that E[∆1L̂
(M)
1 ] = µ = 0.
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(ii) Since L is a Lévy process, it has stationary independent increments. If
Xn = ∆Ln+k∆Ln, k ≥ 1, n ≥ 1, then Xn is a strictly stationary
k−dependent sequence with mean zero (assuming µ = 0) and autoco-
variance function γX(n) = η4 if n = 0 and zero otherwise. Using Theorem
6.4.2 in [4] we have:

√
N

N − k

N−k∑

n=1

Xn =

√
N

N − k

N−k∑

n=1

∆Ln+k∆Ln
d−→ N(0, η4).

4. CLT for the Lévy-driven CAR(1) process

This section is a brief digression from the central topic of our paper. Here we use
our estimator of the driving process L to prove a central limit theorem for the
integrated CAR(1) process Y . The significance of this result is that the proof is
quite elementary and does not require any mixing arguments. In Corollary 3.6,

we have proven a CLT for the estimated process L̂
(M)
N by showing its closeness

to the true Lévy process L(N). In this section, a similar approach leads to

a CLT for the integrated process
∫ N

0 Y (s)ds; see Theorem 4.2. We note that
results similar to those in Corollary 4.1 and Theorem 4.2 can be obtained using
different methods. In [18], mixing properties of the CAR(1) model are utilized,
while sample means and sample covariances for the discretely sampled process
Y are considered in [10]. In our Scenario I (fixed h) asymptotic normality of
the sample mean and sample covariances are proven under appropriate moment
assumptions.

Corollary 4.1. Consider scenario (III). Let Y be a strictly stationary CAR(1)
process driven by a second-order Lévy process L such that (2.1) holds. Then

(i) As N ∧M → ∞,

1

NM

NM∑

n=1

(
Y n

M
− E [Y0]

) p−→ 0.

(ii) As N → ∞ and N/M → 0,

1√
N

1

M

NM∑

n=1

(
Y n

M
− E [Y0]

) d−→ N

(
0,
η2σ2

a2

)
.

Proof. From (3.10) we have

(L̂
(M)
N −Nµ) =

(
a

Mσ

NM∑

n=1

Y n

M
−Nµ

)
+

(
1

σ
− a

2Mσ

)
(YN − Y0).

Therefore, since Y is stationary, (i) follows by Corollary 3.13 (i) and (ii) follows
by Corollary 3.6.
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In fact, Corollary 4.1 gives us a very simple proof of the CLT for the integrated
Lévy-driven CAR(1) process Y :

Theorem 4.2. Let Y be a strictly stationary CAR(1) process driven by a
second-order Lévy process L such that (2.1) holds. Then

lim
N→∞

1√
N

∫ N

0

(Y (s)− E[Y0]) ds
d
= N

(
0,
η2σ2

a2

)
.

Proof. If we center equation (3.6), we have, for every N

∥∥∥∥∥
1√
N

∫ N

0

(Y (s)− E[Y0]) ds−
1√
N

1

M

NM∑

n=1

(
Y n

M
− E[Y0]

)
∥∥∥∥∥
L2

≤
√
N
ση√
a

(
1− e

−a

M

) 1
2

= O
(√

N/M
)
.

Let

AN =
1√
N

∫ N

0

(Y (s)− E[Y0]) ds

and

BN,M =
1√
N

1

M

NM∑

n=1

(
Y n

M
− E[Y0]

)
.

Arguing as in Theorem 25.4 of [2], for any y′ < x < y′′, with y′′ − x < ǫ,
x− y′ < ǫ,

P (BN,M ≤ y′)−P (|AN −BN,M | ≥ ǫ) ≤ P (AN ≤ x)

≤ P (BN,M ≤ y′′)−P (|AN −BN,M | ≥ ǫ)

for all N,M . Therefore, letting N → ∞ and choosing M such that N/M → 0,
by Corollary 4.1,

P (W ≤ y′) ≤ lim inf
N→∞

P (AN ≤ x) ≤ lim sup
N→∞

P (AN ≤ x) ≤ P (W ≤ y′′),

where W is normal with mean zero and variance η2σ2/a2. Since ǫ is arbitrary,
the result follows.

5. Inference based on the sampled process

5.1. Test statistics

If Y is a CAR(1) model driven by a process L we can use the estimated in-
crements to test H0 that L has uncorrelated increments, which will be true if
L is a Lévy process. We reject H0 for a large absolute value of the statistic
W∆1L̂(M)(k) for a specified value of k, where W∆1L̂(M)(k) is defined as follows:
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Lemma 5.1. Consider Case (III). Under the assumptions of Lemma 3.8,

W∆1L̂(M)(k) ≡
√
N

̂γ∆1L̂(M)(k)

η̂2
d−→ N(0, 1) as N → ∞ and

N

M
→ 0.

Proof. The result follows by Theorem 3.14 and Slutsky’s theorem since by

Lemma 3.13, η2/η̂2
p−→ 1.

Under H0, for large N,M and N
M small we have

α ≈ P
(
|W∆1L̂(M)(k)| > zα/2

)
. (5.1)

5.2. Simulation study

In this section we investigate the behavior of our test statisticW∆1L̂(M)(1) under
both H0 and H1. Further, we see that the error introduced by discrete sampling
at high frequency becomes very small by comparingW∆1L̂(M)(1) calculated with
both the true and recovered values of the driving process.

5.2.1. Brownian motion driven CAR(1) process

For a large K, we simulate an iid sequence (noise) Z i

K

∼ N(0, 1
K ), i =

1, 2, . . . , NK. We approximate the driving process B(t) on [0, N ] as,

B(t) =

{
0 if t = 0∑n

i=1 Z i

K

if n−1
K < t ≤ n

K .

In order to simulate Y , Brownian motion-driven CAR(1) process, we look at its
definition through its stochastic differential equation

dY (t) = −aY (t) dt+ σdB(t)

which by Euler’s scheme can be approximated by the difference equation:

Yt − Yt− 1
K

= −aYt− 1
K

1

K
+ σ

(
Bt −Bt− 1

K

)
.

Using the simulated noise Z i

K

we have,

Yt =
1− a

K
Yt− 1

K

+ σZ i

K

.

Using equation (3.10):

∆1L̂
(M)
n =

a

Mσ

nM∑

i=(n−1)M+1

Y i

M

+

(
1

σ
− a

2Mσ

)
(Yn − Yn−1) ,

we compute the estimates of the recovered increments ∆1B̂
(M)
n over the intervals

(i− 1, i], i = 1, . . . , 1 = 100, using the sampled YSampled.
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Fig 1. True Increments: ∆1Bn, Recovered Increments: ∆1B̂
(M)
n .
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Fig 2. (True-Recovered) Increments: ∆1Bn −∆1B̂
(M)
n .

In Figure 1 below, we compare the estimated increments with the true incre-
ments ∆1Bn = Bn −Bn−1.

To show that ∆1Bn and ∆1B̂
(M)
n are not identical, we display their differences

in Figure 2.
In Figure 3, we compute the sample autocorrelation function for both the

recovered increments (∆1B̂
(M)
n ) and the true increments (∆1Bn). The sample

autocorrelations are very similar for the true and estimated increments, in agree-
ment with equation (A.11). Figure 3 also reflects the 0 correlation of the true
increments and the asymptotic 0 correlation of the estimated increments. This
is in agreement with Theorem 3.14 and Remark 3.15.

We want to test at level 0.05

H0 : ρ(1) = 0 vs. H1 : ρ(1) 6= 0 where ρ(1) = Corr (∆1Bn,∆1Bn+1) .
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Fig 3. The sample autocorrelation function for the True Increments ∆1Bn (True) and for

the Recovered Increment ∆1B̂
(M)
n (Recovered).

Table 1

We fix {σ = 1, K = 5000, µ = 0, R = 400}

N = 50,M = 100 N = 100,M = 100 N = 100,M = 300 N = 100,M = 500
α̂∆1B α̂

∆1B̂
(M) α̂∆1B α̂

∆1B̂
(M) α̂∆1B α̂

∆1B̂
(M) α̂∆1B α̂

∆1B̂
(M)

a=0.9 0.0600 0.0600 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375
a=10 0.0375 0.0400 0.0375 0.0400 0.0475 0.0475 0.0450 0.0450
a=100 0.0325 0.0250 0.0350 0.0475 0.0325 0.0350 0.0500 0.0500
a=1000 0.0375 0.0450 0.0500 0.0450 0.0375 0.0400 0.0400 0.0425

To assess the performance of our proposed test statistic based on estimated in-
crements (see Lemma 5.1), we compare it with the corresponding statistic based
on the true increments; that is, we compare the performance of the statistics:

W∆1B(1) =
√
N

γ̂∆1B(1)

η̂2
=

√
N ρ̂∆1B(1),

and

W∆1B̂(M)(1) =
√
N

̂γ∆1B̂(M)(1)

η̂2
=

√
N ̂ρ∆1B̂(M)(1),

where W∆1B(1) is based on the (unobserved) true increments ∆1Bn, and

W∆1B̂(M)(1) is based on the recovered increments ∆1B̂
(M)
n . See Lemma 5.1 and

Eq. (5.1).
Tables 1 and 2 give the empirical levels α̂∆1B, α̂∆1B̂(M) for both tests based on

W∆1B(1) and W∆1B̂(M)(1) respectively, over R = 400 simulations, with nominal
level 0.05. We consider various values of the parameters a and σ.

These results are consistent with a nominal level 0.05, since with R = 400,
the empirical level should fall in the range 0.05± 0.021 95% of the time.

The test statistics based on the true and recovered increments give us virtu-
ally identical empirical levels except for large values of a (a = 100 or a = 1000).
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Table 2

We fix {a = 0.9, K = 5000, µ = 0, R = 400}

N = 50,M = 100 N = 100,M = 100 N = 100, M = 300 N = 100, M = 500
α̂∆1B α̂

∆1B̂
(M) α̂∆1B α̂

∆1B̂
(M) α̂∆1B α̂

∆1B̂
(M) α̂∆1B α̂

∆1B̂
(M)

σ = 1 0.0600 0.0600 0.0375 0.0375 0.0375 0.0375 0.0375 0.0375
σ = 10 0.0625 0.0625 0.0600 0.0600 0.0625 0.0625 0.0625 0.0625
σ = 100 0.0600 0.0600 0.0425 0.0425 0.0575 0.0575 0.0500 0.0500
σ = 1000 0.0425 0.0425 0.0525 0.0550 0.0775 0.0775 0.0650 0.0650

Looking at the formula for the recovered noise (3.10), we see that large values
of a introduce more variability and so this result is to be expected.

For a Gaussian driving process, the performance of the test statistic does not
seem to be particularly sensitive to the sampling frequency M or the value of
the ratio N/M . Also, a sample N = 50 seems adequate.

5.2.2. Gamma-driven CAR(1) process

Following the same steps as in the case of Brownian motion driven CAR(1)
process we simulate the driving process G(t) using the discrete approximation

G(t) =

{
0 if t = 0∑n

i=1 Γ i

K

if n−1
K < t ≤ n

K ,

where Γ i

K

are iid random variables with distribution Γ(α 1
K , β) = Γ(µ

2

η2
1
K ,

η2

µ ), i =
1, 2, . . . , NK. We also use Euler’s scheme to approximate Y , a gamma-driven
CAR(1) process, by the discrete equation:

Yt − Yt− 1
K

= −aYt
1

K
+ σΓ i

K

.

Figure 4 shows a sample path Yt withK = 5000 andN = 100 and YSampled which
are the values of Yt observed at the times {0, 1

M , 2
M , . . . , N} with M = 500. In

Figure 5 we display ∆1Gn = Gn − Gn−1 and ∆1Ĝ
(M)
n computed by equation

(3.10), using YSampled from Figure 4. Also, the differences (∆1Gn−∆1Ĝ
(M)
n ) are

displayed in Figure 6 as well as the sample autocorrelation functions in Figure 7.
As before, the sample autocorrelations support our theoretical results.

Tables 3 and 4 give computed empirical levels α̂∆1G, α̂∆1Ĝ(M) for tests based
on W∆1Gn

(1) and W∆1Ĝ(M)(1) respectively, following the same procedures as
before, over R = 400 simulations, with nominal level 0.05. We consider various
values of the parameters a and σ as well.

We note larger discrepancies between the empirical levels α̂∆1G and α̂∆1Ĝ(M)

for small M than we did for Brownian motion. This is likely due to the larger
discrepancies between the true and recovered increments as illustrated in Fig-
ure 8, forM = 100. As a result, in the case of a gamma process driving function,
the tests are more sensitive to the sampling frequency M and to the sample size
N . However, the ratio N/M does not appear to play a significant role.

In the left hand plot in Figure 8, we see the true-recovered increments with
M = 100. There are four large peaks that obscure the remaining differences.
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Fig 4. Simulated gamma-driven CAR(1) process for {N = 100, K = 5000, µ = 1, η = 1, σ =
1, a = 1} and YSampled for M = 500.
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Fig 5. True Increments: ∆1Gn, Recovered Increments: ∆1Ĝ
(M)
n (M = 500).

Removing these peaks allows us to illustrate the remaining differences in the
right hand plot.

5.2.3. An alternative case: Fractional Brownian motion-driven CAR(1) process

As an example of a second-order non-Lévy processes we consider a fractional
Brownian motion process. A continuous-time Gaussian process BH = {BH(t),
t ≥ 0} is called fractional Brownian motion of Hurst parameter H ∈ (0, 1) if it
has zero mean and the covariance function

Cov (BH(s), BH(t)) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (5.2)
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Fig 6. (True-Recovered) Increments: ∆1Gn −∆1Ĝ
(M)
n (M = 500).
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Fig 7. The sample autocorrelation function for the True Increments ∆1Gn (True) and for

the Recovered Increments ∆1Ĝ
(M)
n (Recovered).

The fractional Brownian motion, BH , has the following properties

• BH(t) has stationary increments, i.e., BH(t + s) − BH(s) has the same
distribution as BH(t), for any s, t > 0.

• The Hurst parameter, H ∈ (0, 1), associated with the process BH(t) de-
scribes the process in the sense that when H = 1

2 then B 1
2
(t) is a Brow-

nian motion. When H > 1
2 the increments of the process are positively

correlated, and when H < 1
2 the increments of the process are negatively

correlated.

Hence BH , H 6= 1
2 , is a second-order process (EB2

H(1) < ∞) which has sta-
tionary dependent increments.
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Table 3

We fix {σ = 1, µ = 1, η = 1, K = 5000, R = 400}

N = 50,M = 100 N = 100,M = 100 N = 100, M = 300 N = 100, M = 500
α̂∆1G α̂

∆1Ĝ
(M) α̂∆1G α̂

∆1Ĝ
(M) α̂∆1G α̂

∆1Ĝ
(M) α̂∆1G α̂

∆1Ĝ
(M)

a = 0.9 0.0200 0.0200 0.0725 0.0725 0.0500 0.0500 0.0375 0.0375
a = 10 0.0250 0.0250 0.0550 0.0550 0.0400 0.0425 0.0425 0.0450
a = 100 0.0350 0.0250 0.0450 0.0325 0.0500 0.0525 0.0375 0.0350
a = 1000 0.0300 0.0175 0.0475 0.0200 0.0300 0.0225 0.0300 0.0300

Table 4

We fix {a = 0.9, µ = 1, η = 1, K = 5000, R = 400}

N = 50,M = 100 N = 100,M = 100 N = 100,M = 300 N = 100, M = 500
α̂∆1G α̂

∆1Ĝ
(M) α̂∆1G α̂

∆1Ĝ
(M) α̂∆1G α̂

∆1Ĝ
(M) α̂∆1G α̂

∆1Ĝ
(M)

σ = 1 0.0200 0.0200 0.0725 0.0725 0.0500 0.0500 0.0375 0.0375
σ = 10 0.0425 0.0350 0.0375 0.0425 0.0525 0.0500 0.0500 0.0525
σ = 100 0.0350 0.0350 0.0250 0.0325 0.0525 0.0475 0.0325 0.0300
σ = 1000 0.0375 0.0300 0.0400 0.0425 0.0500 0.0525 0.06250 0.0650
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Fig 8. (True-Recovered) Increments with and without peaks for small M = 100.

To illustrate the behavior of the test statistics W∆1L(1) and W∆1L̂(M)(1)
under an alternative case, we simulate fractional Brownian motion BH(t) with
Hurst parameterH by using the techniques developed in [9]. Following the same
procedures as before we approximate the process Yt (BH -driven CAR(1)) and
YSampled. The sample autocorrelation functions are displayed in Figure 9 where
we can see that the positive correlation at lag 1 is reflected by both the recovered

increments (∆1B̂H,n

(M)
) and the true increments (∆1BH,n) with H = 0.8.

We considered the power functions for both tests at level 0.05 based on
W∆1BH

(1) andW
∆1B̂H

(M)(1). We computed the empirical rejection rate β̂∆1BH
,

β̂
∆1B̂H

(M) for different values of the Hurst parameter H ; these values are given

in Table 5. The power functions are illustrated in Figure 10.
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Fig 9. The sample autocorrelation function for the True Increments ∆1BH,n (True) and for

the Recovered Increment ∆1B̂H,n

(M)
(Recovered).

Table 5

N = 50, K = 1000, R = 50, a = 0.9, σ = 1

H β̂∆1BH
β̂
∆1B̂H

(M) H β̂∆1BH
β̂
∆1B̂H

(M)

0.05 0.92 0.96 0.55 0.04 0.04
0.10 0.92 0.90 0.60 0.18 0.16
0.15 0.74 0.78 0.65 0.18 0.16
0.20 0.66 0.68 0.70 0.32 0.32
0.25 0.58 0.52 0.75 0.70 0.70
0.30 0.36 0.44 0.80 0.60 0.60
0.35 0.24 0.30 0.85 0.80 0.80
0.40 0.24 0.26 0.90 0.90 0.90
0.45 0.04 0.04 0.95 0.98 0.98
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Fig 10. The power functions for the test based on W∆1BH
(1) is the solid line and the one

based on W
∆1B̂H

(M) (1) is the dashed line.
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Appendix: Proofs

A.1. Proof of Proposition 2.6

(i) We have from Lemma 2.4

E

[
∆L̂(h)

n

]
= E

[
∆L̂

(h)
1

]
=
ah

σ
E

[
Y

(h)
0

]
= µh.

(ii) For simplicity we consider γ∆L̂(h)(n− 1) = Cov(∆L̂
(h)
1 ,∆L̂

(h)
n ). Now,

E

[
∆L̂

(h)
1 ∆L̂(h)

n

]

=
1

σ2
E

[(
Y

(h)
1 − Y

(h)
0 + ah

Y
(h)
1 + Y

(h)
0

2

)(
Y (h)
n − Y

(h)
n−1 + ah

Y
(h)
n + Y

(h)
n−1

2

)]

=

(
2

σ2
+
a2h2

2σ2

)
E

[
Y

(h)
0 Y

(h)
n−1

]
+

(
a2h2

4σ2
− 1

σ2

)
E

[
Y

(h)
0 Y

(h)
(n−2)

]

+

(
a2h2

4σ2
− 1

σ2

)
E

[
Y

(h)
0 Y (h)

n

]
.

Using Lemma 2.4 we obtain

E

[
∆L̂

(h)
1 ∆L̂(h)

n

]

=

(
2 +

a2h2

2

)(
η2

2a
e−a(n−1)h +

µ2

a2

)
+

(
a2h2

4
− 1

)(
η2

2a
e−a(n−2)h +

µ2

a2

)

+

(
a2h2

4
− 1

)(
η2

2a
e−anh +

µ2

a2

)

=

(
η2

a
+
aη2h2

4

)
e−a(n−1)h +

(
aη2h2

8
− η2

2a

)(
e−a(n−2)h + e−anh

)
+ µ2h2.

This completes the proof of (ii), and (iii) is an immediate consequence.

A.2. Proofs for Section 3

A.2.1. Proof of Proposition 3.1

We start with part (i). From equation (3.2), the sum of Lévy increments∑N
n=1 ∆L

(h)
n defining L(Nh) can be replaced with the sum of AR(1) random
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variables plus a term that becomes negligible under norming by N . We obtain

∆L̂(h) =
ah

σ

1

N

N∑

n=1

Y (h)
n +

(
1

σ
− ah

2σ

)
Y

(h)
N − Y

(h)
0

N
. (A.1)

By ergodicity of Y
(h)
n , n ≥ 1, and Lemma 2.4 we have

1

N

N∑

n=1

Y (h)
n

p−→ E

[
Y

(h)
0

]
=
µσ

a
.

The result follows since the second term in the equation (A.1) converges to zero
in probability as N → ∞.

We proceed with the proof of (ii). Since Y
(h)
n is a strictly stationary AR(1)

process (c.f. (2.5)), it can be written as (cf. [4])

Y (h)
n =

∞∑

j=0

φjZ
(h)
n−j =

∞∑

j=0

φjE
[
Z

(h)
n−j

]
+

∞∑

j=0

φj
(
Z

(h)
n−j − E

[
Z

(h)
n−j

])
.

Now, by equation (2.7),

Y (h)
n =

µσ

a
+

∞∑

j=0

φj
(
Z

(h)
n−j − E

[
Z

(h)
n−j

])
. (A.2)

Note that (cf. (2.8)):

(
Z

(h)
n−j − E

[
Z

(h)
n−j

])
∼ IID

(
0,Var

(
Z

(h)
n−j

))
= IID

(
0,
(
1− φ2

) σ2η2

2a

)
.

Using Theorem 7.1.2 in [4] we have:

1√
N

N∑

n=1

(
Y (h)
n − E [Y0]

)
d−→ N

(
0, β2

)
, (A.3)

where

β2 =
∞∑

j=−∞
γY (jh) =

1 + φ

1− φ

σ2η2

2a
.

Hence,

ah

σ

1√
N

N∑

n=1

(
Y (h)
n − µσ

a

)
d−→ N

(
0,
a2h2

σ2
β2

)
.

The second term (multiplied by
√
N) in (A.1) converges to zero in probability

as N → ∞, and so by Slutsky’s Theorem the result follows.
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A.2.2. Proof of Proposition 3.3

(i): We decompose the sample covariances in the standard way:

γ̂
∆L̂

(h)
n

(k)

=
1

N − k

N−k∑

n=1

∆L̂
(h)
n+k∆L̂

(h)
n −∆L̂(h)

1

N − k

N−k∑

n=1

∆L̂
(h)
n+k

−∆L̂(h)
1

N − k

N−k∑

n=1

∆L̂(h)
n +

(
∆L̂(h)

)2
. (A.4)

We use formula (3.1) to simplify the first term of equation (A.4):

1

N − k

N−k∑

n=1

∆L̂
(h)
n+k∆L̂

(h)
n

=

(
1

σ
+
ah

2σ

)2
1

N − k

N−k∑

n=1

Y
(h)
n+kY

(h)
n +

(
ah

2σ
− 1

σ

)2
1

N − k

N−k∑

n=1

Y
(h)
n−1Y

(h)
n+k−1

+

(
1

σ
+
ah

2σ

)(
ah

2σ
− 1

σ

)
1

N − k

N−k∑

n=1

Y
(h)
n+k−1Y

(h)
n

+

(
1

σ
+
ah

2σ

)(
ah

2σ
− 1

σ

)
1

N − k

N−k∑

n=1

Y
(h)
n+kY

(h)
n−1. (A.5)

Using ergodicity of Y
(h)
n , n ≥ 1, we have

1

N − k

N−k∑

n=1

Y
(h)
n+kY

(h)
n

p−→ E

[
Y

(h)
0 Y

(h)
k

]
.

A similar argument can be applied to the other three terms in (A.5). Hence, as
N → ∞,

1

N − k

N−k∑

n=1

∆L̂
(h)
n+k∆L̂

(h)
n

p−→
(
1

σ
+
ah

2σ

)2

E

[
Y

(h)
0 Y

(h)
k

]
+

(
ah

2σ
− 1

σ

)2

E

[
Y

(h)
0 Y

(h)
k

]

+

(
1

σ
+
ah

2σ

)(
ah

2σ
− 1

σ

)
E

[
Y

(h)
0 Y

(h)
k−1

]

+

(
1

σ
+
ah

2σ

)(
ah

2σ
− 1

σ

)
E

[
Y

(h)
0 Y

(h)
k+1

]

(∗)
=

(
η2

a
+
ah2η2

4

)
e−ahk +

(
ah2η2

8
− η2

2a

)(
e−ah(k−1) + e−ah(k+1)

)
+ µ2h2

(∗∗)
= γ∆L̂(h)(k) + µ2h2;
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(in (*) we used Lemma 2.4 and in (**) Proposition 2.6). Using the continuous
mapping theorem in conjunction with Proposition 3.1 and Slutsky’s theorem we

have: ∆L̂(h)
2 p−→ µ2h2, ∆L̂(h) 1

N−k

∑N−k
n=1 ∆L̂

(h)
n+k

p−→ µ2h2, and

∆L̂(h)
1

N − k

N−k∑

n=1

∆L̂(h)
n

p−→ µ2h2.

Putting everything together finishes the proof of (i).
(ii): Using equation (A.2) we can rewrite equation (3.1) in the following form:

∆L̂(h)
n =

(
1

σ
+
ah

2σ

)
µσ

a
+

∞∑

j=0

φj
(
Z

(h)
n−j − E

[
Z

(h)
n−j

])



+

(
ah

2σ
− 1

σ

)
µσ

a
+

∞∑

j=0

φj
(
Z

(h)
n−1−j − E

[
Z

(h)
n−1−j

])



= µh+

∞∑

j=1

φj
(
Z

(h)
n−j − E

[
Z

(h)
n−j

])( 1

σ
+
ah

2σ
+
ah

2φ
− 1

σφ

)

+

(
1

σ
+
ah

2σ

)(
Z(h)
n − E

[
Z(h)
n

])

= µh+
∞∑

j=−∞
ψ̃j

(
Z

(h)
n−j − E

[
Z

(h)
n−j

])
, (A.6)

where

ψ̃j =





0 if j < 0(
1
σ + ah

2σ

)
if j = 0

φj
(

1
σ + ah

2σ + ah
2φ − 1

σφ

)
if j ≥ 1.

Since we have:
∞∑

j=−∞
|ψ̃j | <∞ and

∞∑

j=−∞
ψ̃2
j |j| <∞,

then the result (ii) follows by using Theorem 7.2.2 in [4].

A.2.3. Proof of Lemma 3.9

Recall (3.7). Then

∥∥∥∥∥∥
1

M

nM∑

i=(n−1)M+1

Y i

M

−
∫ n

n−1

Y (s)ds

∥∥∥∥∥∥
L2

=

∥∥∥∥
∫ n

n−1

Y
(M)
N (s)ds−

∫ n

n−1

Y (s)ds

∥∥∥∥
L2

≤ E
1
2

∫ n

n−1

(
Y

(M)
N (s)− Y (s)

)2
ds
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=




nM∑

i=(n−1)M+1

∫ i

M

i−1
M

(
2VarY0 − 2Cov(Y0, Y i

M
−s)
)
ds




1
2

.

Using Lemma 2.4 we have
∥∥∥∥∥∥
1

M

nM∑

i=(n−1)M+1

Y i

M

−
∫ n

n−1

Y (s)ds

∥∥∥∥∥∥
L2

≤ ση√
a




nM∑

i=(n−1)M+1

∫ i

M

i−1
M

(
1− e−a( i

M
−s)
)
ds




1
2

≤ ση√
a




nM∑

i=(n−1)M+1

∫ i

M

i−1
M

(
1− e

−a

M

)
ds




1
2

=
ση√
a

(
1− e

−a

M

) 1
2

.

A.2.4. Proof of Lemma 3.10

By Lemma 3.8 (i) we have

E

∣∣∣∆1L̂
(M)
n+k∆1L̂

(M)
n −∆1Ln+k∆1Ln

∣∣∣

≤ E

∣∣∣∆1Ln+k

(
∆1L̂

(M)
n −∆1Ln

)∣∣∣+ E

∣∣∣∆1L̂
(M)
n

(
∆1L̂

(M)
n+k −∆1Ln+k

)∣∣∣

≤ η
∥∥∥∆1L̂

(M)
n −∆1Ln

∥∥∥
L2

+ E
1
2

[(
∆1L̂

(M)
1

)2] ∥∥∥∆1L̂
(M)
n+k −∆1Ln+k

∥∥∥
L2

≤
(
η + E

1
2

[(
∆1L̂

(M)
1

)2])(
η
√
a
(
1− e

−a

M

) 1
2

+
η
√
a

2M

(
1− e−a

) 1
2

)
.

The bound converges to 0 by an application of Lemma 3.8 (ii).

A.2.5. Proof of Theorem 3.14

(i): We decompose the sample covariance as

̂γ∆1L̂(M)(k)

=
1

N − k

N−k∑

n=1

(
∆1L̂

(M)
n+k −∆1L̂(M)

)(
∆1L̂

(M)
n −∆1L̂(M)

)

=
1

N − k

N−k∑

n=1

(
∆1L̂

(M)
n+k∆1L̂

(M)
n −∆1L̂

(M)
n+k∆1L̂(M) (A.7)

−∆1L̂
(M)
n ∆1L̂(M) +∆1L̂(M)

2
)
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=
1

N − k

N−k∑

n=1

∆1L̂
(M)
n+k∆1L̂

(M)
n −∆1L̂(M)

1

N − k

N−k∑

n=1

∆1L̂
(M)
n+k

−∆1L̂(M)
1

N − k

N−k∑

n=1

∆1L̂
(M)
n +

(
∆1L̂(M)

)2
. (A.8)

For the last three terms in equation (A.7) we use Corollary 3.13 (i) with µ = 0.
Then we have as N ∧M → ∞ that:

• (∆1L̂(M))2
p−→ 0;

• ∆1L̂(M) 1
N−k

∑N−k
n=1 ∆1L̂

(M)
n+k

p−→ 0;

• ∆1L̂(M) 1
N−k

∑N−k
n=1 ∆1L̂

(M)
n

p−→ 0.

For the first term of equation (A.7) we have for all n ∈ N,

∥∥∥∥∥
1

N − k

N−k∑

n=1

∆1L̂
(M)
n+k∆1L̂

(M)
n − 1

N − k

N−k∑

n=1

∆1Ln+k∆1Ln

∥∥∥∥∥
L1

≤ 1

N − k

N−k∑

n=1

∥∥∥∆1L̂
(M)
n+k∆1L̂

(M)
n −∆1Ln+k∆1Ln

∥∥∥
L1

≤
(
η + E

1
2

[(
∆1L̂

(M)
1

)2])(
η
√
a
(
1− e

−a

M

) 1
2

+
η
√
a

2M

(
1− e−a

) 1
2

)

(A.9)

by Lemma 3.10. The bound converges to 0 as M → ∞. Hence,

1

N − k

N−k∑

n=1

∆1Ln+k∆1Ln−
1

N − k

N−k∑

n=1

∆1L̂
(M)
n+k∆1L̂

(M)
n

p−→ 0 as N ∧M → ∞.

Using Remark 3.15 (ii) we have

1

N − k

N−k∑

n=1

∆1Ln+k∆1Ln
p−→ 0 as N → ∞.

This completes the proof of (i).
(ii): We use again the decomposition (A.7). The last three terms of equation
(A.7) multiplied by

√
N are negligible as N → ∞ and N/M → 0 by a similar

argument as in part (i), now using Corollary 3.13 (ii).
For the first term of equation (A.7) multiplied by

√
N , we claim that

√
N

N − k

N−k∑

n=1

∆1L̂
(M)
n+k∆1L̂

(M)
n −

√
N

N − k

N−k∑

n=1

∆1Ln+k∆1Ln
p−→ 0 (A.10)

as N → ∞ and N/M → 0.
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Indeed by using equation (A.9) we have,

∥∥∥∥∥

√
N

N − k

N−k∑

n=1

∆1L̂
(M)
n+k∆1L̂

(M)
n −

√
N

N − k

N−k∑

n=1

∆1Ln+k∆1Ln

∥∥∥∥∥
L1

≤
√
N

(
η + E

1
2

[
∆1L̂

(M)
1

]2)(
η
√
a
(
1− e

−a

M

) 1
2

+
η
√
a

2M

(
1− e−a

) 1
2

)

= O

(√
N

M

)
. (A.11)

The bound converges to 0 since N/M → 0. This completes the proof of the
claim (A.10). Now, we are ready to finish the proof of (ii). Using Remark 3.15,
(ii) we have that:

√
N

N − k

N−k∑

n=1

∆1Ln+k∆1Ln
d−→ N(0, η4) as N → ∞.

Now,

√
N

N − k

N−k∑

n=1

∆1L̂
(M)
n+k∆1L̂

(M)
n

=

√
N

N − k

N−k∑

n=1

∆1L̂
(M)
n+k∆1L̂

(M)
n −

√
N

N − k

N−k∑

n=1

∆1Ln+k∆1Ln

+

√
N

N − k

N−k∑

n=1

∆1Ln+k∆1Ln
d−→ N(0, η4),

as N → ∞ and N/M → 0. So,

√
N ̂γ∆1L̂(M)(k)

d−→ N(0, η4) as N → ∞ and N/M → 0,

completing the proof of (ii).
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Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes.
Bernoulli, 11(5):759–791, 2005. MR2172840

[15] Marquardt, T. and Stelzer, R., Multivariate CARMA processes.
Stochastic Process. Appl., 117(1):96–120, 2007. MR2287105
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