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Abstract: This paper is devoted to the estimation of the shift parameter in
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1. Introduction

We propose to study the problem of the estimation of the shift parameter θ in
the semi parametric regression model defined, for all n ≥ 0, by

Yn = f(Xn − θ) + εn, (1.1)

where (Xn) and (Yn) are observed and where (Xn) and (εn) are two independent
sequences of independent and identically distributed random variables. Model
(1.1) belongs to the family of shape invariant models introduced by Lawton et
al. [9]. One can find studies of that kind of models in the papers of Dalalyan
et al. [5], of Gamboa et al. [7] or Vimond [15], whereas Castillo and Loubès [4]
and Trigano et al. [13] were interested in such a model when the parameter θ
is random. Recent advances on the subject have also provided by Bigot and
Charlier [2] and Bigot and Gendre [3].

Contrary to all the papers quoted previously, we are dealing with random
observation times (Xn) and we assume that their distribution is unknown. Our
goal is the estimation of θ in that case. More precisely, we propose to generalize
the work of Bercu and Fraysse [1] when the distribution of (Xn) is assumed to
be known. Hence, the motivation of the paper is mainly theoretical. It consists
in comparing the estimation of θ when g is known and when g is unknown.
In particular, we want to know if we keep the same asymptotic properties for
the estimation of θ when g is unknown than when g is known. For that, we
implement a stochastic algorithm in order to estimate the unknown parameter
θ without any preliminary evaluation of the regression function f . When the
distribution of (Xn) is known, Bercu and Fraysse propose to use the algorithm
similar to that of Robbins-Monro [12], defined, for all n ≥ 0, by

θ̃n+1 = θ̃n + γnTn+1 (1.2)

where (γn) is a positive sequence of real numbers decreasing towards zero and

(Tn) is a sequence of random variables such that E[Tn+1|Fn] = φ(θ̂n) where
Fn stands for the σ-algebra of the events occurring up to time n. References
on algorithm (1.2) can be found in [1]. Nevertheless, the expression of Tn+1

depends on the distribution of (Xn). To overcome this problem, we propose to
replace the algorithm given by (1.2) by the one defined, for all n ≥ 0, by

θ̂n+1 = θ̂n + γnT̂n+1, (1.3)

where T̂n+1 depends only on an estimator of the distribution of (Xn) which

will be explicited in the sequel. In particular, we no longer have E[T̂n+1|Fn] =

φ(θ̂n). Algorithms of the form (1.3) have been studied by Pelletier [10], [11]
where the author establishes convergence results under the hypothesis that
(T̂n+1 − Tn+1)

2 = oP(γn). Nevertheless, in our situation, such an hypothesis
is not verified and we can not apply this kind of convergence results. However,
we get to answer to our issue: effectively, we keep the almost sure convergence of
our estimator of θ, but we also keep the asymptotic normality of our estimator
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with the same asymptotic variance as the one obtained in [1] when g is known.
Hence, from a theoretical point of view, we really improve the results of [1].

The paper is organized as follows. Section 2 is devoted to the explanation of
the estimation procedure of θ. We establish the almost sure convergence of θ̂n as
well as the asymptotic normality under some little assumptions on the regularity
of f . In particular, we establish that the asymptotic variance is the same as the
one obtained in the paper [1], that is to say the estimation of the distribution of

(Xn) does not disturb the asymptotic behaviour of θ̂n. The proofs of the results
are given is Section 3.

2. Estimation procedure and main results

We focus our attention on the estimation of the shift parameter θ in the semi-
parametric regression model given by (1.1). We assume that (εn) is a sequence
of independent and identically distributed random variables with zero mean
and unknown positive variance σ2. Moreover, we add the two several hypothesis
similar to that of [1].

(H1) The observation times (Xn) are independent and identically distributed
with unknown probability density function g, positive on its support
[−1/2, 1/2]. In addition, g is continuous, twice differentiable with bounded
derivatives. We denote by Cg > 0 the minimum of g on [−1/2, 1/2].

(H2) The shape function f is symmetric, bounded, periodic with period 1.

When |θ| < 1/4 and when the density g is known, Bercu and Fraysse [1] propose
to use the algorithm defined, for all n ≥ 0, by

θ̃n+1 = πC

(
θ̃n + sign(f1)γn+1Tn+1

)
, (2.1)

where the initial value θ̃0 ∈ C and the random variable Tn+1 is defined by

Tn+1 =
sin(2π(Xn+1 − θ̃n))

g(Xn+1)
Yn+1.

We recall that πC is the projection on the compact set C = [−1/4; 1/4] defined,
for all x ∈ R, by

πC(x) =





x if |x| ≤ 1/4,

1/4 if x ≥ 1/4,

−1/4 if x ≤ −1/4.

Moreover, we denote by the first Fourier coefficient of f

f1 =

∫ 1/2

−1/2

cos(2πx)f(x) dx,
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and we define the function φ, for all x ∈ R, by

φ(x) = sin (2π (θ − x)) f1. (2.2)

Finally, (γn) is a decreasing sequence of positive real numbers satisfying

∞∑

n=1

γn = +∞ and
∞∑

n=1

γ2n < +∞. (2.3)

When the density g is unknown, it is not possible to use algorithm (2.1). The
idea is to replace g in the expression of (2.1) by an estimator of g. More precisely,
we study the algorithm defined, for all n ≥ 0, by

θ̂n+1 = πC

(
θ̂n + sign(f1)γn+1T̂n+1

)
, (2.4)

with

T̂n+1 =
sin(2π(Xn+1 − θ̂n))

ĝn(Xn+1)
Yn+1. (2.5)

where ĝn is the recursive Parzen-Rosenblatt kernel estimator of g (see [14], [16]
and [17] for references) defined, for all x ∈ [−1/2; 1/2] and for all n ≥ 0, by

ĝn(x) =
1

n

n∑

i=1

1

hi
K

(
Xi − x

hi

)
. (2.6)

and where the kernel K is a symmetric density of probability function, positive,
with compact support and with

∫ +∞

−∞

K2(x)dx = µ2 < +∞ and
1

2

∫ +∞

−∞

x2K(x)dx = ν2 < +∞.

All the results which follow are based on the following lemma.

Lemma 2.1. If hn = n−α with 0 < α < 1/2, then, for all β such that (1 +
α)/2 < β < 1,

sup
|x|≤1/2

|ĝn(x)− g(x)| = O
(
n−2α + nβ−1

)
a.s.

Proof. The proof is given in Section 4.

In the sequel, for sake of clarity, we choose hn = n−α with 0 < α < 1 and γn =
1/n. Our first result concerns the almost sure convergence of the estimator θ̂n.

Theorem 2.1. Assume that (H1) and (H2) hold and that |θ| < 1/4. Then, if

K is a Lipschitz function, for all 0 < α < 1/2, θ̂n converges almost surely to θ.

In addition, the number of times that the random variable θ̂n+sign(f1)γn+1T̂n+1

goes outside of C is almost surely finite.

Proof. The proof is given in Section 4.
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Remark 2.1. At first sight, the estimation procedure needs the knowledge of
the sign of f1. However, it is possible to do without. Indeed, denote by (θ̂+n ) the
sequence defined, for all n ≥ 1, by

θ̂+n+1 = πC

(
θ̂+n + γn+1T̂

+
n+1

)
,

where

T̂+
n+1 =

sin(2π(Xn+1 − θ̂+n ))

ĝn(Xn+1)
Yn+1,

and by (θ̂−n ) the sequence defined, for all n ≥ 1, by

θ̂−n+1 = πC

(
θ̂−n − γn+1T̂

−
n+1

)
,

where

T̂−
n+1 =

sin(2π(Xn+1 − θ̂−n ))

ĝn(Xn+1)
Yn+1.

Then, two events are possible. More precisely, one have

lim
n→+∞

θ̂+n = θ and lim
n→+∞

|θ̂−n | = 1/4 a.s.

or

lim
n→+∞

θ̂−n = θ and lim
n→+∞

|θ̂+n | = 1/4 a.s.

Hence, for n large enough, the value θ̂n which is considered is the value given
by min(|θ̂+n |, |θ̂−n |). Nevertheless, for the sake of clarity, we shall do as if the sign
of f1 is known.

Before establishing the asymptotic normality of θ̂n, we need the following lemma
on the mean square error of θ̂n.

Lemma 2.2. Let m ≥ 0 and ε > 0 such that Cg > ε and define

τm = inf

{
n ≥ m : |θ̂n − θ| ≥ ε or inf

x∈[−1/2;1/2]
ĝn(x) ≤ Cg − ε

}
. (2.7)

Suppose that 4π|f1| > 1, then, for 0 < α < 1/2,

E

[(
θ̂n − θ

)2
I{τm=+∞}

]
= O

(
n−2α + n

α−1

2

)
.

Proof. The proof is given in Section 4.

In order to establish the asymptotic normality of θ̂n, it is necessary to introduce
a second auxiliary function ϕ defined, for all t ∈ R, by

ϕ(t) = E

[ sin2(2π(X − t))

g2(X)
(f2(X − θ) + σ2)

]
, (2.8)

=

∫ 1/2

−1/2

sin2(2π(x− t))

g(x)
(f2(x− θ) + σ2) dx.
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As soon as 4π|f1| > 1, denote

ξ2(θ) =
ϕ(θ)

4π|f1| − 1
. (2.9)

Moreover, we need to add the following hypothesis on the regularity of f .

(H3) The shape function f is twice differentiable with bounded derivatives.

Theorem 2.2. Assume that (H1), (H2) and (H3) hold and that |θ| < 1/4.
Moreover, suppose that (εn) has a finite moment of order > 2 and that 4π|f1| >
1. Then, if K is a Lipschitz function, we have the asymptotic normality, for
1/4 < α < 1/2,

√
n(θ̂n − θ)

L−→ N (0, ξ2(θ)). (2.10)

Proof. The proof is given in Section 4.

Remark 2.2. We could expect that asymptotic variance obtained in Theorem
2.2 be larger than asymptotic variance obtained when the density g is supposed
to be known. Nevertheless, comparing the result obtained here and the one
obtained in Theorem 2.2 of [1], we point out that the asymptotic variances
are exactly the same. Hence, with a little assumption on the regularity of f ,
estimation of the density g does not disturb the estimation of θ. In that sense,
the estimation procedure of θ by algorithm (2.4) improves the one proposed
in [1].

Remark 2.3. In the particular case where 4π|f1| = 1, it is may be also possible
to show [6] that √

n

log(n)
(θ̂n − θ)

L−→ N (0, ϕ(θ)).

Asymptotic results are also available when 0 < 4π|f1| < 1. However, we have
chosen to focus our attention on the more attractive case 4π|f1| > 1.

3. Numerical illustrations

3.1. Numerical comparison when g is known with f smooth

In this section, we propose to compare the numerical asymptotic behavior of
the estimator θ̃n defined by (2.1) and the one of the new estimator θ̂n given by
(2.4). For that, we consider data Xn and Yn generating according to the model
given, for all n ≥ 1, by

Yn = f(Xn − θ) + εn

where θ = 0.05 and (εn) is a sequence of independent random variables of law
N (0, 1). In this part, we are going to compare the numerical performances of
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the two estimators with a function f very smooth and given by

∀x ∈ R, f(x) =

5∑

k=1

cos(2kπx),

with f1 = 1/2 > 0. Moreover, the sequence (Xn) is a sequence of independent
random variables of lawN (0, 1) truncated on the interval [−1/2; 1/2] (generated
according to an accept-reject algorithm). Hence, the density g of the sequence
(Xn) is given by

∀x ∈ R, g(x) =
e−x2/2

∫ 1/2

−1/2 e
−t2dt

1{x∈[−1/2;1/2]}.

Thus, the sequence θ̃n defined by (2.1) can be computed with θ̃n ∈ [−1/4; 1/4]
and for all n ≥ 0,





θ̃n+1 = π[−1/4;1/4]

(
θ̃n + 1

nTn+1

)

Tn+1 = sin(2π(Xn+1−θ̃n))
g(Xn+1)

.

In order to compute the sequence θ̂n, one have to estimate the density g. For
that, we make the choice of taking two different kernels, the gaussian one KG

and the uniform one KU which are defined, for all x ∈ R, by

KG(x) =
e−x2/2

√
2π

and KU (x) =
1

2
1{−1/2≤x≤1/2}.

We also choose the bandwidth hn = n−1/5 where α = 1/5 is known to be the

optimal choice in kernel estimation. Hence, the sequence θ̂Gn defined by (2.4)

with the kernel KG and the sequence θ̂Un defined by (2.4) with the kernel KU

can be computed with θ̂Gn ∈ [−1/4; 1/4] and θ̂Un ∈ [−1/4; 1/4] and for all n ≥ 0,




θ̂Gn+1 = π[−1/4;1/4]

(
θ̂Gn + 1

n T̂
G
n+1

)
,

T̂G
n+1 =

sin(2π(Xn+1 − θ̂Gn ))

ĝGn (Xn+1)
,

ĝGn (Xn+1) =
1

n

n∑

k=1

1

hk
KG

(
Xk −Xn+1

hk

)
,

and 



θ̂Un+1 = π[−1/4;1/4]

(
θ̂Un + 1

n T̂
U
n+1

)
,

T̂U
n+1 =

sin(2π(Xn+1 − θ̂Un ))

ĝUn (Xn+1)
,

ĝUn (Xn+1) =
1

n

n∑

k=1

1

hk
KU

(
Xk −Xn+1

hk

)
.

We compute these three algorithms until n = 500. The almost sure convergence
of the three estimators are represented in Figure 1.
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Fig 1. Almost sure convergence of θ̂G
500

(green), θ̂U
500

(blue) and θ̃500 (red).
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Fig 2. Boxplots of the 100 values obtained for θ̂G
500

(1 on the Figure), θ̂U
500

(2) and θ̃500 (3).

We can point out that, if we look at Figure 1, a priori the numerical perfor-
mances of the three estimators are similar. Nevertheless, this comparison is not
so convincing. Then, in order to be more precise and to compare the robustness
of these three estimates, we compute 100 times these three algorithms until
n = 500. We have plotted in Figure 2 the boxplots of the 100 values obtained
for each estimator. Moreover, the mean of the 100 values for each estimator is
0.0493 for θ̃, 0.0448 for θ̂G and 0.0430 for θ̂U . Hence, from a practical point of
view, it is clear that θ̃500 is a better estimate than the two others : it has a mean
and a median closer to θ than the two others, and the distance between its first
and its third quartile is smaller than for the two others estimates. In addition,
we can also say that, on this data set, the numerical performances of θ̂G are a
little better than the ones of θ̂U . Hence, it is not surprising that the choice of
the kernel plays a role in the performance of the estimation.

To conclude, with a very smooth regression function, the numerical perfor-
mances of each estimate are good and logically, the performances of the esti-
mator using the density g are better. We have also observed that the estimator
computed with the gaussian kernel performs a little better than the one com-
puted with the uniform kernel.
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Fig 3. Almost sure convergence of θ̂G
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Fig 4. Boxplots of the 100 values obtained for θ̂
G
500

(1), θ̂U
500

(2) and θ̃500 (3).

3.2. Numerical comparison when g is known with f non smooth

In this part, we propose to compare the numerical asymptotic behavior of the
estimator θ̃n defined by (2.1) and the new estimator proposed in the paper θ̂n
given by (2.4) with a function f which is not continuous, with period 1 and
defined, for x ∈ [−1/2; 1/2[, by

f(x) =
1

2
1−1/2≤x<−1/4 + 1−1/4≤x<1/4 +

1

2
11/4≤x<1/2,

with f1 < 0. We keep every other functions and values of the last part. Only
the regression function f is changed. As in the first part, we have plotted in
Figure 3 the almost sure convergence of each estimate, and the boxplots of the
100 values obtained for each estimator. In that case, the mean of the 100 values
is 0.0492 for θ̃, 0.0342 for θ̂G and 0.0286 for θ̂U .

Here, comparing Figure 2 and Figure 4, it is clear that the non smooth
function f damaged the estimation. However, the numerical performances of



Estimation of the shift parameter in regression models 1007

the estimate θ̃500 is again better than the ones of the two others : the mean and
the median are closer to θ than the ones of the two others. Nevertheless, one can
observe in Figure 4 than the distance between the first and the third quartile
for θ̃500 is larger than when the density f were smooth and is also larger than
for the two other estimates. One can also point out that the estimates θ̂G500 and

θ̂U500 underestimate θ.
To conclude, with a regression function which is not continuous, the numerical

performances of each estimate are quite good but damaged by the non smooth
function.

4. Proofs

4.1. Proof of Lemma 2.1.

For all x ∈ [−1/2; 1/2], we have

ĝn(x)− g(x) = ĝn(x) − E [ĝn(x)] + E [ĝn(x)] − g(x)

=
Mn(x)

n
+
Rn(x)

n
(4.1)

where, for all n ≥ 1 and for all x ∈ [−1/2; 1/2],

Mn(x) =

n∑

k=1

Khk
(Xk − x)− E [Khk

(Xk − x)] , (4.2)

and

Rn(x) =

n∑

k=1

E [Khk
(Xk − x)]− g(x), (4.3)

with, for x ∈ [−1/2; 1/2],

Khk
(x) =

1

hk
K

(
x

hk

)
.

Firstly, (Mn(x)) is a square integrable martingale whose increasing process is
given, for all n ≥ 1 and x ∈ [−1/2; 1/2], by

〈M(x)〉n =

n∑

k=1

E

[
Khk

(Xk − x)
2
]
− E [Khk

(Xk − x)]
2

≤
n∑

k=1

E

[
Khk

(Xk − x)
2
]
.

However, for all 1 ≤ k ≤ n,

E

[
Khk

(Xk − x)
2
]
=

1

hk

∫

R

K2 (y) g(x+ hky)dy.
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Hence, as g is bounded, we deduce, for all x ∈ [−1/2; 1/2], that

〈M(x)〉n ≤ ||g||∞ µ2
n∑

k=1

1

hk
≤ ||g||∞ µ2 n

hn
a.s. (4.4)

Moreover, denote, for all n ≥ 1 and for all x ∈ [−1/2; 1/2], ∆Mn(x) =Mn(x)−
Mn−1(x). Then, we have

|∆Mn(x)| ≤
2

hn
||K||∞. (4.5)

In particular, with the choice hn = 1/nα, we infer from (4.4) and from (4.5)
that there exists two constants a and b such that

〈M(0)〉n ≤ an1+α and |∆Mn(0)| ≤ bnα. (4.6)

Moreover, as the kernel K is bounded and Lipschitz, for all δ ∈ ]0; 1[, there
exists a constant Cδ such that, for all x, y ∈ R,

|K(x)−K(y)| ≤ Cδ |x− y|δ. (4.7)

Thus, for all x, y ∈ [−1/2; 1/2], one obtain that

|∆Mn(x)−∆Mn(y)| ≤ 2Cδ |x− y|δ nα(1+δ).

In addition, for all x, y ∈ [−1/2; 1/2],

〈M(x) −M(y)〉n ≤
n∑

k=1

E

[(
Khk

(Xk − x))−K2
hk

(Xk − y))
)2]

,

≤
n∑

k=1

k2α
∫

R

(K (kα (u− x))−K (kα (u− y)))
2
g(u)du.

With the change of variables t = kα (u− x), one then obtain that

〈M(x) −M(y)〉n ≤ ||g||∞
n∑

k=1

kα
∫

R

(K (t)−K (t+ kα(x− y)))2 dt. (4.8)

Consequently, we deduce from (4.7) that, for all 1 ≤ k ≤ n,
∫

R

(K (t)−K (t+ kα(x− y)))
2
dt ≤ 2C2δ |x− y|2δ k2αδ.

Hence, it follows from (4.8) that, for all x, y ∈ [−1/2; 1/2],

〈M(x) −M(y)〉n ≤ 2C2δ |x− y|2δ n1+α+2αδ.

As δ ca be choosen as small as we want, the four conditions of Theorem 6.4.34
page 220 of [6] are satisfactory with s2n−1 = n1+α, that is to say the martingale
(Mn(x)) checks, for all (1 + α)/2 < β < 1,

sup
|x|≤1/2

|Mn(x)| = o(nβ) a.s. (4.9)
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Finally, it keeps to control the term Rn(x) defined by (4.3). However, for all
x ∈ [−1/2; 1/2] and for all 1 ≤ k ≤ n,

|E [Khk
(Xk − x)]− g(x)| ≤

∫

R

K(y) |g(x+ hky)dy − g(x)|

≤ h2k ||g′′||∞ ν2.

Hence, for 0 < α < 1/2, one obtain that

sup
|x|≤1/2

|Rn(x)|
n

= O
(
1

n

n∑

k=1

h2k

)
= O

(
h2n
)

a.s. (4.10)

The conjunction of (4.1), (4.9) and (4.10) leads to, for 0 < α < 1/2 and for all
(1 + α)/2 < β < 1,

sup
|x|≤1/2

|ĝn(x)− g(x)| = O
(
n−2α + nβ−1

)
a.s. (4.11)

which concludes the proof.

4.2. Proof of Theorem 2.1.

Without loss of generality, we suppose that f1 > 0. Denote by Fn the sigma-
algebra Fn = σ (X0, Y0, . . . , Xn, Yn). We compute the two first conditional mo-

ments of T̂n+1 in order to find suitable upper bounds. On the one hand, for all
n ≥ 0,

E

[
T̂n+1|Fn

]
= E [Tn+1|Fn] + E

[(
T̂n+1 − Tn+1

)
|Fn

]
. (4.12)

where

Tn+1 =
sin
(
2π(Xn+1 − θ̂n)

)

g(Xn+1)
Yn+1. (4.13)

Thanks to (5.2) of [1], we have

E [Tn+1|Fn] = φ
(
θ̂n

)
a.s.,

where the function φ is defined by (2.2). Hence, we deduce from (4.12) that

E

[
T̂n+1|Fn

]
= φ

(
θ̂n

)
+ E

[(
T̂n+1 − Tn+1

)
|Fn

]
a.s. (4.14)

On the other hand, for all n ≥ 0,

E

[
T̂ 2
n+1|Fn

]
= E

[(
T̂n+1 − Tn+1 + Tn+1

)2
|Fn

]

≤ 2E
[
T 2
n+1|Fn

]
+ 2E

[(
T̂n+1 − Tn+1

)2
|Fn

]
. (4.15)
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Thanks (5.4) of [1], there exists a constant M > 0 such that

sup
n≥0

E
[
T 2
n+1|Fn

]
≤M a.s.

Hence, it follows from (4.15) that, for all n ≥ 0,

E

[
T̂ 2
n+1|Fn

]
≤ 2M + 2E

[(
T̂n+1 − Tn+1

)2
|Fn

]
. (4.16)

Moreover, for all n ≥ 0, denote Vn =
(
θ̂n − θ

)2
. Using the fact that πK is

Lipschitz with constant 1, we have, for all n ≥ 0,

E [Vn+1|Fn] ≤ Vn + γ2n+1E

[
T̂ 2
n+1|Fn

]
+ 2γn+1

(
θ̂n − θ

)
E

[
T̂n+1|Fn

]
. (4.17)

Hence, it follows from (4.14), (4.16) and the previous inequality (4.17), that

E [Vn+1|Fn] ≤ Vn+2γ2n+1 (M + Pn)+2γn+1

(
θ̂n − θ

)
φ
(
θ̂n

)
+2γn+1Qn, (4.18)

where

Pn = E

[(
T̂n+1 − Tn+1

)2
|Fn

]
(4.19)

and
Qn = E

[∣∣∣T̂n+1 − Tn+1

∣∣∣ |Fn

]
. (4.20)

However, for all n ≥ 0,

T̂n+1 − Tn+1 = sin
(
2π(Xn+1 − θ̂n)

)
Yn+1

(
1

ĝn(Xn+1)
− 1

g(Xn+1)

)

=
sin
(
2π(Xn+1 − θ̂n)

)
Yn+1

g(Xn+1)ĝn(Xn+1)
(g(Xn+1)− ĝn(Xn+1)) .

Since g does not vanish on its support, f is bounded and εn+1 is independent
of Fn with finite moment of order 2, we immediately deduce the existence of
C1 > 0 and C2 > 0 such that

Pn = E

[
sin2

(
2π(Xn+1 − θ̂n)

)
Y 2
n+1

g2(Xn+1)ĝ2n(Xn+1)

(
g(Xn+1)− ĝn(Xn+1)

)2∣∣∣Fn

]

≤ C1E

[
(g(Xn+1)− ĝn(Xn+1))

2

ĝ2n(Xn+1)

∣∣∣Fn

]
, (4.21)

and

Qn ≤ E

[∣∣sin
(
2π(Xn+1 − θ̂n)

)
Yn+1

∣∣
g(Xn+1)ĝn(Xn+1)

|g(Xn+1)− ĝn(Xn+1)|
∣∣∣Fn

]
,
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≤ C2E

[∣∣g(Xn+1)− ĝn(Xn+1)
∣∣

ĝn(Xn+1)

∣∣∣Fn

]
. (4.22)

On the one hand,

E

[
(g(Xn+1)− ĝn(Xn+1))

2

ĝ2n(Xn+1)

∣∣∣Fn

]
=

∫ 1/2

−1/2

(g(x)− ĝn(x))
2 g(x)

ĝ2n(x)
dx, (4.23)

and on the other hand,

E

[ |g(Xn+1)− ĝn(Xn+1)|
ĝn(Xn+1)

∣∣∣Fn

]
=

∫ 1/2

−1/2

|g(x)− ĝn(x)|
g(x)

ĝn(x)
dx. (4.24)

Then, it follows from Lemma 2.1 and the two previous calculations (4.23) and
(4.24) that, for all (1 + α)/2 < β < 1,

E

[
(g(Xn+1)− ĝn(Xn+1))

2

ĝ2n(Xn+1)

∣∣∣Fn

]
= O

((
n−4α + n2(β−1)

)∫ 1/2

−1/2

g(x)

ĝ2n(x)
dx

)
a.s.,

(4.25)
and

E

[ |g(Xn+1)− ĝn(Xn+1)|
ĝn(Xn+1)

∣∣∣Fn

]
= O

(
(
n−2α + nβ−1

) ∫ 1/2

−1/2

g(x)

ĝn(x)
dx

)
a.s.

(4.26)
We immediately deduce from (4.21) and (4.22) that

Pn = O
((

n−4α + n2(β−1)
)∫ 1/2

−1/2

g(x)

ĝ2n(x)
dx

)
a.s. (4.27)

and

Qn = O
(
(
n−2α + nβ−1

) ∫ 1/2

−1/2

g(x)

ĝn(x)
dx

)
a.s. (4.28)

Moreover, for all x ∈ [−1/2; 1/2],

lim
n→+∞

ĝn(x) = g(x) a.s.

Since g and ĝn are defined on the compact set [−1/2; 1/2], it follows from (4.27)
and (4.28) that

Pn = O
(
n−4α + n2(β−1)

)
a.s. (4.29)

and
Qn = O

(
n−2α + nβ−1

)
a.s. (4.30)

Finally, as γn = 1/n, we infer from the two previous equations that, for all
0 < α < 1,

+∞∑

n=0

γ2n+1Pn < +∞ a.s. (4.31)
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and
+∞∑

n=0

γn+1Qn < +∞ a.s. (4.32)

To conclude, we deduce from (4.31) and (4.32) together with (4.18) and the
Robbins-Siegmund Theorem (see [6] page 18), that the sequence (Vn) converges
almost surely to a finite random variable and

+∞∑

n=1

γn+1

(
θ̂n − θ

)
φ
(
θ̂n

)
< +∞ a.s.

Following exactly the same lines as proof of Theorem 2.1 of [1] from equation

(5.6), we deduce that (θ̂n) converges almost surely to θ and that the number

of times that the random variable θ̂n + γn+1T̂n+1 goes outside of C is almost
surely finite.

4.3. Proof of Lemma 2.2

Denote by (Wn) the sequence defined, for all n ≥ 0, by

Wn =
Vn
γn
.

Then, one deduce from (4.18) and from the choice of step γn = 1/n that

E [Wn+1|Fn] ≤Wn (1 + γn) + 2γn+1 (M + Pn) + 2
(
θ̂n − θ

)
φ
(
θ̂n

)
+ 2Qn.

(4.33)
Moreover, since (4.29), there exists a constant L > 0 such that

E [Wn+1|Fn] ≤Wn (1 + γn) + γn+1L+ 2
(
θ̂n − θ

)
φ
(
θ̂n

)
+ 2Qn. (4.34)

In addition, we have for all x ∈ R, φ(x) = 2πf1(θ − x) + f1(θ − x)v(x) where

v(x) =
sin(2π(θ − x))− 2π(θ − x)

(θ − x)
.

By the continuity of the function v, one can find 0 < ε < 1/2 such that, if
|x− θ| < ε,

q

2f1
< v(x) < 0. (4.35)

Hence, it follows from (4.34) that for all n ≥ 1,

E[Wn+1|Fn] ≤Wn + 2γnWn(q − f1v(θ̂n)) + γnL+ 2Qn (4.36)

with 2q = 1 − 4πf1 which means that q < 0. Then, it follows from (2.7) and
(4.35) that

0 < −f1v(θ̂n)I{τm>n} < −
(q
2

)
I{τm>n}. (4.37)
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Hence, we deduce from the conjunction of (4.36) and (4.37) that,

E[Wn+1I{τm>n}|Fn]

≤WnI{τm>n} + 2γnWnI{τm>n}

(
q − q

2

)
+ γnL+ 2QnI{τm>n}

≤WnI{τm>n}(1 + qγn) + γnL+ 2QnI{τm>n}. (4.38)

Since {τm > n+ 1} ⊂ {τm > n}, we obtain by taking the expectation on both
sides of (4.38) that for all n ≥ m,

E[Wn+1I{τm>n+1}] ≤ (1 + qγn)E[WnI{τm>n}] + γnL+ 2E
[
QnI{τm>n}

]
. (4.39)

From now on, denote αn = E[WnI{τm>n}]. We infer from (4.39) that for all
n ≥ m,

αn+1 ≤ βnαm + Lβn

n∑

k=m

γk
βk

+ 2βn

n∑

k=m

1

βk
E
[
QkI{τm>k}

]
(4.40)

where

βn =

n∏

k=m

(1 + qγk).

As γn = 1/n, it follows from straightforward calculations that βn = O(nq) and

n∑

k=1

γk
βk

= O(n−q).

Moreover, one have from (4.22) and (4.24) that there exists C2 > 0 such that,

QnI{τm>n} ≤ C2

∫ 1/2

−1/2

|g(x)− ĝn(x)|
g(x)

ĝn(x)
I{τm>n}dx. (4.41)

However, for all x ∈ [−1/2; 1/2], we have

g(x)

ĝn(x)
I{τm>n} ≤ g(x)

Cg − ε
.

Then, taking expectation on both sides of (4.41), it follows from the previous
inequality that

E
[
QnI{τm>n}

]
≤ C2

∫ 1/2

−1/2

E [|g(x)− ĝn(x)|]
g(x)

Cg − ε
dx,

≤ C2

Cg − ε
sup

x∈[−1/2;1/2]

E [|g(x)− ĝn(x)|] . (4.42)

The quantity E [|g(x)− ĝn(x)|] corresponds to the mean error of the recursive
Parzen-Rosenblatt estimator. Hence, it is well-known that for 0 < α < 1/2,

sup
x∈[−1/2;1/2]

E [|g(x)− ĝn(x)|] = O
(
n−2α + n

α−1

2

)
.
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Then, one deduce from (4.42) that, for 0 < α < 1/2,

E
[
QnI{τm>n}

]
= O

(
n−2α + n

α−1

2

)
, (4.43)

which implies that

βn

n∑

k=m

1

βk
E
[
QkI{τm>k}

]
= O

(
n−2α+1 + n

α+1

2

)
.

Thus, (4.40) together the previous equation implies that

αn = O
(
n−2α+1 + n

α+1

2

)
.

Hence, for all m ≥ 0,

E[WnI{τm=+∞}] = O
(
n−2α+1 + n

α+1

2

)
, (4.44)

that is to say, for 0 < α < 1/2,

E

[(
θ̂n − θ

)2
I{τm=+∞}

]
= O

(
n−2α + n

α−1

2

)
.

4.4. Proof of Theorem 2.2

Without loss of generality, we suppose that f1 > 0. We have the decomposition,
for all n ≥ 0,

θ̂n+1 = θ̂n + γn+1

(
T̂n+1 − φ

(
θ̂n

))
+ γn+1φ

(
θ̂n

)
+ dn+1, (4.45)

where
dn+1 = πK

(
θ̂n + γn+1T̂n+1

)
−
(
θ̂n + γn+1T̂n+1

)
. (4.46)

Moreover, as φ is two times differentiable, there exists 0 < ξn < 1 such that

φ
(
θ̂n

)
=
(
θ̂n − θ

)
φ′ (θ) +

(
θ̂n − θ

)2

2
φ′′
(
θ + ξn

(
θ̂n − θ

))
. (4.47)

Then, it follows from (4.45) and (4.47) that, for all n ≥ 0,

θ̂n+1 − θ = αn

(
θ̂n − θ

)
+ γn+1

(
T̂n+1 − φ

(
θ̂n

))
+ γn+1rn + dn+1, (4.48)

where
αn = 1 + γn+1φ

′ (θ) , (4.49)



Estimation of the shift parameter in regression models 1015

and

rn =

(
θ̂n − θ

)2

2
φ′′
(
θ + ξn

(
θ̂n − θ

))
. (4.50)

In addition, for all n ≥ 0,

T̂n+1 = Tn+1 +An+1 +Bn+1 + Cn+1, (4.51)

where Tn+1 is given by (4.13) and

An+1 = sin (2π(Xn+1 − θ))Yn+1

(
g(Xn+1)− ĝn(Xn+1)

g2(Xn+1)

)
, (4.52)

Bn+1 =
(sin(2π(Xn+1 − θ̂n))− sin(2π(Xn+1 − θ)))(g(Xn+1)− ĝn(Xn+1))

g2(Xn+1)
Yn+1,

(4.53)
and

Cn+1 = sin
(
2π(Xn+1 − θ̂n)

)
Yn+1

(
(g(Xn+1)− ĝn(Xn+1))

2

g2(Xn+1)ĝn(Xn+1)

)
. (4.54)

Then, denoting Dn+1 = An+1 + Bn+1 + Cn+1, it follows from (4.51), that for
all n ≥ 0,

T̂n+1 = Tn+1+E [An+1|Fn]+Dn+1−E [Dn+1|Fn]+E [Bn+1|Fn]+E [Cn+1|Fn] .
(4.55)

Finally, we deduce from (4.48) that, for all n ≥ 0,

θ̂n+1 − θ =

(
αn + γn+1

E [Bn+1|Fn]

θ̂n − θ
+ γn+1

rn

θ̂n − θ

)(
θ̂n − θ

)

+ γn+1

(
Tn+1 + E [An+1|Fn]− φ

(
θ̂n

))

+ γn+1 (Dn+1 − E [Dn+1|Fn]) + γn+1E [Cn+1|Fn] + dn+1. (4.56)

An immediate recurrence in the previous equality leads to, for all n ≥ 1,

√
n
(
θ̂n − θ

)
= n1/2βn−1

(
θ̂1 − θ

)
+ n1/2βn−1Sn−1 + n1/2βn−1R

1
n−1

+ n1/2βn−1R
2
n−1 + n1/2βn−1R

3
n−1, (4.57)

where

βn−1 =

n−1∏

k=1

(
αk + γk+1

E [Bk+1|Fk]

θ̂k − θ
+ γk+1

rk

θ̂k − θ

)
, (4.58)

Sn−1 =

n−1∑

k=1

γk+1

βk

(
Tk+1 − φ

(
θ̂k

)
+ E [Ak+1|Fk]

)
, (4.59)
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R1
n−1 =

n−1∑

k=1

γk+1

βk
(Dk+1 − E [Dk+1|Fk]) , (4.60)

R2
n−1 =

n−1∑

k=1

γk+1

βk
E [Ck+1|Fk] , (4.61)

and

R3
n−1 =

n−1∑

k=1

1

βk
dk+1. (4.62)

4.4.1. Equivalent of βn−1

We begin by finding a simple equivalent of the sequence βn−1 given by (4.58).
Firstly, one have, for all n ≥ 0,

E [Bn+1|Fn]

=

∫ 1/2

−1/2

(sin(2π(x − θ̂n))− sin(2π(x− θ)))

g(x)
f(x− θ) (g(x)− ĝn(x)) dx. (4.63)

Hence, as f is bounded and g does not vanish on [−1/2; 1/2], we deduce that
there exists a constant C > 0 such that, for all n ≥ 1,

∣∣∣∣
E [Bn+1|Fn]

θ̂n − θ

∣∣∣∣

≤
∫ 1/2

−1/2

∣∣∣∣∣
(sin(2π(x− θ̂n)) − sin(2π(x − θ)))

θ̂n − θ

f(x− θ)

g(x)
(g(x)− ĝn(x))

∣∣∣∣∣ dx

≤ C sup
−1/2≤x≤1/2

|g(x)− ĝn(x)|.

In particular, thanks to Lemma 2.1 and with γn = 1/n,

+∞∑

n=1

γn+1

∣∣∣∣
E [Bn+1|Fn]

θ̂n − θ

∣∣∣∣ < +∞ a.s. (4.64)

Secondly, by definition of φ given by (2.2), one have for all x ∈ R,

φ′′(x) = −4π2f1 sin (2π (θ − x)) .

Hence, one can find a constant C > 0 such that for all n ≥ 0,

∣∣∣∣∣
θ̂n − θ

2
φ′′
(
θ + ξn

(
θ̂n − θ

))∣∣∣∣∣ ≤ C
(
θ̂n − θ

)2
.
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Thus, for all n ≥ 1,

+∞∑

n=1

γn+1

∣∣∣∣∣
θ̂n − θ

2
φ′′
(
θ + ξn

(
θ̂n − θ

))∣∣∣∣∣ ≤ C

+∞∑

n=1

γn+1

(
θ̂n − θ

)2
.

Consequently, with γn = 1/n, one deduce from Lemma 2.2 that, if 0 < α < 1/2,
on {τm = +∞}, the sequence

n∑

k=1

γk+1

∣∣∣∣∣
θ̂k − θ

2
φ′′
(
θ + ξk

(
θ̂k − θ

))∣∣∣∣∣

converges a.s. Moreover, as ∪+∞
m=1{τm = +∞} is a set of probability 1, it follows

that, for 0 < α < 1/2,

+∞∑

n=1

γn+1

∣∣∣∣∣
θ̂n − θ

2
φ′′
(
θ + ξn

(
θ̂n − θ

))∣∣∣∣∣ < +∞ a.s. (4.65)

Finally, one infer from (4.58) together with (4.64) and (4.65) that there exists
a constant c > 0 such that

βn−1 ∼ c

n−1∏

k=1

αk,

that is to say
βn−1 ∼ cnq, (4.66)

where q := φ′ (θ) = −2πf1 < −1/2. Finally, for 0 < α < 1/2, we infer from
(4.66) that (4.57) is equivalent to

√
n
(
θ̂n − θ

)
= n1/2+q

(
θ̂1 − θ

)
+ n1/2+qSn−1 + n1/2+qR1

n−1 (4.67)

+ n1/2+qR2
n−1 + n1/2+qR3

n−1,

where in each sum Sn−1, R
1
n−1, R

2
n−1 and R3

n−1,
γk+1

βk is replaced by k−1−q.

Now, we are going to analyze the asymptotic behaviour of each term of (4.67).
Firstly, as q < −1/2, we immediately have

n1/2+q
(
θ̂1 − θ

)
= o(1) a.s. (4.68)

4.4.2. Asymptotic behaviour of (R3
n−1)

The sequence (R3
n−1) is almost surely finite since the number of times that the

random variable θ̂n+sign(f1)γn+1T̂n+1 goes outside of C is almost surely finite
(Theorem 2.1). Hence, as q < −1/2,

n1/2+qR3
n−1 = O(n1/2+q) = o(1) a.s. (4.69)
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4.4.3. Asymptotic behaviour of (R1
n−1)

The sequence (R1
n) is a square integrable martingale whose increasing process

is given, for all n ≥ 1, by

〈R1〉n−1 =

n−1∑

k=1

1

k2+2q

(
E
[
D2

k+1|Fk

]
− E [Dk+1|Fk]

2
)

≤
n−1∑

k=1

1

k2+2q
E
[
D2

k+1|Fk

]
a.s. (4.70)

In addition, as Dk+1 = Ak+1 + Bk+1 + Ck+1, one obtain that, for all 1 ≤ k ≤
n− 1,

E
[
D2

k+1|Fk

]
≤ 4

(
E
[
A2

k+1|Fk

]
+ E

[
B2

k+1|Fk

]
+ E

[
C2

k+1|Fk

])

Hence, since f is bounded, g does not vanish on its support and (εn) has a
moment of order 2, one immediately deduce from (4.52), (4.53) and (4.54) that

E
[
D2

n+1|Fn

]
= O

(
sup

−1/2≤x≤1/2

(g(x)− ĝn(x))
2

)
a.s.

Then, it follows from Lemma 2.1 and (4.70) that, for all n ≥ 1, a.s.

〈R1〉n−1 = O
(

n−1∑

k=1

1

k2+2q
(k−4α + k2β−2)

)
= O

(
n−1∑

k=1

1

k2+2q+4α
+

1

k4+2q−2β

)

If 2 + 2q + 4α > 1 and 4 + 2q − 2β > 1, 〈R1〉n−1 converges a.s., and then R1
n−1

converges a.s.
If 2 + 2q + 4α = 1 and 4 + 2q − 2β = 1, then 〈R1〉n−1 = O (log(n)) . We

then deduce from the strong law of large numbers for martingales that R1
n−1 =

o(log(n)) a.s.
If 2 + 2q + 4α < 1 and 4 + 2q − 2β < 1, then

〈R1〉n−1 = O
(

1

n1+2q+4α
+

1

n3+2q−2β

)
a.s.

Then, we infer from the strong law of large numbers for martingales given by
Theorem 1.3.15 of [6] that for any γ > 0,

R1
n−1 = O

(
log(n)1/2+γ/2

n1/2+q+2α
+

log(n)1/2+γ/2

n3/2+q−β

)
a.s.

In the three cases, as q < −1/2, one can conclude that

n1/2+qR1
n−1 = o(1) a.s. (4.71)
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4.4.4. Asymptotic behaviour of (R2
n−1)

From the same way as previously, one deduce from (4.54) that

E
[
C2

n+1|Fn

]
= O

(
sup

−1/2≤x≤1/2

(g(x)− ĝn(x))
2

)
a.s.

Hence, it follows from Lemma 2.1 that

R2
n−1 = O

(
n−1∑

k=1

1

k1+q
sup

−1/2≤x≤1/2

|g(x)− ĝk(x)|2
)

= O
(

n−1∑

k=1

1

k1+q+4α
+

1

k3+q−2β

)
a.s.

Thus, if 1 + q + 4α > 1 and 3 + q − 2β > 1, the sequence (R2
n−1) converges a.s.

whereas if 1 + q + 4α = 1 and 3 + q − 2β = 1, one obtain that

R2
n−1 = O (log(n)) a.s.

In the case where 1 + q + 4α < 1 and 3 + q − 2β < 1, one deduce that

R2
n−1 = O

(
1

nq+4α
+

1

nq+2−2β

)
a.s.

Finally, in the three cases, one obtain that, if α > 1/8 and β < 3/4,

n1/2+qR2
n−1 = o(1) a.s. (4.72)

The hypothesis β < 3/4 implies to take α < 1/2. Hence, one obtain from (4.67)
together with (4.68), (4.69), (4.71) and (4.72), that if 1/8 < α < 1/2,

√
n
(
θ̂n − θ

)
= n1/2+qSn−1 + o(1) a.s. (4.73)

where we recall that, for all n ≥ 1,

Sn−1 =

n−1∑

k=1

1

k1+q

(
Tk+1 − φ

(
θ̂k

)
+ E [Ak+1|Fk]

)
. (4.74)

One deduce from (2.2) and (4.13) the decomposition, for n ≥ 1,

n−1∑

k=1

1

k1+q

(
Tk+1 − φ

(
θ̂k

))
=M1

n−1 +M2
n−1 (4.75)

where

M1
n−1 =

n−1∑

k=1

1

k1+q
sin
(
2π(θ − θ̂k)

)(cos (2π(Xk+1 − θ))

g(Xk+1)
Yk+1 − f1

)
(4.76)

and

M2
n−1 =

n−1∑

k=1

1

k1+q
cos
(
2π(θ − θ̂k)

) sin (2π(Xk+1 − θ))

g(Xk+1)
Yk+1. (4.77)
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4.4.5. Asymptotic behaviour of (M1
n−1)

The sequence (M1
n−1) is a square integrable martingale whose increasing process

is given, for all n ≥ 1, by

〈M1〉n−1 =

n−1∑

k=1

1

k2+2q
sin
(
2π(θ− θ̂k)

)2
E

[(
cos(2π(Xk+1 − θ))

g(Xk+1)
Yk+1−f1

)2

|Fk

]
.

(4.78)
Moreover, since f is bounded, g does not vanish on its support and (εk) has a
moment of order 2, one immediately obtain from (4.78) that

〈M1〉n−1 = O
(

n−1∑

k=1

1

k2+2q
sin
(
2π(θ − θ̂k)

)2
)

a.s.

In addition, since (θ̂n) converges almost surely to θ and
∑n−1

k=1
1

k2+2q = O
(
n−1−2q

)
,

we finally deduce that

〈M1〉n−1 = o(n−1−2q) a.s.

In addition, since εn admits a moment of order > 2, the sequence (M1
n−1) checks

a Lyapunov condition. Consequently, one can conclude from the central limit
theorem for martingales given e.g. by Corollary 2.1.10 of [6] that

n1/2+qM1
n−1 = oP(1). (4.79)

Hence, it follows from (4.75) and (4.79) that

n1/2+q
n−1∑

k=1

1

k1+q

(
Tk+1 − φ

(
θ̂k

))
=M2

n−1 + oP(1), (4.80)

where M2
n−1 is given by (4.77). Furthermore, since (θ̂n) converges almost surely

to θ, one immediately deduce that the asymptotic behaviour of M2
n is the same

as the one of the sequence M3
n−1, given for all n ≥ 1, by

M3
n−1 =

n−1∑

k=1

1

k1+q

sin (2π(Xk+1 − θ))

g(Xk+1)
Yk+1. (4.81)

4.4.6. Asymptotic behaviour of (Sn−1)

Finally, one obtain from (4.74) and (4.80) that, for n ≥ 1,

n1/2+qSn−1 = n1/2+qM3
n−1 + n1/2+q

n−1∑

k=1

1

k1+q
E [Ak+1|Fk] + oP(1), (4.82)
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where M3
n−1 is given by (4.81). In addition, (4.52) and the symmetry of f leads

to, for all n ≥ 1,

E [An+1|Fn] =

∫ 1/2

−1/2

sin (2π(x− θ)) f(x− θ)

(
g(x)− ĝn(x)

g(x)

)
dx

= −
∫ 1/2

−1/2

a(x)ĝn(x)dx. (4.83)

where for all −1/2 ≤ x ≤ 1/2,

a(x) =
sin (2π(x− θ)) f(x− θ)

g(x)
. (4.84)

Hence, we deduce from (2.6) and the change of variables u = Xi−x
hi

, that

∫ 1/2

−1/2

a(x)ĝn(x)dx =
1

n

n∑

i=1

∫ 1/2

−1/2

a(x)
1

hi
K

(
Xi − x

hi

)
dx

=
1

n

n∑

i=1

∫ 1/2−Xi
hi

−1/2−Xi
hi

a(Xi + hiu)K(u)du. (4.85)

Moreover, since Xn ∈ [−1/2; 1/2], one have

−1/2−Xn

hn
−→

n→+∞
−∞ a.s. and

1/2−Xn

hn
−→

n→+∞
+∞ a.s. (4.86)

From now, denote by [−A;A] the support of K. Then, we have, for all n ≥ 1,

∫ 1/2−Xn
hn

−1/2−Xn
hn

a(Xn + hnu)K(u)du =

∫ A

−A

a(Xn + hnu)K(u)du

+

∫ −A

−1/2−Xn
hn

a(Xn + hnu)K(u)du

+

∫ 1/2−Xn
hn

A

a(Xn + hnu)K(u)du.

Then, we deduce from the previous equality and (4.85) and (4.86) that

∫ 1/2

−1/2

a(x)ĝn(x)dx =
1

n

n∑

i=1

∫ A

−A

a(Xi + hiu)K(u)du+O
(
1

n

)
a.s. (4.87)

Moreover, as f and g are two times differentiable, one can write a Taylor expan-
sion of the function a given by (4.84). More precisely, there exists 0 < ξi < 1
such that a.s.

a(Xi + hiu) = a(Xi) + hiua
′(Xi) +

h2i
2
u2a′′(Xi + ξihiu).
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Consequently, since K is a symmetric density and f and g have bounded
derivates, one infer from the previous equality and (4.87) that, as α < 1/2,

∫ 1/2

−1/2

a(x)ĝn(x)dx =
1

n

n∑

i=1

a(Xi) +O
(
1

n

n∑

i=1

h2i

)
+O

(
1

n

)

=
1

n

n∑

i=1

a(Xi) +O
(

1

n2α

)
a.s. (4.88)

Finally, one deduce from (4.83) together with (4.84) and (4.88) that, as α < 1/2,

E [An+1|Fn] = − 1

n

n∑

i=1

sin (2π(Xi − θ)) f(Xi − θ)

g(Xi)
+O

(
1

n2α

)
a.s. (4.89)

Moreover, if 1 + q + 2α < 1, then for α > 1/4,

n1/2+q
n−1∑

k=1

1

k1+q+2α
= o(1).

If 1 + q + 2α ≥ 1, it is obvious that

n1/2+q
n−1∑

k=1

1

k1+q+2α
= o(1).

Hence, it follows from (4.89) and the two previous equality that a.s.,

n1/2+q
n−1∑

k=1

1

k1+q
E [Ak+1|Fk]

= −n1/2+q
n−1∑

k=1

1

k2+q

k∑

i=1

sin (2π(Xi − θ)) f(Xi − θ)

g(Xi)
+ o(1). (4.90)

Finally, the conjunction of (4.73) together with (4.82) and (4.90) let us to con-
clude that, for 1/4 < α < 1/2,

√
n
(
θ̂n − θ

)

= n1/2+qM3
n−1 + n1/2+q

n−1∑

k=1

1

k2+q

k∑

i=1

sin (2π(Xi − θ)) f(Xi − θ)

g(Xi)
+ oP(1)

= n1/2+q

(
n−1∑

k=1

1

k1+q
v(Xk+1)Yk+1 −

n−1∑

k=1

1

k2+q

k∑

i=1

v(Xi)f(Xi − θ)

)
+ oP(1).

(4.91)

where for all −1/2 ≤ x ≤ 1/2,

v(x) =
sin (2π(x− θ))

g(x)
. (4.92)
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From now, denote for all 1 ≤ k ≤ n− 1,

Uk =

(
Xk

εk

)
. (4.93)

4.4.7. Conclusion

In the following, we note U a random variable independent of the sequence (Un)
and with the same law as Un. We obtain from (4.91) that, for 1/4 < α < 1/2,

√
n
(
θ̂n − θ

)
= n1/2+q

(
n−1∑

k=1

1

k1+q
ψ1(Uk+1)−

n−1∑

k=1

1

k2+q

k∑

i=1

ψ2(Ui)

)
+ oP(1),

(4.94)
where the function ψ1 and ψ2 are such that, for all x = (x1, x2) ∈ R

2,

ψ1(x) = v(x1) (f(x1 − θ) + x2) and ψ2(x) = v(x1)f(x1 − θ). (4.95)

In addition,

n−1∑

k=1

1

k2+q

k∑

i=1

ψ2 (Ui) =

n−1∑

i=1

n−1∑

k=i

1

k2+q
ψ2 (Ui) =

n−1∑

i=1

sn−1
i ψ2 (Ui) (4.96)

where for 1 ≤ i ≤ n− 1,

sn−1
i =

n−1∑

k=i

1

k2+q
. (4.97)

Thus, it follows from (4.96) that for n ≥ 3,

n−1∑

k=1

1

k1+q
ψ1(Uk+1)−

n−1∑

k=1

1

k2+q

k∑

i=1

ψ2(Ui)

=
n−2∑

k=1

(
1

k1+q
ψ1(Uk+1)− sn−1

k+1ψ2(Uk+1)

)
+

1

(n− 1)1+q
ψ1(Un)− sn−1

1 ψ2(U1).

(4.98)

Moreover, since ψ1(Un) and ψ2(Un) are integrable, we have

n1/2+q

(
1

(n− 1)1+q
ψ1(Un)− sn−1

1 ψ2(U1)

)
= oP(1).

One finally deduce from (4.94) and (4.98) that for 1/4 < α < 1/2,

√
n
(
θ̂n − θ

)
= n1/2+q

n−2∑

k=1

(
1

k1+q
ψ1(Uk+1)− sn−1

k+1ψ2(Uk+1)

)
+ oP(1),

= (1 1)n1/2+qMn + oP(1), (4.99)
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where for n ≥ 3,

Mn =

n−2∑

k=1

(
akψ1 (Uk+1)
bkψ2 (Uk+1) ,

)
(4.100)

and for 1 ≤ k ≤ n− 2,

ak =
1

k1+q
and bk = −sn−1

k+1 . (4.101)

Moreover, as f is symmetric and (εn) is of mean 0, it is not hard to see that,
for 1 ≤ k ≤ n− 2,

E

[(
akψ1 (Uk+1)
bkψ2 (Uk+1)

) ∣∣∣Fk

]
= E

[(
akψ1 (U)
bkψ2 (U)

)]
= 0.

Consequently, the sequence (Mn) is a vectorial martingale whose increasing
process is the matrix defined for n ≥ 3, by

〈M〉n =

n−2∑

k=1

(
a2kσ

2
1 akbkσ1,2

akbkσ1,2 b2kσ
2
2

)
. (4.102)

where

σ2
1 = E

[
ψ1(U)2

]
, σ2

2 = E
[
ψ2(U)2

]
and σ1,2 = E [ψ1(U)ψ2(U)] .

Moreover, for q < −1/2,

n1+2q
n−2∑

k=1

a2k = n1+2q
n−2∑

k=1

1

k2+2q
−→

n→+∞

∫ 1

0

dx

x2+2q
= − 1

1 + 2q
. (4.103)

In addition, for n ≥ 3,

n−2∑

k=1

akbk = −
n−2∑

k=1

1

k1+q
sn−1
k+1 = −

n−2∑

k=1

n−1∑

i=k+1

1

k1+q

1

i2+q
= −

n−1∑

i=2

i−1∑

k=1

1

k1+q

1

i2+q
.

Hence, one deduce from the Toeplitz lemma that, as q < −1/2,

n1+2q
n−2∑

k=1

akbk

= − 1

n

n−1∑

i=2

n2+2q

i2+2q

1

i

i−1∑

k=1

i1+q

k1+q
−→

n→+∞
−
∫ 1

0

dx

x1+q

∫ 1

0

dx

x2+2q
= − 1

1 + 2q

1

q
.

(4.104)

Finally,

n−2∑

k=1

b2k =

n−2∑

k=1

(
sn−1
k+1

)2
=

n−2∑

k=1

(
n−1∑

i=k+1

1

i2+q

)2

=

n−2∑

k=1

n−1∑

i=k+1

n−1∑

j=k+1

1

i2+q

1

j2+q
.
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Consequently,

lim
n→+∞

n1/2+q
n−2∑

k=1

b2k = lim
n→+∞

n1/2+q




n−1∑

i=2

1

i2+q

i∑

j=2

1

j1+q
+

n−1∑

j=3

1

j2+q

j−1∑

i=2

1

i1+q


 .

Hence, it immediately follows from (4.104) that

n1+2q
n−2∑

k=1

b2k −→
n→+∞

2
1

1 + 2q

1

q
. (4.105)

Hence, we infer from (4.102) together with (4.103), (4.104) and (4.105) that

n1+2q〈M〉n −→
n→+∞

− 1

q(1 + 2q)

(
qσ2

1 σ1,2
σ1,2 −2σ2

2

)
a.s. (4.106)

In order to apply the central limit theorem for vectorial martingales, it remains
to check the Lindeberg condition, that is to say, for all ε > 0,

n1+2q
n−2∑

k=1

E

[
||Vk+1||2 1||Vk+1||≥εn−1/2−q

∣∣∣Fk

]
P−→

n→+∞
0

where Vk+1 =

(
akψ1 (Uk+1)
bkψ2 (Uk+1)

)
. However, for δ > 0, one have

n−2∑

k=1

E

[
||Vk+1||2 1||Vk+1||≥εn−1/2−q

∣∣∣Fk

]
=

n−2∑

k=1

E

[
||Vk+1||2+δ

||Vk+1||
1||Vk+1||≥εn−1/2−q

∣∣∣Fk

]

≤ 1

ε
n1/2+q

n−2∑

k=1

E

[
||Vk+1||2+δ

∣∣∣Fk

]

(4.107)

Moreover, for 1 ≤ k ≤ n− 2,

E

[
||Vk+1||2+δ

∣∣∣Fk

]
= E

[(
a2kψ1 (Uk+1)

2
+ b2kψ2 (Uk+1)

2
)1+δ/2 ∣∣∣Fk

]

≤ 2δ/2
(
a2+δ
k E

[
ψ1 (U)2+δ

]
+ b2+δ

k E

[
ψ2 (U)2+δ

])
. (4.108)

Hence, as (εn) has a moment of order > 2, one immediately deduce from (4.107)
and (4.108) that there exists κε > 0 such that

n1+2q
n−2∑

k=1

E

[
||Vk+1||2 1||Vk+1||≥εn−1/2−q

∣∣∣Fk

]
≤ κεn

3/2+3q
n−2∑

k=1

(
a2+δ
k + b2+δ

k

)
.

(4.109)
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However,

n3/2+3q
n−2∑

k=1

(
a2+δ
k +b2+δ

k

)
= n3/2+3q

(
n−2∑

k=1

1

k(1+q)(2+δ)
+

n−2∑

k=1

(
n−1∑

i=k+1

1

i2+q

)2+δ)
.

(4.110)
If q = −1, then

n3/2+3q

(
n−2∑

k=1

1

k(1+q)(2+δ)
+

n−2∑

k=1

(
n−1∑

i=k+1

1

i2+q

)2+δ)

= O
(
n3/2−3(n+ n log(n)2+δ)

)
= o(1). (4.111)

If q < −1 then,

n3/2+3q

(
n−2∑

k=1

1

k(1+q)(2+δ)
+

n−2∑

k=1

(
n−1∑

i=k+1

1

i2+q

)2+δ)
= O

(
n3/2+3q

n1+2q+qδ+δ

)

= O
(
n1/2+q−δ(q+1)

)
= o(1).

(4.112)

as soon as δ < 1/2+q
1+q . Moreover, in this case, 1/2+q

1+q > 0.

If −1 < q < −1/2 there exists a constant c > 0 such that

n−1∑

i=k+1

1

i2+q
≤ c

k1+q
,

which implies that

n3/2+3q

(
n−2∑

k=1

1

k(1+q)(2+δ)
+

n−2∑

k=1

(
n−1∑

i=k+1

1

i2+q

)2+δ)
= O

(
n−2∑

k=1

n3/2+3q

k(1+q)(2+δ)

)
.

In the case where (1 + q)(2 + δ) < 1 then,

n3/2+3q
n−2∑

k=1

1

k(1+q)(2+δ)
= O

(
n3/2+3q

n1+2q+qδ+δ

)
= O

(
n1/2+q−δ(q+1)

)
= o(1)

(4.113)

as soon as δ > 1/2+q
1+q , which is right because 1/2+q

1+q < 0. In the case where

(1 + q)(2 + δ) ≥ 1, we clearly have

n3/2+3q
n−2∑

k=1

1

k(1+q)(2+δ)
= o(1). (4.114)

Finally, one deduce from (4.107), (4.108) (4.109) and (4.110) together with
(4.111), (4.112), (4.113) and (4.114) that

n1+2q
n−2∑

k=1

E

[
||Vk+1||2 1||Vk+1||≥εn−1/2−q

∣∣∣Fk

]
−→

n→+∞
0 a.s. (4.115)
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that seems that the Lindeberg condition is satisfied. One can conclude from
(4.106) and from (4.115) and the central limit theorem for martingales given
e.g. in Corollary 2.1.10 page 46 of [6] that

n1/2+qMn
L−→ N (0,Γ) , (4.116)

where

Γ = − 1

q(1 + 2q)

(
qσ2

1 σ1,2
σ1,2 −2σ2

2

)
. (4.117)

Moreover, as (εn) is of mean 0 and variance σ2 and independent of (Xn),
straightforward but tedious calculations lead to

σ2
1 = E

[
ψ1(U)2

]
=

∫ 1/2

−1/2

sin2 (2π(x− θ))

g(x)

(
f2(x− θ) + σ2

)
dx,

σ2
2 = E

[
ψ2(U)2

]
=

∫ 1/2

−1/2

sin2 (2π(x− θ))

g(x)
f2(x− θ)dx,

and
σ1,2 = E [ψ1(U)ψ2(U)] = σ2

2 .

Finally, (4.99) together with (4.116) and the Slutsky theorem let us to conclude
that, if 1/4 < α < 1/2,

√
n
(
θ̂n − θ

) L−→ N
(
0,− 1

1 + 2q
σ2
1

)
,

which ends the proof of Theorem 2.2.
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