
Electronic Journal of Statistics

Vol. 8 (2014) 883–893
ISSN: 1935-7524
DOI: 10.1214/14-EJS913

Random Latin squares and Sudoku

designs generation

Roberto Fontana

Dept. of Mathematical Sciences

Politecnico di Torino – Italy

e-mail: roberto.fontana@polito.it

Abstract: Uniform random generation of Latin squares is a classical prob-
lem. In this paper we prove that both Latin squares and Sudoku designs
are maximum cliques of properly defined graphs. We have developed a sim-
ple algorithm for uniform random sampling of Latin squares and Sudoku
designs. The corresponding SAS code is available in the supplementary
material.

AMS 2000 subject classifications: Primary 62K15.
Keywords and phrases: Latin squares, Sudoku designs, random genera-
tion, cliques.

Received May 2013.

1. Introduction

Generating uniformly distributed random Latin squares is a a topic with a long
history in the design of experiments and related fields. Already in 1933, F. Yates
[10] wrote

. . . it would seem theoretically preferable to choose a square at random from all
the possible squares of given size.

The widely used algorithm for generating random Latin squares of a given order
is given in [7]. It is based on a proper set of moves that connect all the squares
and make the distribution of visited squares approximately uniform.

In this paper, we present a new approach that is based on the equivalence
between Latin squares and maximum cliques of a graph. This approach is also
valid for Sudoku designs.

The paper is organized as follows. In Section 2, the equivalence between
Latin squares (Sudoku designs) and maximum cliques of a suitable graph is
demonstrated. Section 3 describes an algorithm for generating uniformly dis-
tributed random Latin squares and Sudoku designs. The corresponding SAS
code is available in the supplementary material [6]. Concluding remarks are
made in Section 4.

2. Latin squares and Sudoku designs are maximum cliques

2.1. Latin squares

A Latin square of order n is an n × n matrix Ln in which each of n distinct
symbols appear n times, once in each row and one in each column. For the

883

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/14-EJS913
mailto:roberto.fontana@polito.it

884 R. Fontana

sake of simplicity we consider the integers 1, 2, . . . , n as symbols. We denote by
Ln[·, c], c = 1, . . . , n (Ln[r, ·], r = 1, . . . , n) the columns (the rows) of Ln and by
Ln the set of all the Latin squares of order n.

For example, a Latin square of order 4, L4 ∈ L4, is given by

L4 =

1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

. (1)

We can look at a Latin square Ln = [ℓrc; r, c = 1, . . . , n] as a set of n disjoint
permutation matrices, following the approach recently adopted in [4] and [5].

For each symbol s, s = 1, . . . , n we consider the n × n matrix P (s) = [p
(s)
rc ;

r, c = 1, . . . , n] where

p(s)rc =

{

1 if ℓrc = s

0 otherwise
.

Given a permutation matrix P the corresponding permutation π = (π1, . . . , πn)
of (1, . . . , n) is defined as

π = P1n

where 1n is the n×1 column vector whose elements are 1, . . . , n. Viceversa, given
a permutation π = (π1, . . . , πn) of (1, . . . , n) the corresponding permutation
matrix P = [prc; r, c = 1, . . . , n] is defined as

prc =

{

1 if c = πr

0 otherwise
. (2)

We denote by φ the function that transforms a permutation π of (1, . . . , n) into
a permutation matrix P = φ(π) according to Equation (2).

For the Latin square L4 ∈ L4 of Equation (1), the permutation matrix P (2)

is given by

P (2) =

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

and the corresponding permutation π(2) of (1, 2, 3, 4) is

π(2) = (2, 3, 4, 1).

It immediately follows that a Latin square of order n can be written as

Ln = P (1) + 2P (2) + · · ·+ nP (n) (3)

where P (s), s = 1, . . . , n are mutually disjoint permutation matrices. Two per-

mutation matrices P (s) and P (t) are disjoint if and only if p
(s)
rc p

(t)
rc = 0 for each

r, c ∈ {1, . . . , n}. Equivalently two permutations π(s) and π(t) are disjoint if and

only if π
(s)
r 6= π

(t)
r for r = 1, . . . , n.

Random Latin squares and Sudoku designs generation 885

Without loss of generality, as we will explain below, assume that P (1) = In
where In is the n × n identity matrix. The permutation π(1) corresponding to
P (1) is the identity permutation ιn, π

(1) ≡ ιn = (1, . . . , n).
Let us denote by Pn the set of all the permutations of {1, . . . , n} and, given

π ∈ Pn, by Lπ
n ⊂ Ln the set of all the Latin squares of order n for which P (1) =

φ(π) and P (2) < · · · < P (n) where P (s) < P (t) or, equivalently, π(s) < π(t)

means that (π
(s)
1 , . . . , π

(s)
n) <lex (π

(t)
1 , . . . , π

(t)
n). The symbol “<lex” denotes the

standard lexicographic order, (a1, . . . , an) <lex (b1, . . . , bn) ⇔ ∃m > 0 ∀i <

m ai = bi and am < bm. For simplicity we will write “<” in place of “<lex”. As
it will become clear later on, any order between permutations can be chosen.

Let us consider Lιn
n , the set of all the Latin squares of order n for which

P (1) = In and P (2) < · · · < P (n). As Lιn
n is built, we can generate all the Latin

squares of order n, Ln ∈ Ln, considering

1. all the (n − 1)! permutations (s2, . . . , sn) of the symbols 2, . . . , n and as-
signing them to the permutation matrices P (2), . . . P (n)

In + s2P
(2) + · · ·+ snP

(n);

2. all the n! sets Lπ
n where π ∈ Pn is a permutation of (1, . . . , n). We observe

that Lπ
n contains all the Latin squares that are generated permuting the

columns of a Latin square Ln of Lιn
n

Lπ
n = {[Ln[·, π1]| . . . |Ln[·, πn]] : Ln ∈ Lιn

n }.

It follows that in order to generate a random Latin square Ln it is sufficient:

1. to generate a random Latin square L
(1)
n ∈ Lιn

n ;

2. to generate L
(2)
n by a random permutation of the symbols 2, . . . , n of L

(1)
n ;

3. to generate Ln by a random permutation of the columns of L
(1)
n .

We observe that the number #Ln of Latin squares of order n is

#Ln = n!(n− 1)!#Lιn
n . (4)

It is worth noting that the suggested approach, making use of symbols and
columns permutations, allows us to reduce the number of Latin squares to
be explicitly considered from #Ln to #Lιn

n with a reduction factor equal to
n!(n− 1)!. More specifically, the third step of the procedure above is based on
the assigment of the initial permutation matrix P (1) = In.

To generate a Latin square Ln ∈ Lιn
n we have to build n − 1 permutation

matrices P (s), s = 2, . . . , n, P (2) < · · · < P (n), that are mutually disjoint and
that are disjoint with In. In the language of permutations, a permutation δ

that is disjoint with the identity permutation ιn, i.e. δr 6= r, r = 1, . . . , n, is
called a derangement. The permutation matrix P = [prc; r, c = 1, . . . , n] of a
derangement δ, P = φ(δ), satisfies the condition prr = 0, r = 1, . . . , n.

It follows that we have to build n − 1 derangements δ(s), s = 2, . . . , n of

(1, . . . , n), δ(2) < · · · < δ(n) such that δ
(s)
r 6= δ

(t)
r , r = 1, . . . , n for each s, t ∈

{2, . . . , n}, s 6= t.

886 R. Fontana

Let Dn ⊂ Pn be the set of all the derangements of (1, . . . , n): we denote by
dn the number of derangements of (1, . . . , n), dn = #Dn.

Let Gn = (Vn, En) be the undirected graph whose set of vertices Vn is the
set of derangements Dn and whose set of edges En contains all the couples of

derangements (δ(i), δ(j)), i < j such that δ
(i)
r 6= δ

(j)
r , r = 1, . . . , n. The following

theorem, which to the best of our knowledge is new, holds.

Theorem 1. The Latin squares Ln of order n of Lιn
n are the ordered cliques

Cn−1 of size n− 1 of Gn = (Vn, En)

Cn−1 = (δ(2), . . . , δ(n)), δ(2) < · · · < δ(n).

Cn−1 are the largest cliques of Gn.

Proof. A Latin square Ln ∈ Lιn
n can be written as

Ln = In + 2P (2) + · · ·+ nP (n)

where P (s) is the permutation matrix corresponding to the derangement δ(s) =
P (s)1n, s = 2, . . . , n and δ(2) < · · · < δ(n). The derangements δ(s) are disjoint.
It follows that {δ(2), . . . , δ(n)} is a clique of Gn. Viceversa, given the clique
{δ(2), . . . , δ(n)} with δ(2) < · · · < δ(n) we build

L⋆
n = In + 2φ(δ(2)) + · · ·+ nφ(δ(n))

where φ is defined in Equation (2). It is immediately evident that L⋆
n = Ln.

Finally, Latin squares correspond to the largest cliques because it is evident
that it is not possible to find a set of m > n derangements of {1, . . . , n} that
are disjoint.

2.2. Sudoku designs

For the definition of Sudoku designs we refer to [1]

In 1956, W. U. Behrens ([2]) introduced a specialisation of Latin squares which
he called gerechte. The n× n grid is partitioned into n regions, each containing
n cells of the grid; we are required to place the symbols 1, . . . , n into the cells of
the grid in such a way that each symbol occurs once in each row, once in each
column, and once in each region. The row and column constraints say that the
solution is a Latin square, and the last constraint restricts the possible Latin
squares. By this point, many readers will recognize that solutions to Sudoku
puzzles are examples of gerechte designs, where n = 9 and the regions are the
3 × 3 subsquares. (The Sudoku puzzle was invented, with the name “number
place”, by Harold Garns in 1979.)

Analogously to Latin squares, we describe a Sudoku design in terms of Sudoku
permutation matrices, as discussed in [4] and [5].

Let us define the regions in which the matrix is divided. We will refer to
regions as boxes. Let us consider a n × n matrix, where n = p2 and p is a
positive integer. Its row and column positions (i, j) are coded with the integer

Random Latin squares and Sudoku designs generation 887

from 0 to p2− 1. We define boxes Bk,m, k,m = 0, . . . , p− 1 as the following sets
of positions

Bk,m = {(i, j) : kp ≤ i < (k + 1)p,mn ≤ j < (m+ 1)n} .

It follows that any n × n matrix A can be partitioned into submatrices Akm

corresponding to boxes Bk,m.
An n × n matrix Sn is a Sudoku, if in each row, in each column and in

each box, each of the integers 1, . . . , n appears exactly once. We denote by
Sn the set of all the n × n Sudokus. In Sudoku literature, the set of boxes
Bb,m, m = 0, . . . , p− 1 constitutes the bth band, b = 0, . . . , p− 1, while the set
of boxes Bk,s, k = 0, . . . , p− 1 constitutes the sth stack, s = 0, . . . , p− 1.

Let us define a Sudoku permutation matrix P̃ , referred to as an S-matrix P̃ ,
as a permutation matrix of order n which has exactly one “1” in each submatrix
Pk,m corresponding to boxes Bk,m, k,m = 0, . . . , p−1. Let us denote by P̃n ⊂ Pn

the set of all Sudoku permutations. An n × n Sudoku Sn identifies n matrices
P̃ (i), i = 1, . . . , n, where P̃ (i) is the S-matrix corresponding to the positions
occupied by the integer i. It follows that a Sudoku Sn ∈ Sn can be written as

Sn = P̃ (1) + 2P̃ (2) + · · ·+ nP̃ (n). (5)

We observe that P̃ (1), . . . , P̃ (n) are mutually disjoint and that Equation (5) is
the analogue of Equation (3) for Sudoku designs.

We observe that the identity permutation ιn is not a Sudoku permutation,
apart from the trivial n = 2 case.

We can easily generate S-matrices. Let us define a more compact represen-
tation of an S-matrix S, by building the p × p matrix S⋆, whose elements are
the only possible position, within each box, where S is equal to 1. Among the
S-matrices we can define S⋆

0,n whose elements (S⋆
0,n)km, k,m = 1, . . . , p are

(S⋆
0,n)km = (m, k).

For the n = 4 case we obtain

S⋆
0,4 =

[

(1, 1) (2, 1)
(1, 2) (2, 2)

]

and the corresponding S-matrix S0,4 is

S0,4 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.

For the n = 9 case we obtain

S⋆
0,9 =

(1, 1) (2, 1) (3, 1)
(1, 2) (2, 2) (3, 2)
(1, 3) (2, 3) (3, 3)

888 R. Fontana

and the corresponding S-matrix S0,9 is

S0,9 =

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

.

We will denote by σ0,n the permutation corresponding to the S-matrix S0,n,
σ0,n = S0,n1n. It will play the role of the identity permutation ιn for Sudoku
designs.

All the S-matrices can be generated by permuting the rows within each band
and the columns within each stack. It follows that the total number of S-matrices
is p!2p, [4].

Let G̃n = (Ṽn, Ẽn) be the undirected graph whose set of vertices Ṽn is
the set of derangements of σ0,n that are also S-permutations, briefly Sudoku-

derangements, and whose set of edges Ẽn contains all the couple of Sudoku-

derangements (δ̃(i), δ̃(j)), i < j such that δ̃
(i)
r 6= δ̃

(j)
r , r = 1, . . . , n.

Theorem 1 holds if we replace the graph Gn with the graph G̃n. We observe
that G̃n is a subgraph of Gn.

Let us denote by S
σ0,n

n the set of all the Sudokus of order n for which P̃ (1) =
S0,n and P̃ (2) < · · · < P̃ (n).

As S
σ0,n

n is built, we can generate all the Sudokus of order n = p2 considering

1. all the (n − 1)! permutations (s2, . . . , sn) of the symbols 2, . . . , n and as-
signing them to the permutation matrices P̃ (2), . . . P̃ (n)

In + s2P̃
(2) + · · ·+ snP̃

(n)

2. all the p!2p sets Sσ
n where σ is a Sudoku permutation of (1, . . . , n).

For the total number of Sudokus of order n we get Equation (6) which is the
equivalent of Equation (4):

#Sn = (n− 1)!p!2p#Sσ0,n

n (6)

3. An algorithm for random sampling

3.1. Latin squares

The algorithm takes n as input and gives Ln, a random Latin square of order n,
as output.

The main steps of the algorithm are as follows.

Random Latin squares and Sudoku designs generation 889

1. Build the undirected graph Gn = (Vn, En):

(a) generate Vn ≡ Dn, the set of all the derangements δ(i), i = 1, . . . , dn
of {1, . . . , n};

(b) generate En, the set of all the edges corresponding to all the couples

of derangements (δ(i), δ(j)), i < j such that δ
(i)
r 6= δ

(j)
r , r = 1, . . . , n.

2. Generate all the largest cliques of Gn.
3. Randomly extract one of the largest clique and order its vertices lexico-

graphically. Let use denote this ordered clique by Cn−1 = (δ(2), . . . , δ(n)).
The corresponding Latin square is

L(1)
n = In + 2φ(δ(2)) + · · ·+ nφ(δ(n)).

4. Randomly choose one permutation σ = (s2, . . . , sn) of (2, . . . , n) and gen-
erate

L(2)
n = In + s2φ(δ

(2)) + · · ·+ snφ(δ
(n)).

5. Randomly choose one permutation γ of (1, . . . , n) and generate Ln per-

muting the columns of L
(2)
n according to γ.

It should be pointed out that in the SAS code the generic derangement δ is
stored as the coordinate vector (δ1, . . . , δn).

We now describe the algorithm for n = 5.

1. We generateD5 taking all the permutations δ of (1, . . . , 5) such that δr 6= r,
r = 1, . . . , 5. D5 contains 44 derangements. We denote by δ(i), i = 1, . . . , 44
the elements of D5.

2. We generate E5 considering all the
(

44
2

)

= 946 couples of derangements

(δ(s), δ(t)), δ(s) < δ(t) such that δ
(s)
r 6= δ

(t)
r , r = 1, . . . , 5. We find 276

edges. The graph G5, generated using the function tkplot of the R package
igraph, [3], is shown in Figure 1.

3. We use the function largest.cliques of the R package igraph, [3], to
get all the largest cliques of D0,5. Equivalently we can use the Optnet
procedure of SAS/OR, [11] or Cliquer, [8]. We find 56 cliques of size 4.

4. We randomly choose one clique C4 and we order it lexicographically

C4 = (δ(11), δ(17), δ(23), δ(37))

where δ(11) = (2, 5, 4, 3, 1), δ(17) = (3, 4, 5, 1, 2), δ(23) = (4, 1, 2, 5, 3) and

δ(37) = (5, 3, 1, 2, 4). The corresponding Latin square is L
(1)
5 = In +

2φ(δ(2)) + 3φ(δ(17)) + 4φ(δ(30)) + 5φ(δ(36)), that is

L
(1)
5 =

1 2 3 4 5
4 1 5 3 2
5 4 1 2 3
3 5 2 1 4
2 3 4 5 1

(7)

890 R. Fontana

1

2

3

4

5

6

7

8
9

1011121314
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32 33 34 35 36
37

38

39

40

41

42

43

44

Fig 1. The graph G5.

5. we finally get L5 by randomly choosing one permutation σ for the symbols
2, . . . , 5, σ = (4, 3, 2, 5), and one permutation γ for the columns 1, . . . , 5,
γ = (3, 1, 2, 4, 5)

L5 =

3 1 4 2 5
5 2 1 3 4
1 5 2 4 3
4 3 5 1 2
2 4 3 5 1

. (8)

3.2. Sudoku designs

The algorithm remains the same apart from the substitution of the graph Gn

with G̃n and by limiting the permutations of step (5) to the permutations of
the rows within band and of the columns within stacks. For example, for the
case n = 22 we find three maximum cliques of G̃4. By randomly choosing one
permutation of the symbols 2, 3, 4 among the six available, and one S-matrix
to be used as P̃ (1), among the sixteen available, we can randomly generate one
Sudoku design from the total of 288, (#S4 = 288).

Random Latin squares and Sudoku designs generation 891

Table 1

Number of derangements of (1, . . . , n), n ≤ 9

0 1 2 3 4 5 6 7 8 9

1 0 1 2 9 44 265 1854 14833 133496

3.3. Computational aspects

We ran the algorithm using a standard laptop (CPU Intel Core i7-2620M CPU
2.70 GHz 2.70 GHz, RAM 8 Gb). We were able to solve the problems corre-
sponding to the orders up to n = 7 for which we found 16, 942, 080 cliques. For
n = 7 we used Cliquer [8] to find all the cliques. Taking into account symbol
and column permutations our algorithm was able to extract uniformly at ran-
dom a Latin square of order 7 among all the order 7 Latin squares that are
7!6!16, 942, 080 = 61, 479, 419, 904, 000.

For Latin squares the number of nodes of Gn coincides with the number
of derangements (see Table 1). For Sudoku designs the numbers of Sudoku-
derangements are 7 for n = 4 and 17, 972 for n = 9.

If n becomes large with respect to the available computational resources it
is possible to replace the graph Gn (G̃n) with a random subgraph Ak

n (Ãk
n) of

it, where k denotes the number of the selected nodes. We point out that, if
we take one clique at random from those of the subgraph Ak

n (Ãk
n), the distri-

bution from which we are sampling is not uniform. Nonetheless, this approach
can be useful for selecting the starting point of the algorithm described in [7],
which is based on moves between different designs. We experimented with this
approach for the 9 × 9 Sudoku design, which is the most common structure
for the popular Sudoku puzzle. We randomly chose 809 Sudoku derangements
among the 17, 972 available. The subgraph has 112, 579 edges. Its largest cliques
have dimensions equal to 8 and are 73. By randomly choosing one clique, one
permutation of the symbols 2, . . . , 9 and one Sudoku matrix we can generate
the Sudoku S9 ∈ S9

S9 =

1 3 4 5 7 6 2 9 8
8 7 2 1 4 9 6 3 5
6 9 5 3 2 8 1 7 4
7 1 9 8 5 3 4 2 6
2 8 6 7 1 4 9 5 3
4 5 3 6 9 2 8 1 7
3 4 1 9 6 7 5 8 2
5 2 8 4 3 1 7 6 9
9 6 7 2 8 5 3 4 1

It is worth noting that recent advances in software for huge graph analysis
(millions of nodes) make it possible to manage problems that are extremely
interesting from a practical point of view.

892 R. Fontana

4. Conclusion

This paper presented a simple algorithm for uniform random sampling from
the population of Latin squares and Sudoku designs. The algorithm is based
on the largest cliques of proper graphs and has been implemented in SAS. The
code exports the graph in a format that can be used by other software, like
Cliquer, [8]. The algorithm could be run using the entire graph Gn up to an
order n equal to 7 on a standard desktop machine.

Future research will aim at testing the algorithm for higher orders. Recent
advances in graph analytics on huge graphs such as those naturally arising in
social sciences (see e.g. [9] for an overview on the subject), make this objective
feasible and challenging at the same time. In this case, as a first approach the
algorithm could remain the same, i.e. based on sampling the largest cliques of
the proper graphs, Gn for Latin squares or G̃n for Sudoku designs.

Other approaches that could be used for higher orders rely on the replacement
of Gn (G̃n) with a random subgraph Ak

n (Ãk
n). As we discussed in the paper, if we

take one clique at random from those of the subgraph Ak
n (Ãk

n), the distribution
from which we are sampling is not uniform. Nonetheless, this approach can be
useful for selecting the starting point of the algorithm described in [7], which
is based on moves between different designs. Another possibility that could be
investigated is based on building a (non-uniform) distribution of the subgraphs
so that the random sampling of the largest cliques becomes uniform. The order of
the nodes of Gn (G̃n) could be used to build such a distribution of the subgraphs.

5. Acknowledgements

The author wishes to thank the Editor and Referee for the accurate revision
that helped produce a clearer version of the work.

Supplementary Material

Supplement to “Random Latin squares and Sudoku designs genera-

tion”

(doi: 10.1214/14-EJS913SUPP; .zip).

References

[1] Bailey, R. A., Cameron, P. J. and Connelly, R. (2008). Sudoku,
gerechte designs, resolutions, affine space, spreads, reguli, and Hamming
codes. Amer. Math. Monthly 115 383–404. MR2408485

[2] Behrens, W. (1956). Feldversuchsanordnungen mit verbessertem Ausgle-
ich der Bodenunterschiede. Zeitschrift für Landwirtschaftliches Versuch-

sund Untersuchungswesen 2 176–193.
[3] Csardi, G. and Nepusz, T. (2006). The igraph software package for com-

plex network research. InterJournal Complex Systems 1695.

http://dx.doi.org/10.1214/14-EJS913SUPP
http://www.ams.org/mathscinet-getitem?mr=2408485

Random Latin squares and Sudoku designs generation 893

[4] Dahl, G. (2009). Permutation matrices related to Sudoku. Linear Algebra
and Its Applications 430 2457–2463. MR2508304

[5] Fontana, R. (2011). Fractions of permutations. An application to Sudoku.
Journal of Statistical Planning and Inference 141 3697–3704. MR2823640

[6] Fontana, R. (2014). Supplement to “Random Latin squares and Sudoku
designs generation”. DOI: 10.1214/14-EJS913SUPP.

[7] Jacobson, M. T. and Matthews, P. (1996). Generating uniformly dis-
tributed random Latin squares. Journal of Combinatorial Designs 4 405–
437. MR1410617

[8] Niskanen, S. and Österg̊ard, P. R. (2003). Cliquer User’s Guide: Ver-

sion 1.0. Helsinki University of Technology.
[9] Shao, B., Wang, H. and Xiao, Y. (2012). Managing and mining large

graphs: Systems and implementations. In Proceedings of the 2012 Interna-

tional Conference on Management of Data 589–592. ACM.
[10] Yates, F. (1933). The formation of Latin squares for use in field experi-

ments. Empire Journal of Experimental Agriculture 1 235–244.
[11] (2012). SAS/OR(R) 12.1 User’s Guide: Network Optimization Algorithms.

http://www.ams.org/mathscinet-getitem?mr=2508304
http://www.ams.org/mathscinet-getitem?mr=2823640
http://dx.doi.org/10.1214/14-EJS913SUPP
http://www.ams.org/mathscinet-getitem?mr=1410617

	Introduction
	Latin squares and Sudoku designs are maximum cliques
	Latin squares
	Sudoku designs

	An algorithm for random sampling
	Latin squares
	Sudoku designs
	Computational aspects

	Conclusion
	Acknowledgements
	Supplementary Material
	References

