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Abstract: Proteomics is a rapidly growing research area within bioinfor-
matics which focuses on quantification of peptide concentrations and on
the identification of proteins and peptides. In quantitative proteomics the
identification of biomarkers from peptide concentrations is important for
diagnostic purposes and treatment of diseases.

The goal of this paper is to facilitate research in this area, by providing a
test bed for comparison of 1D curve registration methods. This is done in a
novel way, by providing not only curves, but also an answer key as to how
the peaks should align. In the following papers a number of approaches
to this problem are given, and the answer key provides unusually useful
insights into how the methods compare.

For this reason, we consider proteomics mass spectrometry profiles which
are part of a larger study into the identification of biomarkers in Acute
Myeloid Leukaemia (AML). For these profiles large ion counts result in
large peaks, but these peaks may occur at different retention times for dif-
ferent profiles. The first step in the quantification of peptides in proteomics
profiles is the alignment of the 1D curves of total ion count (TIC).

The paper includes a description of proteomics mass spectrometry pro-
filing, and considers profiles from five patients with AML. It outlines the
preprocessing steps we applied to the multiple TIC samples from each pa-
tient, and introduces the reference peptides. The retention times of the
reference peptides are known for each profile, and using these times as an
answer key makes the 1D TIC curves a particularly informative test bed
for curve registration.
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1. Introduction

Proteomics includes the study of proteins, the smaller peptides and their expres-
sion levels. Availability of high-accuracy mass spectrometry (MS) instruments
in proteomics research, which allow efficient acquisition of mass data, has led to
the development of methods for quantitative proteomics. Of particular interest
is the quantification of peptide concentrations which includes comparisons of
peak intensities across multiple data sets.

The mass data consist of detected peptide ions which are recorded for a
range of retention times and mass-to-charge intervals. In this paper we focus on
total peptide ion count – or total ion current (TIC) – as functions of retention
times only, and we refer to these data as mass spectrometry (MS) curves or
MS profiles, or simply as profiles or curves. For different profiles large peaks
may occur at different retention times – partly a consequence of the set-up and
external conditions influencing the measurements. An alignment of the profiles
is therefore an important first step in an analysis of such data.

We consider liquid chromatography-mass spectrometry (LC-MS) profiles of
total ion count which were collected as part of a larger study into the identifi-
cation of biomarkers in Acute Myeloid Leukaemia (AML) at the University of
Adelaide in 2010–11, see Ho [3] and references therein. For these data a number
of reference peptides with known retention times are available. Our mass pro-
files include the reference peptides which makes these one-dimensional profiles
an unusually informative test bed for curve registration.

Acute Myeloid Leukaemia is an aggressive haematological malignancy in
which haematopoietic progenitors are arrested in an early stage of development.
Extensive cell proliferation of immature blasts accumulates in bone marrow and
peripheral blood and eventually in the liver, spleen and the central nervous
system. See Lowenberg et al. [5]. The conventional therapy for patients diag-
nosed with AML is chemotherapy which has a survival rate of less than 50%
over five years, and which is even less effective for patients over 60 years old.
See Koschmieder et al. [4]. Alternative treatments of AML include the thera-
peutic use of all-trans retinoic acid (ATRA) which has benefitted patients with
a distinct subtype of the disease. See Czibere et al. [2]. So far, there is not
enough evidence to determine whether other patient groups would benefit from
ATRA. Clinically useful biomarkers are required to assist therapeutic decision
making and prediction of therapeutic responses for each individual patient with
AML. In the biomarker discovery study at the University of Adelaide, we try
to find proteins through an MS profiling approach which is able to distinguish
between patients who respond and those who do not respond to chemotherapy
and treatment with ATRA.

This paper is organised as follows. Section 2 gives a brief introduction to
proteomics, including the LC-MS approach. Section 3 describes LC-MS for the
AML data and discusses techniques and aims relevant to these data. In Sec-
tion 4 we describe the data in more detail, including the preprocessing steps of
the AML data. Section 5 suggests how to assess the performance of alignment
methods and proposes a visualisation tool for illustrating and comparing the
success of alignment methods.
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2. Proteomics

The proteome is the entire complement of proteins including their splice forms
and post translational modifications of a cell, a tissue or a body fluid at any
given point in time. Proteomics is the large scale qualitative and quantitative
analysis of the proteome and the field which aims to describe the proteome of
all biological organisms.

The word proteome was coined by Marc Wilkins in 1994 out of the words pro-
tein and genome, see Wasinger et al. [7], and the word proteomics was coined
in 1997 in analogy with genomics. The proteome is a very complex mixture
of proteins and for that reason proteomics uses separation methods with high
resolution. 2D gel electrophoresis was the first method to separate proteins on
a large scale and to detect them using protein staining. Separated proteins can
be identified by mass spectrometry. Proteins are very long chains of amino acids
with a large molecular weight. In order to accurately measure and identify pro-
teins by mass spectrometry, proteins are cleaved (digested) into peptides which
is routinely done with the enzyme trypsin. The resulting tryptic peptides are of
appropriate molecular weight and are ideal for analysis by mass spectrometry.

Peptide identification. Tryptic peptides can be measured very accurately
by mass spectrometry, and modern MS instruments are able to isolate specific
peptides by their masses and fragment them. The generated fragmentation spec-
tra of each peptide can be used to identify the peptide’s amino acid sequence,
and if this sequence is long enough it will be specific for exactly one protein in
the proteome. This means the protein can be identified using a protein database
containing all known proteins. For human and mouse samples all proteins are
known because the genome of these organisms are sequenced, and the proteome
can be translated from the genome.

LC-MS. Electro spray ionisation (ESI) – liquid chromatography (LC) – mass
spectrometry is commonly used for identification and quantification of peptides.
ESI-LC-MS refers to the separation of the complex peptide mixture which re-
sults from a tryptic digest: separation of the peptides is accomplished by liquid
chromatography, and the peptides are ionised by electro spray and their masses
measured by a mass analyser in the mass spectrometer. If the peptides are also
isolated and fragmented in order to identify their sequences, then the process is
called ESI-LC-MS/MS, or simply LC-MS/MS or LC-MS2.

The acquisition of the AML data is accomplished with LC-MS – the first
step in liquid chromatography – which results in measurements of ion counts at
retention times. For each retention time there is a mass spectrum with peaks
at different mass-to-charge values. The sum of the intensities across all mass-
to-charge values is the total ion count or total intensity recorded with LC-MS.
See also Section 3. LC-MS does not involve a secondary fragmentation or, more
generally multiple fragmentations, inherent in LC-MS/MS or LC-MSn respec-
tively, where n-1 is the number of fragmentations following LC-MS. LC-MS has
evolved as a powerful method for identification and quantification of peptides
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and proteins. Because of its high peak resolution in the two dimensions mass-
to-charge and retention times, LC-MS is suitable for comparing peak intensities
between MS samples based on retention times and mass-to-charges values. Ex-
perimental drifts in mass-to-charge values and retention times typically occur in
LC-MS, and may be non-linear across samples. These drifts complicate direct
comparisons of multiple LC-MS samples, and their complexity makes a success-
ful alignment of LC-MS data difficult. For an overview and a review of recent
approaches in LC-MS, see America and Cordewener [1].

Alignment methods in LC-MS. A number of alignment methods have been
developed in the proteomics literature specifically for LC-MS data. Table 1 of
America and Cordewener [1] contains a list of algorithms and their public or
commercial availability. The algorithms typically focus on aligning peptides or
individual peaks and apply to two samples at a time. We briefly describe the
main ideas of two typical algorithms: sieve and SuperHirn. Both algorithms
work with peaks observed at retention times and mass-to-charge values as ob-
tained with LC-MS.

The commercially available sieve algorithm is part of the instrumentation
used in Ho [3]. The first part of the sieve algorithm deals with aligning spectra;
the other parts deal with feature matching and protein expression ratio calcu-
lations which are not relevant for this paper. sieve requires the selection of a
reference sample, say R, and compares each sample, S, with the reference sam-
ple. For each pair of time points (tR,j , tS,k) in the full range of retention times
of R and S respectively, the correlation coefficient of marginal mass-to-charge
spectra at tR,j and tS,k respectively is calculated. In a second step, sieve ex-
ploits additional information in the form of internal reference points with known
retention times for specific peak intensities in order to find optimal pairs of re-
tention times which are consistent with the alignment of the reference peaks.
The time points of the sample are then aligned with those time points of the
reference sample that yield highest correlation. This process is repeated for each
sample.

The publicly available algorithm SuperHirn of Mueller et al. [6] first finds
peaks and sorts them in decreasing order. The peak list is compared with a
template which is typically obtained from an LC-MS/MS fragmentation, and
the order of the peaks is adjusted in accordance with the size of the peaks in the
template. This template-matching is necessary to the success of the algorithm,
as it provides valuable information about the size of the peaks which might
be obscured by noise in the LC-MS records. In a second step, peaks with the
same mass-to-charge value are combined as ‘features’ across retention times. The
peak-finding, peak-sorting and peak-combining steps are carried out separately
for each sample, and result in a ranked list of features. For two samples at a
time, common features are identified, and a similarity score is calculated which
uses a robustified Spearman score. Once all pairwise similarity scores have been
calculated, the alignment is accomplished in a hierarchical way: the pair with the
highest score is regarded as most similar, and the two samples are merged. The
merged sample replaces the two previous samples, similarity scores are updated
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and the next best pair is merged. This process continues until all samples have
been merged, and are therefore aligned.

These algorithms typically work well, but they are limited in a number of
ways:

1. Calculations are carried out for pairs of samples, and cannot be easily
adapted to dealing with more than two samples simultaneously.

2. Additional information relating to known peptides and their retention
times or fragmentation patterns is integrated into the alignment process.

In this paper we are interested in alignment based merely on the 1D TIC
curves. However, the availability of reference peptides allows us to assess and
compare the performance of curve registration methods.

3. The AML data

LC-MS for AML biomarker discovery. For the AML data, Ho [3] used
label-free LC-MS which refers to an approach that does not require isotopic
labels as references for quantification, but still enjoys the high peak resolution
common to LC-MS.

In the AML biomarker discovery study six patients were tested: three re-
sponders and three non-responders. One of the responders was excluded from
the final analysis because of problems with the liquid chromatography system
during the analysis. For the discovery of biomarkers by MS profiling with label-
free LC-MS, samples from each patient were analysed multiple times. Isolated
blast cells were lysed protein extracted and an equal amount of protein was
digested with trypsin separately for each patient sample, thereby circumventing
a need for a subsequent normalisation of the data. Digested tryptic peptides
were analysed, and the complex mixture of tryptic peptides was separated via
a reversed-phase column using a long 240 minute gradient. At each time point
peptides were eluted from the column and sprayed for detection in the MS in-
strument. The recorded profiles contain peaks which represent peptides eluted
at a particular time point, the retention time. Peaks which are identified as
potential peptides are isolated and fragmented for identification. The retention
times of the peptides in the 240 minute gradient had unusually large shifts.
Whilst these large shifts make it difficult to align the TIC curves, they give
rise to data that are ideal for testing and for comparing multiple methods of
alignment.

Quantification of AML profiles. In order to quantify changes in AML
profiles, the area under the peaks of every potential peptide is compared for all
runs which result from each sample of each patient. A quantitative comparison
for each potential peptide requires the time alignment of the traces or profiles
over all runs, the TIC curves, since the peptides should have the same mass-
to-charge values and should elute from the column at the same retention time.
After alignment the aim is to find peptides which have different abundances
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in the responding and non-responding patient samples. Such peptides and their
related proteins could act as biomarkers for distinguishing responders from non-
responders.

AML patient samples. AML data of five patients were collected for a range
of mass-to-charge intervals and retention times. To minimise the effect of exper-
imental drifts in mass-to-charge values and retention times – see the paragraph
on LC-MS in the previous section – a first sample was collected for all five
patients in a first run or experiment. The experiment was repeated twice with
randomly selected patient order, and resulted in a total of three replicates for
each patient. The three sets of samples corresponding to the non-responders are
referred to as Ai, Bi and Ci, and the two sets of samples of the responders are
referred to as Xi and Yi, where i = 1, 2 and 3 indexes the three replicates for
each patient.

The randomisation of the experimental order addresses primarily the drift
in retention times. A common approach for dealing with the drift in mass-
to-charge values is to aggregate peak intensities across all mass-to-charge val-
ues – separately for each retention time. This process is typically part of the
instrument-internal acquisition and processing, and yields one-dimensional pro-
files as functions of the retention times. These profiles contain the total ion
counts (TIC), and as they are the curves in our registration test bed, we refer
to them as the raw data.

4. The TIC alignment problem

In this paper we are interested in aligning all one-dimensional TIC curves si-
multaneously. The TIC profiles are difficult to align because LC-MS profiles
typically exhibit non-linear drifts in retention times, and for these data there
appear to be unusually large shifts in retention times of peptides. On the other
hand, these data are very suitable for testing different 1D alignment methods,
because all samples were spiked with known peptides which are independent
of the patients. The identity and retention times of these peptides are known
and can be checked before and after alignment. We refer to these peptides as
reference peptides.

The raw TIC data are noisy, and noise is particularly prominent for the
very early and very late retention times. This is a feature of the equipment
which requires a ‘warming-up period’ and typically also has no useful results for
times larger than 220 minutes. It was therefore necessary to reduce the range of
retention times. In addition we applied a number of other preprocessing steps
to the TIC data. The individual steps are:

1. Define the data at regularly spaced time points. The intensity
measurements were available at the midpoints of contiguous time inter-
vals. The intervals changed in size along the complete time range with an
average close to 0.1 minutes. For the time points in the range 5 to 240 min-
utes, we therefore chose regular steps of 0.1 minutes and interpolated the
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data onto this grid, which resulted in a total of 2349 linearly interpolated
TIC values.

2. Log transform. As common in many analyses of proteomics data, we
applied a log10 transform to the interpolated data. This is sensible, because
the intensities range over several orders of magnitude.

3. Median smoothing. The original and log-transformed data are quite
noisy. To reduce the noise, we applied a running median filter to the in-
terpolated data. We examined a number of filter lengths, and settled on
a smooth over 9 consecutive points as this amount of smoothing still pre-
serves the peaks well.

4. Truncation of the time range. Because of the time drifts that occur
during the data acquisition, the three different experiments (runs 1–3)
showed a clear shift which was easily recognisable by comparing the times
of the large peaks. Some experimentation was necessary to make sure that
all important peaks were included in the truncated time range, yet the
noisier observations at the beginning and end were excluded. We found the
range 20–220 minutes suitable for these data, which reduces the original
interpolated data to 2001 time points for each profile.

Figure 1 shows all log-transformed and smoothed profiles. For easier visuali-
sation, we displayed the profiles of the three runs in separate panels. The x-axis
shows time, and the y-axis shows the log intensity or the log TIC. For each pa-
tient the same colour is used in each of the three panels. Dark blue, lighter blue
and cyan refer to the three non-responders, and red and orange refer to the two
responders. In the top panel the highest TIC peak is at about 115 minutes for
all five patients. In the second run (second panel) the highest peak has drifted
to smaller times, but by different amounts for the five patients. We notice a
similar behaviour for the third run.

To examine the drift between runs and between patients further, we consider
the three profiles of the non-responder A, and the second profile X2 of the
responder X in Figure 2. As in Figure 1, time is shown on the x-axis, and the
log TIC on the y-axis.

The two panels in the top row and the left panel in the bottom row of Figure 2
refer to patient A. The three runs for patient A clearly show very similar overall
peak patterns, together with a strong time drift as observed in the three panels
of Figure 1. In the top left panel, which shows the profile of A1, the largest peak
appears at about 115 minutes, for A2 in the top right panel we notice it at about
105 minutes, and in bottom left panel, which corresponds to A3, this peak is
observed at about 98 minutes. The bottom right panel shows the profile of X2.
These data were collected in the same run as the A2 data. We note that the
largest peak occurs at about 105 minutes, but this peak is much smaller than the
largest peaks of the three A profiles. A major challenge to registration algorithms
is that the peak patterns, in terms of relative peak heights, are quite different
for this sample. In particular a group of three peaks around the largest peak in
the A spectra appears to correspond to a group of three peaks in the X2 sample
for which the two outer peaks are high, but the center peak is much smaller.
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Fig 1. The three panels show the log transformed TIC profiles for a particular run and all
patients versus time. Blue colours refer to non-responders, and red/orange colours refer to
the two responders. The samples show generally similar patterns, but with clear time drifts,
especially for runs 2 and 3.

Next we study the region around the largest peaks of these four profiles
more closely and zoom in to the range [90, 130] minutes, chosen to include the
three peaks in each case. Figure 3 displays these zoom-ins of the four profiles of
Figure 2, shown in the same order and using the same colours as in Figure 2. The
three peaks, indicated by blue vertical line segments at their retention times and
indexed 9, 10, and 11 are of special interest; they correspond to peptides with
known masses which allows very accurate measurement of their retention times
by mass spectrometry. These peptides are a subset of the reference peptides
which hold the answer key for the curve registrations. In the bottom right panel,
the retention times of the three reference peptides are traced across all four
samples – separately for each of the three peptides – and the actual times are
marked by dots along each trace: the three blue dots with the lowest y-value
show the times of the A1 sample, the three blue dots with the second lowest
y-value correspond to the times of the A2 sample, and those with the third
lowest y-value refer to the times of the A3 sample. Finally, the retention times
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Fig 2. Log transformed TIC profiles of the samples A1, A2, A3 and X2 with the log intensity
on the y-axis versus time on the x-axis. The panels show a time drift for the A samples, and
a noticeably different peak pattern for the X2 sample.

of the corresponding peptides of the X2 sample are shown as three red dots,
with numbers 9, 10 and 11 next to these dots. We can see a clear time drift
in the A profiles of the numbers 9–11. In each of these three profiles, the three
peaks are about the same size and the same relative distance from each other.
It is surprising to see that the largest peak of the X2 profile is peak number
9, while peak number 10 is comparatively small, indicating that peptide 10 is
far less prevalent in X2. If this lower abundance of peptide 10 is also seen in
the profiles of the other responders, this peptide could potentially lead to the
identification of a biomarker for distinguishing responders from non-responders.

The different shape of the three peaks in profile X2 poses a challenge for
alignment methods, as all methods that are discussed in the following contribu-
tions are applied blindly to the data, that is, without knowing that the small
peak at about 110 minutes arises from the same peptide as the largest peaks in
the A profiles.
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Fig 3. Zoomed-in log transformed TIC profiles of the samples A1, A2, A3 and X2 with the log
intensity on the y-axis versus the time interval [90, 130] minutes on the x-axis. The panels
show a close correspondence of both tall and short peaks, as well as how the central large peak
in the A samples is much smaller in X2. The x-values of reference peptides 9–11 are shown
separately for each of the A samples, and are shown as blue and red dots in the bottom right
panel.

5. Assessment of alignment performance

The three figures of the previous section show a time drift and variability in the
intensity of the large peaks across runs and patients. For these data, relative
heights of these peptide peaks are the desired focus of the analysis and the
various time drifts should be regarded as a nuisance to be removed. Thus this
is a classical registration problem of time alignment, but in the challenging case
of differing peak heights.

As noted above, a very useful feature of this data set for the comparison of
registration methods is that there are 14 reference peptides whose time locations
are known for each sample. These reference peptides are not necessarily seen as
large peaks in each profile, however their mass-to-charge ratios and retention
times provide excellent criteria for assessing the quality of curve registration.

A range of statistics could be applied to the vectors of warped times of the
reference peptides over all 15 profiles. These statistics include the median devi-
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ation for each reference peptide, the mean variance across all reference peptides
or other measures derived from these statistics. Such indicators quantify the
quality and performance and provide an insight in the overall performance of
particular registration methods.

We also suggest use of a visual tool for performance assessment. We assign
numbers 1 to 14 to the reference peptides of each profile. Before alignment,
the 14 numbers appear at different time points across the different runs and
patients, as can be seen in the four profiles in Figure 3 which concerns refer-
ence peptides 9–11. In addition, the bottom right panel traces the times of the
reference peptides 9–11 of the four spectra before alignment and shows the vari-
ability in the drift between samples for these reference peptides. After alignment
we recommend plotting the numbers of the 14 warped reference peptides again,
and then comparing the location of these numbers across all profiles. The goal
is to align the profiles in such a way that all 14 reference peptides appear at the
same time points across the 15 profiles.
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