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Abstract: Studying model checking problems for partially linear single-
index models, we propose a variant of the integrated conditional moment
test using a linear projection weighting function, which gains dimension
reduction and makes the proposed method act as if there exists only one
covariate even in the presence of multiple dimensional regressors. We de-
rive asymptotic distributions of the proposed test; i.e., an integral of a
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centered Gaussian process under the null hypothesis and an integral of a
non-centered one under Pitman local alternatives. We also suggest a con-
sistent bootstrap procedure for calculating the critical values. Simulation
studies are conducted to demonstrate the performance of the proposed pro-
cedure and a real example is analyzed for an illustration.
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62J02, 62F12.
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1. Introduction

One common task of model regression is to estimate a conditional mean func-
tion. Single index models, a generalization of multiple linear regression models
with an unknown link function, have been widely used to estimate a conditional
mean function because they relax restrictive assumptions imposed on paramet-
ric models of conditional mean functions such as linear or generalized linear
models (Ichimura; 1993; Härdle et al.; 1993), and therefore gain more flexibility.
There are various estimation procedures for single-index models. See Horowitz
(2009) for a comprehensive survey and various applications of single-index mod-
els. To further combine the interpretability of multiple linear models with the
flexibility of single-index models, their hybrid, the partially linear single-index
models (PLSiM), have been studied and applied for analyzing various complex
data generated from biological and economic studies in the literature (Xia and
Härdle; 2006; Yu and Ruppert; 2002; Wang et al.; 2010; Liang et al.; 2010). The
first remarkable work on PLSiM can be traced back to Carroll et al. (1997),
in which a backfitting algorithm was proposed to estimate parameters of in-
terest in a more general case. Yu and Ruppert (2002) suggested a penalized
spline estimation procedure. Xia and Härdle (2006) applied the minimum av-
erage variance estimation (MAVE, Xia et al.; 2002) to PLSiM and developed
an effective algorithm. More recently, Wang et al. (2010) studied estimation
in PLSiM with additional assumptions imposed on the model structure. Liang
et al. (2010) proposed a profile least squares estimation procedure. Using PLSiM
for data analysis, a natural question is that, given a set of covariates, how one
feels confident that the model fits data well. In this paper, we propose a method
for model checking in PLSiM integrating the dimension reduction principle.

Correct model specification is fundamental and critical in data analysis. There
is a vast literature on model checking problems. Most results were established
by evaluating the difference of the conditional expectation under the null and
alternative hypotheses, or the expectation of the residual under the null hy-
pothesis. Generally speaking, there are two classes of methods for model check-
ing. The first class focuses on the procedure based on smoothing residuals and
is called “local approach”, which includes Dette (1999); Härdle et al. (1998);
Horowitz and Härdle (1994); Eubank and Hart (1992); Härdle and Mammen
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(1993). Hart (1997) gave a comprehensive survey on nonparametric lack-of-fit
tests. It is worth mentioning that the null asymptotic distributions of these tests
are generally free of the data generating process and therefore are convenient to
calculate critical values. However, these methods mostly suffer from “curse of di-
mensionality”, detect the alternative hypothesis with only nonparametric rate,
and need careful selection of bandwidth. Lavergne and Patilea (2008) incorpo-
rated a dimension-reduction idea in smoothing the residuals and constructed
a test by using the linear projection approach. The resulting test can avoid
“curse of dimensionality” and has higher power as they advocated. But they
also introduced a penalty function and needed an initial value, which need to be
determined in advance. Furthermore, no guideline on how to choose the penalty
function is available.

An alternative to the local approach is the conditional moment (CM) test
(Newey; 1985; White; 1984), which was inspired by a fact that certain condi-
tional moments can be reexpressed as a finite number of unconditional moment
restrictions. As a consequence, the sample versions of these unconditional mo-
ments result in various CM tests. Unfortunately, these CM tests are generally
not consistent as pointed out by Bierens (1982), because for any tests based
on a finite number of moment restrictions, one can always construct a data
generating process which guarantees that the null hypothesis is false but the
moment restrictions involved hold; that is, such tests are not consistent. As a
remedy, Bierens (1982) proposed an integrated conditional moment (ICM) test,
which differs from the CM tests such that ICM is still a CM test, but based on
uncountable many moments. The idea works as follows.

LetX be the covariates and Y be the response variable, x be a vector with the
same length as X and e(λ,X, Y ) be the model error with an unknown parame-
ter vector λ, that can be infinitely dimensional. The integrated conditional mo-
ment (ICM) tests transform the conditional expectation of the null hypothesis
E(e(λ,X, Y )|X) = 0 into uncountable many moments E{e(λ,X, Y )w(X,x)} =
0 for any x with the weighting function satisfying the equivalence of the condi-
tional expectation and infinite unconditional moments. There is a large amount
of literature on the ICM test and the following five weight functions have been
proposed in the literature: exponential weighting function exp(

√
−1x⊤X) by Es-

canciano (2006); Bierens (1982); linear indicator weighting function I(X⊤θ ≤ u)
for u ∈ R

1 by Stute and Zhu (2002); Escanciano (2006); logistic weighting func-
tion {1+exp(x⊤X)}−1 by Lee et al. (2001); simple indicator weighting function
I(X ≤ x) by Stute (1997); Lin et al. (2002); and trigonometric weighting func-
tion cos(x⊤X) + sin(x⊤X) by Bierens and Ploberger (1997). But some weight-
ing functions lead to inconsistent model checking methods and different choices
of weighting function lead to different power properties. Furthermore, no best
weighting function in terms of power is available since Bierens and Ploberger
(1997) showed that all these weighting functions lead to asymptotic admissi-
ble tests. It is worth pointing out that the tests based on the linear indicator
weighting and simple indicator weighting functions are similar to the idea of us-
ing integrated moments over half-spaces for goodness of fit, which can be traced
back to Beran and Millar (1989).
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Among these weighting functions, the linear indicator weighting function is
the most attractive because its associated tests avoid choosing the integrat-
ing function which is necessary for the logistic, exponential and trigonometric
weighting functions. In fact, the introduction of the linear indicator weighting
function initially aims to prevent the high-dimensional problem of data which
may harass the testing methods based on the simple indicator weighting func-
tion. The linear indicator weighing function was first studied by Stute and Zhu
(2005, 2002) and Xia et al. (2004) for checking generalized linear models and
single-index models, where the projection direction is chosen to be the regres-
sion parameter. The rationality of the linear indicator weighting function was
justified in Escanciano (2006) on a basis of an important proposition proved
by Jones (1987) that the departure can be detected by a projection of the
function along a certain direction; that is, for random variables ε and x with
E‖x‖ < ∞, E(ε|x) = 0 if and only if E(ε|x⊤θ) = 0 almost sure for any unit
vector θ.

The linear indicator weighing function involves a nuisance parameter, i.e. the
projection direction. The choice of the projecting direction is very critical to
three pivotal concerns. The first one is that the choice of the projection direc-
tion must ensure the equivalence of the null hypothesis and the weighted infinite
unconditional moments. Stute and Zhu (2002) and Xia et al. (2004) chose the
projection directions as regression parameters and then weakened the null hy-
pothesis into the independence of the residual and the regressors (Escanciano;
2006). The second one is concerned with the power performance of the test. As it
has been known that the projection direction should distinguish the projected
residual of the alternative hypothesis from that of the null hypothesis along
this direction. Otherwise, the corresponding test will lose power completely and
thus have a bad performance. Moreover, to improve power performance, the
projection direction should detect the difference as possible. The third concern
caused by the nuisance projection direction is the calculability of the critical
value. The null distribution of the ICM test is case-dependent, and thus a boot-
strap method is usually required to define the critical value. The complexity of
the projection direction makes the testing statistic difficult to compute and the
bootstrap method hard to carry through.

Aiming to avoid the deficiency of the most smoothing based tests and the ex-
isting ICM tests, we propose a variant of the ICM test using a linear projection
weighting function and choose the projection direction by fitting a single-index
model from the estimated squared model errors against all the covariates. Such
a method of choosing the projection direction prevents the three problems afore-
mentioned. It will be shown that the proposed method can avoid the problem
of data sparsity, is free from the smoothing parameter, is easy to compute and
has satisfactory power performance.

The rest of this paper is organized as follows. In Section 2, we describe the
proposed test and study its asymptotic properties. We further suggest a boot-
strap method for calculating the critical value, and investigate the power perfor-
mance. Simulation studies and a real data analysis are respectively conducted
to evaluate the proposed tests in Sections 3 and 4. The technical details for the
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proofs of the main results and the estimation of the parameters under the null
hypothesis are presented in the Appendix.

2. The test procedures and their theoretical properties

Consider the partially linear single-index model (PLSiM) of the form:

E (Y |Z ) = g
(
β⊤X

)
+α⊤T, (2.1)

where Z=(X⊤,T⊤)⊤, and X and T are the p-th dimensional and q-th di-
mensional covariate vectors, respectively, β is an unknown index vector which
belongs to the parameter space Θ = {β = (β1, . . . , βp)

⊤ : ‖β‖ = 1, β1 >
0,β∈ Rp}, where ‖β‖ = (β2

1 + · · ·+, β2
p)

1/2 is the Euclidean norm of β, α =

(α1, . . . , αq)
⊤, and g(·) is an unknown differentiable function. We are interested

in checking the specification of the PLSiM:

H0 : E(Y |X = x,T = t) = g
(
β⊤x

)
+α⊤t for some β,α, and g(·). (2.2)

Let e(β,α, g) = Y −{g(β⊤X)+α⊤T}. Note that the null hypothesis is equiva-
lent to E{e(β,α, g)|Z = z} = 0 for any z ∈ R

p+q. Assume that E{e2(β,α, g)|Z =
z} = σ2(z) < ∞. Inspired by Jones (1987), we consider E{e(β,α, g)|θ⊤Z} = 0
for any unit vector θ. Since θ⊤Z is scalar, this transformation overcomes the
dimensional problem; However, such a testing method requires the nonparamet-
ric smoothing on the residual and belongs to the category of “local method”.
Though it prevents the deficiency of the dimensional problem, it suffers from
all other shortages of the local method. We further target the equivalent form
E{e(β,α, g)I(θ⊤Z ≤ u)} = 0 for any u ∈ R

1 and any unit (p+q)-vector θ. This
operation can avoid estimating E{e(β,α, g)|θ⊤Z} nonparametrically and there-
fore no bandwidth selection is required. By treating u as a random variable, we
formulate our null hypothesis as: E[E2{e(β,α, g)I(θ⊤Z ≤ u)|θ, u}] = 0. Based
on this equality, we construct a Crámer-von Mises type testing statistic. By
considering that the nuisance parameter θ follows a degenerated distribution,
the Crámer-von Mises type testing statistic can be simplified as a weighted sum-
mand. It is worth mentioning that this simplification leads to higher statistical
power at the cost of inconsistency. Further, the resulting statistic works as sat-
isfactory under the null hypothesis. The value of θ is determined by fitting a
single-index model with the squared model error of PLSiM as the response and
all the regressors as covariates. The obtained value of θ can tell the projected
residual of the alternative models from that of the null hypothesis.

Suppose that {(Yi,Xi,Ti), i = 1, . . . , n} is the random sample from (Y,X,T).
Based on this sample, we estimate the parameters β and α and the unknown
function g under the null hypothetical model (2.2). The estimation details and
the associated asymptotic properties of the proposed estimator are presented
in Appendix A.2. Let β̂, α̂ and ĝ be the estimators of β, α and g. Then our
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sample version of E{e(β,α, g)I(θ⊤Z ≤ u)} is defined as

Rnw(u) =
1

n

n∑

i=1

[
Yi −

{
ĝ
(
β̂
⊤
Xi

)
+ α̂

⊤
Ti

}]
I(θ⊤Zi ≤ u). (2.3)

To study the asymptotic properties of Rnw(u), we first introduce the following
notation. Let A⊗2 = AA⊤ for a matrix A. Let V (β) = β⊤X, and for any

random variable (or vector) ξ, ξ̃(β) = ξ − E{ξ|V (β)}. For example, X̃(β) =
X−E{X|V (β)}. Let J(β)= ∂β

∂β(1) be the Jacobian matrix of size p× (p−1) with

J (β) =


 −β(1)⊤/

√
1−

∥∥∥β(1)
∥∥∥
2

Ip−1


 ,β(1) = (β2, . . . , βp)

⊤ .

Let β0 and α0 be the true parameters in the null hypothetical model (2.2).

For notation simplicity, we denote V = V (β0), X̃ = X̃(β0), T = T(β0) and
J = J(β0). Define

Πu (Z) = I(θ⊤Z ≤ u)− E
{
I(θTZ ≤ u) |V

}
(2.4)

−E
[
I(θ⊤Z ≤ u)

{
g′ (V ) X̃⊤J, T̃⊤

}]
Σ−1

{
g′ (V ) X̃⊤J, T̃⊤

}⊤
,

in which

Σ =E

[{
g′ (V ) X̃TJ, T̃⊤

}⊤]⊗2

. (2.5)

Proposition 2.1. Under Assumptions (C1)–(C5) in the Appendix and the null
hypothesis H0,

√
nRnw(u) converges to Rw(u) in the Skorohod space D[−∞,

∞]p+q, where Rw(u) is a centered Gaussian process with covariance function

Cov {Rw(u1), Rw(u2)} = E
{
Πu1 (Z) Πu2 (Z)σ

2(Z)
}
.

For any fixed u, Proposition 2.1 shows that
√
nRnw(u) is asymptotically

normal. A simple test may be constructed by considering {√nRnw(u)}2, which
follows an asymptotically central χ2 distribution. But this score-type test may
not be consistent since it is based on only one moment condition.

2.1. The proposed test

Note that E{e(β,α, g)I(θ⊤Z ≤ u)} is equivalent to

Eθ,u

[
E2

Z,Y {e(β,α, g)I(θ⊤Z ≤ u)} |θ, u
]
= 0

for any u and unit vector θ. If we take θ as a random variable and denote the
distribution of θ by f(θ)dθ, then our test statistic is defined as

Tn =

∫ {√
nRnw(u)

}2
f (θ)Fnθ (du) dθ, (2.6)
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in which Fnθ(du) is the empirical distribution of (θ⊤Z1, . . . , θ
⊤Zn). Accordingly

we have the following result for Tn.
Theorem 1. Under Assumptions (C1)–(C5) in the Appendix and the null hy-
pothesis H0, one has

Tn def
=

∫
{Rw(u)}2 f (θ)Fθ (du) dθ,

in which Rw(u) is defined in Proposition 2.1 and Fθ(du) is the distribution of
θ⊤Z.

Theorem 1 follows directly from the result of Proposition 2.1 and the contin-
uous mapping theorem.

2.2. Calculation of the critical value

Since the asymptotic covariance of the process
√
nRnw(u) depends on the vari-

ables Y and Z, the test statistic Tn defined in (2.6) is case-dependent and the
critical value cannot be obtained directly based on this distribution. We use a
bootstrap procedure to mimic the null distribution of the test statistic.

The procedure for calculating the critical value based on the bootstrap test
statistic is as follows:

Step 1: Compute the estimated projection direction θ̂ by fitting a single-index
model with “synthesis” data {e2i (α̂, β̂, ĝ),Zi}ni=1, where ei(β̂, α̂, ĝ) = Yi−
α̂

⊤
Ti − ĝ(β̂

⊤
Xi), 1 ≤ i ≤ n.

Step 2: Compute the test statistic Tn = 1
n2

∑n
r=1{

∑n
i=1 ei(β̂, α̂, ĝ)I(θ̂

⊤
Zi ≤

θ̂
⊤
Zr)}2.

Step 3: Generate the random variable sequence {ǫib}ni=1, b = 1, . . . , B from the

two-point distribution which respectively takes values 1∓
√
5

2 with proba-

bility 5±
√
5

10 , so that the variance equals to 1, and compute the following
arguments for each b:

{
e1(β̂, α̂, ĝ)ǫ1b, e2(β̂, α̂, ĝ)ǫ2b, . . . , en(β̂, α̂, ĝ)ǫnb

}
,

Y b
i = ĝ(β̂

⊤
Xi) + α̂

⊤
Ti + ei(β̂, α̂, ĝ)ǫib, i = 1, . . . , n.

Step 4: For each b, we re-calculate the bootstrap estimators α̂b and β̂b. Then we
calculate the bootstrap fitted value and residuals, and we further define
the bootstrap test statistic

T b
n =

∫ {√
nRb

nw(u)
}2

f (θ)Fnθ (du) dθ

=
1

n2

n∑

r=1

{
n∑

i=1

ebi(β̂b, α̂b, ĝb)I
(
θ̂
⊤
Zi ≤ θ̂

⊤
Zr

)}2

,
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where

Rb
nw(u) =

1

n

n∑

i=1

{
ebi(β̂b, α̂b, ĝb)

}
I(β̂

⊤
Zi ≤ u), (2.7)

ebi(β̂b, α̂b, ĝb) is defined as Y b
i − ĝb(β̂

⊤
b Xi) − α̂

⊤
b Ti and ĝb(·) is obtained

as nonparametric smoothing from Y b
i − α̂

⊤
b Ti against β̂

⊤
b Xi.

Step 5: We calculate the 1−κ quantile of the bootstrap test statistic as the κ-level
critical value.

Theorem 2. Under Assumptions (C1)–(C5) in the Appendix and the null hy-
pothesis H0, one has for all b = 1, . . . , B,

T b
n

def
=

∫
{Rw(u)}2 f (θ)Fθ (du) dθ,

where Rw(u) is defined in Proposition 2.1.

2.3. Local power properties

To investigate the sensitivity of the proposed test, we consider the alternative
hypothetical models

H1n : Yi = g
(
β
⊤
Xi

)
+α⊤Ti + δnD (Xi,Ti) + ηi, i = 1, . . . , n (2.8)

with E(ηi|Xi,Ti) = 0 and some arbitrary bounded measurable function D(·, ·).

Theorem 3. Under Assumptions (C1)–(C5) and the alternatives (2.8), if
nγδn → a for a 6= 0 and 0 ≤ γ < 1/2, Tn converges to ∞; if n1/2δn → 1,

then Tn def
=
∫
{Rw(u) + Ω}2f(θ)Fθ(du)dθ, and E(Tn) → Ω2 with

Ω = E
{
I(θ⊤

Z ≤ u)D (X,T)
}
− E

{
I(θ⊤

Z ≤ u)
(
g′ (V ) X̃⊤J, T̃⊤

)⊤}

×Σ−1E

[(
g′ (V ) X̃⊤J, T̃⊤

)⊤
D (X,T)

]
.

Theorem 4. Under Assumptions (C1)–(C5) and the alternatives (2.8) with
n1/2δn → 1, the conditional distributions of T b

n converge to the limiting null
distribution of Tn for almost all sample sequences {(Y1, δ1,X1,T1), . . . , (Yn, δn,
Xn,Tn), . . .}.

3. A simulation study

In this section, we report simulation results to evaluate the performance of the
proposed testing procedure.
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Example 1. We consider the data generating process (DGP) given as follows:

Yi = 0.5 exp
(
0.5β⊤Xi

)
+α⊤Ti + Co

(
p∑

r=1

|Xri|+ |α⊤Ti|
)

+ ei, (3.1)

where i = 1, . . . , n. We consider two different sample sizes: n = 200 and 400. The
number of replications in all the simulations is 500. Clearly, the null hypothesis
given in (2.2) is true if and only if Co = 0 for model (3.1). In this example, we let
α = (2, 2)⊤, β = (2, 3, 4)⊤/

√
29. ei is generated from N(0, 0.12), independently

with (X⊤
i ,T

⊤
i )

⊤. We generate the covariates (X⊤
i ,T

⊤
i )

⊤ and select a sequence
of values for Co in two cases:

Case 1. (X⊤
i ,T

⊤
i )

⊤ is generated from the multivariate normal distribution

N5(0,Σ), where Σ = (σjj′) with σjj′ = 0.1|j−j′|, Co is set to be 0.00, 0.06,
0.12, 0.18, 0.24, respectively.

Case 2. We let Ti = (Ti1, Ti2)
⊤ = Σ

1/2
0 (Si1, Si2)

⊤, where Si1 is generated from
the binomial distribution with P (Si1 = 0) = 0.5 and P (Si1 = 1) = 0.5,
and Si2 is generated from the normal distribution N(0, 1), independently
with Si1. We let Σ0 = (σ0,jj′ ) with σ0,jj′ = 0.5|j−j′|. Xi is generated
from the multivariate normal distribution N3(0,ΣX) with ΣX = (σx,jj′ ),

σx,jj′ = 0.1|j−j′|, independently with Ti. Co is set to be 0.00, 0.04, 0.08,
0.12, 0.16, respectively.

We examine the proposed test procedure for the PLSiM under a sequence of
alternative models with different values for Co given in Cases 1 and 2. When
Co = 0, the model is the null model. In this example, we use the estimated
projection direction θ̂ by fitting a single-index model with the squared model
error e2i (β̂, α̂, ĝ) of (3.1) as the response and Zi as covariates.

The powers of the tests are calculated at the four significant levels: 0.01,
0.025, 0.05, and 0.10. For the bandwidth selection, the conditions of Lemma
A.4 in the Appendix include the optimal bandwidth for h in the process of

estimating (α⊤,β⊤)⊤. Thus, the standard bandwidth selection methods, such
as K-fold cross validation, validation (CV), generalized cross validation (GCV)
or the rule of thumb, can be employed. In this example, we use 5-fold cross
validation as it is not too computationally intensive suggested by Cui et al.

(2011). After obtaining these estimators (α̂⊤, β̂
⊤
)⊤, ĝ(·) is further calculated to

obtain the residual e(α̂, β̂, ĝ). From Condition (C3), we know that bandwidth h

needs undersmoothing. Thus, we can use the bandwidth h̃ = ĥ× n−2/15, where

ĥ is the one estimated by the 5-fold cross validation, for obtaining (α̂⊤, β̂
⊤
)⊤.

The power pattern in this simulation study is depicted in Figure 1 with dotted
and solid lines for n = 200 and n = 400 by using h̃, from which it is easy to
see that when the null hypothesis H0 is true, that is, Co = 0, the percentages
of H0 being rejected are close to the corresponding nominal level for all four
nominal levels, and they are closer to the significance levels for larger sample
size n. When H0 is not true, that is, Co 6= 0, as the value of Co 6= 0 increases or
the sample size n increases, the empirical percentages of rejecting H0 approach
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Fig 1. Powers calculation for Case 1(upper panel) and Case 2 (lower panel) with n = 200
(dotted lines) and n = 400 (solid lines). Columns from left to right correspond to nominal
levels 0.01, 0.025, 0.05, and 0.1 represented by horizontal lines, respectively.

to 1. Clearly, as the value of Co increases, the power increases rapidly. Moreover,
the powers for n = 400 are larger than the powers for n = 200 for the same Co

value and significance level. For n = 400 and large Co, the powers are close to 1.
The results demonstrate that our proposed testing procedure is powerful.

4. Real data analysis

In this section, we study a dataset from an automobile data set (Johnson; 2003)
to discover possible factors that influence the price. The suggested retail price
(the manufacturer’s assessment of the vehicle’s value, including adequate profit
for the automaker and the dealer) to serve as the response variable, Y . Four
binary variables are used to indicate the type of a vehicle including: sports car,
T1 (1=yes, 0=no); sport utility vehicle, T2 (1=yes, 0=no); wagon, T3 (1=yes,
0=no); and minivan, T4 (1=yes, 0=no). In addition, two other binary vari-
ables T5 (1=yes, 0=no) and T6 (1=yes, 0=no) are used to indicate whether the
car/truck is all-wheel drive and rear-wheel drive, respectively. Since the number
of cylinders takes the values 3, 4, 5, 6, 8 and 12, we created 6 binary variables T7,
T8, T9, T10, T11 and T12 to indicate whether the number of cylinders is 3, 4, 5,
6, 8 and 12, respectively. All these binary variables mentioned above are treated
as the explanatory variables in the linear part of the PLSiM. Moreover, 6 addi-
tional measurements are considered including engine size, X1; horsepower, X2;
weight in pounds, X3; wheel base in inches, X4; length in inches, X5; and width
in inches, X6. These continuous variables are considered as the index variables
in the PLSiM. We have a total of 18 explanatory variables and 386 observations
by removing 41 missing values and one large outlier from the original data set
with 428 observations. The PLSiM (2.1) investigated in this paper is applied
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Table 1

The Results for real data example

Variable Coefficient Standard Error Absolute value∗ p-value
T1 0.3085 0.1016 3.0370 2.3890× 10−3

T2 −0.2661 0.0979 2.7174 6.5787× 10−3

T3 −0.0971 0.0860 1.1296 2.5865× 10−1

T4 0.0934 0.1158 0.8062 4.2008× 10−1

T5 0.1399 0.0704 1.9848 4.7166× 10−2

T6 0.3983 0.0711 5.5991 2.1551× 10−8

T7 0.0773 0.9784 0.0790 9.3704× 10−1

T8 0.3441 0.1787 1.9256 5.4149× 10−2

T9 0.1692 0.0833 2.0313 2.2227× 10−2

T10 0.4006 0.1701 2.3549 1.8526× 10−2

T11 1.3867 0.5308 2.6123 8.9936× 10−3

T12 0.3253 0.3065 1.0612 2.8860× 10−1

X1 −0.1358 0.0716 1.8954 5.8034× 10−2

X2 0.6837 0.0489 13.9714 < ×10−12

X3 0.5338 0.0529 10.0810 < ×10−12

X4 −0.2366 0.0586 4.0391 5.3655× 10−5

X5 0.2494 0.0697 3.3438 8.2629× 10−4

X6 −0.3384 0.0498 6.9174 4.5988 × 10−12

∗ The absolute value is calculated by the absolute value of coefficient/standard error

to fit this dataset and the estimated coefficients, the associated standard errors
and p-values are given in Table 1.

We first applied the proposed testing procedure to check whether the assumed
semiparametric PLSiM fits the data adequately. We treated “wheel base in
inches (X3)” as the leave-one-component for implementing the EFM procedure
to estimate θ. We generated 500 wild bootstrap replications, and obtained the
associated p value 0.56. This indicates that the PLSiM is appropriate for fitting

this dataset. After we use the EFM method to estimate (α̂⊤, β̂
⊤
)⊤, we can

estimate g(·). Figure 2 shows the scatter plots of Y −α̂
⊤
T against the estimated

single-index variants β̂
⊤
X, along with the estimated curve ĝ(·) by local linear

smoothing. It indicates that a nonlinear curve g(v) may be considered for this

dataset. To support our conjecture, we also linearly fit Y − α̂
⊤
T against β̂

⊤
X,

and draw the straight line in Figure 2, which is not entirely encapsulated in
the 95% pointwise confidence bands of the nonlinear curve estimate ĝ(·). This
again suggests that a linear regression is not enough. Figure 2 also shows that a
larger value of the estimated index variable composed from the car’s efficiency
and power yields a higher retail price. As a result, the PLSiM is sensible and
useful for the manufacturer’s suggested retail price.

5. Discussions

We have proposed a convenient testing procedure to check whether PLSiM fit
complex datasets properly, and studied asymptotic properties of the proposed
test statistic. Our numerical experiments indicate that the proposed testing
procedure is a promising tool.
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Fig 2. Real data example: Scatterplot of Y − α̂⊤T versus the estimated single-index β̂
⊤
X

(squares); local linear estimated curve of g(·) (solid line) with the associated 95% pointwise
confidence intervals (broken lines) along with a linear regression (solid straight line).

For testing nonparametric models or semi-parametric models, the conven-
tional CV, GCV and 5-fold procedures of bandwidth selection are generally
suggested under the null hypothesis (Härdle et al.; 2004). However, how to se-
lect bandwidth under the alternative hypothesis is not trivial and deserves a
further investigation for true model is generally unavailable. In our numerical
experiments, we have simply used the same bandwidth selection strategy as
under the null hypothesis.

Some further studies from this line of work include: (i) the dimension of
covariates is diverging with the sample size, and (ii) the response variable is not
continuous.
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Appendix

A.1. Assumptions

We begin this section by listing the conditions needed in the proofs of the main
results.
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(C1) g(·) has two bounded and continuous derivatives.
(C2) The density function fV ( β)(·) of the random variable V ( β) = β⊤X is

bounded away from 0 on S β for β in a neighborhood of β0 and satisfies

the Lipschitz condition of order 1 on S β, where S β = {β⊤x, x∈S} and
S is a compact support set of X.

(C3) The kernelK is a bounded and symmetric density function with a bounded
derivative, and satisfies

∫
v2K (v) dt 6= 0,

∫
|v|j K (v) dv < ∞, j = 1, 2, . . .

(C4) nh3 → ∞, nh4 → 0, and h → 0, as n → ∞, in which h is the kernel
bandwidth for estimating g(·).

(C5) E{J⊤g′(V )X̃}⊗2 and E(T̃)⊗2 are positive definite.

A.2. Estimation of β, α and g under the null hypothesis

For any vector ζ = (ζ1, . . . , ζs) ∈ R
s, denote the Euclidean norm by ‖ζ‖ =

(
∑s

k=1 |ζk|2)1/2. For positive numbers an and bn, n ≥ 1, let an ∼ bn denote that
limn→∞ an/bn = 1. Let Id be an identity matrix of dimension d×d. In this arti-
cle, we estimate the unknown parameters β, α and the unknown function g using
the estimating function method (EFM) proposed by Cui et al. (2011). We first
choose an identifiable parameterization by eliminating β1. The parameter space
Θ can be rearranged to a form {((1−

∑p
r=2 β

2
r )

1/2, β2, . . . , βp)
⊤ :
∑p

r=2 β
2
r < 1}.

A.2.1. The kernel estimating functions for the nonparametric function g

For a given β and α, we can estimate g(·) and g′(·) by using the local linear
estimating functions. Let h be the bandwidth, and K(·) be the kernel density
function satisfying Kh(·) = h−1K(·/h). Denote by a and b the values of g and
g′ evaluating at v, respectively. The local linear approximation for g(β⊤x) in
a neighborhood of v is g̃(β⊤

x) = a + b(β⊤
x−v). Let ̟ = (β⊤,α⊤)⊤. The

estimators ĝ(v,̟) and ĝ′(v,̟) are obtained by solving the local estimating
equations with respect to a and b given as:

∑n

i=1
Kh

(
β
⊤
Xi − v

)[
Yi −

{
g̃
(
β
⊤
Xi

)
+α⊤Ti

}]
= 0,

∑n

i=1

(
β⊤Xi − v

)
Kh

(
β⊤Xi − v

)[
Yi −

{
g̃
(
β⊤Xi

)
+α⊤Ti

}]
= 0. (A.1)

Let â(v,̟) and b̂(v,̟) be the estimators of a and b at v, the local linear

estimators of g(v) and g′(v) are ĝ(v,̟) = â(v,̟) and ĝ′(v,̟) = b̂(v,̟),
respectively. Then

ĝ (v,̟) =
K20 (v,̟)K01 (v,̟)−K10 (v,̟)K11 (v,̟)

K00 (v,̟)K20 (v,̟)−K2
10 (v,̟)

,

where Kjl(v,̟) =
∑n

i=1 Kh(β
⊤Xi − v)(β⊤Xi − v)j(Yi −α⊤Ti)

l for j = 0, 1, 2
and l = 0, 1.
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A.2.2. The estimating equations for the estimators of β and α

The estimators β̂
(1)

= (β̂2, . . . , β̂p)
⊤ and α̂ of β(1) and α are obtained by solving

the following equations:

∑n

i=1




∂ĝ
(
β⊤

Xi,̟
)

∂β(1)

∂ĝ
(
β⊤

Xi,̟
)

∂α +Ti



[
Yi −

{
ĝ
(
β⊤Xi,̟

)
+α⊤Ti

}]
= 0. (A.2)

For any random variable (or vector) ξ, let ξ̂(β) = ξ − Ê{ξ|V (β)}, where

Ê{ξ|V (β)} is the local linear estimator of E{ξ|V (β)}. Following the same rea-
soning as given in Cui et al. (2011), it can be shown that the partial derivatives

∂ĝ
(
β
⊤
Xi,̟

)

∂β(1)
= J(β)⊤ĝ′

(
β⊤Xi,̟

)
X̂i(β) and

∂ĝ
(
β
⊤
Xi,̟

)

∂α
= −T̂i(β).

Then (A.2) can be written as

Ĝ (β,α) ≡
∑n

i=1





J (β)
⊤
ĝ′
(
β⊤Xi,̟

)
X̂i (β)

T̂i (β)





[
Yi −

{
ĝ
(
β⊤Xi,̟

)
+α⊤Ti

}]
= 0. (A.3)

We use (A.3) to estimate β(1), and then use the fact that β1 =

√
1− ‖β(1)‖2

to obtain β̂1. Define

γj =

∫
ujK (u) du, νj =

∫
ujK2 (u)du, j = 1, 2, . . .

Denote ̟0 = {(β0)⊤, (α0)⊤}⊤. Fan (1992) and Ruppert and Wand (1994) have
shown the bias and noise terms of ĝ(v,̟0) satisfying

E
{
ĝ
(
v,̟0

)
|Z
}
− g (v) = 1/2h2g′′ (v) γ2 + op

(
h2
)
,

ĝ
(
v,̟0

)
− E

{
ĝ
(
v,̟0

)
|Z
}
= f−1

V (v)

n−1
∑n

i=1
Kh

(
β⊤Xi − v

)
ei(β

0,α0, g) + op

(
1√
nh

)
. (A.4)

A.3. Preliminary lemmas

Lemma A.1. Under Assumptions (C1)–(C3) and the null hypothesis H0, if
h → 0 and nh → ∞ as n → ∞, we have, for ∀β ∈ Θ, the asymptotic conditional
mean squared error of ĝ(β⊤x,̟0) given as

E

[{
ĝ
(
β
⊤
x,̟0

)
− g

(
β
⊤
x
)}2

|Z
]
=
{
1/2h2g′′

(
β
⊤
x
)
γ2

}2
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+ ν0σ
2/
{
nhfV

(
β⊤x

)}
+ op

(
h4 + n−1h−1

)
.

Lemma A.1 follows from (A.4) directly.

Lemma A.2. Under Assumptions (C1)–(C3) and the null hypothesis H0, if
h → 0 and nh3 → ∞ as n → ∞, we have, for ∀β ∈ Θ, the asymptotic mean
squared error of ĝ′(β⊤x,̟0) given as

E

[{
ĝ′
(
β⊤x,̟0

)
− g′

(
β⊤x

)}2

|Z
]
=
{
1/6h2g′′′

(
β⊤x

)
γ4γ

−1
2

+ 1/2
(
γ4γ

−1
2 − γ2

)
h2g′′

(
β⊤x

)
f ′
V

(
β⊤x

)
/fV

(
β⊤x

)}2

+ ν2γ
−2
2 σ2/

{
nh3fV

(
β⊤x

)}
+ op

(
h4 + n−1h−3

)
.

Lemma A.2 is a consequence of the derivation of bias and variance for ĝ′(β⊤x,
̟0), which is similar to that of Carroll et al. (1998). Following the same rea-
soning as the proofs for (2.4) in Cui et al. (2011), one can obtain the following
lemma.

Lemma A.3. Under Assumptions (C1)–(C3) and the null hypothesis H0, if
h → 0 and nh3 → ∞ as n → ∞, then

E




∥∥∥∥∥∥

∂ĝ
(
β0⊤x,̟0

)

∂β(1)
− g′

(
β0⊤x

)
J⊤
{
x−E

(
x | β0⊤x

)}
∥∥∥∥∥∥

2

| Z


= Op

(
h4+n−1h−3

)
.

Lemma A.4. Assume that the estimating equations given in (A.3) have a

unique solution, say ̟̂(1)
= (β̂

(1)⊤
, α̂⊤)⊤. Under Assumptions (C1)–(C3) and

(C5) and the null hypothesis H0, the following results hold:

(i) If h → 0 and (nh)−1 log(1/h) → 0 as n → ∞, ̟̂(1)
converges in prob-

ability to the true parameter ̟0(1) = (β0(1)⊤,α0⊤)⊤, where β0(1) =
(β0

2 , . . . , β
0
p)

⊤;

(ii) If nh6 → 0 and nh3 → ∞,
√
n(̟̂(1) − ̟0(1)) → Np+q−1(0,Σ

−1ΥΣ−1),

where Σ is defined in (2.5) and Υ =E[{g′(V )X̃TJ, T̃⊤}⊤σ(Z)]⊗2.

Proof. Following the same argument as in the Appendix of Cui et al. (2011), it

can be seen that the population version of Ĝ(β0,α0) in (A.3) is

G
(
β0,α0

)
≡
∑n

i=1





J⊤g′
(
β0⊤Xi

)
X̃i

T̃i




[
Yi −

{
g
(
β0⊤Xi

)
+α0⊤Ti

}]
.

By Taylor expansion, as nh6 → 0 and nh3 → ∞, we know

√
n
(
̟̂(1) −̟0(1)

)
= n−1/2Σ−1G

(
β0,α0

)
+ op(1),
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= n−1/2Σ−1
∑n

i=1

{
J⊤g′ (Vi) X̃i

T̃i

}
ei(β

0,α0, g) + op(1). (A.5)

Lemma A.4 follows from (A.5) and the fact that E{G(β0,α0)}⊗2 = nΥ.

A.4. Proofs of the main results

Proof of Proposition 2.1. Note that

√
nRnw(u) = n−1/2

n∑

i=1

[
Yi −

{
ĝ
(
β̂
⊤
Xi

)
+ α̂

⊤
Ti

}]
I(θ⊤Zi ≤ u)

= n−1/2
n∑

i=1

[
Yi −

{
g
(
β0⊤Xi

)
+α0⊤Ti

}]
I(θ⊤Zi ≤ u) + In

= n−1/2
n∑

i=1

ei(β
0,α0, g)I(θ⊤Zi ≤ u) + In,

where

In = n−1/2
n∑

i=1

[{
g
(
β
0⊤

Xi

)
+α0⊤Ti

}
−
{
ĝ
(
β̂
⊤
Xi, β̂

)
+ α̂

⊤
Ti

}]
I(θ⊤

Zi ≤ u),

which can be further decomposed as In,1 + In,2 with

In,1 = n−1/2
n∑

i=1

{
g
(
β
0⊤

Xi,β
0⊤
)
− ĝ

(
β
0⊤

Xi

)}
I(θ⊤

Zi ≤ u),

In,2 = n−1/2
n∑

i=1

[
ĝ
(
β0⊤Xi,β

0⊤
)
+T⊤

i α
0⊤

−
{
ĝ
(
β̂
⊤
Xi, β̂

⊤)
+T⊤

i α̂
}]

I(θ⊤Zi ≤ u).

Recall (A.4) and given nh4 → 0, we have the following simplification.

In,1 = −n−1/2
n∑

i=1

{
1

2
h2g′′

(
β0⊤Xi

)
γ2 + op(h

2) +

f−1
V

(
β0⊤Xi

) 1
n

n∑

j=1

Kh

(
β0⊤Xi − β0⊤Xj

)
ej(β

0,α0, g)

}
I(θ⊤Zi ≤ u)

= −n−1/2
n∑

i=1

f−1
V

(
β0⊤Xi

)
I(θ⊤Zi ≤ u)

1

n

n∑

j=1

Kh(β
0⊤Xi − β0⊤Xj

)

ej(β
0,α0, g) + op(1)

= −E
{
I(θ⊤Z ≤ u) |V

} 1√
n

n∑

i=1

ei(β
0,α0, g) + op(1).
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By using Lemmas A.3 and A.4 and (A.5), we have that

In,2 = n−1/2
n∑

i=1





J⊤ĝ′
(
β0⊤Xi,̟

0
)
X̂i

(
β0
)

T̂i

(
β0
)





×
(
̟(1)−̟̂(1)

)
I(θ⊤Zi ≤ u) + op(1)

= −E

{
I(θ⊤

Zi ≤ u)
(
g′ (V ) X̃⊤J, T̃⊤

)⊤}√
n
(
̟̂(1) −̟(1)

)
+ op(1)

= −E

{
I(θ⊤Z ≤ u)

(
g′ (V ) X̃⊤J, T̃⊤

)⊤}
n−1/2

×Σ−1
∑n

i=1

{
J⊤g′

(
β
0⊤

Xi

)
X̃i

T̃i

}
× ei(β

0,α0, g) + op(1).

As a result,

√
nRnw(u) = n−1/2

n∑

i=1

ei(β
0,α0, g)

[
I(θ⊤

Zi ≤u)− E
{
I(θ⊤

Z≤u)
∣∣∣β0⊤

X
}]

− E
[
I(θ⊤Z ≤ u)

(
g′(V )X̃⊤J, T̃⊤

)⊤]
n−1/2Σ−1

×
∑n

i=1





J⊤g′
(
β0⊤Xi

)
X̃i

T̃i



 ei(β

0,α0, g) + op(1).

Proposition 2.1 follows from the central limit theorem.

Proof of Theorem 2. Because the moment estimation is consistent, by simple
calculation, one has, for Rb

nw(u) defined in (2.7),

√
nRb

nw(u) = n−1/2
n∑

i=1

ǫiei(β
0,α0, g)Πu (Zi) + op(1).

The tightness of ǫe(β0,α0, g)Πu(Z) can be obtained by the tightness of ei(β
0,

α0, g)Πu(Zi). Theorem 2 can be proved by applying Theorems 2.5.2 and 2.6.7
of van der Vaart and Wellner (1996).

Proof of Theorem 3. We prove the case that
√
nδn → 1. The case that nγδn →

a 6= 0(0 ≤ γ ≤ 1/2) can be proved in a similar way. Note that under the
alternative (2.8) with δn = 1/

√
n + o(1/

√
n), one can verify that (A.4) and

Lemmas A.1, A.2 and A.3 still hold for the associated estimator of g(·). Let
̟̂(1)

be the estimator of ̟0(1) under (2.8). We know

√
n
(
̟̂(1) −̟0(1)

)
= n−1/2Σ−1

∑n

i=1

(
g′ (Vi) X̃

⊤
i J, T̃

⊤
i

)⊤
ei(β

0,α0, g)

+Σ−1E

[(
g′ (V ) X̃⊤J, T̃⊤

)⊤
D (X,T)

]
+ op(1).
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It follows the same procedures as the proof of Proposition 2.1 that

√
nRnw(u) = n−1/2

n∑

i=1

ei(β
0,α0, g)

[
I(θ⊤Zi ≤ u)−E

{
I(θ⊤Z≤u)

∣∣∣β0⊤X
}]

− E

[
I(θ⊤Z ≤ u)

(
g′ (V ) X̃⊤J, T̃⊤

)⊤]
n−1/2Σ−1

×
∑n

i=1

{
J⊤g′

(
β0⊤Xi

)
X̃i

T̃i

}
ei(β

0,α0, g)

− E

[
I(θ⊤Z ≤ u)

(
g′ (V ) X̃⊤J, T̃⊤

)⊤]
Σ−1

× E

[(
g′ (V ) X̃⊤J, T̃⊤

)⊤
D (X,T)

]

+ E
{
D (X,T) I(θ⊤Z ≤ u)

}
+ op(1).

Then Theorem 3 can be proved by the arguments similar to the proofs of Propo-
sition 2.1 and Theorem 1.

Proof of Theorem 4. Under the alternative (2.8) with n1/2δn → 1, the asymp-
totic expansion of

√
nRb

nw(u) has a non-random shift Ω. It is easy to validate
that the random symmetrization variable Vi in

√
nRb

nw(u) makes the effect of
such non-random shift vanish. As a result, under the alternative (2.8) with
n1/2δn → 1, for Rb

nw(u) defined in (2.7), we have

√
nRb

nw(u) =
1√
n

n∑

i=1

ǫiei
(
β0,α0, g

)
Πu (Zi) + op(1).

Theorem 4 can be proved using the arguments similar as for proving Proposi-
tion 2.1 and Theorem 1.
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