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1. Introduction

Mixed effects models are typically used in population studies where repeated
measurements are observed from several independent subjects (see [3, 22] for in-
stance). Population studies are relevant in various fields such as pharmacokinet-
ics or public health, for example to study a disease progression and to evaluate
the effect of a treatment or the impact of physiological covariates [3, 4, 24]. The
particular data structure in population approaches raises difficulties with the
maximum likelihood (ML) approach. Since the likelihood cannot be expressed
in a closed form, model fitting is a complicated computational issue. There is an
extensive literature devoted to the development of powerful algorithms based on
likelihood linearization [22] or on stochastic versions of the EM algorithm [7, 11].
Available software packages (Monolix, NLMIXED in SAS, saemix and nlme in
R, nlmefitsa in Matlab, among others) allow to fit a wide range of generalized
linear and nonlinear mixed models. For model selection purpose, the Bayesian
Information Criterion (BIC) provides a consistent and easy-to-use method [27].
Its generic form is the negative maximized log-likelihood penalized by a term
that depends on the number of estimated parameters and the sample size. Sur-
prisingly, the BIC expression differs from one software to another. The reason
is that the effective sample size and the effective number of parameters are not
clearly defined in this context. The aim of the paper is to clarify how the BIC
should be defined in general mixed effects models.

1.1. Model formulation

To fix the notations, let N be the number of subjects and let yi = (yi1, . . . , yi,ni
)′

be the ni × 1 vector of observations for subject i, where yij , j = 1, . . . , ni de-
notes the jth measure observed under time condition tij and possible additional
conditions uij (such as drug doses for instance). For simplicity, we assume in
this paper that the number of repeated measurements ni is the same for each
subject: ni ≡ n, i = 1, . . . , N , but extension of our results to different nis is
straightforward. We write xij = (tij , uij) the values of the so-called regression
variables or design variables for subject i and we denote xi = (xi1, . . . , xi,n).
Population studies try to explain the variability of the observed profiles (xi, yi),
i = 1, . . . , N , and to determine if some of the variation is associated with sub-
ject characteristics ci that do not change with time (such as weight or age for
instance).

Assuming that the N subjects are mutually independent, a mixed effects
model may be presented hierarchically as a two-stage model (see for instance
[3, 13, 22]):

• Stage 1 (observations): for each individual i, the probability distribution
of the observations yi depends on a set of regression variables xi and a
d× 1 vector of individual parameters ψi

yi|ψi ∼ p(·|ψi;xi); (1.1)
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• Stage 2 (individual parameters): the inter-individual variability is modeled
by considering ψi as a random vector and by introducing in the model
covariates ci

ψi ∼ p(·|θ; ci), (1.2)

where θ is a vector of population parameters.

A linear mixed effects model assumes a linear relationship between yi and ψi
at stage 1

yi = Fiψi + εi, (1.3)

where Fi = F (xi) is a n × d design matrix and where εi is a n × 1 vector of
normally distributed residual errors: εi ∼i.i.d. N (0,Σ). A linear model for ψi is
also assumed at stage 2

ψi = Ciβ +Dibi, (1.4)

where β is a m× 1 vector of fixed-effects, bi a ℓ× 1 vector of Gaussian random
effects: bi ∼i.i.d. N (0,Γ). Here, Ci = C(ci) and Di = D(ci) are d×m and d× ℓ
matrices.

By combining (1.3) and (1.4), we obtain the general representation of a linear
mixed effects model [13]:

yi = Aiβ + Bibi + εi,

where Ai = FiCi and Bi = FiDi are n×m and n× ℓ design matrices. We give
an example of such linear mixed effects model in the simulation study Section 3.

Formulation (1.1)–(1.2) includes very general models such as nonlinear mixed
effects models for continuous data

yij = f(xij ;ψi) + σ(xij ;ψi)εij ,

where f describes the structural model and σ models the variability of the resid-
ual errors εij [3, 22]. Section 4 provides a typical example of a pharmacokinetic
study for which the nonlinear mixed effects model is an appropriate framework.
Model (1.1)–(1.2) can also consider generalized linear mixed models for categor-
ical, count or survival data [17, 26]. In this context, the first stage essentially
consists in defining the conditional mean E(yij |ψi;xij) as a function µ(xij , ψi)
which depends on the fixed and random effects through a link function and a
linear predictor:

g(E[yi|ψi;xi]) = Aiβ +Bibi.

Our main result presented in Section 2 is obtained under the hypothesis that
the individual parameters ψi are normally distributed. For a sake of simplicity
in the notations, we will denote ηi = Dibi in the sequel. Then, (1.4) reduces to

ψi = Ciβ + ηi, (1.5)

where ηi ∼i.i.d. N (0,Ω) and where Ω = (Ωk,k′ )1≤k,k′≤d is a d × d (possibly
degenerate) variance-covariance matrix. The vector of population parameters θ
includes β and the parameters in Ω.
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Equation (1.5) can consider models for which certain individual parameters
are random or purely fixed. Degenerate matrices Ω may have the following
block-diagonal structure:

Ω =

(
0 0
0 ΩR

)
, (1.6)

where ΩR is a dR×dR positive-definite variance-covariance matrix, with dR ≤ d.
The basic model defined in (1.5) for the individual parameters can be ex-

tended to more general models. First, we can assume that there exists a mono-
tonic transformation h such that φi = h(ψi) = Ciβ + ηi. For instance, the
log-transformation is frequently used for non negative parameters and the logit
transformation for parameters such as proportions which are known to take their
values between 0 and 1. Equation (1.5) can also be extended to nonlinear Gaus-
sian models such as φi = h(ψi) = µ(β, ci) + ηi, where µ is a possibly nonlinear
function of ci and β. Indeed, the proof of our results use of the parametrization
that involves the φi’s instead of the ψi’s, and does not make any assumption of
linearity for the function µ.

1.2. Covariate selection

In this paper, we focus on the covariate selection problem, i.e. the selection of
the non zero elements of β. In equation (1.5), our model formulation empha-
sizes that this variable selection problem consists in choosing the most relevant
components in the ci’s for describing the between-subjects variability of the
individual parameters of the model.

To clarify the variable selection problem tackled in the present work, we
consider a basic example based on the following linear mixed-effects model

yij = ψi0 + ψi1 tij + εij , i = 1, . . . , N, j = 1, . . . , n,

specified by the individual parameters ψi =
(
ψi0, ψi1

)′
and the regression vari-

ables xij = tij , i = 1, . . . , N , j = 1, . . . , n, with a Gaussian measurement noise
εij ∼

i.i.d.
N (0, σ2). We assume that the slope may vary with one covariate ci, so

that ψi = Ciβ + ηi with

Ci =

(
1 0 0
0 1 ci

)
; β =



µ0

µ1

α1


 ; ηi ∼i.i.d. N (0,Ω) , Ω =

(
ω2
0 0
0 ω2

1

)
.

The decision on whether or not to include the covariate ci in the model can be
based on the BIC of the fits with and without it. Our goal is to compute the
appropriate BIC; to answer this question, we assume that we know which of the
parameters are purely fixed or random, i.e. which diagonal element of Ω is null
or not. The problem of selecting the variance-covariance structure, i.e. the non
zero elements of Ω is beyond the scope of the paper.

The BIC is defined as −2LL+pen where LL is the maximized log-likelihood
and pen is a term equal to the product of the number of estimated parameters
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and the logarithm of the sample size; this term is referred to as the BIC penalty.
In a pure fixed effects model where all the observations yij , i = 1, . . . , N, j =
1, . . . , ni are independent, the effective sample size is the total number of ob-
servations ntot =

∑N
i=1 ni. In a pure random effects model where all the com-

ponents of ψi are random, the estimation of the fixed effects β is based on N
independent random vectors (y1, . . . , yN ). In such situation, the effective sam-
ple size is the number of subjects N . In a mixed effects model which combines
fixed and random components of ψi, the definition of the effective sample size is
not straightforward. Yet, in the mixed effects model literature, the BIC penalty
usually involves logntot. From a practical point of view, the logntot penalty is
implemented in the R package nlme [23] and in the SPSS procedure MIXED
[28] while the logN penalty is used in Monolix [18], saemix [2] or in the SAS
proc NLMIXED [25].

From a theoretical point of view, the BIC penalty relies on asymptotic ap-
proximations. Nie [20] showed that convergence rates of maximum likelihood
estimators can differ from parameter to parameter according to the level of
variability designed in the mixed model. Based on the work of [20], we consider
the double-asymptotic framework where both the number of subjects N and
the numbers of measurements per subject ni, i = 1, . . . , N tend to infinity. We
use an appropriate decomposition of the complete log-likelihood combined with
the Laplace approximation to derive the asymptotic BIC approximation. We
obtain a BIC penalty based on two terms proportional to logN and logntot

that adapts to the mixed effects structure of the model.
BIC-type procedures were studied by Jiang and Rao [9] in linear mixed ef-

fects models. Jiang et al. [10] pointed out the difficulties encountered with these
criteria in non conventional situations including mixed models and introduced
new strategies called fence methods. Recently, several authors clarified how the
number of parameters should be chosen to define a conditional AIC in mixed
models [8, 15, 16, 29]. Bondell et al. [1], Lai et al. [12] and Schelldorfer and
Bühlmann [26] studied the problem of fixed and random effects selection with
a lasso-type penalized likelihood approach in different mixed effects models. In
the three procedures, a BIC step was implemented to choose the regularization
parameters. The three papers used different BICs with different choices of ef-
fective sample sizes and effective degrees of freedom. Our work gives an answer
on how to define the BIC accounting for the covariance structure in the model.

The rest of the article is organized as follows. We describe in Section 2 the
asymptotic framework of our study and give the theoretical penalty term to
select covariates using BIC in mixed models. Sections 3 and 4 are devoted to a
simulation experiment and a case study. We illustrate the performance of the
proposed BIC and compare it with standard BIC criteria that are implemented
in available softwares. The article concludes with a discussion in Section 5.

2. BIC for mixed-effects models

Denote by y = (y1, . . . , yN ) the N vectors of ni ≡ n observations. Then, the
total number of observations is ntot =

∑
i ni = Nn. From here on, the ci’s and
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the xi’s will be omitted in the notations of the probability distributions. The
conditional distribution of yi will be denoted p(·|ψi) rather than p(·|ψi;xi) and
the distribution of ψi will be denoted p(·|θ) rather than p(·|θ; ci). The distribu-
tions’ dependency on rather the ci’s or the xij ’s is nevertheless still accounted
for in the following theoretical developments.

The BIC statistic arises in the Bayesian approach for model selection. Bayesian
choice is based on the posterior probability of a given model m: p(m|y) ∝
p(m)p(y|m). Assuming that the prior over models m is uniform, we need some
way of approximating p(y|m). The Laplace approximation [14] of the integral

p(y|m) =

∫
p(y|θ,m)p(θ|m)dθ,

where p(θ|m) denotes the prior for the parameters θ of each model m, gives

log p(y|m) ≈ log p(y|θ̂,m)−
1

2
log det

(
Hθ̂

)
. (2.1)

Here θ̂ denotes the maximum likelihood estimator (MLE) of the model param-

eters and Hθ̂ = −∂2 log p(y|m)
∂θ∂θ′ |θ=θ̂ is the negative Hessian matrix computed at

the MLE and also referred to as the observed information matrix. We use ≈
to mean “is approximately equal to”, corresponding to asymptotic equivalence
as sample size goes to infinity. In fixed-effects models, under basic regularity
assumptions, the Hessian Hθ behaves as N times a full-rank matrix Iθ, namely
the information matrix of the model. Then,

1

2
log det

(
Hθ̂

)
≈
q

2
logN +

1

2
log det

(
Iθ̂
)
,

where q = dim(θ) is the number of parameters in the model, i.e. the number of
elements of θ. The second term does not grow with N and by dropping it and
substituting into (2.1) we get the classical BIC approximation

log p(y|m) ≈ log p(y|θ̂,m)−
q

2
logN.

In mixed effects models, this is often not true, depending on whether n → ∞.
The order of accuracy of the Laplace approximation depends both on the num-
ber of subjects N and the number of observations per subject n; the second term
log det(Iθ̂) cannot be evaluated anymore as a constant. To evaluate the respec-
tive contributions of N and n in (2.1), we investigate the orders of magnitude
of the components of Hθ̂ with respect to both N and n. It requires to expand
the likelihood p(y|m) around the random effects rather than around the average

effect over all subjects. To see this, we write log p(y|m) =
∑N

i=1 log p(yi|θ) and
consider the marginal likelihood for subject i, p(yi|θ), that is obtained by inte-
grating the conditional distribution function of the data vector yi with respect
to ψi’s distribution:

p(yi|θ) =

∫
p(yi|ψi)p(ψi|θ)dψi. (2.2)
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Except for particular models, the integral in (2.2) does not have a tractable ex-
pression. Along the lines of [19, 20], the individual complete likelihood p(yi, ψi|θ)
is decomposed into two terms according to the covariance structure in the model.
Equation (1.6) naturally divides the ψi’s into two components: the individual pa-
rameters ψik which are not random (for which Ωkk = 0), and the individual pa-
rameters that randomly vary among subjects, corresponding to a non-degenerate
random effect ηik with non negative variance, k = 1, . . . , d. We denote by ψF,i
the components of ψi that are not random and ψR,i the components of ψi that
include a random component, leading to following notations:

ψi =

(
ψF,i
ψR,i

)
, Ci =

(
CF,i 0
0 CR,i

)
, β =

(
βF
βR

)
, ηi =

(
ηF,i
ηR,i

)
, (2.3)

in such a way equations (1.5) and (1.6) are still valid. Thus the population
parameter θ is decomposed into (θR, θF ), where θR = (βR,ΩR) and θF = βF .
Note that although the components of β and θ are now indexed by either “F”
or “R”, the whole population parameters are fixed parameters in the model.
Indexes “F” and “R” only refer to the fixed and random components of ψi.
Some precise illustration of such a decomposition is provided in Section 3 and
summarized in Table 1.

Thus, (2.2) can be replaced by

p(yi|θ) =

∫
p(yi|ψR,i, ψF,i)p(ψR,i|θR)dψR,i,

=

∫
p(yi|ψR,i, θF )p(ψR,i|θR)dψR,i. (2.4)

The negative Hessian matrix Hθ can be written as

Hθ = −
N∑

i=1




∂2 log p(yi|θ)

∂θR∂θR
′

∂2 log p(yi|θ)

∂θR∂θF
′

∂2 log p(yi|θ)

∂θF∂θR
′

∂2 log p(yi|θ)

∂θF∂θF
′


 . (2.5)

Under suitable regularity conditions, by using (2.4) and Laplace approximations
of the partial derivatives of the individual log-likelihoods, we obtain

log det
(
Hθ̂

)
≈ log det(NI1) + log det(NnI2),

where I1 and I2 represent full rank matrices of constant order of magnitude.
By dropping constant terms and substituting into (2.1) we get the appropriate
BIC approximation

log p(y|m) ≈ log p(y|θ̂,m)−
dim(θR)

2
logN −

dim(θF )

2
log(Nn).

Details of the proof are given in the Appendix.
Both N and n need to be sufficiently large if this approximation is to work.

It is worth noting that the leading term of the Laplace approximation of the
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individual log-likelihood derivatives is at most O(1), the reminder having order
of O(1/n). Hence, the order of accuracy of the leading term of the Laplace
approximation to the sample log-likelihood (2.1) is O(N/n), which is negligible
provided n grows faster thanN . Hence the BIC approximation is obtained under
the assumption that the number of observations per subject grows at a faster
rate than the number of subjects. If n grows at a rate slower thanN , the Laplace
leading term no longer converges to the log-likelihood, although the MLEs still
attain consistency [30].

Under the assumptions given in the Appendix, we obtain the following result.

Main result. Assume that the data y are modeled by (1.1)–(1.2), and (1.5).
The BIC procedure consists in selecting the model that minimizes

BICh = −2 log p(y|θ̂) + dim(θR) logN + dim(θF ) logntot. (2.6)

Remarks:

1. The new BIC criterion penalizes the size of θR with the logarithm of the
number of subjects and the size of θF with the logarithm of the total
number of observations. In a pure fixed-effects model, θR is empty and
θ = θF . Then, the proposed criterion is the BIC with a logntot penalty:

BICntot
= −2 log p(y|θ̂) + dim(θ) log ntot.

In the other extreme situation where all the individual parameters are
random, all the population parameters are components of θR and the
proposed criterion is the BIC with a logN penalty:

BICN = −2 log p(y|θ̂) + dim(θ) logN.

Thus, the BICh proposed in equation (2.6) appears to be an hybrid BIC
version that automatically adapts to the random-effects structure of a
mixed model.

2. In the Akaike Information criteria (AIC) adjusted to mixed models [16, 29],
the log-likelihood is penalized by a term that depends on the number of de-
grees of freedom ρ of the model. ρ is either the number of fixed parameters
(marginal AIC) or the effective number of parameters (conditional AIC,
[8, 15]). The choice between the two formulae depends on the focus of the
model selection, i.e. prediction about the fixed effects or prediction about
the random effects themselves. Our work on the BIC does not address the
same issue. We give the optimal BIC to perform covariate selection, i.e.
to find the non-zero elements of the fixed-effects β, whatever the random
structure of the mixed model.

3. Deriving the BICh’s value involves the computation of the population pa-
rameters’ estimators θ̂ and the computation of the observed log-likelihood.
These calculations can be intricate in nonlinear models but several algo-
rithms are available [11] and are implemented in standard packages. The
penalty term is straightforward to compute once the decomposition of
θ = (θR, θF ) is specified for the model under study. An illustrative exam-
ple is given in the next section.
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3. Simulation study

The objective of this section is to compare numerically the performances of the
proposed “hybrid” BIC, called BICh, with those of the two most widely used
BIC versions: BICntot

and BICN , which systematically penalize any model
using log(ntot) and log(N) respectively.

We will consider a basic variable selection problem based on the following
linear mixed-effects model:

yij = ψi0 + ψi1 tij + ψi2 t
2
ij + εij , i = 1, . . . , N, j = 1, . . . , n, (3.1)

specified by the individual parameters ψi =
(
ψi0, ψi1, ψi2

)′
, i = 1, . . . , N , with a

Gaussian measurement noise εij ∼
i.i.d.

N (0, σ2). Here we have ψi = Ciβ+ηi, with

Ci =



1 0 0 0 0
0 1 0 ci 0
0 0 1 0 ci


 ; β =




µ0

µ1

µ2

α1

α2



.

Furthermore, ηi ∼i.i.d. N (0,Ω) where Ω is a diagonal matrix with diagonal
elements (ω2

0 , ω
2
1, ω

2
2).

Here, covariate model selection reduces to selecting the non zero elements
of (α1, α2). There are therefore 4 possible covariate models to compare using
different information criteria:

M1 : α1 = 0, α2 = 0,

M2 : α1 6= 0, α2 = 0,

M3 : α1 = 0, α2 6= 0,

M4 : α1 6= 0, α2 6= 0.

Unlike BICN and BICntot
, BICh’s penalty depends on both the number

of random individual parameters and the number of covariates in the model.
Table 1 displays the elements of θR and θF as well as the three different pe-
nalization terms used by the three different BIC, for the four covariate models
(Mk, 1 ≤ k ≤ 4) and the four following variance models:

O1 : ω2
1 = 0, ω2

2 = 0,

O2 : ω2
1 6= 0, ω2

2 = 0,

O3 : ω2
1 = 0, ω2

2 6= 0,

O4 : ω2
1 6= 0, ω2

2 6= 0.

The aim of this numerical experiment is to investigate the behavior of the
three different versions of BIC in different situations, i.e. using different covariate
models, different variance models and different designs.

We have then simulated data under the 4× 4× 4 = 64 possible situations by
combining the covariate models (Mk, 1 ≤ k ≤ 4), the variance models (Oℓ, 1 ≤
ℓ ≤ 4) and four different designs obtained with different numbers of subjects
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Fig 1. Frequency of correct covariate selection for the three BIC versions: BICN (blue),
BICntot (green) and BICh (brown) under different covariate models M1(α1 = 0, α2 = 0),
M2(α1 6= 0, α2 = 0), M3(α1 = 0, α2 6= 0), M4(α1 6= 0, α2 6= 0), different variance models
O1(ω2

1
= 0, ω2

2
= 0), O2(ω2

1
6= 0, ω2

2
= 0), O3(ω2

1
= 0, ω2

2
6= 0), O4(ω2

1
6= 0, ω2

2
6= 0) and differ-

ent designs a(N = 20, n = 5), b(N = 20, n = 100), c(N = 100, n = 5), d(N = 100, n = 100).

N and different numbers of observations per subject n: (N = 20, n = 5), (N =
20, n = 100), (N = 100, n = 5), (N = 100, n = 100).

For each of these 64 models, 50 datasets were simulated as follows: the n
observation time points ti1, . . . , tin were equally spaced in [0, 10] and the residual
error variance was fixed to σ2 = 1. In order to consider different situations,
the covariates (ci) and the variances (ω2

m, 0 ≤ m ≤ 2) where randomly drawn
for each replicate: ci ∼ N (0, 1), µ0, α1, α2 ∼ N (0.01, 1), µ1 ∼ N (0.005, 1),
µ2 ∼ N (0.0025, 1) and ω2

m ∼ U[0.01,1.01], m = 0, 1, 2.

For each simulated dataset, the EM algorithm was used for estimating the
population parameters and the observed likelihood was computed as a Gaus-
sian likelihood, according to (3.1). We could then derive the three versions of
BIC using the penalization terms displayed in Table 1 and thus obtain three se-
lected covariate models. The selected models were then compared to the original
covariate model used for generating the data.

The results of the Monte-Carlo simulation study are displayed in Figure 1.
The results obtained with the 64 models are displayed as follows: each column
is associated to a covariate model, each row to a variance model. Then, any of
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the 16 subplots displays the results obtained with the four designs for a given
covariate and variance model.

We can remark first that the performances of BICN and BICntot
signifi-

cantly differ according to the covariance structure of the model. Figure 1 es-
pecially shows that BICntot

is more likely to select the right covariate model
than BICN when there are no random components (model O1). In this situa-
tion BICh behaves exactly as BICntot

since the penalizations are the same, up
to a constant term (see Table 1). On the contrary, BICN better behaves than
BICntot

in a model with a large number of random parameters (model O4). Such
result was expected according to Remark 1 in Section 2. In this extreme situ-
ation, we can remark that BICh now behaves exactly as BICN (see Table 1).
In models with an intermediate covariance structure (models O2 and O3), the
comparison between BICN and BICntot

seems to depend both on the design
and the covariate model. In some situations, BICntot

underestimates the num-
ber of covariates and in other situations, BICN overestimates this number while
BICh uses the most adequate penalization whatever the model and the design.

In summary, BICh is globally the best selection criterion in the present co-
variate selection problem, since it behaves in various situations at least as well as
both standard criteria BICN and BICntot

. On the other hand, the performances
of BICN and BICntot

highly depend on the number of random parameters in
the model. Thus, by automatically adapting its penalization according to the
covariance structure of the model, BICh is a useful compromise between BICN
and BICntot

for covariate selection in a population approach.

4. Application to the warfarin data

We will use a classical clinical pharmacology study [21] for illustrating the pro-
posed method with a real data example. This data is available with the Mono-

lix software and all the results presented in this section can easily be repro-
duced.

In this well known study, N = 32 healthy volunteers received a 1.5 mg/kg
single oral dose of warfarin, an anticoagulant normally used in the prevention
of thrombosis. The warfarin plasma concentration C was then measured at
different times for these patients and a total number of ntot = 251 measurements
was obtained.

We consider a one compartment model for this data:

C(t,D, ka, V, Cl) =
Dka

V ka− Cl

(
e−(Cl/V ) t − e−ka t

)
, (4.1)

where D is the initial dose of drug, ka the absorption rate constant, V the
volume of distribution and Cl the clearance of the drug. We then model the
observations (yij , 1 ≤ i ≤ ni) of patient i using a proportional error model:

yij = C(xij , ψi) + C(xij , ψi)εij , (4.2)

where xij = (tij , Di) are the regression variables, ψi = (kai, Vi, Cli) are the
PK (pharmacokinetic) parameters for patient i and the residual errors εij are
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Table 2

BICN , BICntot and BICh for the four covariate models M1, M2, M3 and M4

Model
dimension dimension

−2LL BICN BICntot BIChof θR of θF
M1 5 2 928.1 952.4 966.8 956.5
M2 6 2 923.3 951.0 967.5 955.1
M3 5 3 923.0 950.7 967.2 956.9
M4 6 3 918.1 949.3 967.8 955.5

i.i.d. centered Gaussian random variables with variance σ2. Due to positivity
constraints, we assume that (kai, Vi, Cli) are log-normal random variables, i.e.
logψi is Gaussian. We also assume a diagonal covariance matrix Ω. Available
covariate for patient i is its weight wi. Here wi has been centered by the empirical
mean computed on the 32 patients.

We have compared several possible covariate models for the PK parameters
but we only report here four representative models. For these four models, we
use the same following model for Vi

log(Vi) = log(Vpop) + βV wi + ηV,i,

where ηV,i ∼
i.i.d.

N (0, ω2
V ). We also assume that there is no random effect on kai.

We then consider different covariate models for kai and Cli:

M1 : log(kai)= log(kapop); log(Cli)= log(Clpop)+ ηCl,i,

M2 : log(kai)= log(kapop); log(Cli)= log(Clpop)+ βClwi+ ηCl,i,

M3 : log(kai)= log(kapop)+ βkawi; log(Cli)= log(Clpop)+ ηCl,i,

M4 : log(kai)= log(kapop)+ βkawi; log(Cli)= log(Clpop)+ βClwi+ ηCl,i,

where ηCl,i ∼
i.i.d.

N (0, ω2
Cl).

The results are reported in Table 2. The numbers of non-random and random
components of θ in each model are indicated in columns 2–3 and the selection
criteriaBICN , BICntot and BICh are computed in columns 5–7. We can remark
that the four covariate models are not ranked in the same way according to the
BIC penalty. BICN increases from the largest model to the smallest one and
is minimum for M4. BICntot

ranks the models in the reverse order and selects
the simplest one M1. As expected, BICh chooses the intermediary model M2

which includes in the model a weight effect on Cl.
We don’t pretend here that M2 is the “best” model and that BICh is able

to select it. This example only illustrates the fact that different models can be
selected according to the penalization which is used. It is the simulation study
presented in the previous section that illustrates the good statistical properties
of BICh.

5. Discussion

The classical definition of BIC is inappropriate for mixed effects models where
the information associated with a given model structure is affected by the num-
ber of random effects. This article derives the appropriate BIC penalty for mixed
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effects models depending on both the number of subjects N and the numbers
of observations per subject ni, i = 1, . . . , N . The selection procedure is consis-
tent if N and min(ni) tend to infinity. Intuitively, the logN term comes from
standard asymptotic theory while the logntot term comes from the Laplace ap-
proximation of the integrated likelihood. Although validated only if min(ni) goes
to infinity faster than N , the result of equation (2.6) is expected to work well
when the number of measurements is moderate, as illustrated in the simulated
example. Equation (2.6) is derived under usual regularity assumptions satisfied
by generalized linear and nonlinear mixed-effects models. It can be extended to
more general models involving a dependence structure within each subject, such
as mixed-effects hidden Markov models [4, 5].

We have performed a simulation study for comparing the behavior of the
proposed BIC with two standard BIC criteria that are implemented in different
softwares used for the analysis of mixed effects models. Using a simple linear
mixed effects model, we have found that the proposed BIC mainly behaves as
the best of the two standard BIC, whatever the random structure of the model.
This is predicted by the theory since the proposed criterion automatically adapts
to the number of random factors that define the model structure. Additional
simulations involving more complex models such as “inter-occasion” models
often used in pharmacology are required to investigate the empirical properties
of the proposed criterion, which will be implemented soon in the next version
of Monolix.

The proposed BIC is designed only for covariate selection when the structure
of the random effects of the model is given. The selection of significant random
effects cannot be treated in the same way and deriving the BIC for joint selection
of covariate and covariance components remains an open problem.

Appendix: Technical details

The key for deriving the expected BIC penalty in mixed-effects models is to get
an appropriate approximation of log detHθ̂ when both the number of subjects
N and the number of observations per subject n tend to infinity. The study of
the Hessian matrix is based on the asymptotic evaluation of the partial second
derivatives of the individual log-likelihood log p(yi|θ). The main steps of the
proof are given below.

A.1. Decomposition of the log-likelihood

Let us first give the general form of the Laplace approximation of the partial
second derivatives of subject i’s observed log-likelihood [20]:

−
∂2 log p(yi|θ)

∂θ∂θ′
=
∂2li(yi, ψi|θ)

∂θ∂θ′

−
∂2li(yi, ψi|θ)

∂θ∂ψ′
i

(
∂2li(yi, ψi|θ)

∂ψi∂ψ′
i

)−1
∂2li(yi, ψi|θ)

∂θ′∂ψi
|ψi=ψ̂i

+O(n−1),

(A.1)
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where li(yi, ψi|θ) = − log p(yi, ψi|θ),

and
ψ̂i = argmax

ψi

li(yi, ψi|θ).

As a result of the partition of θ between θR and θF (2.3), li(yi, ψi|θ) naturally
divides into

li(yi, ψi|θ) = li1(yi|ψR,i, θF ) + li2(ψR,i|θR),

where

li1(yi|ψR,i, θF ) = − log p(yi|ψR,i, θF ),

li2(ψR,i|θR) = − log p(ψR,i|θR),

according to the Bayes formula.

A.2. Regularity assumptions

Some conditions on the model are required to study the order of magnitude
of Hθ̂’s components when N,n → +∞. Let ϑ denote an open subset of the
parameter space Θ and let θ⋆ denote the true population parameter value. We
assume that for any given n:

(H1) For all i = 1, . . . , N , and for all θ ∈ ϑ, p(yi|θ) admits all first, second and
third derivatives with respect to θ for almost all yi.

(H2) (i) There exists M > 0 such that for all i = 1, . . . , N , for all θ ∈ ϑ and all
k, l = 1, . . . , q,

Eyi|θ⋆

[
∂ log p(yi|θ)

∂θk
|θ=θ⋆

]2
<M and Eyi|θ⋆

[
∂2 log p(yi|θ)

∂θk∂θl
|θ=θ⋆

]2
<M.

(ii) Moreover, there exists a sequence of functions {G1(y1), . . . , GN (yN )}
such that for all θ ∈ ϑ, for all i = 1, . . . , N and for all k, l, h = 1, . . . , q,

∣∣∣∣
∂3 log p(yi|θ)

∂θk∂θl∂θh

∣∣∣∣ ≤ Gi(yi) and Eyi|θ⋆
[
G2
i (yi)

]
≤M.

(H3) Let Vθ = (H
− 1

2

θ⋆ )Hθ(H
− 1

2

θ⋆ )′ for all θ ∈ ϑ. Matrix Hθ⋆ is positive definite
and invertible, and

max
θ∈ϑ

||Vθ − Iq|| −→
N→+∞

0,

where Iq stands for the q × q identity matrix.
(H4) lim infN→+∞ λN = λ > 0 where λN is the smallest eigenvalue of matrix

E( 1
NHθ⋆).

(H5) (i)
1

N

N
∑

i=1

Eyi|θ
⋆







[

ψR,i
′

(

∂2li1(yi|ψR,i, θF )

∂ψR,i∂ψR,i
′

+ Ω−1

R

)−1

ψR,i

]

|ψi=ψ̂i







= o(n−1),
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(ii)
1

N

N
∑

i=1

Eyi|θ
⋆







[

∂2li1(yi|ψR,i, θF )

∂θF ∂ψR,i
′

(

∂2li1(yi|ψR,i, θF )

∂ψR,i∂ψR,i
′ + Ω−1

R

)−1

ψR,i

]

|ψi=ψ̂i







= O(1).

Assumptions (H1) to (H4) are classical regularity conditions encountered in
most studies relative to the asymptotic maximum likelihood theory. They were
adapted to mixed-effects models by [20]. Condition (H5) is necessary to evaluate
the respective order of the components of the Hessian matrix and could be
seen as a regularity condition on the distributions p(yi|ψi). (H5) is a realistic
assumption in the sense that it is verified in most mixed models, even in models
including a dependance structure within each subject under classical regularity
conditions on p(yi|ψi) (see [20] and [6] for illustrative examples).

A.3. Asymptotic evaluation of H
θ̂

In the following, we consider the Hessian matrix normalized with the number
of subjects, i.e. 1

NHθ̂, instead of Hθ̂ itself. Denote

G = E

[
1

N
Hθ⋆

]
.

Due to the decomposition θ = (θR, θF ), G can be written as a block matrix:

G = −
1

N

N∑

i=1

Eyi|θ⋆




∂2 log p(yi|θ)

∂θR∂θ′R

∂2 log p(yi|θ)

∂θR∂θ′F
∂2 log p(yi|θ)

∂θF∂θ′R

∂2 log p(yi|θ)

∂θF∂θ′F


 =

(
GRR GRF
GFR GFF

)
. (A.2)

Since log detG−1 = − log detG, we rather study the orders of magnitude of
G−1’s block components. By inverting (A.2), we have:

G−1=




(GRR−GRFG
−1
FFGFR)

−1 −(GRR−GRFG
−1
FFGFR)GRFG

−1
FF

(−(GRR−GRFG
−1
FFGFR)GRFG

−1
FF )

′ (GFF −GFRG
−1
RRGRF )

−1


.

(A.3)
The asymptotic evaluation of G−1 first requires to study the orders of magnitude
of GRR, GRF and GFF separately. This relies on the Laplace approximations of
∂2 log p(yi|θ)
∂θR∂θ′R

, ∂
2 log p(yi|θ)
∂θR∂θ′F

and ∂2 log p(yi|θ)
∂θF ∂θ′F

respectively and assumption (H5).

For example, using (A.1) to evaluate GRF , we write

−
∂2 log p(yi|θ)

∂θF∂θR
′

=
∂2li(yi, ψi|θ)

∂θF∂θR
′ −

∂2li(yi, ψi|θ)

∂θF∂ψR,i
′

(
∂2li(yi, ψi|θ)

∂ψR,i∂ψR,i
′

)−1
∂2li(yi, ψi|θ)

∂ψR,i∂θR
′ |ψi=ψ̂i

+O(n−1),
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= −
∂2li1(yi|ψR,i, θF )

∂θF∂ψR,i
′

(
∂2li1(yi|ψR,i, θF )

∂ψR,i∂ψR,i
′ +Ω−1

R

)−1
∂2li2(ψR,i|θR)

∂ψR,i∂θR
′ |ψi=ψ̂i

+O(n−1). (A.4)

Then,

−
1

N

N∑

i=1

Eyi|θ⋆

[
∂2 log p(yi|θ)

∂θF∂θR
′

]
(A.5)

= −
1

N

N∑

i=1

Eyi|θ⋆

[
∂2li1(yi|ψR,i, θF )

∂θF∂ψR,i
′

(
∂2li1(yi|ψR,i, θF )

∂ψR,i∂ψR,i
′ +Ω−1

R

)−1

×
∂2li2(ψR,i|θR)

∂ψR,i∂θR
′ |ψi=ψ̂i

]
+O(n−1). (A.6)

As we assume ψi is Gaussian (see (1.2)),
∂2li2(ψR,i|θR)
∂ψR,i∂θR′ can be expressed as a

first-order polynomial function of ψi. Thus,

∂2li1(yi|ψR,i, θF )

∂θF∂ψR,i
′

(
∂2li1(yi|ψR,i, θF )

∂ψR,i∂ψR,i
′ +Ω−1

R

)−1
∂2li2(ψR,i|θR)

∂ψR,i∂θR
′

and
∂2li1(yi|ψR,i, θF )

∂θF∂ψR,i
′

(
∂2li1(yi|ψR,i, θF )

∂ψR,i∂ψR,i
′ +Ω−1

R

)−1

ψR,i

have similar behaviours when N,n → +∞. According to assumption (H5)-(ii),
we deduce that GRF is of the order of a constant when N,n→ +∞.

The orders of GRR and GFF are obtained on the same pattern. More precisely,
using (H5)-(i), we show that

GRR = −
1

N

N∑

i=1

Eyi|θ⋆

[
∂2li2(ψR,i|θR)

∂θR∂θR
′ |ψi=ψ̂i

]
+ o(n−1)

where 1
N

∑N
i=1 Eyi|θ⋆ [

∂2li2(ψR,i|θR)
∂θR∂θR′ |ψi=ψ̂i

] is positive definite when N,n → +∞,

thus GRR = O(1). Similarly, we can show that GFF = O(n), since GFF only
involves the derivatives of li1 of order O(n).

In a second step, the asymptotic behaviors of GRR, GRF and GFF are com-
bined together. We get:

(GRR − GRFG
−1
FFGFR)

−1 ≈ I1,

(GFF − GFRG
−1
RRGRF )

−1 ≈ n−1I2,

−(GRR − GRFG
−1
FFGFR)GRFG

−1
FF ≈ 0,

where I1 and I2 are respectively dim(θR)× dim(θR) and a dim(θF )× dim(θF )
full rank matrices of constant order of magnitude.
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From (A.3), we can write

log detG−1 ≈ log
(
det I1 det

(
n−1I2

))
,

= log det I1 − dim(θF ) logn+ log det I2.

Finally, to get BICh’s penalty, log detHθ̂ is approximated by log det(NG):

log det (NG) = log
(
Ndim(G) detG

)
,

= dim(θ) logN − log detG−1,

≈ dim(θF ) log(nN) + dim(θR) logN − log det I1 − log det I2.

Hence the BIC approximation given in equation (2.6).
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