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Abstract: The problem of estimating covariance and precision matrices
of multivariate normal distributions is addressed when both the sample size
and the dimension of variables are large. The estimation of the precision ma-
trix is important in various statistical inference including the Fisher linear
discriminant analysis, confidence region based on the Mahalanobis distance
and others. A standard estimator is the inverse of the sample covariance
matrix, but it may be instable or can not be defined in the high dimen-
sion. Although (adaptive) ridge type estimators are alternative procedures
which are useful and stable for large dimension. However, we are faced with
questions about how to choose ridge parameters and their estimators and
how to set up asymptotic order in ridge functions in high dimensional cases.
In this paper, we consider general types of ridge estimators for covariance
and precision matrices, and derive asymptotic expansions of their risk func-
tions. Then we suggest the ridge functions so that the second order terms
of risks of ridge estimators are smaller than those of risks of the standard
estimators.
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1. Introduction

Statistical inference with high dimension has received much attention in recent
years and has been actively studied from both theoretical and practical aspects
in the literature. Of these, estimate of the precision matrix is required in many
multivariate inference procedures including the Fisher linear discriminant anal-
ysis, confidence intervals based on the Mahalanobis distance and weighted least
squares estimator in multivariate linear regression models. A standard estimator
of the precision based on the sample covariance matrix is likely to be instable
when the dimension p is large and close to the sample size N even if N > p. In
the case of p > N , the inverse of the sample covariance matrix cannot be defined,
and an estimator based on the Moore-Penrose generalized inverse of the sample
covariance matrix has been used in Srivastava [11]. Another useful and stable
estimator for the precision matrix is a ridge estimator, and its various variants
have been used in literature. For example, see Ledoit and Wolf [8], [9], Fisher
and Sun [3] and Bai and Shi [1]. However, superiority of the ridge-type estima-
tors over the standard estimators have not been studied except Kubokawa and
Srivastava [6], who obtained exact conditions for the ridge-type estimators to
have uniformly smaller risks than the standard estimator. However, their results
are limited to specific ridge functions and special loss functions.

To specify the problem considered here, let y1, . . . ,yN be independently and
identically distributed (i.i.d.) as a multivariate normal distribution with mean
vector µ and p× p positive definite covariance matrix Σ denoted as Np(µ,Σ),

Σ > 0. Let y = N−1
∑N

i=1 yi, V =
∑N

i=1(yi−y)(yi−y)t and n = N−1. Then,
in the case of n ≥ p, V has a Wishart distribution with mean nΣ and degrees
of freedom n, denoted as Wp(Σ, n). When n < p, it is called a singular Wishart
distribution, whose distribution has been recently studied by Srivastava [10]. In
many inference procedures, an estimate of the precision matrix Σ−1 is required.

In the case that n > p, the standard estimator of Σ−1 is Σ̂
−1

0 = cV −1 for a
positive constant c, but it may not be stable when p is large and close to n. In
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the case of p > n, the estimator cV −1 cannot be defined. Srivastava [11] used
the estimator cV + based on the Moore-Penrose inverse V + of V .

In this paper, we address the problems of estimating both covariance ma-
trix Σ and precision matrix Σ−1, and consider general ridge-type estimators,
respectively given by

Σ̂Λ = c(V + dΛ̂), and Σ̂
−1

Λ = c(V + dΛ̂)−1, (1.1)

where c and d are positive constants based on (n, p), and Λ̂ is a p× p positive

definite matrix based on V . Examples of the ridge function Λ include Λ̂ = λ̂I,
Λ̂ = diag (λ̂1, . . . , λ̂p) and others, where λ̂, λ̂1, . . . , λ̂p are functions of V . We
evaluate the difference of risk functions of the ridge-type and the standard esti-
mators asymptotically for large n and p, where the risk functions are measured
with respect to the scale-invariant quadratic loss functions. Then we derive con-
ditions on d and Λ̂ such that the ridge-type estimators improve on the standard
estimators asymptotically.

The paper is organized as follows. Section 2 treats estimation of the covariance
matrix Σ, and gives asymptotic evaluations for risks of the ridge estimators
when (n, p) → ∞. The estimation of the precision matrix Σ−1 is dealt with in
Section 3. For estimation of the covariance matrix relative to the scale-invariant
quadratic loss, we can handle both cases of n > p and p > n in the unified
framework. For the precision matrix, however, the ridge type estimator has
different properties between the two cases, and the standard estimator is cV +

in the case of p > n, so that we need to treat the two cases separately. Some
examples of ridge functions Λ̂ are given in Section 4. Risk performances of the
ridge-type estimators are investigated by simulation in Section 5. Concluding
remarks are given in Section 6. Some technical tools and proofs are given in the
appendix.

2. A unified result in estimation of covariance

Let X = (x1, . . . ,xn) be a p × n random matrix such that xi ∼ Np(0,Σ) for
i = 1, . . . , n, where Σ is an unknown positive definite matrix. Let V = XX ′.
In the case of n ≥ p, V is distributed as a Wishart distribution Wp(n,Σ) with
n degrees of freedom. We first consider the estimation of the covariance matrix
Σ in terms of the risk function R(Σ, Σ̂) = E[L(Σ, Σ̂)], where L(Σ, Σ̂) is the
scale-invariant quadratic loss

L(Σ, Σ̂) = tr [(Σ̂Σ−1 − I)2].

The loss function is invariant under the scale transformation Σ → AΣA′ and
Σ̂ → AΣ̂A′ for any nonsingular matrix A.

A standard estimator is of the form cV for c ∈ R+, where R+ is a set
of real positive numbers, and the optimal c in terms of the risk is given by
c1 = 1/(n + p + 1) and the risk of the estimator Σ̂0 = c1V is R(Σ, Σ̂0) =
p(p+1)/(n+p+1). This can be easily seen for n ≥ p and it follows from Konno
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[5] for p > n. To improve the estimator c1V , we consider a class of estimators
given by

Σ̂Λ = c1(V + dΛ̂), (2.1)

where Λ̂ is a p × p positive definite matrix based on V , and d is a positive
constant. The risk difference between the two estimators Σ̂Λ and Σ̂0 is denoted
by

∆ = R(Σ, Σ̂Λ)−R(Σ, Σ̂0).

To evaluate ∆ asymptotically, we assume the following conditions:

(A1) Assume that (n, p) → ∞. Throughout the paper, δ given in the following
is a constant satisfying 0 < δ ≤ 1. Assume either (A1-1) or (A1-2) for order of
(n, p), where

(A1-1) p = O(nδ) for 0 < δ ≤ 1 in the case of n ≥ p,
(A1-2) n = O(pδ) for 0 < δ ≤ 1 in the case of p > n.

(A2) There exist limiting values

lim
p→∞

tr [(Σ−1)i]/p, lim
p→∞

tr [(ΛΣ−1)i]/p

for i = 1, 2, where Λ is a p× p symmetric matrix based on Σ.

(A3) Assume that Λ̂ is a p× p symmetric matrix based on V such that

tr [{(Λ̂−Λ)Σ−1}2]/p = Op(n
−1),

E[tr [Σ−1(Λ̂−Λ)]]/p = O(n−1),

E[tr [Σ−1ΛΣ−1(Λ̂−Λ)]]/p = O(n−1).

Some examples of statistic Λ̂ satisfying condition (A3) will be given in Sec-
tion 4.

In this paper, we use the following notations:

W = Σ−1/2V Σ−1/2,Γ = Σ−1/2ΛΣ−1/2, Γ̂ = Σ−1/2Λ̂Σ−1/2,

m = n− p,Chmax(A) = (the largest eigenvalue of A).

Theorem 2.1. Assume conditions (A1)–(A3). Then, the risk difference of the

estimators Σ̂Λ = c1(V + dΛ̂) and Σ̂0 is approximated as

∆ =
pd

(n+ p)2

{d

p
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}

+
p

n+ p

{
O
(
d

√
p/n√
n+ p

)
+O

( d2/n

n+ p

)}
. (2.2)

Proof. The risk difference of the estimators Σ̂Λ = c1(V +dΛ̂) and Σ̂0 is written
as

∆ = E
[
tr [{c1V Σ−1 − I + c1dΛ̂Σ−1}2

]
−R(Σ, Σ̂0)
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= E
[
2c1dtr [(c1V Σ−1 − I)Λ̂Σ−1] + c21d

2tr [(Λ̂Σ−1)2]
]
. (2.3)

We shall evaluate each term in the r.h.s. of the last equality in (2.3). The first
term is written as

E
[
c1dtr [(c1V Σ−1 − I)Λ̂Σ−1]

]

= c1d(nc1 − 1)tr [ΛΣ−1] + c1dE
[
tr [{c1V Σ−1 − I}(Λ̂−Λ)Σ−1]

]

= − p(p+ 1)d

(n+ p+ 1)2
tr [ΛΣ−1]

p
+ c1dE

[
tr [{c1V Σ−1 − I}(Λ̂−Λ)Σ−1]

]
. (2.4)

It is here noted from Cauchy-Shwartz’ inequality that the inequality

(tr [AB])2 ≤ tr [A2]tr [B2] (2.5)

holds for symmetric matricesA andB. It is also noted that tr [{c1V Σ−1−I}2] =
Op(p

2(n+p)−1) since E[tr [{c1V Σ−1−I}2]] = R(Σ, Σ̂0) = p(p+1)/(n+p+1).
Then,

c1dtr [{c1V Σ−1 − I}(Λ̂−Λ)Σ−1]

≤ c1d
{
tr [{c1V Σ−1 − I}2]tr [{(Λ̂−Λ)Σ−1}2]

}1/2
,

which is of order Op((n+ p)−1d[p3n−1(n+ p)−1]1/2). Thus, from (2.4),

E
[
c1dtr [(c1V Σ−1 − I)Λ̂Σ−1]

]

= − p(p+ 1)d

(n+ p+ 1)2
tr [ΛΣ−1]

p
+O

( dp
√
p/n

(n+ p)3/2

)
. (2.6)

Finally, we estimate the term c21d
2E[tr [(Λ̂Σ−1)2]] in (2.3). Note that

c21d
2E

[
tr [(Λ̂Σ−1)2]

]
= c21d

2tr [(ΛΣ−1)2] + 2c21d
2E

[
tr [ΛΣ−1(Λ̂−Λ)Σ−1]

]

+ c21d
2E

[
tr [{(Λ̂−Λ)Σ−1}2]

]
. (2.7)

Under condition (A3), it is observed that

c21d
2E

[
tr [ΛΣ−1(Λ̂−Λ)Σ−1]

]
= O

( d2p/n

(n+ p)2

)
,

c21d
2E

[
tr [{(Λ̂−Λ)Σ−1}2]

]
= O

( d2p/n

(n+ p)2

)
,

so that

c21d
2E

[
tr [(Λ̂Σ−1)2]

]
= c21d

2tr [(ΛΣ−1)2] +O
( d2p/n

(n+ p)2

)
. (2.8)

Combining (2.6) and (2.8), we get

∆ = − 2p(p+ 1)d

(n+ p)2
tr [ΛΣ−1]

p
+

pd2

(n+ p)2
tr [(ΛΣ−1)2]

p
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+
p

n+ p

{
O
(d

√
p/n√

n+ p

)
+O

( d2/n

n+ p

)}
, (2.9)

which yields the approximation in Theorem 2.1.

Since the leading term in (2.2) is a quadratic function of d, it can be minimized
at

d = ptr [ΛΣ−1]/tr [(ΛΣ−1)2]. (2.10)

If we assume that there exist limp→∞ tr [(ΛΣ−1)j ]/p for j = 1, 2, it is seen
that the optimal d is of order p. When Λ is of the form Λ = λI for a positive
parameter λ, the minimizing dλ is

dλ = ptr [Σ−1]/tr [Σ−2]. (2.11)

Thus, we can put d = p and Λ = {tr [Σ−1]/tr [Σ−2]}I as the optimal solution.

In the case of n > p, a consistent estimator of Λ is given by Λ̂3 of Example 4.3
in Section 4. However, it is not easy to derive a consistent estimator for Λ when
p > n. That is, we could not provide an estimator which minimizes the leading
term in (2.2) when d = p and p > n.

The approximation given in Theorem 2.1 shows that the leading term in (2.2)
is negative when the order of d is less than p.

Corollary 2.1. Assume conditions (A1)–(A3) with d = o(p). Then, the estima-

tor Σ̂Λ = c1(V + dΛ̂) improves on Σ̂0 in terms of second order approximation

of risk for any estimator Λ̂ satisfying condition (A3). For instance, take d = 1
and d = max{√n,

√
p} ≡ dn,p. Then, from (2.2), it follows that for d = 1,

∆ = Ln,p +Rn,p, for Ln,p = − 2p

(n+ p)2
tr [ΛΣ−1], (2.12)

where Ln,p = O(n2(δ−1)), Rn,p = O(n−2+3δ/2) for p = O(nδ), and Ln,p = O(1),
Rn,p = O(p−δ/2) for n = O(pδ) for 0 < δ ≤ 1. Also, for d = dn,p,

∆ = Ln,p +Rn,p, for Ln,p = −2
pdn,p

(n+ p)2
tr [ΛΣ−1], (2.13)

where Ln,p = O(n2δ−3/2), Rn,p = O(n−1+δ) for p = O(nδ) and 1/2 < δ ≤ 1,
and Ln,p = O(p1/2), Rn,p = O(p(1−δ)/2) for n = O(pδ) and 0 < δ ≤ 1.

Remark 2.1. For fixed Λ and constant c, the risk of estimator c(V + dΛ) is
written as

R(Σ, c(V + dΛ)) = p{n(n+ p+ 1)c2 − 2nc+ 1}+ 2c(nc− 1)dtr [ΛΣ−1]

+ c2d2tr [(ΛΣ−1)2].

When c = 1/n, V /n is an unbiased estimator of Σ, and we have

R(Σ, n−1(V + dΛ)) = p(p+ 1)/n+ n−2d2tr [(ΛΣ−1)2],
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which is minimized at d = 0. This means that the unbiased estimator cannot be
improved on by the ridge-type estimator under the quadratic loss. The optimal
c among estimators cV is c1 = 1/(n+ p+ 1), and we have

R(Σ, c1(V + dΛ))

=
p(p+ 1)

n+ p+ 1
+

1

(n+ p+ 1)2

{
−2(p+ 1)dtr [ΛΣ−1] + d2tr [(ΛΣ−1)2]

}
.

The second term of the above equality corresponds to the leading term in (2.2),

and Theorem 2.1 guarantees that the risk of c1(V + dΛ̂) with an estimator

Λ̂ of Λ can be approximated by the risk of c1(V + dΛ) for fixed Λ under
conditions (A1)–(A3). Noting that c1V shrinks n−1V toward zero, we can see
from Theorem 2.1 that there is a room to improve on c1V by expanding it with
c1V + c1dΛ̂. �

3. Estimation of precision

In this section we consider the estimation of the precision matrix Σ−1. For
estimation of the covariance matrix, we have treated both cases of n > p and
p > n in the unified framework. For the precision matrix, however, the ridge
type estimator has different properties between the two cases, so that we need
to treat the two cases separately.

3.1. Case of n > p

We begin by considering the case of n > p. The estimation of the precision ma-

trixΣ−1 is addressed in terms of the risk function R∗(Σ, Σ̂
−1

) = E[L∗(Σ, Σ̂
−1

)]

where L∗(Σ, Σ̂
−1

) = tr [(Σ̂
−1

Σ− I)2], which is invariant under the scale trans-
formation. A standard estimator of the form cV −1 for c ∈ R+ has the risk
R∗(Σ, cV −1) = E[c2tr [W−2]− 2ctr [W−1] + p], which is

R∗(Σ, cV −1) = c2
p(m+ p− 1)

m(m− 1)(m− 3)
− 2c

p

m− 1
+ p. (3.1)

Thus, the best constant c is c2 = m(m−3)/(n−1), and the risk is R∗(Σ, Σ̂
−1

0 ) =

p(mp+ 2m− n+ 1)/{(m− 1)(n− 1)} for Σ̂
−1

0 = c2V
−1.

A drawback of Σ̂
−1

0 is that it may be close to be instable when p is large and

n− p is small. To modify the estimator Σ̂
−1

0 , we consider a class of estimators
given by

Σ̂
−1

Λ = c2(V + dΛ̂)−1, (3.2)

where Λ̂ is a p × p positive definite matrix based on V satisfying condition

(A3). Then, we investigate whether Σ̂
−1

Λ improves Σ̂
−1

0 . Let ∆∗ = R∗(Σ, Σ̂Λ)−
R∗(Σ, Σ̂0). Assume the following condition:
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(A4) There exist limiting values

lim
p→∞

tr [Σi]/p, i = 1, 2,

lim
p→∞

tr [(ΛΣ−1)j ]/p, j = 1, 2, 3.

In the case of δ < 1, we can show the following theorem which will be proved
in the appendix.

Theorem 3.1. Assume conditions (A1-1), (A3) and (A4). Also assume that

n − p > 7 and δ < 1, namely p = o(n). Then, the risk difference of Σ̂
−1

Λ and

Σ̂
−1

0 can be approximated as

∆∗ =
pd

n2

{d

p
tr [(ΛΣ−1)2]− 2tr [ΛΣ−1]

}
+O(d3n−3+δ) +O(d2n−5/2+3δ/2)

+O(dn−5/2+5δ/2) +O(dn−2+3δ/2). (3.3)

In the case of δ = 1, we assume the condition given by

(A1-3) (n, p) → ∞, p/n → γ and n− p > 7 for 0 < γ ≤ 1.

Then, we can get the following result which will be shown in the appendix.

Theorem 3.2. Assume conditions (A1-3), (A3) and (A4). Then,

R∗(Σ, Σ̂Λ) = E[tr [{c2(V + dΛ)−1Σ− I}2]] +O(d2n−2) +O(dn−1/2). (3.4)

When d = p, this expression can not be approximated anymore, so that we need

to evaluate E[tr [{c2(V +dΛ)−1Σ−I}2]] directly. When d = o(p), however, the

risk difference of Σ̂
−1

Λ and Σ̂
−1

0 can be further approximated as

∆∗ = −2
d

n
tr [ΛΣ−1] +O(d3n−2) +O(d2n−1) +O(dn−1/2). (3.5)

Since the leading term in (3.3) is a quadratic function of d, it can be min-
imized at d = ptr [ΛΣ−1]/tr [(ΛΣ−1)2], which is the same as in estimation of
Σ. This implies that the optimal d is of order p under condition (A4). When
Λ is of the form Λ = λI for a positive parameter λ, the minimizing dλ is
dλ = ptr [Σ−1]/tr [Σ−2], which is estimated by a consistent estimator given by

Λ̂3 of Example 4.3 in Section 4 when n > p.
The approximations given in Theorems 3.1 and 3.2 show that the leading

terms in (3.3) and (3.5) are negative when d = o(p).

Corollary 3.1. Assume conditions (A1-1) or (A1-3). Also assume (A3) and

(A4) with d = o(p). Then, the estimator Σ̂
−1

Λ = c2(V +dΛ̂)−1 improves on Σ̂
−1

0

in terms of second order approximation of risk for any estimator Λ̂ satisfying

condition (A3). For instance, take d = max{√n,
√
p} ≡ dn,p. Then, from (3.3)

and (3.5), it follows that for 1/2 < δ < 1,

∆∗ = −2
p
√
n

n2
tr [ΛΣ−1] +O(n−1+δ) +O(n−2+5δ/2),
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and for δ = 1, ∆∗ = −2n−1/2tr [ΛΣ−1] +O(1). For d = 1, a similar expression

can be given.

3.2. Case of p > n

We next consider the case of p > n in the estimation of the precision matrix
Σ−1. In this case, V is singular, and there does not exist the inverse of V .
A feasible estimator is of the form

Σ̂
−1

Λ = c(V + pΛ̂)−1. (3.6)

A loss function treated here is the scale-invariant quadratic loss L∗(Σ, Σ̂
−1

) =

tr [(Σ̂
−1

Σ− I)2]. Relative to this loss function, an approximation of the risk is
provided under the following conditions:

(A5) There exist the limiting values limp→∞ tr [(Λ−1Σ)i]/p for i = 1, 2.

(A6) Assume that Λ̂ satisfies that

tr [{(Λ̂−1 −Λ−1)Σ}2]/p = Op(n
−1),

E[tr [Σ(Λ̂
−1 −Λ−1)]]/p = O(n−1),

E[tr [ΣΛ−1Σ(Λ̂
−1 −Λ−1)]]/p = O(n−1).

Theorem 3.3. Assume conditions (A1-2), (A5) and (A6) with c = cn,p = O(p).

Also assume that Λ̂ satisfies the following condition:

tr [X ′Λ̂
−1

ΣΛ̂
−1

X] = Op(np) and tr [X ′Λ̂
−1

ΣΛ̂
−1

ΣΛ̂
−1

X] = Op(np).
(3.7)

Then, the risk of the estimator Σ̂
−1

Λ given in (3.6) is approximated as

R∗(Σ, Σ̂
−1

Λ ) = p
{
1− 2

c

p

tr [Λ−1Σ]

p
+

c2

p2
tr [(Λ−1Σ)2]

p
+O(n−1)

}
+O(n). (3.8)

Proof. Let X = (x1, . . . ,xn) be a p × n random matrix such that V = XX ′

and x1, . . . ,xn are i.i.d. as Np(0,Σ). Note that

(V + pΛ̂)−1 = p−1Λ̂
−1 − p−2Λ̂

−1
X(In + p−1X ′Λ̂

−1
X)−1X ′Λ̂

−1
.

The scale-invariant quadratic loss of Σ̂
−1

Λ is written as

tr [{c(V + pΛ̂)−1Σ− I}2]

= tr
[{ c

p
Λ̂

−1
Σ− I − c

p2
Λ̂

−1
X(In + p−1X ′Λ̂

−1
X)−1X ′Λ̂

−1
Σ
}2

]

= tr
[{ c

p
Λ̂

−1
Σ− I

}2
]
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− 2
c

p2
tr
[
(In + p−1X ′Λ̂

−1
X)−1X ′Λ̂

−1
Σ{ c

p
Λ̂

−1
Σ− I}Λ̂−1

X
]

+
c2

p4
tr
[{

(In + p−1X ′Λ̂
−1

X)−1X ′Λ̂
−1

ΣΛ̂
−1

X
}2

]
,

where the second term in the r.h.s. of the last equality is of order Op(n) from
condition (3.7). For the third term, it is observed that

p−2tr
[{

(In + p−1X ′Λ̂
−1

X)−1X ′Λ̂
−1

ΣΛ̂
−1

X
}2

]

≤ p−1tr
[
(X ′Λ̂

−1
X)−1

{
X ′Λ̂

−1
ΣΛ̂

−1
X

}2
]

= p−1tr
[
P Λ̂

−1/2
ΣΛ̂

−1
XX ′Λ̂

−1
ΣΛ̂

−1/2
]

≤ p−1tr
[
X ′Λ̂

−1
ΣΛ̂

−1
ΣΛ̂

−1
X

]
,

which is of order Op(n) from condition (3.7), where

P = Λ̂
−1/2

X(X ′Λ̂
−1

X)−1X ′Λ̂
−1/2

.

Thus,

tr [{c(V + pΛ̂)−1Σ− I}2] = tr [{(c/p)Λ̂−1
Σ− I}2] +Op(n). (3.9)

We next evaluate the first term in the r.h.s. of (3.9) as

c2

p2
tr [(Λ̂

−1
Σ)2]− 2

c

p
tr [Λ̂

−1
Σ]

=
c2

p2
tr [(Λ−1Σ)2]− 2

c

p
tr [Λ−1Σ] + 2

c2

p2
tr [(Λ̂

−1 −Λ−1)ΣΛ−1Σ]

+
c2

p2
tr [{(Λ̂−1 −Λ−1)Σ}2]− 2

c

p
tr [(Λ̂

−1 −Λ−1)Σ]

=
c2

p2
tr [(Λ−1Σ)2]− 2

c

p
tr [Λ−1Σ] +Op(p/n),

from condition (A6). This shows (3.8).

Concerning condition (3.7), it is seen that if Λ̂ satisfies Chmax(Λ̂
−1

) = Op(1)
for large (n, p) satisfying (A1-2), then condition (3.7) is satisfied under condition

tr [Σi]/p = O(1) for i = 1, 2, 3. In fact, since Chmax(Λ̂
−1

) = Op(1), it is sufficient
to show that E[tr [XX ′Σi]] = O(np), i = 1, 2, which can be easily verified if
tr [Σi]/p = O(1), i = 1, 2, 3.

As an example of Λ̂, we consider the case of Λ̂ = λ̂Ip for positive scalor

function λ̂ of V , namely, the estimator given in (3.6) with c = p is

Σ̂
−1

λ = p(V + pλ̂Ip)
−1. (3.10)
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Conditions on λ̂ for the approximation of the risk given in (3.8) are provided
from Theorem 3.3. For the ridge estimator (3.10), we can also use an approach
based on the eigenvalue decomposition. Since this approach is useful for under-
standing ridge estimators in the case of p > n, we here describe the expressions
based on the eigenvalue docomposition for the ridge-type estimator and the risk.
Let H = (H1,H2) be a p× p orthogonal matrix such that

V = H

(
L 0

0′ 0

)
H ′ = H1LH ′

1, L = diag (ℓ1, . . . , ℓn), (3.11)

where ℓ1 ≥ · · · ≥ ℓn, and H1 is a p × n matrix satisfying H ′
1H1 = In. Then,

the estimator (3.10) is expressed as

p(V + pλ̂Ip)
−1 = H

(
p(L+ pλ̂In)

−1 0

0 λ̂−1Ip−n

)
H ′ (3.12)

= H
(

p(L+ pλ̂In)
−1 − λ̂−1In 0

0 0

)
H ′ + λ̂−1Ip

= λ̂−1
(
Ip −H1L(L+ pλ̂In)

−1H ′
1

)
,

and the risk function is written as

R∗(Σ, Σ̂
−1

λ ) = E
[
tr [{λ̂−1Σ− Ip}2]

]
+ E

[
λ̂−2tr [{L(L+ pλ̂In)

−1H ′
1ΣH1}2]

]

− 2E
[
λ̂−1tr [{λ̂−1Σ− Ip}H1L(L+ pλ̂In)

−1H ′
1Σ]

]
. (3.13)

Note that

tr [{L(L+ pλ̂In)
−1H ′

1ΣH1}2] ≤ tr [H ′
1Σ

2H1],

tr [ΣH1L(L+ pλ̂In)
−1H ′

1Σ] ≤ tr [H ′
1Σ

2H1],

tr [H1L(L+ pλ̂In)
−1H ′

1Σ] ≤ tr [H ′
1ΣH1].

Then the risk expression (3.13) provides conditions on λ̂ for the approximation
of the risk.

Proposition 3.1. Assume that E[tr [H ′
1ΣH1]] = O(n), E[tr [H ′

1Σ
2H1]] =

O(n) and tr [Σi]/p = O(1) for i = 1, 2. Also assume that there exists a positive

constant λ such that λ̂ − λ = Op(n
−1/2) and E[λ̂ − λ] = O(n−1). Under the

condition (A1-2), the risk of the estimator (3.10) is approximated as

R∗(Σ, Σ̂
−1

λ ) = p
{
1− 2λ−1a1 + λ−2a2 +O(n−1)

}
+O(n), (3.14)

where a1 = tr [Σ]/p and a2 = tr [Σ2]/p.

The approach based on the eigenvalue decomposition enables us to approx-

imate the risk of the estimator Σ̂
−1

0 = pV +, where V + is the Moore-Penrose
generalized inverse of V . Using the decomposition (3.11), we can rewrite pV + as

pV + = H
(

pL−1 0

0 0

)
H ′ (3.15)

= pH1L
−1H ′

1.
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The risk function of Σ̂
−1

0 is

R∗(Σ, Σ̂
−1

0 ) = p− 2E[tr [pV +Σ]] + E[tr [(pV +Σ)2]]

= p
{
1− 2E[tr [L−1H ′

1ΣH1]] + E[ptr [(L−1H ′
1ΣH1)

2]]
}
.

It follows from Lemma A.1 that

E[tr [L−1H ′
1ΣH1]] ≤ Chmax(Σ)Chmax(Σ

−1)
n

p− n− 1
,

E[ptr [(L−1H ′
1ΣH1)

2]] ≤ {Chmax(Σ)Chmax(Σ
−1)}2np(p− 1)

{(p− n− 1)(p− n− 3)− 2}(p− n− 1)
,

both of which are of order O(pδ−1) when n = O(pδ) for 0 < δ < 1. Hence, we
get the following proposition.

Proposition 3.2. Assume that Chmax(Σ) and Chmax(Σ
−1) are bounded for

large p, and that p − n ≥ 4, (n, p) → ∞ and n = O(pδ) for 0 < δ < 1. Then,

R∗(Σ, Σ̂
−1

0 ) = p+O(pδ).

Combining Propositions 3.1 and 3.2 gives the following asymptotic approxi-

mation for ∆∗ = R∗(Σ, Σ̂
−1

λ )−R∗(Σ, Σ̂
−1

0 ).

Corollary 3.2. Assume the conditions given in Propositions 3.1 and 3.2. Then,

∆∗

p
= −2

a1
λ

+
a2
λ2

+O(p−δ) +O(pδ−1). (3.16)

The leading term in (3.16) is minimized at λ = tr [Σ2]/tr [Σ] = a2/a1. A con-

sistent estimator of Λ = λI is given by Λ̂2 in Example 4.2 in the next section.

Remark 3.1. The expressions (3.12) and (3.13) of the ridge estimator Σ̂
−1

λ

and the risk function tell us about appropriate order of the ridge function pλ̂.
When we assume that E[tr [H ′

1ΣH1]] = O(n), E[tr [H ′
1Σ

2H1]] = O(n) and
tr [Σi]/p = O(1) for i = 1, 2, we can evaluate the risk in (3.13) as

R∗(Σ, Σ̂
−1

λ ) = E
[
p− 2

p

λ̂
a1 +

p

λ̂2
a2 +

n

λ̂2
×Op(1) +

n

λ̂
×Op(1)

]
. (3.17)

When 1/λ̂ = Op(1), we get the approximation given in Proposition 3.1. If λ̂ =

op(1) or limp→∞ 1/λ̂ = ∞, then (p/λ̂2)a2 in (3.17) is the dominating term,

which implies that R∗(Σ, Σ̂
−1

λ )/p → ∞ as (p, n) → ∞. Hence, in this case,

the ridge estimator with λ̂ = op(1) has a larger risk than Σ̂
−1

0 asymptotically.
This phenomenon is understandable when we compare the expressions in (3.12)

and (3.15). When λ̂ = op(1), the lower right matrix component λ̂−1Ip−n in
(3.12) diverges while the lower right matrix component in (3.15) is zero. These

arguments suggest that λ̂ should be taken so as to satisfy 1/λ̂ = Op(1).
Kubokawa and Srivastava [6] showed that pV + is the best estimator among

aV + for a ∈ R+ relative to the loss LKS(Σ, Σ̂,V ) = tr [{Σ̂−1−Σ−1}2V 2], and
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established the exact dominance result that pV + is dominated by

Σ̂
−1

KS = p
(
V +

c

trV + Ip

)−1

,

in terms of the loss LKS(Σ, Σ̂,V ) if 0 < c ≤ 2(n−1)/p. Since tr [V +] = Op(n/p)

from Lemma A.1, it is seen that c/tr [V +] = pλ̂KS for

λ̂KS =
c/p

tr [V +]
= Op(p

−1).

Since λ̂KS = op(1), the estimator Σ̂
−1

KS has a larger risk than Σ̂
−1

0 asymptot-

ically relative to the loss L(Σ, Σ̂) = tr [(Σ̂Σ−1 − I)2]. Why does the estima-

tor Σ̂
−1

KS improve on Σ̂
−1

0 in terms of the loss LKS(Σ, Σ̂,V )? The reason is

that the lower right matrix component λ̂−1Ip−n in (3.12) disappears relative

to the loss LKS(Σ, Σ̂,V ) since V 2 is incorporated in the loss function as seen
from (3.11). �

4. Examples of statistic Λ̂ for estimating Λ

In this section, we provide some examples of statistic Λ̂ satisfying conditions
(A3) and/or (A6).

Example 4.1. Consider the statistic given by

Λ̂1 = â1I for â1 = tr [V ]/(np). (4.1)

This is an unbiased estimator of Λ1 = a1I for a1 = tr [Σ]/p. Srivastava [11]
showed that â1− a1 = Op((np)

−1/2) under condition (A2) for large n or p. This

shows that Λ̂1 = â1I satisfies condition (A3). Note that

â−1
1 − a−1

1 = −a−2
1 (â1 − a1) + a−3

1 (â1 − a1)
2 + op((np)

−1).

Since E[â1 − a1] = 0, E[(â1 − a1)
2] = O((np)−1) and â1 = Op(1), it is easily

verified that condition (A6) is satisfied. �

Example 4.2. Consider the statistic given by

Λ̂2 = (â2/â1)I for â2 =
1

(n− 1)(n+ 2)p

[
tr [V 2]− (tr [V ])2/n

]
. (4.2)

Srivastava [11] showed that â2 is an unbiased estimator of a2 = tr [Σ2]/p and
â2−a2 = Op((np)

−1/2)+Op(n
−1) under condition (A2) for large n and p. Note

that

â2
â1

− a2
a1

=
a2
a1

{ â2 − a2
a2

− â1 − a1
a1

}

− a2
a1

{ (â1 − a1)
2

a21
+

(â1 − a1)(â2 − a2)

a1a2

}
+Op(n

−3/2), (4.3)
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which implies that E[â2/â1 − a2/a1] = O(n−1) and E[(â2/â1 − a2/a1)
2] =

O(n−1). This shows that Λ̂2 satisfies condition (A3). Similar to (4.3), it can be
verified that condition (A6) is satisfied, since â2/â1 = Op(1). It is noted that

pΛ̂2 provides an optimal estimator which minimizes the leading term in (3.16)
when p > n. �

Example 4.3. Consider the case of n > p and p = O(nδ) for 0 < δ ≤ 1. Then,
Proposition A.1 proves that the estimators given by

b̂1 =
m

p
tr [(V + â1I)

−1],

b̂2 =
m2

p
tr [(V + â1I)

−2]− p

m
(b̂1)

2,
(4.4)

are consistent estimators of b1 and b2, respectively, where â1 is given in (4.1)

and bi = tr [Σ−i]/p for i = 1, 2. That is, b̂1 − b1 = Op((np)
−1/2) and b̂2 − b2 =

Op(n
−1/2). Based on these statistics, we consider the statistic

Λ̂3 = (b̂1/b̂2)I. (4.5)

Similarly to (4.3), we can see that E[b̂1/b̂2 − b1/b2] = O(n−1) and E[(b̂1/b̂2 −
b1/b2)

2] = O(n−1). This shows that Λ̂3 satisfies condition (A3). It is noted that

pΛ̂3 provides an optimal estimator which minimizes the leading terms in (2.2)
and (3.3) when n > p. �

Example 4.4. Consider the statistic given by

Λ̂4 = n−1diag (v11, . . . , vpp), (4.6)

where vii is the i-th diagonal element of V . Then, Λ̂4 is an unbiased estimator
of Λ = diag (σ11, . . . , σpp). We shall verify conditions (A3) and (A6). Note that
vii/σii ∼ χ2

n and that E[(vii/n − σii)
2] = 2σ2

ii/n. For (A3), it is seen that for
Σ−1 = (σij),

E[tr [{(Λ̂4 −Λ)Σ−1}2]] =
∑

i,j

σijσjiE[(vii/n− σii)(vjj/n− σjj)]

≤
∑

i,j

σijσji{E[(vii/n− σii)
2]E[(vjj/n− σjj)

2]}1/2

=
2

n

∑

i,j

σijσjiσiiσjj =
2

n
tr [(ΛΣ−1)2]. (4.7)

Thus, condition (A3) holds if tr [(ΛΣ−1)2]/p = O(1) for lage p. For (A6), it is
seen that

E[tr [{(Λ̂−1

4 −Λ−1)Σ}2]]

=
∑

i,j

σijσji

σiiσjj
E[(1 − nσii/vii)(1 − nσjj/vjj)]
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≤
∑

i,j

σijσji

σiiσjj
{E[(1− nσii/vii)

2]E[(1 − nσjj/vjj)
2]}1/2

=
2(n+ 4)

(n− 2)(n− 4)

∑

i,j

σijσji

σiiσjj
=

2(n+ 4)

(n− 2)(n− 4)
tr [(Λ−1Σ)2],

which is of order O(p/n) if tr [(Λ−1Σ)2]/p = O(1) for lage p. Similarly,

E[tr [(Λ̂
−1

4 −Λ−1)Σ]] = 2(n− 2)−1p,

E[tr [(Λ̂
−1

4 −Λ−1)ΣΛ−1Σ]] = 2(n− 2)−1tr [(Λ−1Σ)2].

Hence, conditions (A6) holds for Λ̂4. For condition (3.7), it is noted that if
tr [Σ−1]/p = O(1), then

tr [X ′Λ̂
−1

ΣΛ̂
−1

X] = Chmax(Σ)tr [Λ̂
−2

XX ′] = Chmax(Σ)

p∑

i=1

n2/vii,

where vij denotes the (i, j) element of XX ′. Here,

p∑

i=1

E[n2/vii] = n2

p∑

i=1

E[(σiiχ
2
n)

−1] = n2(n− 2)−1tr [Σ−1] = O(np),

so that tr [X ′Λ̂
−1

ΣΛ̂
−1

X] = Op(np) if tr [Σ−1]/p = O(1) and Chmax(Σ) =

O(1). Similarly, it can be seen that E[tr [X ′Λ̂
−1

ΣΛ̂
−1

ΣΛ̂
−1

X ]] = O(np)

if tr [Σ−2]/p = O(1). Thus, condition (3.7) is satisfied for Λ̂4 if Chmax(Σ) =
O(1). �

5. Simulation studies

We now investigate the numerical performances of the risk functions of the
ridge-type estimators through simulation.

As a structure of the covariance matrix, we consider a matrix of the form

Σ =




σ1

. . .

σp







ρ|1−1|/7 · · · ρ|1−p|/7

...
...

...
ρ|p−1|/7 · · · ρ|p−p|/7







σ1

. . .

σp


 ,

for a constant ρ on the interval (−1, 1) and σi = 3 + 0.2(−1)i−1(p − i + 1)/p.
As a model for simulation experiments, we treat the following three cases for
random variables xi’s, i = 1, . . . , n, where xi is generated as xi = Σ1/2zi for
zi = (zi1, . . . , zpi) with zi1, . . . , zpi being mutually independent.

(Case 1) zij ∼ N (0, 1),
(Case 2) zij = (uij −m)/

√
2m, uij ∼ χ2

m for m = 8,
(Case 3) zij = (uij −m)/

√
2m, uij ∼ χ2

m for m = 2.
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The last two cases treat non-normal cases. Since the skewness and kurtosis
(K4 + 3) of χ2

m is, repectively, (8/m)1/2 and 3 + 12/m, it is noted that χ2
2 has

higher skewness and kurtosis than χ2
8.

Let V = XX ′ for X = (x1, . . . ,xn). Then for estimation of Σ, we can

calculate the four kinds of ridge estimators Σ̂Λ,i = c(V + dΛ̂i) for Λ̂i’s given in
(4.1), (4.2), (4.5) and (4.6), which are denoted by Rid1, Rid2, Rid3 and Rid4. In
the estimation of Σ, c is given by c = 1/(n+ p+1). As values of d, we treat the
three cases: d = 1, p and dn,p for dn,p = max{√n,

√
p}. We use these notations

for estimation of Σ−1, where the constant c is c = m(m− 3)/(n− 1) in the case

of n > p and c = p for p > n. It is noted that Λ̂3 or Rid3 is not available for
p > n.

The simulation experiments are carried out under the above model for (n, p) =
(200, 20), (100, 20), (50, 100) and (80, 100) and ρ = 0.2. Based on 10,000 repli-
cations, we calculate averages of the following Relative Risk Gain of the ridge
estimators:

RRGi = 100× E[tr [(Σ̂0Σ
−1 − I)2]]− E[tr [(Σ̂Λ,iΣ

−1 − I)2]]

E[tr [(Σ̂0Σ
−1 − I)2]]

,

RRG∗
i = 100× E[tr [(Σ̂

−1

0 Σ− I)2]]− E[tr [(Σ̂
−1

Λ,iΣ− I)2]]

E[tr [(Σ̂
−1

0 Σ− I)2]]
,

where Σ̂
−1

0 = pV + in the case of p > n.
The simulation results for estimation of Σ are reported in Table 1. In the

cases of d = 1 and d = dn,p, the ridge estimators are better than the standard
estimator. This agrees with the analytical results given in Corollary 2.1, while
the improvements for d = 1 are quite small. It is revealed from Table 1 that the
performance of the ridge estimator Rid1 is better than the others. Thus, the
ridge estimator Rid1 with d = p is recommendable for estimating Σ.

Table 1

Values of RRGi in estimation of Σ for ρ = 0.2, where dn,p = max(
√

n,
√
p), and Λ̂3 is not

available for p > n

d = 1 d = p d = dn,p

Case n p Rid1 Rid2 Rid3 Rid4 Rid1 Rid2 Rid3 Rid4 Rid1 Rid2 Rid3 Rid4

200 20 1.0 1.3 0.8 0.9 8.9 6.4 9.0 7.1 8.7 9.0 7.8 7.4
Case 1 100 20 1.8 2.4 1.0 1.7 16.1 11.3 14.1 12.8 13.3 15.5 8.6 11.7

50 100 1.5 2.7 NA 1.5 62.5 −26.6 NA 56.7 14.2 24.4 NA 13.9
80 100 1.3 2.3 NA 1.2 52.1 −18.6 NA 48.3 11.9 20.4 NA 11.6

200 20 0.9 1.3 0.7 0.8 8.3 5.9 8.5 5.4 8.1 8.3 7.3 6.1
Case 2 100 20 1.7 2.3 1.0 1.4 15.1 10.2 13.5 9.6 12.5 14.6 8.2 9.9

50 100 1.5 2.8 NA 1.4 62.1 −33.6 NA 52.3 14.2 24.7 NA 13.6
80 100 1.2 2.3 NA 1.2 51.7 −21.6 NA 45.3 11.8 20.4 NA 11.4

200 20 0.8 1.1 0.6 0.5 6.8 4.6 7.2 1.4 6.7 6.9 6.2 2.9
Case 3 100 20 1.4 2.0 0.9 1.0 12.7 7.5 12.0 2.0 10.6 12.4 7.4 5.5

50 100 1.5 2.8 NA 1.4 61.0 −50.0 NA 39.5 14.0 25.3 NA 12.8
80 100 1.2 2.3 NA 1.1 50.7 −29.4 NA 36.5 11.6 20.5 NA 10.7
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Table 2

Values of RRG∗

i in estimation of Σ−1 for ρ = 0.2 in the case of n > p

d = 1 d = p d = dn,p

Case n p Rid1 Rid2 Rid3 Rid4 Rid1 Rid2 Rid3 Rid4 Rid1 Rid2 Rid3 Rid4

Case 1 200 20 1.2 1.6 0.9 1.1 2.8 −3.3 5.4 2.0 5.7 3.4 6.3 4.9
100 20 2.6 3.4 1.5 2.4 −5.1 −17.6 6.9 −5.2 7.3 3.9 8.4 6.7

Case 2 200 20 1.4 1.9 1.1 1.2 6.0 0.6 7.9 4.6 8.0 6.3 8.2 6.7
100 20 3.1 4.1 1.8 2.7 −0.6 −12.8 10.0 −0.9 10.3 7.4 10.4 9.2

Case 3 200 20 1.9 2.6 1.5 1.5 14.3 11.3 14.5 11.2 14.1 14.3 13.0 11.3
100 20 4.4 6.0 2.7 3.5 12.0 0.9 19.2 10.8 18.8 17.4 16.6 16.0

Table 3

Values of RRG∗

i
in estimation of Σ−1 for ρ = 0.2 and c = d = p in the case of p > n

Case n p Rid1 Rid2 Rid4

Case 1 50 100 82.4 67.9 80.3
80 100 99.7 99.5 99.7

Case 2 50 100 82.8 68.0 80.0
80 100 99.7 99.5 96.7

Case 3 50 100 84.0 69.0 78.5
80 100 99.7 99.5 99.7

The simulation results for estimation of Σ−1 are reported in Table 2 for
n > p and Table 3 for p > n. In the case of n > p, the improvements of the ridge
estiamtors with d = 1 over the standard estimator are small. The performances
of the ridge estimators with d = dn,p are good. In the case of p > n, the ridge
estimator Rid1 with d = p has a slightly better performance. Thus, we can use
the ridge estimator Rid1 where constant d is given by d = dn,p for n > p and
by d = p for p > n.

6. Concluding remarks

In this paper, we have considered estimation of the covariance and precision ma-
trices by the ridge-type estimators, and have derived asymptotic expansions of
their risk functions relative to the scale-invariant quadratic loss functions when
the sample size and the dimension are very large. These expansions clarify the
conditions for the ridge-type estimators to have smaller risks than the standard
estimators in terms of the second-order terms.

The conditions for the improvement depend on the choice of the ridge function
Λ̂ and the order of d, namely, in estimation of the covariance matrix, if the
following inequality holds

(d/p)tr [(ΛΣ−1)2] ≤ 2tr [ΛΣ−1], (6.1)

then the ridge-type estimators improve on the standard estimators asymptoti-
cally relative to the scale-invariant quadratic loss function in both cases of n > p
and p > n. It is interesting to note that in estimation of the precision matrix,
under the same condition as in (6.1), the ridge-type estimator improves on the
standard estimator asymptotically in the case of n > p. However, the condition
for the improvement in estimation of the precision matrix in the case of p > n
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is slightly different from (6.1). Although condition (6.1) always holds asymptot-
ically when d = o(p), it depends on ΛΣ−1 in the case of d = p. Various variants
of the ridge-type estimators have been investigated through the performances
of the risk functions by simulation.

We would like to mention the loss functions for measuring estimation errors
of estimators. In this paper we have used the scale-invariant quadratic loss
functions

L(Σ, Σ̂) = tr [(Σ̂Σ−1 − I)2],

L∗(Σ, Σ̂
−1

) = tr [(Σ̂
−1

Σ− I)2],

which are used for estimating Σ and Σ−1, respectively. Another scale-invariant
loss functions are the Stein loss functions given by

LS(Σ, Σ̂) = tr [Σ̂Σ−1]− log |Σ̂Σ−1| − p,

L∗
S(Σ, Σ̂

−1
) = tr [Σ̂

−1
Σ]− log |Σ̂−1

Σ| − p.

Both scale-invariant loss functions have been used in most literature when n >
p, since there exist minimax estimators with constant risks under the scale-
invariant losses. Although the results under the Stein losses are omitted here,
we can have similar properties as in the case of the scale-invariant quadratic
losses. When p > n, however, the situation is different from the case of n > p. For
instance, we can not employ the Stein loss for measuring the risk of the estimator
cV , since the determinants |cV Σ−1| and |(cV )−1Σ| do not exist. In estimation
of Σ in the case of p > n, Konno [5] used the scale-invariant quadratic loss

L(Σ, Σ̂), and Ledoit and Wolf [8, 9] treated the non-scale-invariant quadratic

loss function tr [(Σ̂ − Σ)2]. No one knows which is appropriate for estimation
of Σ in the case of p > n. In estimation of Σ−1, Kubokawa and Srivastava

[6] used the loss functions tr [(Σ̂
−1 − Σ−1)2V k] for k = 0, 1, 2. Although they

obtained ridge-type estimators improving on the best multiple of V + for finite
n and p such as p > n, their ridge-type estimators are not necessarily stable
as (p, n) → ∞ as pointed out in Remark 3.1. Thus, possible loss functions for

estimation of Σ−1 are the scale-invariant quadratic loss L∗(Σ, Σ̂
−1

) and the

quadratic loss tr [(Σ̂
−1 −Σ−1)2]. It may be interesting to investigate which loss

is appropriate for measuring estimators of Σ−1.
Finally, it is noted that the validity of the asymptotic expansions will not be

discussed here. All the results in this paper are based on major terms obtained
by Taylor series expansions. Although this paper provides the second order
approximations without the validity, we need more conditions and many more
steps for establishing the validity of the second-order approximations.
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Appendix

A.1. Identities useful for evaluation of moments

The following identity derived by Konno [5] is useful. It is related to the Stein-
Haff identity given by Stein [12] and Haff [4] for n > p, but it can be used in
both cases of n > p and n ≤ p. Let X = (x1, . . . ,xn) be a p×n random matrix
such that V = XX ′ and x1, . . . ,xn are i.i.d. as Np(0,Σ). Let G(V ) be a p× p
matrix of functions of V . Then, Konno [5] derived the identity given by

E
[
tr [Σ−1V G(V )]

]
= E

[
ntr [G(V )] + tr [X∇

′
XG(V )′]

]
, (A.1)

where ∇X = (∂/∂Xij) for X = (Xij).
In the case of n > p, we can use the Stein-Haff identity to evaluate higher

moments of W = Σ−1/2V Σ−1/2. Let G(W ) be a p × p matrix such that the
(i, j) element gij(W ) is a differentiable function of W = (wij) and denote
{DWG(W )}ac =

∑
b dabgbc(W ), where dab = 2−1(1 + δab)∂/∂wab with δab = 1

for a = b and δab = 0 for a 6= b. In the case of n > p, Stein [12] and Haff [4]
derived the Stein-Haff identity given by

E [tr {G(W )}] = E
[
(m− 1)tr

{
G(W )W−1

}
+ 2tr {DWG(W )}

]
, (A.2)

for m = n− p.
In the case of p > n, the corresponding identity was provided by Kubokawa

and Srivastava [6]. This identity was also derived from (A.1) by Konno [5]. Let
H = (H1,H2) be a p× p orthogonal matrix such that

V = H

(
L 0

0′ 0

)
H ′ = H1LH ′

1, L = diag (ℓ1, . . . , ℓn), (A.3)

where ℓ1 ≥ · · · ≥ ℓn, and H1 is a p × n matrix satisfying H ′
1H1 = In. Let

ℓ = (ℓ1, . . . , ℓn)
′, and Φ(ℓ) = diag (φ1(ℓ), . . . , φn(ℓ)). In the case of p > n,

Kubokawa and Srivastava [6] derived the Stein-Haff identity given by

E
[
tr {H1Φ(ℓ)H ′

1Σ
−1}

]
=

n∑

i=1

E
[
(p−n−1)

φi

ℓi
+2

∂

∂ℓi
φi+2

∑

j>i

φi − φj

ℓi − ℓj

]
. (A.4)

Using (A.4), we can evaluate the moments of tr [L−1] and tr [L−2] from above.

Lemma A.1. In the case of p > n, the following inequalities hold:

E[tr [L−1]] ≤ Chmax(Σ
−1)

n

p− n− 1
,

E[tr [L−2]] ≤ {Chmax(Σ
−1)}2 n(p− 1)

{(p− n− 1)(p− n− 3)− 2}(p− n− 1)
.
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Proof. Putting Φ(ℓ) = I, Φ(ℓ) = L−1 and Φ(ℓ) = (tr [L−1])I in the identity
(A.4), we get

E[tr [H ′
1Σ

−1H1]] = (p− n− 1)E[tr [L−1]], (A.5)

E[tr [L−1H ′
1Σ

−1H1]] = (p− n− 3)E[tr [L−2]]− E[(tr [L−1])2], (A.6)

E[tr [L−1]tr [H ′
1Σ

−1H1]] = (p− n− 1)E[(tr [L−1])2]− 2E[tr [L−2]], (A.7)

respectively, where the second equality follows from the fact that

2
n∑

i=1

p∑

j=i+1

(ℓiℓj)
−1 = (tr [L−1])2.

The equality (A.5) yields the first inequality in Lemma A.1. Combining (A.6)
and (A.7) gives the equality

E[tr [L−2]] =
(p− n− 1)E[tr [L−1H ′

1Σ
−1H1]] + E[tr [L−1]tr [H ′

1Σ
−1H1]]

(p− n− 1)(p− n− 3)− 2
,

which, together with (A.5), provides the second inequality in Lemma A.1.

A.2. Evaluations of moments

Let W = Σ−1/2V Σ−1/2, and W has Wp(n, I) for n > p. The following lemma
provides exact moments of the inverted Wishart matrix W−1. For the proof,
see Kubokawa, Hyodo and Srivastava [7]. Let α2 = [m(m− 1)(m− 3)]−1, α3 =
α2[m(m−1)(m−3)]−1 and Let α4 = α3[(m+2)(m−2)(m−7)]−1 for m = n−p.

Lemma A.2. Assume that A and B are any symmetric matrices. For m > 3,

E[trW−1AW−1B] = α2[(m− 1)trAB + (trA)(trB)],

E[(trW−1A)(trW−1B)] = α2[2trAB + (m− 2)(trA)(trB)].

For m > 5,

E[trW−1AW−2B] = α3(n− 1)[(m− 1)trAB + 2(trA)(trB)],

E[(trW−1A)(trW−2B)] = α3(n− 1)[4trAB + (m− 3)(trA)(trB)].

For m > 7,

E[trW−2AW−2B]

= α4(n− 1)
{
{(m− 1)(n− 2)− 6}[(m− 1)trAB + 2(trA)(trB)]

+ (2m+ 3p− 2)[4trAB + (m− 3)(trA)(trB)]
}
,

E[(trW−2A)(trW−2B)]

= α4(n− 1)
{
2(2m+ 3p− 2)[(m− 1)trAB + 2(trA)(trB)]

+ {(m− 4)(n− 1)− 6}[4trAB + (m− 3)(trA)(trB)]
}
.
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Lemma A.3. Let k1, k2, ℓ1 and ℓ2 be nonnegative integers satisfying k1ℓ1 +
k2ℓ2 = m for m ≤ 4. Assume that there exist limiting values of tr [Ak1 ]/p
and tr [Bk2 ]/p for nonnegative definite matrices A and B. Also, assume that

tr [W−m] < ∞. Then, the moment

Mn,p = E[{tr [(W−1A)k1 ]/p}ℓ1{tr [(W−1B)k2 ]/p}ℓ2]

is evaluated as Mn,p = O(pn−m) for large n and p. In the special case of p/n → γ
for 0 < γ < 1, Mn,p is of order Mn,p = O(n−m).

Proof. It is noted that

Mn,p ≤ n−mE[{Chmax(nW
−1)}m]{tr [Ak1 ]/p}ℓ1{tr [Bk2 ]/p}ℓ2

≤ pn−mE[tr [(nW−1)m]]{tr [Ak1 ]/p}ℓ1{tr [Bk2 ]/p}ℓ2
= O(pn−m), (A.8)

from Lemma A.2. In the case that p/n → γ for 0 < γ < 1, we can use the result
of Bai and Yin [2], namely, Chmax(nW

−1) = Op(1). Thus, from (A.8), it can
be seen that Mn,p = O(n−m).

Lemma A.4. Assume that m > 5. Then,

E[(tr [W−1Σ−1])3] =
(tr [Σ−1])3

m3
+O(p3n−4),

E[tr [W−1Σ−1]tr [(W−1Σ−1)2]] =
tr [Σ−1]tr [Σ−2]

m3
+

(tr [Σ−1])3

m4
+O(p2n−4),

E[tr [W−1Σ−2]tr [(W−1Σ−1)2]] =
(tr [Σ−2])2

m3
+

tr [Σ−2](tr [Σ−1])2

m4

+O(p2n−4),

E[tr [(W−1Σ−1)3]] =
tr [Σ−3]

m3
+O(p3n−4).

Proof. Let D be a p × p diagonal matrix of eigenvalues of Σ−1. Letting G =
D(tr [W−1D])2, G = Dtr [(W−1D)2], G = D2tr [(W−1D)2] and G =
D(W−1D)2 in (A.2), we have

tr [D]E[(tr [W−1D])2] = (m− 1)E[(tr [W−1D])3]

− 4E[tr [W−1D]tr [(W−1D)2]],

tr [D]E[tr [(W−1D)2]] = (m− 1)E[tr [W−1D]tr [(W−1D)2]]

− 4E[tr [(W−1D)3]],

tr [D2]E[tr [(W−1D)2]] = (m− 1)E[tr [W−1D2]tr [(W−1D)2]]

− 4E[tr [D(W−1D)3]],

E[tr [D(W−1D)2]] = (m− 3)E[tr [(W−1D)3]]

− 2E[tr [W−1D]tr [(W−1D)2]],
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respectively. These can be rewritten as

E[(tr [W−1D])3] =
1

m− 1
{tr [D]E[(tr [W−1D])2]

+ 4E[tr [W−1D]tr [(W−1D)2]]},

E[tr [W−1D]tr [(W−1D)2]] =
1

m− 1
{tr [D]E[tr [(W−1D)2]]

+ 4E[tr [(W−1D)3]]},

E[tr [W−1D2]tr [(W−1D)2]] =
1

m− 1
{tr [D2]E[tr [(W−1D)2]]

+ 4E[tr [D(W−1D)3]]},

E[tr [(W−1D)3]] =
1

m− 3
{E[tr [D(W−1D)2]]

+ 2E[tr [W−1D]tr [(W−1D)2]]}.

Further, from Lemmas A.2 and A.3, these third-order terms can be evaluated
as

E[(tr [W−1D])3] =
(tr [D])3

m3
+O(p3n−4),

E[tr [W−1D]tr [(W−1D)2]] =
tr [D]tr [D2]

m3
+

(tr [D])3

m4
+O(p2n−4),

E[tr [W−1D2]tr [(W−1D)2]] =
(tr [D2])2

m3
+

tr [D2](tr [D])2

m4
+O(p2n−4),

E[tr [(W−1D)3]] =
tr [D3]

m3
+O(p3n−4),

which yields the evaluations in Lemma A.4.

Lemma A.5. Assume that m > 7. Then,

m2

p2
E[(tr [W−1Σ−1])4] =

(tr [Σ−1])4

p2m2
+O(p2n−3) +O(pn−2),

m3

p2
E[(tr [W−1Σ−1])2tr [(W−1Σ−1)2]] =

tr [Σ−2](tr [Σ−1])2

p2m

+
(tr [Σ−1])4

p2m2
+O(pn−2),

m4

p2
E[(tr [(W−1Σ−1)2])2] =

(tr [Σ−2])2

p2
+ 2

tr [Σ−2](tr [Σ−1])2

p2m

+
(tr [Σ−1])4

p2m2
+O(n−1).

Proof. It is hard to obtain exact expressions of the requested expectations in
Lemma A.5. Instead of that, we derive the leading terms and orders of the re-
mainder terms using the same arguments as in the proof of Lemma A.4. Letting
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G = D(tr [W−1D])3, G = DW−1Dtr [(W−1D)2] and

G = Dtr [W−1D]tr [(W−1D)2]

in (A.2) gives, respectively,

E[tr [D](tr [W−1D])3]

= (m− 1)E[(tr [W−1D])4]− 6E[tr [(W−1D)2](tr [W−1D])2],

E[tr [W−1D2](tr [W−1D])2]

= (m− 2)E[tr [(W−1D)2](tr [W−1D])2]

− E[tr [(W−1D)2](tr [W−1D])2]]− 4E[tr [(W−1D)4]],

E[tr [D]tr [W−1D]tr [(W−1D)2]]

= (m− 1)E[(tr [(W−1D)2])2]− 2E[tr [(W−1D)2](tr [W−1D])2]]

− 4E[tr [W−1D]tr [(W−1D)3]].

Then, from Lemma A.3, the fourth-order moments can be evaluated as

m2

p2
E[(tr [W−1D])4] =

m

p2
tr [D]E[(tr [W−1D])3] +O(p2n−3),

m3

p2
E[(tr [W−1D])2tr [(W−1D)2]]

=
m2

p2
tr [D]E[tr [W−1D]tr [(W−1D)2]] + Op(n−2),

m4

p2
E[(tr [(W−1D)2])2]

=
m3

p2
E[tr [W−1D2]tr [(W−1D)2]]

+
m2

p2
tr [D]E[tr [W−1D]tr [(W−1D)2]] +O(n−1).

Hence, from Lemma A.4, we have

m2

p2
E[(tr [W−1D])4] =

(tr [D])4

p2m2
+O(p2n−3) +O(pn−2),

m3

p2
E[(tr [W−1D])2tr [(W−1D)2]] =

tr [D2](tr [D])2

p2m
+

(tr [D])4

p2m2
+O(pn−2),

m4

p2
E[(tr [(W−1D)2])2] =

(tr [D2])2

p2
+ 2

tr [D2](tr [D])2

p2m
+

(tr [D])4

p2m2
+O(n−1),

which yields the results in Lemma A.5.

A.3. Asymptotic properties of b̂i

Proposition A.1. E[b̂1 − b1] = O(n−1), E[b̂2 − b2] = O(n−1), V ar[b̂1] =

O((np)−1) and V ar[b̂2] = O(n−1) for large n and p satisfying n > p+ 3.
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Proof. It follows from (A.10) and Lemma A.2 that

E[b̂1] = p−1E[mtr [V −1]−mâ1tr [(V + â1I)
−1V −1]] = b1 +O(n−1).

For V ar[b̂1], it is written as

V ar[b̂1] = p−2E[{mtr [V −1]− tr [Σ−1]−mâ1tr [(V + â1I)
−1V −1]}2] +O(n−2)

= p−2E[{mtr [V −1]− tr [Σ−1]}2]
− 2p−2mE[{mtr [V −1]− tr [Σ−1]}â1tr [(V + â1I)

−1V −1]]

+ p−2m2E[â21{tr [(V + â1I)
−1V −1]}2] +O(n−2)

= J1 − 2J2 + J3 +O(n−2).

It can be seen from Lemma A.2 that

J1 = p−2E
[
m2(tr [V −1])2 − 2mtr [Σ−1]tr [V −1] + (tr [Σ−1])2

]

= p−2
{
m2α2

[
2tr [Σ−2] + (m− 2)(tr [Σ−1])2

]

− 2
m

m− 1
(tr [Σ−1])2 + (tr [Σ−1])2

}

= 2
m

p2(m− 1)(m− 3)
tr [Σ−2] +

3

p2(m− 1)(m− 3)
(tr [Σ−1])2,

which is of order O((np)−1). For J3, it is noted that

m2

p2
â21{tr [(V + â1I)

−1V −1]}2 ≤ m2

p2
â21{tr [V −2]}2 =

m2

p2
â21{tr [(W−1Σ−1)2]}2,

which is of order Op(n
−2) as seen from Lemma A.4. Since J2 = O((pn3)−1/2),

it is seen that V ar(b̂1) = O((np)−1), which implies that b̂1− b1 = Op((np)
−1/2).

For b̂2, it is noted that

b̂2 = p−1
{
m2tr [(V + â1I)

−2]−m{tr [(V + â1I)
−1]}2

}

= p−1
{
m2tr [V −2]−m2â1tr [(V + â1I)

−1V −2]−m2â1tr [(V + â1I)
−2V −1]

−m(tr [V −1])2 + 2mâ1tr [(V + â1I)
−1V −1]tr [V −1]

−mâ21{tr [(V + â1I)
−1V −1]}2

}
.

It here follows from Lemma A.4 that tr [(V +â1I)
−1V −2] ≤ tr [V −3] = Op(n

−1).

The same arguments can be used to approximate b̂2 as

b̂2 =
m2

p
tr [V −2]− m

p
(tr [V −1])2 +Op(n

−1).

Using Lemma A.2, we can verify that E[b̂2 − b2] = O(n−1). Also,

V ar(b̂2) =
1

p2
E[{m2tr [V −2]−m(tr [V −1])2 − tr [Σ−2]}2]
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+ 2E[{m2tr [V −2]−m(tr [V −1])2 − tr [Σ−2]} ×Op(n
−1)] +O(n−2).

Here, using Lemma A.5, we can show that

1

p2
E[{m2tr [V −2]−m(tr [V −1])2 − tr [Σ−2]}2]

=
1

p2
E
[
m4(tr [V −2])2 +m2(tr [V −1])4 + (tr [Σ−2)2

− 2m3tr [V −2](tr [V −1])2 − 2m2tr [Σ−2]tr [V −2] + 2mtr [Σ−2](tr [V −1])2
]
,

which is of order O(n−1). Therefore, the proof of Proposition A.1 is complete.

A.4. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. For evaluating the risk R∗(Σ, Σ̂
−1

Λ ), it is noted that

(V + dΛ̂)−1 = (V + dΛ)−1 + {(V + dΛ̂)−1 − (V + dΛ)−1}
= (V + dΛ)−1 − d(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1,

so that the risk of the estimator Σ̂
−1

Λ = c2(V + dΛ̂)−1 is written as

R∗(Σ, Σ̂
−1

Λ )

= E
[
tr [{c2(V + dΛ̂)−1Σ− I}2]

]

= E
[
tr [{c2(V + dΛ)−1Σ− I + c2d(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ}2]

]

= E
[
tr [{c2(V + dΛ)−1Σ− I}2]

]

+ c22d
2E

[
tr [{(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ}2]

]

− 2c2dE
[
tr [{c2(V + dΛ)−1Σ− I}(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ]

]

= I1 + I2 + I3. (A.9)

We shall evaluate each term in (A.9). We begin by estimating I1. Since

(V + dΛ)−1 = V −1 − (V + dΛ)−1dΛV −1, (A.10)

the term c2(V + dΛ)−1Σ− I is rewritten as

c2(V + dΛ)−1Σ− I

= c2V
−1Σ− c2(V + dΛ)−1dΛV −1Σ− I

= (c2V
−1Σ− I)− (V + dΛ)−1dΛ(c2V

−1Σ− I)− (V + dΛ)−1dΛ,

so that the first term I1 is expressed as

I1 = E
[
tr [(c2V

−1Σ− I)2] + tr [{(V + dΛ)−1dΛ(c2V
−1Σ− I)}2]
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+ tr [{(V + dΛ)−1dΛ}2]− 2tr [(c2V
−1Σ− I)2(V + dΛ)−1dΛ]

− 2tr [(c2V
−1Σ− I)(V + dΛ)−1dΛ]

+ 2tr [(c2V
−1Σ− I){(V + dΛ)−1dΛ}2]

]

= R∗(Σ, Σ̂
−1

0 ) + I11 + I12 − 2I13 − 2I14 + 2I15. (A.11)

We shall evaluate each term in (A.11). Using Lemma A.2, we can evaluate I11 as

I11 ≤ d2E
[
tr [{(c2V −1Σ− I)V −1Λ}2] = d2E

[
tr [{(c2W−1 − I)W−1Γ}2]

= d2E
[
tr [c22W

−2ΓW−2Γ− 2c2W
−2ΓW−1Γ+W−1ΓW−1Γ]

]

= O(d2n−3+2δ).

Similarly, from (A.10), Lemma A.4 and condition (A4),

I12 = d2E
[
tr [(W−1Γ)2]− 2dtr [(W + dΓ)−1Γ(dW−1Γ)2]

+ d2tr [{(W + dΓ)−1ΓdW−1Γ}2]
]

=
d2

n2
tr [Γ2] +O(d3n−3+δ),

since d2tr [{(W + dΓ)−1ΓdW−1Γ}2 ≤ d3tr [(W−1Γ)3] and tr [Γ3]/p = O(1).
For I13, from (A.10),

I13 = dE
[
tr [(c2W

−1 − I)2(W−1 − (W + dΓ)−1dΓW−1)Γ]
]

= dE
[
tr [(c2W

−1 − I)2W−1Γ]
]

− d2E
[
tr [(c2W

−1 − I)2(W + dΓ)−1ΓW−1Γ]
]

= I131 − I132.

It can be seen that I131 = pdn−2tr [Γ] +O(dn−3+2δ). Also, it is observed that

I132 ≤ d2E[tr [(c2W
−1 − I)2(W−1Γ)2]]

= d2c2E[tr [(c2W
−1 − I)W−2ΓW−1Γ]]− E[tr [(c2W

−1 − I)(W−1Γ)2]]

≤ d2c2E[tr [{(c2W−1 − I)W−1}2]tr [(W−1Γ)4]] +O(d2n−3+2δ),

where the first term in the last equality is estimated as O(d2n−5/2+3δ/2). Thus,

I13 =
pd

n2
tr [Γ] +O(dn−3+2δ) +O(d2n−5/2+3δ/2).

The term I14 is evaluated as

I14 = dE[tr [(c2W
−1 − I)(W−1 − (W + dΓ)−1dΓW−1)Γ]]

= dE[tr [(c2W
−1 − I)W−1Γ]]

− d2E[tr [(c2W
−1 − I)(W + dΓ)−1ΓW−1)Γ]]

= I141 + I142.
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It can be seen that I141 = 0 and I142 = O(d2n−5/2+3δ/2). Thus,

I14 = O(d2n−5/2+3δ/2).

For I15, since tr [{Γ(c2W−1 − I)}2] = Op(n
−1+2δ), it is noted that

tr [(c2V
−1Σ− I){(V + dΛ)−1dΛ}2]

≤ d2
[
tr [{Γ(c2W−1 − I)}2]tr [(W−2Γ)2]

]1/2

= Op(d
2n−5/2+3δ/2).

Combining these evaluations gives that

I1 = R∗(Σ, Σ̂
−1

0 ) +
pd

n2

{d

p
tr [Γ2]− 2tr [Γ]

}

+O(d3n−3+δ) +O(d2n−5/2+3δ/2) +O(dn−3+2δ). (A.12)

Concerning I2 in (A.9), it is estimated as

c22d
2tr [{(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ}2

≤ c22d
2tr [(Λ̂−Λ)V −1ΣV −1(Λ̂−Λ)V −1ΣV −1]

= c22d
2tr [(Γ̂− Γ)W−2(Γ̂− Γ)W−2] (A.13)

=
d2

(m− 1)2
tr [{(βW−2 − I + I)(Γ̂− Γ)}2].

for β = m(m − 1)(m − 3)/(n − 1). Since E[W−2] = (1/β)I, it is noted that
E[βW−2] = I. Thus, I2 is evaluated from above as

I2 ≤ 2
d2

(m− 1)2
E
[
tr [{(βW−2 − I)(Γ̂− Γ)}2]

]
+ 2

d2

(m− 1)2
E
[
tr [(Γ̂− Γ)2]

]
.

(A.14)
Using Lemma A.2 and condition (A3), we can demonstrate that tr [(βW−2 −
I)2] = Op(p

2/n), so that the first term in (A.14) is evaluated as

d2n−2E[tr [{(βW−2 − I)(Γ̂ − Γ)}2]]
≤ d2n−2E[tr [{(βW−2 − I)}2]tr [{(Γ̂− Γ)}2]],

which is of order O(d2n−2−1+2δ−1+δ), or O(d2n−4+3δ). Since the third term is
of order O(d2n−3+δ), it is observed that I2 = O(d2n−4+3δ) +O(d2n−3+δ).

Concerning I3 in (A.9), since I1 = O(n−1+2δ), we have

c2dtr [{c2(V + dΛ)−1Σ− I}(V + dΛ̂)−1(Λ̂−Λ)(V + dΛ)−1Σ]

≤
[
Op(n

−1+2δ)× {Op(d
2n−4+3δ) +Op(d

2n−3+δ)}
]1/2

(A.15)

= Op(dn
−5/2+5δ/2) +Op(dn

−2+3δ/2),
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so that

I2 + I3 = O(d2n−4+3δ) +O(d2n−3+δ) +Op(dn
−5/2+5δ/2) +Op(dn

−2+3δ/2).
(A.16)

Combining (A.12) and (A.16), we get Theorem 3.1.

Proof of Theorem 3.2. We need to check each step in the proof of Theorem 3.1.

It follows from (A.9) that R∗(Σ, Σ̂
−1

Λ ) = I1 + I2 + I3. Under the condition that
p/n → γ for 0 < γ < 1, we can use the result of Bai and Yin [2], namely,
Chmax(nW

−1) = Op(1). Then,

I2 ≤ c22d
2

n4
E[tr [(Γ̂− Γ)(W /n)−2(Γ̂− Γ)(W /n)−2]]

≤ c22d
2

n2
E[{Chmax(nW

−1)}−4tr [(Γ̂− Γ)}2]],

which means that I2 = O(d2/n2). Since I1 = O(n−1+2δ), it follows from (A.15)
that I3 ≤ {O(d2/n2)×O(n)}1/2 = O(d/

√
n), so that

I2 + I3 = O(d2n−2) +Op(dn
−1/2). (A.17)

Thus, we get the approximation given in (3.4). When d = o(p), we get (3.5) by
combining (A.12) and (A.17).
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