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Bayesian Clustering of Functional Data Using
Local Features

Adam Justin Suarez∗ and Subhashis Ghosal†

Abstract. The use of exploratory methods is an important step in the under-
standing of data. When clustering functional data, most methods use traditional
clustering techniques on a vector of estimated basis coefficients, assuming that
the underlying signal functions live in the L2-space. Bayesian methods use models
which imply the belief that some observations are realizations from some signal
plus noise models with identical underlying signal functions. The method we pro-
pose differs in this respect: we employ a model that does not assume that any of
the signal functions are truly identical, but possibly share many of their local fea-
tures, represented by coefficients in a multiresolution wavelet basis expansion. We
cluster each wavelet coefficient of the signal functions using conditionally indepen-
dent Dirichlet process priors, thus focusing on exact matching of local features.
We then demonstrate the method using two datasets from different fields to show
broad application potential.

Keywords: Dirichlet process prior, wavelets, exploratory analysis.

1 Introduction

Exploratory analysis of new data is an important first step to understanding many
scientific questions. Cluster analysis is a popular tool in exploratory analysis to try
to discover underlying group structure present in the data. The idea behind cluster
analysis is to define sets of data points which are similar within groups and dissimi-
lar between groups. The main question that is raised is what concept to use to define
“similar”. Many clustering techniques (especially hierarchical clustering) can be imple-
mented based solely on a matrix of pairwise similarities (equivalently, dissimilarities).
One obvious choice for a notion of similarity is that of distance, which is nearly always
available since data are most commonly assumed to be elements of some metric space.
However, distances are not the only possible choices, and may miss out on some impor-
tant qualitative features. A similarity index can be chosen to be any function of two
arguments, as long as it represents our qualitative view of what makes two observations
similar.

The interest of this paper lies in functional data, where each subject under study
gives rise to a noisy function observation. The clustering of functional data has applica-
tions in many scientific fields, such as clustering gene expression time series. Recently,
functional data have received a lot of attention. In terms of clustering functional data,
most of the work has been done from a frequentist perspective. One approach is to
adapt clustering methods from multivariate analysis to functional data. Tarpey and
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Kinateder (2003) generalized the k-means clustering to the functional data setting, and

proved results analogous to those of multivariate k-means. James and Sugar (2003) used

a random effects model to cluster sparsely sampled functional data, and dealt with the

situation where the data are not observed on the same fixed time grid. One extension we

do not pursue is heteroscedasticity, which was studied in Serban (2008). Functional data

can often lead to viewing multiple time series in a new light. For a review of clustering

of time series see Liao (2005).

We shall not choose to define similarity in terms of distance; instead, we define a

similarity function, for functions with a finite wavelet basis expansion, that strongly

encourages exact matches of coefficients, meaning that the corresponding observations

come from the same component of the population. Since the observed functional data

include error, we use a model-based approach to estimate the true functions and use the

posterior distribution of the basis coefficients to compute an estimated true similarity

index. In a Bayesian setting, Ray and Mallick (2006) used a truncated wavelet basis

expansion and a Dirichlet process prior on their unknown joint distribution. Crandell

and Dunson (2011) extended this model to species sampling model priors, and also

allowed the basis to be unknown. Both of these approaches cluster curves based on all

of their basis coefficients jointly. By a well-known clustering property of the Dirichlet

process, this implies the prior belief that some of the underlying functions have all

wavelet coefficients identical, and hence, the functions themselves are identical. Often,

this would not be an acceptable assumption, and this is one aspect in which the current

paper differs from most previous work. Petrone, Guindani, and Gelfand (2009) also dealt

with this problem using “canonical curves,” from which pieces of the observed functions

are drawn. For example, Figure 1 shows, for the EEG data discussed later, how very

few pairs of data points are within a distance that would be a reasonable estimate of

the error standard deviation. If the procedure of Ray and Mallick (2006) were used on

this data, very few observations would have positive posterior probability of sharing

underlying functions (see Section 8).

We assign priors on the wavelet coefficients independently, where each individual

coefficient gets a Dirichlet process prior distribution. The Dirichlet process allows for

exact coefficient matches between functions while allowing for new values to arise also.

The strength of the model is in the Bayesian approach, where the underlying coefficients

across subjects are seen as exchangeable but correlated, and hence, allow for shared

learning among them.

In this paper, we present a method for quantifying similarity of functional data

that can be used in a hierarchical clustering scheme. Wavelet coefficient parameters are

clustered separately, and we define a function that quantifies our preference for exact

matching of coefficients. We present theoretical results relating to the interpretation of

the center measure of our prior, and, additionally, provide asymptotic justification of the

clustering performance of our method by analyzing the small variance performance. We

then demonstrate the method’s use on real datasets, and show competitive performance

on a dataset with a known true clustering.
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Figure 1: (EEG Data) Plot of the proportion of pairs of data points with distance less
than a given value.

2 The Model

There are two common models, closely related in the asymptotic sense, that can be
used to describe functional data. First let {φk : k ∈ Z} ∪ {ψjk : j ∈ N, k ∈ Z} be
a given wavelet basis in the multiresolution framework. In particular, we consider the
space L2[0, 1] and the family called wavelets on the interval (Cohen, Daubechies, and
Vial, 1993). The first model can be viewed as a problem of measurement error, where
there is a true function, fi ∈ L2([0, 1]), but when we measure it at a point tj ∈ [0, 1],
we only see a noisy version, so that

Yi(tj) = fi(tj) + εij , (1)

where εij is normally distributed with mean 0 and variance σ2, and independent across
i and j. We shall assume that all functions are observed on the same fixed time grid,
and that the total number of time points is a power of 2, n = 2m; this is done mainly for
computational convenience since we will employ the discrete wavelet transform (DWT).
Let Y i = (Yi(t1), . . . , Yi(tn))

t, f i = (fi(t1), . . . , fi(tn))
t, and εi = (εi1, . . . , εin)

t. If we
let W denote the n × n orthogonal matrix corresponding to the DWT for a certain
wavelet family, then our model can be transformed to

WY i = Wf i +Wεi. (2)
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One important property of the multivariate normal distribution is its rotational invari-

ance, which implies that Wεi
d
= εi, meaning equal in distribution. Throughout, we shall

use φσ to represent the Lebesgue density of the normal distribution with mean zero and
variance σ2.

The second model is the so-called Gaussian white noise model, given by

dYi(t) = fi(t)dt+ σdBi(t), (3)

where Bi(·) are independent Wiener processes (Brownian motions) on [0, 1]. This cor-
responds to ideal observations of continuously sampled functions. Now let

a
(i)
k =

∫ 1

0

φk(t)dYi(t), α
(i)
k =

∫ 1

0

φk(t)fi(t)dt,

b
(i)
jk =

∫ 1

0

ψjk(t)dYi(t), β
(i)
jk =

∫ 1

0

ψjk(t)fi(t)dt,

ē
(i)
k = σ

∫ 1

0

φk(t)dBi(t), e
(i)
jk = σ

∫ 1

0

ψjk(t)dBi(t).

Due to the properties of stochastic integrals with respect to the Wiener process, all of

the ē
(i)
k and e

(i)
jk are independent and normally distributed with mean 0 and variance

σ2. The model implied on the wavelet coefficients by (3) is then

a
(i)
k = α

(i)
k + ē

(i)
k , b

(i)
jk = β

(i)
jk + e

(i)
jk . (4)

For the finite (measurement error) model, our decomposition is for k = 0, . . . , 2j −1,
and j = 0, . . . ,m−1. Note that m is not a parameter, but the assumed length (in terms
of its base 2 logarithm) of each observation vector. In the infinite (random function)
model, j can range over the natural numbers. In both models, we only need k = 0

for the scaling coefficient, α
(i)
0 . Our procedure focuses mainly on the detail coefficients,

{β(i)
jk }, so we shall rarely mention the scaling coefficient. On the detail coefficients, for

both models, the observed coefficients can be represented as

b
(i)
jk

ind∼ N(β
(i)
jk , σ

2). (5)

In the results section of this paper, we shall also consider the case where the variance
decreases to 0, which corresponds to the case of independent and identically distributed
(i.i.d.) replications of the entire experiment. Because of this unifying framework, we
shall not make much distinction between the finite and infinite model. We shall state
results mainly for the infinite model; however, they can be shown to be true for the
finite model using minor modifications.

3 Prior Distributions

One of the attractive aspects of using a wavelet expansion for modeling is that, for many
functions, the coefficients are sparse. This knowledge is easily incorporated in the prior
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distributions placed on the wavelet coefficients. If the error is normally distributed, a
conjugate prior on the coefficients is given by independent normal priors. Since we know
that some of the coefficients are identically zero, we can incorporate a point mass at 0
into the prior. Specifically, the prior, for i = 1, . . . , N ,

β
(i)
jk

ind∼ πjN(0, τ2j ) + (1− πj)δ0, (6a)

σ2 ∼ IG(a, b), (6b)

where δ0 is a point mass at 0 and IG stands for inverse gamma. The first coefficient,
α0, is known as the scaling coefficient, and is usually modeled differently, with a vague
prior. In our case, we simply assume that the observations have been detrended, so that
the value of α0 is identically 0. Abramovich, Sapatinas, and Silverman (1998) showed
that under certain conditions on the mother wavelet, choices of the hyperparameters in
this model will guarantee that the corresponding random functions almost surely lie in
specific Besov spaces (denoted by Bs

p,q). In particular,

τ2j = ν1σ
22−γ1j , πj = min(1, ν22

−γ2j), (7)

for j = 0, 1, . . . , and constants ν1, ν2, γ1, γ2, provide the desired interpretation. To be
specific, if γ2 ≥ 1 and γ1 ≥ 0, then the random function drawn from this prior, fi, is
almost surely an element of Bs

p,q if and only if

s+
1

2
− γ2

p
− γ1

2
< 0, if q < ∞, (8a)

s+
1

2
− γ2

p
− γ1

2
= 0, if q = ∞. (8b)

The main result of Abramovich et al. (1998) is given for any fixed value of the scaling
coefficient.

Recently, Ray and Mallick (2006) extended the prior of Abramovich et al. (1998) to
the setting of clustering functional data in the finite model case. Their approach was to

assign a prior on the sequence of vectors βi = {β(i)
jk }j,k in the following manner:

β1, . . . ,βN
ind∼ F, F ∼ DP(M,G0), (9)

where G0 was the product of the priors from Abramovich et al. (1998) over j and k,
and DP(M,G0) stands for the Dirichlet process with center measure G0 and concen-
tration M . This induces a posterior distribution over partitions of the data, but also
implies the prior belief that some true functions are identically equal. When this is not
a reasonable assumption, other choices should be made.

Our strategy for placing priors on the true wavelet coefficients is to do so indepen-
dently for each coefficient using Dirichlet process priors, with center measures corre-
sponding to the usual parametric models often used for modeling by wavelets. Thus,
instead of modeling all the coefficients jointly, as in Ray and Mallick (2006), they will be
done so independently. We also consider σ2 to be unknown, and for this reason, we scale
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the variance in the base measure in the traditional manner. The full model is therefore,
∀ j, k,

b
(i)
jk |β

(i)
jk , σ

ind∼ N(β
(i)
jk , σ

2), (10a)

β
(1)
jk , . . . , β

(N)
jk |Gjk

iid∼ Gjk, (10b)

Gjk ∼ DP(M,G0
jk), (10c)

G0
jk = πjN(0, σ2τ2j ) + (1− πj)δ0, (10d)

σ2 ∼ IG(a, b). (10e)

Across levels of (j, k), the random variables, {Gjk}, are independent. If X1, X2, . . . |F iid∼
F where F ∼ DP(M,G0), then the predictive distribution of the sequence satisfies:

P (Xn+1 ∈ ·|X1, . . . , Xn) =
M

M + n
G0 +

k(n)∑
j=1

mj,n

M + n
δX∗

j
, (11)

where X∗
1 , . . . , X

∗
k(n) are the k(n) distinct points in the first n observations, and mj,n =

#{i : Xi = X∗
j }, for j = 1, . . . , k(n). This is the so-called Pólya urn representation of the

Dirichlet process (Blackwell and MacQueen, 1973). The Dirichlet model is particularly
useful when it is known that there is a “typical” cluster with some smaller “abnormal”
groups.

This model tries to capture our belief that the functional data share local features
that are expressed in their wavelet expansions. We also want to incorporate the knowl-
edge of the possibility of an exactly zero wavelet coefficient, and we do that within the
base measure of the Dirichlet process prior.

Remark 1. In Section 5, we show that all but finitely many coefficients are zero from
any realization of the prior. This motivates a different approach to constructing a prior.

For all {j, k} such that j > J∗, let (β
(1)
jk , . . . , β

(N)
jk ) = 0. We then allow J∗ to be random

and have a Poisson distribution with parameter λ. The decay of πj and τj are now not
essential, since the resulting wavelet series is always convergent. As before, we have that
the number of coefficients and levels are almost surely finite. This allows more freedom in
the choice of πj since the quick decay is no longer needed to give us this property. It is still
useful, though, to keep the point mass at zero to account for reasonable prior beliefs about
the wavelet expansion. This prior seems to be a much more natural choice, and even
yields the later results more easily, but comes at the price of increased computational
complexity.

4 The Similarity Matrix and Clustering

With the goal of comparing the similarity between functions, we have many choices.
Recalling that there are n = 2m sampled time points, and excluding one corresponding
to the scaling coefficient, we choose to quantify the similarity between two functions
using the similarity index
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S(i, i′) = (2m − 1)
−1

m−1∑
j=0

2j−1∑
k=0

1(β(i)
jk = β

(i′)
jk ), (12)

the average number of shared wavelet coefficients. This quantity is meaningful in our
model since the Dirichlet process will give positive probability to this value being
nonzero. The matrix is easily estimated using posterior samples from Markov Chain
Monte Carlo (MCMC) output.

Once an estimate is constructed, the obtained matrix can be used with any clustering
method taking a (dis)similarity matrix as its input. In fact, given a clustering procedure,
our method can be viewed as providing a posterior distribution on dendrograms (for
example). Primarily, however, we shall employ the posterior mean matrix to provide a
single output from the chosen clustering algorithm.

5 Interpretation of Prior Characteristics

In this section, we explore and review some of the properties of the previous model of
Abramovich et al. (1998) for a single function (the nonparametric regression setting).
Instead of studying the model under a fixed value for the hyperparameter, πj , we con-
sider the limiting case where γ2 → 1 from above, where πj is also scaled by a factor. In
the following, we let γ2 = 1 + δ and consider δ → 0, so we have

πj = ν2δ2
−(1+δ)j where δ > 0, δ → 0. (13)

The reason behind this choice is to approximate the situation where γ2 = 1 in the
original hyperparameter choice, while keeping almost surely finiteness of the number of
terms in the wavelet expansion. It is needed that ν2 be scaled by δ so that, in the limit,
the quantities of interest remain finite, else they would diverge without it to balance
the growth.

The following proposition would be useful for prior elicitation in the case where the
approach mentioned in Remark 1 was taken. It motivates and justifies the use of a
Poisson prior on the number of nonzero coefficients and resolution levels, and provides
an interpretation of their hyperparameters in this setting. For a proof, see Appendix A.

Proposition 1. For the infinite product of the priors specified as above, the following
hold:

1. The number of nonzero wavelet coefficients is almost surely (a.s.) finite, and
this number converges in distribution to a Poisson random variable with mean
ν2/ log(2) as δ → 0.

2. The number of resolution levels with at least one nonzero coefficient is a.s. finite,
and this number converges in distribution as δ → 0 to a Poisson random variable
with mean

lim
δ→0

∞∑
j=0

{
1− (1− ν2δ2

−(1+δ)j)2
j
}
< ∞.
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6 Convergence Results

In the present situation, we first want to study what happens to our similarity matrix
as the noise variance σ2 → 0. This would be the situation where the noisy functional
observations are approaching the true underlying functions, respectively. For the pur-
poses of this section, we assume the continuous model of (3), with the full specification
in terms of the coefficients being given in (10a).

The asymptotic regime σ2 → 0 can be understood as equivalent with averaging over
r i.i.d. replications of the observed scheme (10a)–(10d) with r → ∞, thus replacing σ2

by σ2
r = σ2/r, with σ2 known. Since σ2 itself controls the asymptotics in the following,

it is essential to treat σ2 as given, or equivalently, σ2 as known and r → ∞. Although
this setting contrasts with the methodology described, this has little effect when only
learning about f is the goal. More generally, it is easy to see that the arguments given
below go through if σ2 is unknown, but has a fixed upper bound. An upper-truncated
inverse-gamma prior can still retain the computational conjugacy. If it is desirable to
work in full generality without an upper bound for σ2, we must fully observe all replica-
tions since the sample means are sufficient only when σ2 is known. Below we forgo the
full setting and treat σ2 as known so that it is sufficient to observe the sample mean of

b
(i)
jk over r replications and let r → ∞.

We assume that α
(i)
0 = 0 for all i = 1, . . . , N , and let

‖f‖2 =

N∑
i=1

‖fi‖22 =

N∑
i=1

∞∑
j=0

2j−1∑
k=0

|β(i)
jk |2,

where f = (f1, . . . , fN ). We also consider the Sobolev norm on the product space,
defined by

‖f‖2Hs
N
=

N∑
i=1

∞∑
j=0

22js‖β(i)
j· ‖22.

We shall refer to this space as the N -Sobolev space, Hs
N . Note that since N is fixed,

we could have chosen to combine the N Sobolev norms using any norm for R
N . The

parameter, s, relates to the number of weak derivatives possessed by the functions which
themselves live in L2([0, 1]). We use Dr to be the set of all observations.

Before proceeding, we need some additional notation. The measure of similarity
which holds our interest is dependent on how we believe the data to be partitioned.
We will thus be interested in knowing how our beliefs about the partition structure
of the data change as r → ∞. Let P be the set of all partitions of {1, . . . , N}, and
let a typical element be denoted by p = {A0, . . . , AM}. For a given j, k, let Pjk =

{Ajk
0 , Ajk

1 , . . . , Ajk
Mjk

} be a random partition of {1, . . . , N}, which is a function of βjk

defined in the following way:

β
(a)
jk = 0 ⇐⇒ a ∈ Ajk

0 , and (14)
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β
(a)
jk = β

(b)
jk �= 0 ⇐⇒ a, b ∈ Ajk

i for some i ∈ {1, . . . ,Mjk}. (15)

By our prior specification, it is clear that any partition structure has positive proba-
bility a priori. Let p0 represent the “true” partition generated by the true values of
the parameters. By a compatible model, we mean a collection of all parameter values
corresponding to a single partition which is finer than p0. By an incompatible model, we
mean any collection that is not a compatible model.

The following result on consistency of the posterior will be useful for studying the
asymptotic properties of clustering. The techniques used in the proofs are both similar
to, and certainly inspired by Lian (2011). For proofs of the following, see Appendix A.

Theorem 1. Let γ1 > 2s + 1, and assume that the true underlying functions satisfy
f0 ∈ Hs

N . Then the posterior is norm-consistent, i.e., for any ε > 0, Π(‖f − f0‖ <

ε|Dr)
p→ 1 as r → ∞.

Lemma 1. Assume that the true vector of functions lies in Hs
N , γ1 > 2s + 1, and let

pjk,0 be the true partition of the data for a given coefficient indexed by j, k. Then

Π(Pjk = pjk,0|Dr)
p→ 1 as r → ∞. (16)

Finally, we consider neighborhoods of the true full model, that is, p0 = {pjk,0}jk,
in the product topology. Each pjk,0 lives in the space, P, of all possible partitions of
{1, . . . , N}, which is finite and endowed with the discrete topology. Note that the entire
model space is uncountable. When considering the product space, a basic neighborhood
in the product topology consists of the product of finitely many singleton sets in P with
infinitely many copies of P. Because of this, we easily obtain the following theorem.

Theorem 2. Let p0 be the true model. Then, for any neighborhood in the product
topology, N(p0), we have that Π(N(p0)|Dr) → 1 in probability as r → ∞.

Proof. First notice that N(p0) consists of the product of finitely many single point
sets with an infinite number of copies of the whole space. Thus, the probability of this
neighborhood is the finite product of the probabilities of each point set, each of which
tends to 1 by Lemma 1. Thus, the result is proved.

7 Computation

Computation is done using the urn representation of the Dirichlet process prior, and
we follow the procedure of Navarrete, Quintana, and Müller (2008). The main problem
in posterior computation will be the fact that we employ an atomic base measure,
and this means that in the urn representation, a value can be 0, either because it is
tied to a previous value, or because it was drawn from the base measure. To simplify
notation, we focus on updating one particular wavelet coefficient across observations,
so we fix j, k and let βi, for i = 1, . . . , N , be the parameter for observation i. Due to
exchangeability in the Dirichlet process model, it suffices to describe the conditional
posterior draws from βN |

(
{βi}N−1

i=1 , {bi}Ni=1, σ
2
)
and σ2|

(
{βi}Ni=1, {bi}Ni=1

)
. Similar to
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Section 2, let β∗
1 , . . . , β

∗
k(N−1) be the k(N − 1) unique values among the first N − 1

parameters. Let mN−1 = {m1,N−1, . . . ,mk(N−1),N−1}, where mj,N−1 = #{1 ≤ i ≤
N : βi = β∗

j }. When needed, we shall additionally subscript quantities to designate the
(j, k) level. The Gibbs sampling algorithm executes the following steps:

• Set βN equal to β∗
l with probability proportional to

ml,N−1

M +N − 1
φσ(bi − β∗

l ) =
ml,N−1

M +N − 1
(2πσ2)−1/2 exp

{
− 1

2σ2
(bN − β∗

l )
2

}
.

• With probability proportional to

M

M +N − 1

∫
φσ(bN − β)dG0(β) =

M

M +N − 1
(2πσ2)−1/2e−1/(2σ2)

×

⎡
⎣1− πj + πj

(
τ2

1 + τ2j

)1/2

exp

{
b2Nτ2j

2σ2(1 + τ2j )

}⎤
⎦ ,

sample βN from the following distribution

π∗δ0 + (1− π∗)N

(
bNτ2j
1 + τ2j

,
σ2τ2j
1 + τ2j

)
,

where

π∗ =

⎛
⎝1 +

πj

1− πj

(
1

1 + τ2j

)1/2

exp

{
τ2j b

2
N

σ2(1 + τ2j )

}⎞
⎠

−1

.

• Sample σ2 from the following distribution:

IG

⎛
⎝a+Nn/2 +

∑
j,k

kij(N)/2, b+
1

2

∑
i,j,k

(b
(i)
jk − β

(i)
jk )

2 +
∑
j

1

2τ2j

∑
k

kjk(N)∑
i=1

β∗
jk,i

2

⎞
⎠ .

• Finally, update any hyperparameters that have been added to the prior specifica-
tion.

The main issue to notice is that both possibilities for βN can lead to a value of 0 (either
being tied to an existing point which happens to be 0, or drawing a 0 from the base
measure), and this needs to be taken into account when fitting the model, which simply
requires careful bookkeeping. After each draw from these full conditionals, we need to
update the unique points, along with k(N − 1), and mN−1.
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8 Applications to Data

In this section, we present the usefulness of the above method by analyzing two different
data sets. When presenting results, often it is convenient to display the similarity matrix
after it has been used in a deterministic hierarchical clustering scheme. In particular,
we apply Ward’s method of clustering (Ward Jr., 1963) to the dissimilarity matrix

defined by {1/S∗(i, i′)}Ni,i′=1. This method is an agglomerative method, in which a single
element is joined with an existing group, so that the sum of the variances of all groups
is minimized. Other hierarchical clustering methods are also possible.

During the analysis, it was noted that the choice of ν1 in the prior was both difficult
to make a priori and also strongly influenced the results. This situation was addressed
by use of a hyperprior for ν1 of a conditionally conjugate inverse gamma distribution.
This did not cost much in terms of computation, and also provided more robust results.

In both examples, there are rational preconceived notions of how reasonable results
should appear. This type of example was chosen to establish confidence that, when used
for purely exploratory analysis, we have the potential to find meaningful relationships
between observations. All three sets of data also fit well into the model.

Although we explored the use of the method of Ray and Mallick (2006) on these
data, we do not present the results of that analysis. To get a meaningful number of
nonzero entries in the corresponding similarity matrix, or matrix of pairwise probabili-
ties of shared group membership, either the Dirichlet process concentration parameter
is required to be nearly zero, or the a priori probability of a zero wavelet coefficient is
required to be very large. Since the method of Ray and Mallick (2006) is not intended
for data for which the belief of identical true functions does not hold, we do not show
the comparison in this section.

The method was coded in C and made use of the GNU Scientific Library (Galassi
et al., 2009). It is available at the author’s website (http://www4.ncsu.edu/~ajsuarez),
in addition to the supplemental materials.

8.1 EEG Data

The first dataset is from a study by Andrzejak et al. (2001), which is freely available
online (http://epileptologie-bonn.de/cms/front_content.php?idcat=193). The
data consist of 500 electroencephalography (EEG) time series, each of length 4096,
corresponding to a sampling rate of 173.61 Hz. Because of the periodic nature of the
data and computational considerations, only the first 128 time points were used. For
the MCMC algorithm, 10, 000 steps were used, including 1, 000 steps for burn-in. On a
3.6 GHz AMD Bulldozer-powered desktop computer running single-threaded, this chain
took approximately 6.5 hours to run.

The data are combined from 5 separate groups of data, which Andrzejak et al. (2001)
label as A–E. Sets A and B came from measurements on healthy individuals, while the
rest are from patients who suffered from seizures, and who had later been treated with
corrective surgery. The important fact about the data is that the observations from
set E are all from known seizure activity.

http://www4.ncsu.edu/~ajsuarez
http://epileptologie-bonn.de/cms/front_content.php?idcat=193
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Figure 2: (EEG Data) (Top) Dendrogram generated using the dissimilarity matrix by
Ward’s method. The stars on the margins represent observations from the fifth group
(suspected seizure activity). (Bottom) Groups formed when the dendrogram is cut to
yield 2 groups. Dashed lines are pointwise posterior means for the observations, and
solid blues lines are the pointwise group average. These figures correspond to M = 20.

Figure 2 shows some graphical representations of the results. The leaves of the

dendrogram are marked with stars to denote observations coming from set E. The
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Figure 3: (EEG Data) Adjusted Rand index comparison between 3 hyperparameter
choices and a default method. The clustering was evaluated compared to the “true”
clustering defined by whether the observation was from known seizure activity.

dendrogram clearly shows a group that seems quite different from the vast majority of
the others. In general, this group corresponds to the known seizure activity. We also
display the results of obtaining a non-hierarchical clustering by cutting the dendrogram
at a given height level. We chose to form 2 groups, and display the results also in Figure 2.
Both groups are plotted on the same voltage range. The first group clearly has much
lower voltage swings. Large voltage swings are characteristic of seizures (Andrzejak
et al., 2001). Thus, the method has yielded a very interpretable result consistent with
that known from neurobiology.

Although we apply a clustering algorithm to this data set, there is classification
information available since we know which subset came from seizure activity. To eval-
uate the performance of our method, we use the following procedure: first, obtain a
hierarchical clustering using the method described above. Subsequently, starting with
2 groups, cut the tree at various levels, and evaluate the strict clustering by computing
the adjusted Rand index compared with the “true” clustering. For this comparison, we
used 3 different values of M , and also compared this method to a default method. The
default method was to use the same deterministic portion of our method, i.e., Ward’s
method, but with a dissimilarity matrix defined by the Euclidean distance between ob-
servation vectors (an estimated L2-distance). The results of this comparison are shown
in Figure 3. As can be seen from the results, although our method depends on the choice
of mass parameter, M , for a moderate number of groups, the results are very similar
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Figure 4: (EEG Data) Clustering the EEG data by cutting the tree at 12 groups. This
corresponds to the last cut point that still maintains a relatively high adjusted Rand
index.

between choices. For two of the choices, M = 10, 20, our method outperforms the de-
fault method throughout most choices of cut point, except for the smallest number of
groups. Since, in practice, many choices of groups are likely to be explored, this gives
reason to believe that our method can certainly aid in this exploration.

Using the adjusted Rand index criteria just described, we present clustering corre-
sponding to cutting the tree at 12 groups for the model M = 20. This is the point just
before the drop-off in the adjusted Rand index seen in Figure 3. This clustering is shown
in Figure 4.
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8.2 Canadian Weather Data

The next analysis involves the very popular Canadian weather data, which was obtained

via the fda package within R. These data consist of both average daily temperature

and precipitation for 35 Canadian cities. Specifically, we analyzed the precipitation

data for the first 256 days of the year. This was done to allow use of the DWT for our

method. These data were chosen because of the known spatial and climate correlation

for precipitation. As can be seen in Figure 5, the method certainly reproduces this

correlation. This is clear from the map, and those familiar with Canadian geography

can inspect the heatmap more closely. Although not presented in this paper, a naive

approach based on L2-distance between observations does not nearly show as much

spatial clustering. This makes this dataset “harder” than the previous EEG data, in

that a naive approach to the EEG data can yield a reasonable, but less clear, description

of the data. Again, this example clearly demonstrates the ability of this method to find

structure between observations.

Since there is no objectively true clustering for these data, we do not compare to any

other methods; however, as in the previous example, we can still analyze the effect that

the choice of M has on the results. We focused on three different values, M = 1, 10, 20.

We present two comparisons of the performance of the methods with these values: first,

Figure 6 shows the approximate posterior distribution of number of distinct values for

a range of coefficients in the model. As would certainly be expected, the number of

groups increases as the mass parameter, M , increases because this controls the prior

probability of an exact coefficient match.

To see how this affects the end result of forming a strict clustering, we show, in

Figures 7–9, the end result of cutting the dendrogram obtained by Ward’s method at 6

groups. It can be seen from these plots that there is a subtle, but noticeable, effect on

the results from different choices of M . Figure 5 shows that they generally correspond to

physical proximity between the cities. This could be due to the fact that, although the

cities’ climate differs in overall trends, local variations are shared, which is something

our method was hoping to emphasize.

9 Discussion

There is an important point to note with respect to the ability of this procedure to

generalize to priors other than the Dirichlet process used herewithin. In the description

of the predictive distribution corresponding to the Dirichlet process, (11), the form

suggests the possibility of a generalization to other so-called species sampling models

(SSMs). SSMs are random measures for which, under certain conditions, conditionally

i.i.d. sequences have predictive distributions of the same general form as (11) (Pitman,

1996). However, as pointed out by the Associate Editor, the Dirichlet process is the only

member of the class of SSMs for which (11) will be valid when using a base measure

with atoms.



86 Bayesian Functional Clustering

Figure 5: (Weather Data) (Top) Dendrogram created from the dissimilarity matrix by
Ward’s method. (Bottom) Map of the cities coded by symbol in color to represent the
groups formed when the dendrogram is cut to yield 6 groups. These plots correspond
to M = 10.
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Figure 6: (Weather Data) Boxplots of the number of distinct points in a given MCMC
step for a range of coefficients and for different values of the mass parameter, M . The
coefficient numbers were chosen arbitrarily to show the clustering at different resolution
levels.

Generalization would therefore require some effort in one of two possible directions.

First, predictive distributions could be derived for the case of a single atom in the base

measure. The other option would be to remove the atom from the base measure and

incorporate the probability of a zero value elsewhere in the hierarchy. This second option

would provide an advantage that the distribution of zeroes could be chosen arbitrarily

instead of being implied by the choice of SSM (which is beta for the Dirichlet process).

We would like to mention a connection between the structure of the prior and the

Indian Buffet Process in the special case of the Dirichlet process prior. Typically the

most important aspect of a wavelet coefficient is whether it is zero or nonzero since this

respectively indicates the absence or presence of the corresponding term, and thus it is

an important indicator of the sparsity of the wavelet expansion. When the quantity of

interest is only the indicator that a given coefficient is zero or not, for a given observation,

this can be viewed as a binary string. Section 5 shows that the distribution of the total

number of ones in a given string is distributed as a Poisson random variable with some

rate. Because of the use of the Dirichlet process prior, the successive observations are

correlated, and, in particular, exchangeable. For our prior, the probability that the
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Figure 7: (Weather Data) Clustering formed by cutting at 6 groups for M = 1. For each
group, the observed functional data are plotted on the same axes.
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Figure 8: (Weather Data) Clustering formed by cutting at 6 groups for M = 10. For
each group, the observed functional data are plotted on the same axes.
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Figure 9: (Weather Data) Clustering formed by cutting at 6 groups for M = 20. For
each group, the observed functional data are plotted on the same axes.
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(n+ 1)th value is 0, given that m0 out of the first n were zero, is

m0

M + n
+ (1− πj)

M

M + n
. (17)

With m1 = n − m0, the probability that the next value is nonzero is given by (m1 +
πjM)/(M + n). If every level is considered separately, this probability coincides with
that in a two-parameter Indian Buffet Process defined by Thibaux and Jordan (2007).

However, there is a difference. The Indian Buffet Process is defined for equivalence
classes which correspond to rearranging elements of the binary string called the left
order. Since it is used mostly in latent feature models, the elements have no inherent
meaning, unlike our situation, in which each element corresponds to a particular wavelet
coefficient.

The assumption that the functional data are observed on an equally spaced grid
of size that is a power of 2 was made to use fast DWT techniques for computation.
However, this restriction is not essential for the proposed method. In the case where
time points are not equally spaced, or the total of points is not a power of 2, instead of
first transforming the data using the DWT, the model can be written as a linear model
in which the elements of the design matrix are the point evaluations of the wavelet
basis functions at the common grid points. This approach could also be used to handle
missing data. When used as a purely exploratory method, since the computation is
much quicker in the case of using the DWT, it may be desirable to use a subset of the
data rather than increase the computational complexity.

Another extension is to let the hyperparameter M also be given a prior. However,
it is known that in Dirichlet mixture models the analysis can be quite sensitive to the
choice of prior on M , and for exploratory purposes, running the model separately for
various values of M could give a deeper understanding of the data than the results
from a marginalized (over M) analysis. With a nonatomic base measure for the Dirich-
let process, the standard augmentation procedure of Escobar and West (1995) can be
extended to the case of conditionally independent Dirichlet processes with a common
concentration parameter M . However, in the present case, because of the point mass at
zero in the base measure, the conditional posterior distribution of M depends also on
πj , the size of the mass at 0 in the base measure, so a slight modification of the Escobar
and West (1995) procedure will be needed. Alternatively, as the conditional posterior
density of M is completely explicit except for its normalizing constant and M is only a
one-dimensional parameter, standard sampling procedures can be applied.

To summarize, we have presented a model for functional data and priors which allow
for the expression of beliefs related to common shared features (basis coefficients). We
have proposed a measure of similarity distinct from the usual metrics, and have shown
by theory and application that it yields useful results. In the model of Ray and Mallick
(2006), the similarity between functions can be quantified by calculating the probability
that two observations are in the same cluster. However, the approach based on separate
modeling of the tying pattern of the wavelet coefficients appears to be more appealing.
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Appendix A: Proofs

Proof of Proposition 1. First we show that the expected number of nonzero wavelet
coefficients is finite a priori. Let Ajk = {βjk �= 0}, k = 0, 1, . . . , 2j − 1 and j = 0, 1, . . ..
Then, as δ → 0,

∞∑
j=0

2j−1∑
k=0

P (Ajk) =

∞∑
j=0

2j−1∑
k=0

ν2δ2
−(1+δ)j = ν2δ

∞∑
j=0

2j2−(1+δ)j

= ν2δ

∞∑
j=0

2−jδ =
ν2δ

1− 2−δ
< ∞,

Thus, for any δ > 0, by the Borel–Cantelli lemma, the number of nonzero wavelet

coefficients is almost surely finite. Note that, as δ → 0, the expression, ν2δ
(
1− 2−δ

)−1
,

converges to ν2(log 2)
−1 by L’Hôpital’s rule.

Similarly, for the events Bj = ∪2j−1
k=0 Ajk, using

P (Bc
j ) =

2j−1∏
k=0

P (Ac
jk) = (1− ν2δ2

1−δj)2
j

,

we get that

∞∑
j=0

P (Bj) =

∞∑
j=0

{
1− (1− ν2δ2

−(1+δ)j)2
j
}

≤
∞∑
j=0

2jν2δ2
−j−δj = ν2δ

∞∑
j=0

2−δj < ∞ (18)

so that the number of levels with at least one nonzero coefficient is also almost surely
finite.

In order to derive the Poisson limits, we apply Theorem 2 of Le Cam (1960). If
X1, X2, . . . , Xn are independent Bernoulli random variables with success probabilities
p1, p2, . . ., respectively, then the total variation distance between the distribution of the
sum, Zn =

∑n
j=1 Xj and a Poisson random variable is bounded by

∑n
j=1 p

2
j . Specifically,

if Qn is the measure on N induced by
∑

Xj , and Q∗
n is the Poisson measure with rate

λn =
∑n

j=1 pj , with Yn ∼ Q∗
n. Let ‖Qn − Q∗

n‖ = sup|f |≤1 |EQnf(Zn) − EQ∗
n
f(Yn)|

and |f | = supx∈N |f(x)|. Then ‖Qn − Q∗
n‖ ≤

∑n
j=1 p

2
j . Therefore, it suffices to bound∑

j,k {P (Ajk)}2 and
∑

j {P (Bj)}2.
Now,

∞∑
j=0

2j−1∑
k=0

{P (Ajk)}2 =

∞∑
j=0

2j−1∑
k=0

ν22δ
22−(1+δ)2j = ν22δ

2
∞∑
j=0

2−(1+2δ)j =
ν22δ

2

1− 2−(1+2δ)
→ 0,

as δ → 0.
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Since the priors were specified independently across coefficients, the number of levels
for which there is at least one nonzero coefficient (also the number of nonzero coeffi-
cients) follows the Poisson-binomial distribution, that is, the distribution of the sum
of independent Bernoulli trials, but with varying parameters. Consider the sum of the
squared success probabilities

∞∑
j=0

{P (Bj)}2 =

∞∑
j=0

{
1− (1− ν2δ2

−(1+δ)j)2
j
}2

≤
∞∑
j=0

{
2jν2δ2

−j−δj
}2

= ν22

∞∑
j=0

δ22−2jδ

= ν22
δ2

22δ − 1
. (19)

Notice that both the numerator and denominator of (19) converge to 0 as δ → 0,
so by L’Hôpital’s rule the limit of the expression in (19) is equal to the limit of

ν222δ
(
4δ log 4

)−1
, which is 0.

Proof of Theorem 1. Since the true vector of functions lies in Hs
N , it is in a ball of radius

B for sufficiently large B > 0. Let ε > 0 and let J be the smallest integer satisfying
both

N∑
i=1

∞∑
j>J

2j−1∑
k=0

|β(i)
jk,0|2 < ε2/8. (20a)

Notice that J exists and is finite since ‖f0‖ < ∞. With this chosen we have, using
(a+ b)2 ≤ 2(a2 + b2), that

Π

⎛
⎜⎝∑

j>J

i,k

|β(i)
jk − β

(i)
jk,0|2 < ε2/2

⎞
⎟⎠ ≥ Π

⎛
⎝ ∑

j>J,i,k

|β(i)
jk |2 < ε2/8

⎞
⎠

≥ 1− 8

ε2

∑
j>J,i,k

EΠ

(
|β(i)

jk |2
)

= 1− 8

ε2
Nν1ν2

2(1−γ2−γ1)J

21−γ2−γ1 − 1
> 0

since γ1, γ2 > 1.

Next, notice that

Π

⎛
⎝ ∑

j≤J,i,k

|β(i)
jk − β

(i)
jk,0|2 < ε2/2

⎞
⎠ ≥η

N∏
i=1

Π

⎛
⎝ ∑

j≤J,k

|β(i)
jk − β

(i)
jk,0|2 < ε2/2N

⎞
⎠ ,
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where η > 0 is a constant representing the probability that for each k = 0, . . . , 2j − 1,

j = 0, . . . , J − 1, the prior makes all β
(i)
jk , i = 1, . . . , N , distinct. Then,

η ≥ π2J−1
∏

j≤J,k

N−1∏
i=1

M

M + i
.

This expression represents the probability that a new unique value must be drawn from
the base measure and also must not be assigned to 0, which ensures unique values (it
is a lower bound since it does not include the probability of having a single zero value).

Now by the positivity of the prior on each β
(i)
jk , we have

η

N∏
i=1

Π

⎛
⎝ ∑

j≤J,k

|β(i)
jk − β

(i)
jk,0|2 < ε2/2N

⎞
⎠ > 0.

A quantitative estimate of the probability is given in Lian (2011, Theorem 1), but we
do not need that here. Combining these results we have that for ε > 0,

Π

⎛
⎝∑

j,i,k

|β(i)
jk − β

(i)
jk,0|2 < ε2

⎞
⎠ > 0,

which shows the positivity of any Kullback–Leibler neighborhood since we have a Gaus-
sian likelihood and the Kullback–Leibler divergence between two normal distributions,
N(μ1, σ

2) and N(μ2, σ
2), is given by (μ1 − μ2)

2/2σ2. Similarly, the Hellinger distance
is equivalent to the L2-distance. Together with the fact that Hs

N (B) has finite metric
entropy by Belitser and Ghosal (2003), we have that, using Theorem 2 from Ghosal
et al. (1999), for any given B > 0,

Π (f ∈ Hs
N (B) : ‖f − f0‖ > ε|Dr) → 0 in probability.

Now, it suffices to show that lim
B→∞

sup
r>0

E0Π(Hs
N (B)c|Dr) = 0. By Markov’s inequality

and the monotone convergence theorem,

Π(Hs
N (B)c|Dr) ≤ B−2

N∑
i=1

∞∑
j=0

22js
2j−1∑
k=0

E
[
|β(i)

jk |2
∣∣∣Dr

]
. (21)

We bound the needed expectations as

E
[
|β(i)

jk |2
∣∣∣Dr

]
=

∑
p∈P

E
[
|β(i)

jk |2
∣∣∣Pjk = p, Dr

]
Π(Pjk = p|Dr)

≤ max
p∈P

E
[
|β(i)

jk |2
∣∣∣Pjk = p, Dr

]
.
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Now, given Pjk = p, i ∈ Ajk
l for some l ∈ {0, 1, . . . ,Mjk} (for definition, see (14)), and

the posterior is of conjugate form, so that the expectation is

E
[
|β(i)

jk |2
∣∣∣Pjk = p, Dr

]
=

τ2j σ
2

1 + τ2j r(#Al)
+

(
τ2j

1/r + τ2j (#Al)

)2

N
∑
m∈Al

(
b
(m)
jk

)2
.

≤
τ2j σ

2

1 + τ2j r
+

(
τ2j

1/r + τ2j

)2

N

N∑
m=1

(
b
(m)
jk

)2
,

where #A is the cardinality of the set A. We now bound the true expectation of this
term by

τ2j σ
2 +

(
τ2j

1/r + τ2j

)2 [
Nσ2

r
+N

N∑
m=1

(
β
(m)
jk,0

)2] ≤ τ2j σ
2 +

rNσ2(
τ−2
j + r

)2 +N
N∑

m=1

|β(m)
jk,0|2

≤ τ2j σ
2 +

Nσ2(
τ−2
j + 1

)2 +N

N∑
m=1

|β(m)
jk,0|2.

Now observe that under the assumption that γ1 > 2s+ 1, we have

N∑
i=1

∞∑
j=0

22js
2j−1∑
k=0

τ2j = Nν1

∞∑
j=0

2j(2s+1−γ1) < ∞,

N∑
i=1

∞∑
j=0

22js
2j−1∑
k=0

Nσ2(
τ−2
j + 1

)2 = N

∞∑
j=0

Nσ22j(2s+1)(
ν−1
1 2γ1j + 1

)2 ≤ N2σ2ν21

∞∑
j=0

2j(2s+1−2γ1) < ∞,

N∑
i=1

∞∑
j=0

22js
2j−1∑
k=0

N∑
m=1

|β(m)
jk,0|2 = N‖f0‖2Hs

N
< ∞.

Hence, the right hand side of (21) tends to zero as r → ∞, completing the proof.

Proof of Lemma 1. Theorem 1 implies that for any neighborhood of the true value,
βjk,0, its posterior probability tends to 1. By projection onto the coordinates, the pos-

terior probability of β
(i)
jk lying in any neighborhood of β

(i)
jk,0 also tends to 1.

Let Pjk = p be an incompatible model, as defined in Section 6. Then there is an

incorrect assignment for some i, that is, either β
(i)
jk = 0 when β

(i)
jk,0 �= 0, or β

(i)
jk = β

(l)
jk for

some l when this is not the case. For instance, consider the situation that the partition

assigns β
(i)
jk = 0 when β

(i)
jk,0 �= 0. The inequality implies that there is a positive distance

between the two points so that there is a neighborhood of β
(i)
jk,0 which does not contain 0.

The probability of the complement of this neighborhood must tend to 0 as r → ∞, and
since the posterior probability of Pjk = p must be less than or equal to this value, its
posterior probability must also tend to 0.
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Thus, we can focus our attention only on compatible models. Now let Pjk = p =
{A0, A1, . . . , Am} be a compatible model (we drop the j, k notation for the sets in the
partition for this section). Letting H be the distribution function for the inverse-gamma
prior, we then have that

f(bjk|Pjk = p) =

( ∏
l∈A0

φσ(bi)

)
m∏
i=1

[∫ (∏
l∈Ai

φσ(bi − β)

)
φτj (β)dβ

]

=

(
2π

r

)−N/2

(τ2j )
−m/2

⎡
⎣ m∏
i=1

(
rci +

1

τ2j

)−1/2
⎤
⎦ (

σ2
)(a+N

2 −1)

× exp

⎧⎨
⎩− 1

σ2

⎡
⎣b+ r

2

N∑
i=0

b2i −
r2

2

m∑
i=1

(
rci +

1

τ2j

)−1 (∑
l∈Ai

bl

)2
⎤
⎦
⎫⎬
⎭ ,

where we have dropped the j, k subscripts, and let cl = #Al and bl = b
(l)
jk .

Now let Pjk,0 = pjk,0 = {A0
0, A

0
1, . . . , A

0
m0

} be the true model. Since Pjk = p is
compatible (finer), assume that m > m0, and that Ai ⊂ A0

i for i = 0, . . . ,m0. Now,

f(bjk|Pjk = p)

f(bjk|Pjk = p0)

= (τ2j )
(m0−m)/2

√√√√√
∏m0

i=1

(
rc0i +

1
τ2
j

)
∏m

i=1

(
rci +

1
τ2
j

)

× exp

⎧⎪⎨
⎪⎩

r

σ2

⎡
⎢⎣ m∑

i=1

(
τ2j

1/r + ciτ2j

)(∑
l∈Ai

bl

)2

−
m0∑
i=1

(
τ2j

1/r + c0i τ
2
j

)⎛
⎝∑

l∈A0
i

bl

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭ .

To examine the behavior of this expression note that m > m0, and ci < c0i for i =
1, . . . ,m0. Now, the expression under the square root converges to 0 as r → ∞, since
m > m0 implies that the denominator is of a higher order.

Consider the term inside the square brackets of the exponential:

m∑
i=1

(
τ2j

1/r + ciτ2j

)(∑
l∈Ai

bl

)2

−
m0∑
i=1

(
τ2j

1/r + c0i τ
2
j

)⎛
⎝∑

l∈A0
i

bl

⎞
⎠

2

.

It is clear that this expression can be written as a quadratic form, btAb, in b, for some
matrix, A. It is clear that A is Or(1) as r → ∞. The expectation is then Or(1), and,

since the dispersion matrix of b is σ2

r IN , the variance of btAb is Or(1/r) as r → ∞.
Thus, the exponential term is bounded in probability as r → ∞.

Thus, we have shown that the probability of any incompatible model goes to zero.
Along with the fact that for any compatible model the marginal likelihood ratio tends
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to 0 implies that the only model that can possibly retain positive probability is the

truth. Since, for any fixed j, k, there are only finitely many models for {β(i)
jk }Ni=1, the

probability of the true model must tend to 1.
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