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Necessary and Sufficient Conditions
for High-Dimensional Posterior Consistency

under g-Priors

Douglas K. Sparks∗, Kshitij Khare†, and Malay Ghosh‡

Abstract. We examine necessary and sufficient conditions for posterior consis-
tency under g-priors, including extensions to hierarchical and empirical Bayesian
models. The key features of this article are that we allow the number of regres-
sors to grow at the same rate as the sample size and define posterior consistency
under the sup vector norm instead of the more conventional Euclidean norm. We
consider in particular the empirical Bayesian model of George and Foster (2000),
the hyper-g-prior of Liang et al. (2008), and the prior considered by Zellner and
Siow (1980).
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1 Introduction

Arnold Zellner made pioneering contributions to the fields of statistics and econometrics.
One of his works, the g-prior (Zellner, 1986), has become a cornerstone of research
in Bayesian statistics. The g-prior specifies that a vector of regression coefficients is
normally distributed a priori with some mean (typically zero) and covariance matrix
equal to a scalar multiple (typically denoted by g) of the covariance matrix of the
maximum likelihood estimator. These priors are useful for conventional hierarchical
and empirical Bayesian analysis (Ghosh et al., 1982) for linear regression models, but
their application extends well beyond to variable selection (George and Foster, 2000),
Bayesian classification of high-dimensional low–sample size data (Mallick et al., 2005),
and many other interesting topics of research. The excellent article of Liang et al. (2008)
provides a succinct account of mixtures of g-priors for Bayesian variable selection.

One very important but often neglected issue in the selection of priors is to examine
the consistency of resulting posteriors in the frequentist sense. We will provide a formal
definition in Section 2, but in plain language, this means that as one accumulates more
and more samples, the posterior distribution of the parameter under consideration gets
closer and closer to its true value, eventually becoming degenerate at this point in
the limit. Recently, the notion of posterior consistency has also been considered in
nonparametric settings (Barron et al., 1999; Ghosal et al., 2000).

In the g-prior model, if the number of regressors p does not vary with n, then
it can easily be seen that the resulting posterior is inconsistent if g is fixed, but the
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problem disappears when g ≡ gn with gn → ∞. See Section 2 for the details of these
results. Now suppose instead that the number of regressors p ≡ pn increases with n
but satisfies pn < n and pn/n → α, where 0 ≤ α < 1. This situation represents the
so-called “large p, large n” regime, which has been considered in the context of model
selection. Berger et al. (2003) provide scenarios where the Bayes factor is consistent
but the Bayesian Information Criterion (BIC) is not, with the explanation that BIC
may be a poor approximation to the Bayes factor when pn → ∞. Moreno et al. (2010)
examine consistency of the Bayes factor for nested normal linear models with pn → ∞,
including the case where pn grows at the same rate as the sample size. Also, Jiang
(2007) addressed the variable selection problem when pn > n and provided convergence
rates for the fitted densities in a broad class of generalized linear models.

In the context of parameter estimation as examined here, Ghosal (1999) considered
certain types of high-dimensional linear models and provided a valuable contribution by
proving not only posterior consistency but also asymptotic normality of the posterior
distribution. However, our work differs from Ghosal (1999) in three principal respects.
First, and perhaps most fundamentally, the g-prior model itself involves an unknown
sampling variance σ2 with an associated prior (the prior on the regression coefficients is
taken to be conditional on σ2). Such a structure is not included in the class of models
considered in Ghosal (1999). Second, we provide necessary and sufficient conditions for
posterior consistency in three of the four g-prior models we consider. While we readily
admit that stronger results such as asymptotic normality are perhaps more useful when-
ever posterior consistency occurs, our necessary conditions demonstrate circumstances
in which posterior consistency fails to occur at all, which we believe to be interesting
in their own right. Third, our work allows the parameter space for the pn-dimensional
vector of regression coefficients to be taken as R

pn , as is natural. This contrasts with
Ghosal (1999), which essentially requires the restriction of the parameter space to a
sequence of compact sets.

Bontemps (2011) also extended the work of Ghosal (1999) in several ways by permit-
ting the model to be misspecified and the number of regressors to grow proportionally
to the sample size, the latter of which is also a feature of our work. However, our work
differs from Bontemps (2011), most notably by allowing the consideration of models
where the sampling variance σ2 is assumed to be unknown. There are also differences in
the assumptions. In particular, Bontemps (2011) does not make any assumption anal-
ogous to the eigenvalue bounds that we will later impose in (A3). On the other hand,
unlike Bontemps (2011), we do not make any assumptions on the asymptotic behavior
of the true coefficient vector β0n. We must also emphasize once again that, unlike Bon-
temps (2011), we provide conditions that are both necessary and sufficient for posterior
consistency. This establishes circumstances in which posterior consistency definitively
does not occur, which can in some cases be rather surprising (see the remarks following
Theorem 2, for example). The recent work of Armagan et al. (2013) establishes suffi-
cient conditions for posterior consistency in linear models under shrinkage priors. Again,
the most notable difference between the models considered in Armagan et al. (2013)
and the g-prior based models considered in this paper is that the variance parameter
σ2 is assumed to be known in Armagan et al. (2013). Lee and Oh (2013) consider a
high dimensional Bayesian Principal Components Analysis regression setup with pn > n
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and normal priors, and examine posterior consistency (in the �2-norm) and convergence
rates under appropriate assumptions on the rank of the design matrix.

Other authors have addressed the asymptotic properties of g-prior models, but for
model selection instead of parameter estimation. Fernandez et al. (2001) provided both
theoretical results and simulation-based evidence for the consistency of posterior model
probabilities under particular choices for the g-prior hyperparameter g ≡ gn. Liang
et al. (2008) took a more theoretical approach and proved the consistency of posterior
model probabilities under hierarchical and empirical Bayesian g-prior models, but only
in the case where the dimensionality pn of the full model is fixed. More recently, Shang
and Clayton (2011) provided similar results in the case where pn → ∞, albeit under a
considerable number of assumptions. They also note that these results can be extended
to pn > n, the so-called “large p, small n” regime, when combined with certain dimension
reduction approaches. See also the work of Zhang et al. (2009).

Another new feature of our work is that we have established posterior consistency
under the sup vector norm �∞ (||x||∞ = max1≤i≤p |xi|) rather than the conventional
�2 (||x||2 = [

∑p
i=1 x

2
i ]

1/2) vector norm. The choice is motivated primarily because the
�∞ norm introduces added flexibility to our procedure, since it is weaker than the
�2 norm (as a vector norm), noting that ||x||∞ ≤ ||x||2. In particular, for proving
consistency when the number of covariates pn grows with the sample size, the sup norm
approach allows pn to grow at a faster rate than is possible under the �2 norm. The
simplest yet most convincing fact in this regard is the following. For the linear model
Yn = Xnβn+en with i.i.d. Gaussian errors and XT

n Xn = nIpn (orthogonal covariates,
Ipn denotes the identity matrix of dimension pn), the MLE for βn is consistent under
the �2 vector norm if and only if pn = o(n). However, the MLE for βn is still consistent
under the �∞ norm for any pn < n. See remark immediately following Lemma 1.

As discussed above, if pn → ∞, it is harder to prove posterior consistency under the
�2 norm as compared to the �∞ norm. However, in the same vein, it is harder to prove
posterior inconsistency under the �∞ norm as compared to the �2 norm. In particular,
any necessary condition for posterior consistency under the �∞ norm is also a necessary
condition for posterior consistency under the �2 norm. Hence, this paper also provides
novel necessary conditions for posterior consistency under the conventional �2 norm
(note that assumption (A2) in Section 2 subsumes the case pn/n → 0).

The outline of the remaining sections is as follows. Section 2 provides necessary and
sufficient conditions for posterior consistency for a nonstochastic sequence {gn, n ≥ 1}.
In the process, we demonstrate the posterior consistency or inconsistency of some pop-
ular recommendations regarding the choice of gn. Section 3 provides necessary and
sufficient conditions for posterior consistency in an empirical Bayesian context in which
gn is estimated from the data. Section 4 provides necessary and sufficient conditions for
posterior consistency under the hierarchical hyper-g-prior model (Liang et al., 2008).
Section 5 considers the celebrated Zellner-Siow prior (Zellner and Siow, 1980) and pro-
vides a sufficient (though not necessary) condition for posterior consistency under this
model. At the end of each of Sections 2–5, the interpretations and implications of the re-
sults are briefly discussed. Some final remarks are made in Section 6. It should be noted
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that although the key results of Sections 3–5 yield the same condition for posterior con-
sistency, the techniques used to prove these results differ substantially among the three
models. Furthermore, the coincidence of the conditions in Theorems 2–4 should not be
misconstrued as a suggestion that the same condition would be shared by other hierar-
chical or empirical Bayesian g-prior models. Specifically, this condition is not shared by
Theorem 1, yet the non-hierarchical model addressed by Theorem 1 can be considered
as a hierarchical model with a sequence of degenerate hyperpriors. Moreover, it should
again be noted that the conditions in Theorems 1–3 are both necessary and sufficient,
but the condition for the Zellner-Siow g-prior model provided in Theorem 4 is merely
sufficient, and its necessity or lack thereof is not presently clear.

2 Non-Hierarchical Model

Consider the usual linear model Yn = Xnβn+en, with response Yn = (Yn,1, . . . , Yn,n)
T ,

covariates Xn = (xn,1, . . . ,xn,n)
T , regression coefficients βn = (βn,1, . . . , βn,pn)

T and
errors en = (e1, . . . , en)

T . We now impose the following assumptions:

(A1) The errors are distributed as en ∼ Nn(0n, σ
2In). Here 0n denotes the vector of

length n with all zero entries.

(A2) The number of regressors pn is a nondecreasing sequence with pn < n and pn/n →
α, where 0 ≤ α < 1.

(A3) The eigenvalues λn,1, . . . , λn,pn of the matrix n(XT
n Xn)

−1 satisfy 0 < λmin ≤
infn,i λn,i ≤ supn,i λn,i ≤ λmax < ∞ for some λmin and λmax.

Note that (A3) implies that λ−1
maxIpn ≤ n−1XT

n Xn ≤ λ−1
minIpn . This assumption is

identical to assumption (A2) of Armagan et al. (2013).

The goal in such a model is estimation of βn. Minimal sufficiency leads to the
reduction (β̂n, Sn), where β̂n = (XT

n Xn)
−1XT

n Yn, the maximum likelihood estimator

of βn, and Sn = ||Yn −Xnβ̂n||22, the error sum of squares. Note that conditional on βn

and σ2, β̂n and Sn are mutually independent with β̂n | βn, σ
2 ∼ Npn(βn, σ

2(XT
n Xn)

−1)
and Sn | βn, σ

2 ∼ σ2χ2
n−pn

.

Now suppose priors are specified as βn | σ2 ∼ Npn(γn, gσ
2(XT

n Xn)
−1) (Zellner’s

g-prior) and σ2 ∼ InverseGamma(a/2, b/2), where we permit a ≥ −2 and b ≥ 0 to
accommodate such improper priors as π(σ2) ∝ 1/σ2, 1/σ, or 1. Suppose further that
g ≡ gn is specified as a known sequence of constants. This collection of likelihoods
and priors comprises our non-hierarchical g-prior model, which we denote by PM . One
motivation for the use of such a model is the convenient form of the Bayes estimator
under squared error loss,

β̂B
n := EM (βn | β̂n, Sn) =

gn
gn + 1

β̂n +
1

gn + 1
γn,

where β̂n denotes the MLE.
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We now introduce the formal definition of posterior consistency.

Definition. Let β0n ∈ R
pn for each n ≥ 1, and let σ2

0 > 0. Now let P0 denote the

distribution of {(β̂n, Sn), n ≥ 1} under the model Yn = Xnβ0n + en, where en ∼
Nn(0n, σ

2
0In), for each n ≥ 1. The sequence of posterior distributions PM (βn | β̂n, Sn)

is said to be consistent under the �∞ norm at {(β0n, σ
2
0), n ≥ 1} if PM (||βn −β0n||∞ >

ε | β̂n, Sn) → 0 a.s.(P0) for every ε > 0.

It should be immediately noted that the type of posterior consistency considered
herein is fundamentally different from what could instead be considered in the analysis
of Bayesian methodology, that is, convergence of the posterior under the same model PM

under which it is derived. In this case, one is assuming that the prior associated with
the model PM is in some sense “true.” However, this approach is perhaps too favorable
in that posterior consistency is quite easy to achieve. In fact, in this approach, a quite
general result due to Doob (1948) states that posterior consistency occurs on a set of
parameter values with probability 1 under the prior associated with PM . Instead, the
type of posterior consistency considered herein is fundamentally frequentist in nature,
that is, the values β0n and σ2

0 are considered fixed but unknown.

The frequentist properties of Bayesian methods have been of interest for some time.
Even pure frequentists may be interested in originally Bayesian procedures, or limits and
approximations thereof, due to considerations such as admissibility and the convenient
elimination of nuisance parameters. Indeed, it was shown as early as Laplace (1774)
that in simple cases, the posterior distribution and the distribution of the maximum
likelihood estimator are comparable for large sample sizes. More sophisticated versions
of such results have been developed in more recent times (Bernstein, 1934; Diaconis and
Freedman, 1986; Ghosh et al., 1982; LeCam, 1982; von Mises, 1964).

We now provide a lemma establishing strong frequentist consistency of the MLE β̂n

in the �∞ norm.

Lemma 1. Let Zn ∼ Npn(0pn , n
−1Vn), where pn < n, and where the eigenvalues

ωn,1, . . . , ωn,pn of Vn satisfy supn,i ωn,i = ωmax < ∞. Then ||Zn||∞ → 0 almost surely.

Proof (Proof of Lemma 1). First note that Var(Zn,i) = n−1Vn,ii ≤ n−1ωmax, and

n1/2V
−1/2
n,ii Zn,i ∼ N(0, 1). Now let ε > 0. Since

∞∑
n=1

P (||Zn||∞ > ε) =

∞∑
n=1

P

(
max

1≤i≤pn

|Zn,i| > ε

)
,

it follows that

∞∑
n=1

P (||Zn||∞ > ε) ≤
∞∑

n=1

pn∑
i=1

P
(
n1/2V

−1/2
n,ii |Zn,i| > ε

(
n−1Vn,ii

)−1/2
)

≤
∞∑

n=1

pn∑
i=1

P
(
n1/2V

−1/2
n,ii |Zn,i| > εω−1/2

max n1/2
)
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≤
∞∑

n=1

pn∑
i=1

15ω3
max

ε6n3
< ∞

by applying Markov’s inequality to n3V −3
n,iiZ

6
n,i. The result follows from the Borel-Cantelli

lemma, noting that pn < n.

Observe that Lemma 1 under P0 with assumptions (A1)–(A3) and Zn = β̂n − β0n

implies that ||β̂n − β0n||∞ → 0 a.s.(P0). Thus, the MLE β̂n retains strong frequentist
consistency in the �∞ norm even as pn grows at a rate exactly proportional to n. To
contrast this with the behavior of the MLE under the conventional �2 vector norm, note
that we have the upper bound

||β̂n − β0n||22 ≤ σ2
0λmax

n

(
β̂n − β0n

)T 1

σ2
0

XT
n Xn

(
β̂n − β0n

)
and a similar lower bound with λmax replaced by λmin. Since(

β̂n − β0n

)T 1

σ2
0

XT
n Xn

(
β̂n − β0n

)
∼ χ2

pn
,

it can be immediately seen that pn = o(n) is required for strong frequentist consistency

of the MLE β̂n under the �2 norm.

In a Bayesian analysis, Lemma 1 leads to the following useful lemma, which essen-
tially states that β0n may be replaced by β̂n in the definition of posterior consistency.

Lemma 2. In the g-prior model (both hierarchical and non-hierarchical), PM (||βn −
β0n||∞ > ε | β̂n, Sn) → 0 a.s.(P0) for every ε > 0 if and only if PM (||βn − β̂n||∞ > ε |
β̂n, Sn) → 0 a.s.(P0) for every ε > 0.

Proof (Proof of Lemma 2). The triangle inequality implies that

PM

(∣∣∣∣∣∣βn − β̂n

∣∣∣∣∣∣
∞

> 2ε | β̂n, Sn

)
− PM

(∣∣∣∣∣∣β̂n − β0n

∣∣∣∣∣∣
∞

> ε | β̂n, Sn

)
≤ PM

(
||βn − β0n||∞ > ε | β̂n, Sn

)
≤ PM

(∣∣∣∣∣∣βn − β̂n

∣∣∣∣∣∣
∞

> ε/2 | β̂n, Sn

)
+ PM

(∣∣∣∣∣∣β̂n − β0n

∣∣∣∣∣∣
∞

> ε/2 | β̂n, Sn

)
.

When conditioning on β̂n and Sn,

PM

(
||β̂n − β0n||∞ > ε | β̂n, Sn

)
= I

(
||β̂n − β0n||∞ > ε

)
,

where I(·) denotes the usual indicator function. Lemma 1 implies that ||β̂n −β0n||∞ →
0 a.s.(P0), from which it follows that I(||β̂n − β0n||∞ > ε) → 0 a.s.(P0) for all ε > 0.
This and the above inequalities immediately yield the result.

To establish results on posterior consistency or inconsistency in the non-hierarchical
g-prior model, we first define Tn := (β̂n − γn)

TXT
n Xn(β̂n − γn), so that Tn/σ

2 is the
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usual frequentist likelihood ratio test statistic for a test ofH0 : βn = γn vs.Ha : βn 
= γn

with known variance σ2. Then the joint posterior πn(βn, σ
2 | β̂n, Sn) is given by

πn(βn, σ
2 | β̂n, Sn) ∝ exp

[
−1

2

(
βn − β̂B

n

)T ( gn
gn + 1

σ2
(
XT

n Xn

)−1
)−1 (

βn − β̂B
n

)]

×
(
σ2
)−(n+pn+a)/2

exp

[
− 1

2σ2

(
Sn + b+

Tn

gn + 1

)]
,

and integrating out βn from this yields the marginal posterior of σ2,

πn(σ
2 | β̂n, Sn) ∝

(
σ2
)−(n+a)/2

exp

[
− 1

2σ2

(
Sn + b+

Tn

gn + 1

)]
,

i.e., σ2 | β̂n, Sn ∼ InverseGamma((n+ a− 2)/2, T̃n/2), where we define T̃n := Sn + b+
(gn + 1)−1Tn. For notational convenience, for each n ≥ 1, define

λ̆0n :=
n||γn − β0n||22

(γn − β0n)TXT
n Xn(γn − β0n)

,

θ0n := E0(Tn) = pnσ
2
0 + nλ̆−1

0n ||γn − β0n||22 ,

θ̃0n := E0(T̃n) = (n− pn)σ
2
0 + b+

1

gn + 1

(
pnσ

2
0 + nλ̆−1

0n ||γn − β0n||22
)
,

and note that λmin ≤ λ̆0n ≤ λmax since λ−1
maxIpn ≤ n−1XT

n Xn ≤ λ−1
minIpn .

The following lemmas establish the behavior of various quantities under P0, and
they will be heavily used in proving posterior consistency or inconsistency in both the
non-hierarchical and hierarchical g-prior models. The proof of each lemma can be found
in the Appendix.

Lemma 3. (n− pn)
−1Sn → σ2

0 a.s.(P0).

Lemma 4. If α > 0 or lim infn→∞ ||γn − β0n||22 > 0, then Tn/θ0n → 1 a.s.(P0).

Lemma 5. T̃n/ θ̃0n → 1 a.s.(P0).

The following lemmas regarding the normal distribution will be useful in establishing
the condition for posterior consistency in the non-hierarchical case. The proofs are
provided in the Appendix.

Lemma 6. Let Zn ∼ Npn(μn,Σn), Σn positive definite, n ≥ 1. If ||μn − ξn||∞ � 0,
then there exist ε > 0 and a subsequence kn of n such that P (||Zkn − ξkn ||∞ > ε) ≥ 1/2
for all n.

Lemma 7. Let Z ∼ N(μ, τ2). Then P (|Z| ≤ ξ) ≤ 1− 2Φ(−ξ/τ) for every ξ ≥ 0, where
Φ is the standard normal cdf.

Lemma 8. Let Zn ∼ Npn(0pn ,Σn) for each n ≥ 1, where Σn has each diagonal entry
equal to 1 and eigenvalues ωn,1, . . . , ωn,pn . If infn,i ωn,i = ωmin, then infn,i Var(Zi |
Zi+1, . . . , Zpn) ≥ ωmin.
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Finally, one additional lemma provides a key result about the marginal posterior
of σ2. Again, the proof is deferred to the Appendix.

Lemma 9. In the non-hierarchical g-prior model, the posterior distribution of σ2 sat-
isfies PM (θ̃0n/2n ≤ σ2 ≤ 2θ̃0n/n | β̂n, Sn) → 1 a.s.(P0).

Note that although gn does not appear explicitly in the result in Lemma 9, the result
nevertheless does depend on the choice of gn since it is involved in the quantity θ̃0n.

We now state and prove the necessary and sufficient condition for posterior consis-
tency in the non-hierarchical g-prior model.

Theorem 1. In the non-hierarchical g-prior model PM , posterior consistency occurs if
and only if both (gn+1)−1||γn−β0n||∞ → 0 and gn(gn+1)−2(log pn)n

−1||γn−β0n||22 →
0.

The proof of this theorem in provided in the Appendix.

2.1 Interpretations and Implications

In the same vein as frequentist consistency, posterior consistency can be conceptualized
as the idea that the center (not necessarily the mean) of the posterior distribution con-
verges to the true value while the spread (not necessarily the variance) of the posterior
distribution converges to zero. In light of this, it is noteworthy that the two conditions
in Theorem 1 arise from precisely such considerations. The first condition controls the
convergence to zero of the �∞-distance between the posterior’s center and the true value
β0n, while the second condition controls the convergence of the posterior’s spread to
zero. Both conditions are necessary for posterior consistency to hold.

In the simple case where pn does not increase with n, it is typical to fix the prior
mean as γn = γ and to assume that β0n = β0 also does not vary with n. In this case it
can be immediately seen that although the second condition of Theorem 1 is satisfied,
the first condition fails except in the serendipitous case that γ = β0. Of course, the
result is somewhat obvious even without appealing to Theorem 1, since the posterior
mean is simply a weighted average of the MLE β̂n, which is strongly consistent for β0,
and the prior mean γ with weights g(g+1)−1 and (g+1)−1. In this case, the situation
may be remedied by taking any choice of gn that tends to infinity. For instance, the unit
information prior (Kass and Wasserman, 1995) is equivalent to taking gn = n, while
gn = max{n, p2n} has also been recommended (Fernandez et al., 2001). Either choice
yields posterior consistency in the fixed-p case.

The result of Theorem 1 becomes more interesting when pn → ∞. Suppose that
||γn − β0n||∞ = O(1), but ||γn − β0n||22 = O(pn). This can happen, for example, if (a)

γn = β̂n, or (b) the entries of β0n are uniformly bounded and γn = cβ̂n where 0 ≤ c < 1
(follows immediately from Lemma 1). In this case, the first condition is satisfied as long
as gn → ∞, but the second condition imposes the additional requirement that gn must
grow faster than pnn

−1 log pn. The aforementioned choices of gn = n or gn = max{n, p2n}
provide posterior consistency in this case as well.
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As another special case, suppose pn = O(n) exactly, but suppose only a finite number
m > 0 of components of γn −β0n are nonzero and these m components remain fixed as
n grows. This circumstance could arise with the logical choice γn = 0pn if only the first
few covariates are present in the “true” frequentist model P0, but covariates continue to
be added as the sample size increases. Then any gn → ∞ ensures posterior consistency.
This case is admittedly uninteresting in the non-hierarchical model, but we will revisit
its behavior later under empirical and hierarchical Bayesian models.

3 Empirical Bayesian Model

A popular approach is to avoid specifying g or gn altogether by the use of an empirical
Bayes method (George and Foster, 2000) in which the value of g is estimated from the
data. The most common technique is to use the value of g that maximizes its marginal
likelihood, restricted to g ≥ 0. By integrating out βn and σ2 from the joint distribution
of β̂n, Sn,βn, σ

2, the marginal likelihood of g is found to be

L(g; β̂n, Sn) ∝ (g + 1)(n−pn+a−2)/2
[
(g + 1)(Sn + b) + Tn

]−(n+a−2)/2
,

for which the maximizing value of g subject to g ≥ 0 is

ĝEB
n := max

{
0,

(
n− pn + a− 2

Sn + b

)(
Tn

pn

)
− 1

}
.

We first provide a lemma (proven in the Appendix) that addresses the behavior of ĝEB
n .

Lemma 10. If lim infn→∞ ||γn − β0n||22 > 0, then lim infn→∞ ĝEB
n > 0 a.s.(P0).

Since ĝEB
n is simply a function of (β̂n, Sn), the empirical Bayes posterior is identical

to the simple non-hierarchical Bayes posterior, but with the data-dependent quantity
ĝEB
n in place of gn. Thus, while Theorem 1 would allow us to immediately state a nec-
essary and sufficient condition for posterior consistency in terms of ĝEB

n , an alternative
condition not involving data-dependent quantities would be preferable. The following
result gives precisely such a condition and establishes its necessity and sufficiency.

Theorem 2. In the empirical Bayes g-prior model, posterior consistency occurs if and
only if either α = 0 or there does not exist a subsequence kn of n and a constant A > 0
such that ||γkn − β0kn ||22 → A and ||γkn − β0kn ||∞ � 0.

The proof of this theorem is provided in the Appendix.

3.1 Interpretations and Implications

It should be noted that there is no immediately obvious remedy for inconsistency in
an empirical Bayesian g-prior model due to the failure of the conditions in Theorem 2.
For any particular non-hierarchical g-prior model, Theorem 1 implies that there always
exists a choice of gn growing sufficiently fast to ensure posterior consistency (although
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the choice may depend on β0n). However, such options are not available in the empirical
Bayes approach, since g is selected via a specified function of the data.

Another salient consequence of Theorem 2 is that if pn = o(n), then the empirical
Bayes model exhibits posterior consistency for all values of γn and β0n. However, if
pn = O(n) exactly, then the situation is not as simple. For example, if γn = 0pn

for every n and limn→∞ ‖β0n‖22 = ∞, then ‖γkn − β0kn‖22 converges to ∞ for every

subsequence kn, which implies that posterior consistency occurs. Similarly, if γn = β̂n

for every n, then by Lemma 1, ‖γkn−β0kn‖∞ converges to zero for every subsequence kn,
which implies that posterior consistency occurs. On the other hand, suppose that only
a fixed number p� > 0 of components of γn−β0n are nonzero and these p� components
remain fixed as n grows. Then clearly both ||γn −β0n||∞ and ||γn −β0n||22 converge to
constants, so the condition of Theorem 2 fails, and the posterior is inconsistent.

This behavior is perhaps somewhat surprising. If the prior mean γn is imagined as
a guess for the true β0n, then one might speculate that posterior inconsistency would
only occur when the guess is quite bad, i.e., when ||γn − β0n||22 or ||γn − β0n||∞ grows
too quickly. However, in the empirical Bayesian setting, Theorem 2 shows that this is
not the case. Intuitively, the reason is that if we allow the data to determine the value
of g, then a prior mean γn that is “too close” to β0n (in the �2 sense) may cause the
data to choose g values that tend to a finite constant, rather than to infinity, which
leads to posterior inconsistency. An open question regarding this behavior is whether
this interesting behavior is in some way dependent on the Gaussian tails imposed by
the g-prior model. However, the derivation of a similar condition for a hierarchical g-
prior model considered later in Theorem 3 casts doubt on this possibility, since the
hierarchical model simply corresponds to some marginal prior with heavier tails.

4 Hyper-g-Prior Hierarchical Model

An alternative approach to the specification of g is a hierarchical model in which g is
considered a hyperparameter and is given a hyperprior πn(g). Under this model, the
joint posterior is given by

πn(βn, σ
2, g | β̂n, Sn)

∝ exp

[
−1

2

[
βn − β̃B

n (g)
]T ( g

g + 1
σ2
(
XT

n Xn

)−1
)−1 [

βn − β̃B
n (g)

]]

×
(
σ2
)−(n+pn+a)/2

exp

[
− 1

2σ2

(
Sn + b+

Tn

g + 1

)]
g−pn/2 πn(g),

where β̃B
n (g) := E(βn | g, σ2, β̂n, Sn) = g(g+1)−1β̂n +(g+1)−1γn. Integrating out βn

and subsequently σ2 yields the marginal posteriors

πn(σ
2, g | β̂n, Sn) ∝

(
σ2
)−(n+a)/2

exp

[
− 1

2σ2

(
Sn + b+

Tn

g + 1

)]
(g + 1)−pn/2 πn(g),

(1)
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πn(g | β̂n, Sn) ∝ (g + 1)−pn/2

(
Sn + b+

Tn

g + 1

)−(n+a−2)/2

πn(g). (2)

The following technical lemma, which is proven in the Appendix, establishes a relation-
ship between posterior consistency in the hierarchical g-prior model and the convergence
of a particular sequence of posterior probabilities. Note that the lemma makes no as-
sumptions on the particular form of the hyperprior πn(g).

Lemma 11. In a hierarchical g-prior model, suppose that n−3 T 2
n EM [g2(g + 1)−4 |

β̂n, Sn] → 0 a.s.(P0). Then posterior consistency occurs if and only if PM [(g+1)−1||γn−
β0n||∞ > ε | β̂n, Sn] → 0 a.s.(P0) for every ε > 0.

The form of the marginal posterior of g in (2) suggests that a convenient choice of
hyperprior is πn(g) ∝ (g + 1)−c/2 for some constant c, called the hyper-g-prior (Liang
et al., 2008). This prior is proper for c > 2, and there exists an argument (Liang et al.,
2008) for taking 2 < c ≤ 4, but we instead permit c to take any real value in the present
analysis. The hyper-g-prior yields the posterior

πn(g | β̂n, Sn) ∝ (g + 1)−(pn+c)/2

(
Sn + b+

Tn

g + 1

)−(n+a−2)/2

∝ (g + 1)(n−pn+a−c−2)/2
[
(g + 1)(Sn + b) + Tn

]−(n+a−2)/2
. (3)

It will also be useful to define the transformation

u :=
(g + 1)(Sn + b)

(g + 1)(Sn + b) + Tn
, Wn :=

Sn + b

Sn + b+ Tn
, (4)

so that g ≥ 0 if and only if u ≥ Wn. The next lemma asserts that Lemma 11 applies
with this choice of hyperprior. The proof can be found in the Appendix.

Lemma 12. With the hyper-g-prior, n−3 T 2
n EM [g2(g + 1)−4 | β̂n, Sn] → 0 a.s.(P0).

To examine the behavior of the posterior probabilities in Lemma 11 under the hyper-
g-prior, we begin by using the posterior in (3) to write

PM

[(
1

g + 1

)
||γn − β0n||∞ > ε

∣∣∣∣ β̂n, Sn

]
= PM

[
g <

1

ε
||γn − β0n||∞ − 1

∣∣∣∣ β̂n, Sn

]

=

∫ qn(ε)

0

(g + 1)(n−pn+a−c−2)/2
[
(g + 1)(Sn + b) + Tn

]−(n+a−2)/2
dg∫ ∞

0

(g + 1)(n−pn+a−c−2)/2
[
(g + 1)(Sn + b) + Tn

]−(n+a−2)/2
dg

,

where we define qn(ε) := max{0, ε−1||γn − β0n||∞ − 1}. Now define

L̃n(ε) :=
ε−1 ||γn − β0n||∞ (Sn + b)

ε−1 ||γn − β0n||∞ (Sn + b) + Tn
, Ln(ε) := max

{
Wn, L̃n(ε)

}
,
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and apply the transformation in (4) to obtain

PM

[(
1

g + 1

)
||γn − β0n||∞ > ε

∣∣∣∣ β̂n, Sn

]

=

∫ Ln(ε)

Wn

u(n−pn+a−c−2)/2(1− u)(pn+c−4)/2 du∫ 1

Wn

u(n−pn+a−c−2)/2(1− u)(pn+c−4)/2 du

=
PM [Wn < Un < Ln(ε) | β̂n, Sn]

PM (Un > Wn | β̂n, Sn)
, (5)

where Un ∼ Beta((n− pn + a− c)/2, (pn + c− 2)/2) and is independent of β̂n and Sn

under PM . Note that by the properties of the beta distribution, Un → 1 − α a.s.(P0),

and PM (Un > Wn | β̂n, Sn) > 0 for all n a.s.(P0) since Wn < 1 for all n a.s.(P0). We
now introduce several technical results regarding these quantities that will be useful in
proving the main theorem. The proofs are deferred to the Appendix.

Lemma 13. If lim infn→∞ ||γn − β0n||22 ≥ δ for some δ > 0, then lim supn→∞ Wn ≤
(1− α)λmaxσ

2
0/(δ + λmaxσ

2
0) < 1− α a.s.(P0).

Lemma 14. If ||γn − β0n||22 → ∞, then (i) Wn → 0 a.s.(P0), and also (ii) Ln(ε) → 0
a.s.(P0) for every ε > 0.

Lemma 15. If lim infn→∞ ||γn − β0n||∞ > 0 and ||γn − β0n||22 → A, where 0 < A <
∞, then (i) for every ε > 0, there exists L�(ε) < 1 such that lim supn→∞ Ln(ε) ≤
L�(ε) a.s.(P0), and (ii) for every ζ < 1, there exists εζ > 0 such that

lim inf
n→∞

Ln (εζ) > ζ a.s.(P0).

To prove our main result, we will also need the following lemma, which provides a
simple result about beta random variables, the proof of which is in the Appendix.

Lemma 16. Let Zn ∼ Beta(an, bn) for n ≥ 1, where an/n → 1 − α and bn/n → α,
with 0 ≤ α < 1. Then P (1− α− ε ≤ Zn ≤ 1− α+ ε) → 1 for every ε > 0.

We may now state and prove the main result, a necessary and sufficient condition
for posterior consistency in the hyper-g-prior hierarchical model. Interestingly, this con-
dition is identical to the one given in Theorem 2 for the empirical Bayesian model.

Theorem 3. In the g-prior model with the hyper-g-prior, posterior consistency occurs
if and only if either α = 0 or there does not exist a subsequence kn of n and a constant
A > 0 such that ||γkn − β0kn ||22 → A and ||γkn − β0kn ||∞ � 0.

The proof of this theorem is provided in the Appendix.
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4.1 Interpretations and Implications

It should not be entirely surprising that the empirical Bayesian and hyper-g-prior hierar-
chical models share the same necessary and sufficient condition for posterior consistency.
Indeed, the choice c = 0 yields the Uniform(0,∞) hyperprior on g, and in this case the
marginal posterior and likelihood of g coincide. More generally, we should expect an
adequately well-behaved hierarchical model to exhibit broadly similar behavior to the
empirical Bayesian model, since both models essentially permit the data to determine
the value of g.

5 Zellner-Siow Hierarchical Model

Another popular choice for the hyperprior πn(g) is g ∼ InverseGamma(1/2, n/2), called
the Zellner-Siow hyperprior (Zellner and Siow, 1980). The motivation behind this choice
is clearest when XT

n Xn = nIpn , in which case it leads to marginal Cauchy priors
for each component of βn. In this section, we will provide a sufficient condition for
posterior consistency with the Zellner-Siow hyperprior. It still remains an open problem
to determine if the condition is also necessary.

For general XT
n Xn, the Zellner-Siow hyperprior yields the posterior

πn(g | β̂n, Sn) ∝ (g + 1)−(pn)/2

(
Sn + b+

Tn

g + 1

)−(n+a−2)/2

g−3/2 exp

(
− n

2g

)
∝ (g + 1)(n−pn+a−2)/2

[
(g + 1)(Sn + b) + Tn

]−(n+a−2)/2
g−3/2

× exp

(
− n

2g

)
. (6)

We begin with a lemma showing that Lemma 11 applies in this model. The proof is
deferred to the Appendix.

Lemma 17. With the Zellner-Siow hyperprior, n−3 T 2
n EM [g2(g + 1)−4 | β̂n, Sn] → 0

a.s.(P0).

Now consider the form of the posterior probabilities in Lemma 11 under this hyper-
prior. By once again making the transformation in (4), we may write

PM

[(
1

g + 1

)
||γn − β0n||∞ > ε

∣∣∣∣ β̂n, Sn

]

=

∫ Ln(ε)

Wn

u(n−pn+a−2)/2(1− u)(pn−4)/2

{[u−Wn] / [Wn(1− u)]}3/2
exp

[
−nWn(1− u)

2(u−Wn)

]
du

∫ 1

Wn

u(n−pn+a−2)/2(1− u)(pn−4)/2

{[u−Wn] / [Wn(1− u)]}3/2
exp

[
−nWn(1− u)

2(u−Wn)

]
du
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=

∫ Ln(ε)

Wn

fn(u)

[
u−Wn

1− u

]−3/2

exp

[
−nWn(1− u)

2(u−Wn)

]
du∫ 1

Wn

fn(u)

[
u−Wn

1− u

]−3/2

exp

[
−nWn(1− u)

2(u−Wn)

]
du

, (7)

where fn is the density of a Beta[(n − pn + a)/2, (pn − 2)/2] random variable with
respect to Lebesgue measure. The following lemma (proven in the Appendix) addresses
the lower tail probabilities of such a sequence.

Lemma 18. Let Zn ∼ Beta(an, bn) for n ≥ 1, where an/n → 1−α and bn/n → α, with
0 ≤ α < 1, and let ξ ≥ 0. Then (i) P (Zn ≤ ξ) ≤ 4nξn(1−α) for all sufficiently large n if
α > 0, and (ii) P (Zn ≤ ξ) ≤ ξn/2 for all sufficiently large n if α = 0.

Note that the bound provided by Lemma 18 in the case where 0 < α < 1 is only
useful if ξ1−α < 1/4. Now let Qn(ε) and Rn denote the numerator and denominator, re-
spectively, of (7). The following lemmas establish some results regarding these quantities
that will effectively provide the proof of the main theorem. Their proofs are provided
in the Appendix.

Lemma 19. If lim infn→∞ ||γn −β0n||22 > 0, then there exists a finite constant K such
that Rn ≥ exp(−nK) for all sufficiently large n a.s.(P0).

Lemma 20. If ||γn−β0n||22 → ∞, then there exists a sequence of constants κn(ε) → ∞
such that Qn(ε) ≤ exp [−nκn(ε)] for all sufficiently large n a.s.(P0).

Lemma 21. If ||γn − β0n||22 → A > 0, lim infn→∞ ||γn − β0n||∞ > 0, and α = 0, then
Qn(ε)/Rn → 0 a.s.(P0) for every ε > 0.

We may now state the main theorem, which establishes the same sufficient condi-
tion for posterior consistency under the Zellner-Siow hyperprior as for the conjugate
hyperprior and empirical Bayes models of the previous sections. However, unlike The-
orems 2 and 3, it does not establish the necessity of the condition, which remains an
open question.

Theorem 4. In the g-prior model with the Zellner-Siow hyperprior, posterior consis-
tency occurs if either α = 0 or there does not exist a subsequence kn of n and a constant
A > 0 such that ||γkn − β0kn ||22 → A and ||γkn − β0kn ||∞ � 0.

The proof of this theorem is provided in the Appendix.

5.1 Interpretations and Implications

Since the same condition is sufficient for posterior consistency under both the hyper-g-
prior and Zellner-Siow hierarchical models, one might wonder if this condition is suffi-
cient for posterior consistency under every hierarchical model. However, the falsehood
of such a claim is made clear by the observation that the non-hierarchical model, for
which the sufficient condition differs, is simply a special case of the hierarchical model
in which the hyperprior πn is specified to be degenerate at gn. In actuality, the posterior
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consistency or inconsistency of hierarchical models with other hyperpriors on g remains
a topic for future consideration.

6 Summary

We have derived conditions for posterior consistency under g-priors by defining posterior
consistency under the �∞ vector norm, which allows useful results to be obtained even
when the number of parameters p ≡ pn grows in proportion to the sample size n. Using
this definition, we have obtained conditions for posterior consistency under a variety of
g-prior models. First, we have obtained a necessary and sufficient condition for posterior
consistency in the non-hierarchical model in which g ≡ gn is specified as a series of con-
stants. Additionally, we have derived a necessary and sufficient condition for posterior
consistency under both the empirical Bayesian g-prior model (George and Foster, 2000)
and the hyper-g-prior model (Liang et al., 2008). Interestingly, we have found that the
condition is the same for both models, and we have illustrated that the necessity of
the condition proves posterior inconsistency in a somewhat surprising scenario. Finally,
we have shown that this same condition is sufficient for posterior consistency in the
Zellner-Siow g-prior model (Zellner and Siow, 1980), but the condition’s necessity or
lack thereof remains an open question for future consideration.

Appendix: Proofs

Proof (Proof of Lemma 3). Under P0, the expectation and fourth central moment of
Sn are E0(Sn) = (n−pn)σ

2
0 and (μ4)0(Sn) = 12(n−pn)(n−pn+4)σ8

0 . Let ε > 0. Then

∞∑
n=1

P0

(∣∣∣∣ Sn

n− pn
− σ2

0

∣∣∣∣ > ε

)
≤ 12σ8

0

ε4

∞∑
n=1

n− pn + 4

(n− pn)3
< ∞,

so (n− pn)
−1Sn → σ2

0 a.s.(P0) by the Borel-Cantelli lemma.

Proof (Proof of Lemma 4). Note that under P0, Tn/σ
2
0 has a noncentral chi-square

distribution with pn degrees of freedom and noncentrality parameter 1
2nλ̆

−1
0n ||γn−β0n||22.

Then the fourth central moment of Tn under P0 is

(μ4)0 (Tn)

:= E0

[
(Tn − θ0n)

4
]
= E0

{[
Tn −

(
pnσ

2
0 + nλ̆−1

0n ||γn − β0n||22
)]4}

= 12σ4
0

(
pnσ

2
0 + 2nλ̆−1

0n ||γn − β0n||22
)2

+ 48σ6
0

(
pnσ

2
0 + 4nλ̆−1

0n ||γn − β0n||22
)

≤ 12σ4
0

(
2pnσ

2
0 + 2nλ̆−1

0n ||γn − β0n||22
)2

+ 48σ6
0

(
4pnσ

2
0 + 4nλ̆−1

0n ||γn − β0n||22
)

= 48σ4
0θ

2
0n + 192σ6

0θ0n. (8)

Define δ := lim infn→∞ ||γn − β0n||22. Observe that if α > 0, then θ0n ≥ pnσ
2
0 >

αnσ2
0/2 for all sufficiently large n, and so θ−1

0n = O(n−1). If δ > 0, then θ0n ≥
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nλ̆−1
0n ||γn −β0n||22 > nλ−1

maxδ/2 for all sufficiently large n, and so θ−1
0n = O(n−1). Either

way, θ−1
0n = O(n−1), so the fourth central moment of Tn/θ0n under P0 is

(μ4)0

(
Tn

θ0n

)
≤ 48σ4

0

θ20n
+

192σ6
0

θ30n
= O(n−2).

Then for any ε > 0,

∞∑
n=1

P0

(∣∣∣∣ Tn

θ0n
− 1

∣∣∣∣ > ε

)
≤

∞∑
n=1

1

ε4
(μ4)0

(
Tn

θ0n

)
< ∞,

which implies that Tn/θ0n → 1 a.s.(P0) by the Borel-Cantelli lemma.

Proof (Proof of Lemma 5). It follows from (8) that the fourth central moment of T̃n

under P0 is

(μ4)0

(
T̃n

)
:= E0

[(
T̃n − θ̃0n

)4]

= E0

⎧⎨⎩
[
Sn − (n− pn)σ

2
0 +

Tn

gn + 1
− pnσ

2
0 + nλ̆−1

0n ||γn − β0n||22
gn + 1

]4⎫⎬⎭
≤ 8E0

{
[Sn − E0 (Sn)]

4
}
+ 8E0

{[
Tn

gn + 1
− E0

(
Tn

gn + 1

)]4}

= 96(n− pn)(n− pn + 4)σ8
0 +

12σ4
0

(gn + 1)4

(
pnσ

2
0 + 2nλ̆−1

0n ||γn − β0n||22
)2

+
48σ6

0

(gn + 1)4

(
pnσ

2
0 + 4nλ̆−1

0n ||γn − β0n||22
)

≤ 96(n− pn + 4)2σ8
0 + 48σ4

0 θ̃
2
0n + 192σ6

0 θ̃0n.

Since θ̃0n ≥ (n− pn)σ
2
0 , the fourth central moment of T̃n/θ̃0n under P0 is

(μ4)0

(
T̃n

θ̃0n

)

≤ 96(n− pn + 4)2σ8
0

θ̃40n
+

48σ4
0

θ̃20n
+

192σ6
0

θ̃30n
≤ 96(n− pn + 4)2

(n− pn)4
+

48

(n− pn)2
+

192

(n− pn)3
,

which is O(n−2). Then for any ε > 0,

∞∑
n=1

P0

(∣∣∣∣∣ T̃n

θ̃0n
− 1

∣∣∣∣∣ > ε

)
≤

∞∑
n=1

1

ε4
(μ4)0

(
T̃n

θ̃0n

)
< ∞,

which implies that T̃n/θ̃0n → 1 a.s.(P0) by the Borel-Cantelli lemma.

Proof (Proof of Lemma 6). Assume ||μn − ξn||∞ � 0. Then there exists a subsequence
kn of n and a δ > 0 such that ||μkn − ξkn ||∞ > δ for all n. There also exists an in,
1 ≤ in ≤ pn, such that |μkn,in − θkn,in | = ||μkn − ξkn ||∞ > δ for all n. Then either
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μkn,in < θkn,in −δ (Case 1) or μkn,in > θkn,in +δ (Case 2). Now let 0 < ε < δ, and note
that P (||Zkn − ξkn ||∞ ≤ ε) ≤ P (ξkn,in − δ ≤ Zkn,in ≤ ξkn,in + δ) . Recall that Σkn is
assumed positive definite. Then in Case 1,

P (ξkn,in − δ ≤ Zkn,in ≤ ξkn,in + δ) ≤ P (μkn,in ≤ Zkn,in) = 1/2,

while in Case 2,

P (ξkn,in − δ ≤ Zkn,in ≤ ξkn,in + δ) ≤ P (Zkn,in ≤ μkn,in) = 1/2.

Either way, P (||Zkn − ξkn ||∞ > ε) ≥ 1/2 for all n.

Proof (Proof of Lemma 7). Note that for any t > 0, Φ(z + t)− Φ(z − t) is maximized
at z = 0. Hence,

P (|Z| ≤ ξ) = P (−ξ ≤ Z ≤ ξ) = P

(
−ξ − μ

τ
≤ Z − μ

τ
≤ ξ − μ

τ

)
= Φ

(
ξ

τ
− μ

τ

)
− Φ

(
− ξ

τ
− μ

τ

)
≤ Φ

(
ξ

τ

)
− Φ

(
− ξ

τ

)
,

from which it immediately follows that P (|Z| ≤ ξ) ≤ 1− 2Φ(−ξ/τ).

Proof (Proof of Lemma 8). For each i = 1, . . . , pn, partition Σn as

Σn =

⎡⎣Σn,i,11 Σn,i,1i Σn,i,12

ΣT
n,i,1i Σn,ii Σn,i,2i

ΣT
n,i,12 ΣT

n,i,2i Σn,i,22

⎤⎦ ,

where the submatrices Σn,i,11 and Σn,i,22 along the diagonal have dimension (i − 1) ×
(i− 1) and (pn− i)× (pn− i), respectively. Then define Σ̃n,i := Var(Zi | Zi+1, . . . , Zpn),

so that Σ̃n,i = Σn,ii −Σn,i,2iΣ
−1
n,i,22Σ

T
n,i,2i. Note that Σ̃−1

n,i is the first diagonal entry of[
Σn,ii Σn,i,2i

ΣT
n,i,2i Σn,i,22

]−1

,

which has eigenvalues bounded above by ω−1
min since the eigenvalues of a principal subma-

trix are bounded below by the smallest eigenvalue of the full matrix. Hence Σ̃−1
n,i ≤ ω−1

min,
and the result immediately follows.

Proof (Proof of Lemma 9). Recall that T̃n/θ̃0n → 1 a.s.(P0) by Lemma 5. Then for all
sufficiently large n,

PM

(
θ̃0n
2n

≤ σ2 ≤ 2θ̃0n
n

∣∣∣∣∣ β̂n, Sn

)

≥ PM

(
3T̃n

4(n+ a− 4)
≤ σ2 ≤ 5T̃n

4(n+ a− 4)

∣∣∣∣∣ β̂n, Sn

)
a.s.(P0)
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= PM

(∣∣∣σ2 − EM

(
σ2 | β̂n, Sn

)∣∣∣ ≤ T̃n

4(n+ a− 4)

∣∣∣∣∣ β̂n, Sn

)

≥ 1−
(
4(n+ a− 4)

T̃n

)2
(

2T̃ 2
n

(n+ a− 4)2(n+ a− 6)

)

= 1− 32

n+ a− 6
→ 1,

where the last inequality is a consequence of Chebyshev’s inequality, for which we note
that VarM (σ2 | β̂n, Sn) = 2(n+ a− 4)−2(n+ a− 6)−1T̃ 2

n .

Proof (Proof of Theorem 1). By Lemma 2, we may replace β0n with β̂n in the definition
of posterior consistency. We will now consider four cases.

Case 1: Suppose (gn + 1)−1||γn − β0n||∞ � 0. Then since ||γn − β̂n||∞ ≥ ||γn −
β0n||∞ − ||β̂n − β0n||∞ and ||β̂n − β0n||∞ → 0 a.s.(P0) by Lemma 1, it follows that

(gn + 1)−1||γn − β̂n||∞ � 0 a.s.(P0). Now observe that under PM ,

βn − β̂n | σ2, β̂n, Sn ∼ Npn

(
1

gn + 1

(
γn − β̂n

)
,

gn
gn + 1

σ2
(
XT

n Xn

)−1
)
.

Then by Lemma 6, there exists an ε > 0 and a subsequence kn of n such that, a.s.(P0),

PM (||βkn − β̂kn ||∞ > ε | σ2, β̂kn , Skn) > 1/2 for every n and every σ2 > 0. Then

PM

(
||βkn − β̂kn ||∞ > ε | β̂kn , Skn

)
= EM

[
PM

(
||βkn − β̂kn ||∞ > ε | σ2, β̂kn , Skn

) ∣∣∣ β̂kn , Skn

]
≥ 1/2 for every n a.s.(P0).

Therefore PM (||βn − β̂n||∞ > ε | β̂n, Sn) � 0, so posterior consistency does not occur.

For the remaining cases, suppose (gn + 1)−1||γn − β0n||∞ → 0. Then since ||γn −
β̂n||∞ ≤ ||γn −β0n||∞ + ||β̂n −β0n||∞ and ||β̂n −β0n||∞ → 0 a.s.(P0) by Lemma 1, it

follows that (gn + 1)−1||γn − β̂n||∞ → 0 a.s.(P0). Then

PM

(
||βn − β̂B

n ||∞ > 2ε | β̂n, Sn

)
− PM

(
||β̂B

n − β̂n||∞ > ε | β̂n, Sn

)
≤ PM

(
||βn − β̂n||∞ > ε | β̂n, Sn

)
≤ PM

(
||βn − β̂B

n ||∞ > ε/2 | β̂n, Sn

)
+ PM

(
||β̂B

n − β̂n||∞ > ε/2 | β̂n, Sn

)
by the triangle inequality. Note that

PM

(
||β̂B

n − β̂n||∞ > ε | β̂n, Sn

)
= I(||β̂B

n − β̂n||∞ > ε),

where I(·) denotes the indicator function. But β̂B
n − β̂n = (gn + 1)−1(γn − β̂n), so this

indicator is zero for all sufficiently large n a.s.(P0). Therefore, posterior consistency

occurs in Cases 2–3 below if and only if PM (||βn − β̂B
n ||∞ > ε | β̂n, Sn) → 0 a.s.(P0)

for every ε > 0. We now consider the individual cases.
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Case 2: Suppose that (gn + 1)−1||γn − β0n||∞ → 0, and also suppose that gn(gn +
1)−2(log pn)n

−1||γn − β0n||22 → 0. Observe that

PM

(
||βn − β̂B

n ||∞ > ε | β̂n, Sn

)
= EM

[
PM

(∣∣∣∣∣∣βn − β̂B
n

∣∣∣∣∣∣
∞

> ε | σ2, β̂n, Sn

) ∣∣∣ β̂n, Sn

]
≤ EM

[
PM

(∣∣∣∣∣∣βn − β̂B
n

∣∣∣∣∣∣
∞

> ε | σ2, β̂n, Sn

)
I

(
σ2 ≤ 2θ̃0n

n

) ∣∣∣∣∣ β̂n, Sn

]

+ PM

(
σ2 >

2θ̃0n
n

∣∣∣∣∣ β̂n, Sn

)
.

We immediately have that PM (σ2 > 2θ̃0n/n | β̂n, Sn) → 0 a.s.(P0) by Lemma 9,
so it suffices to work with the first term to establish posterior consistency. Let vn,ij
denote the ijth element of n(XT

n Xn)
−1, and note specifically that the diagonal el-

ements may be bounded by λmin ≤ vn,ii ≤ λmax for all n and i. Also recall that

βn − β̂B
n | σ2, β̂n, Sn ∼ Npn(0pn , gn(gn + 1)−1σ2(XT

n Xn)
−1) under PM . Now let ε > 0,

and bound the aforementioned first term by

EM

[
PM

(∣∣∣∣∣∣βn − β̂B
n

∣∣∣∣∣∣
∞

> ε | σ2, β̂n, Sn

)
I

(
σ2 ≤ 2θ̃0n

n

) ∣∣∣∣∣ β̂n, Sn

]

≤ EM

[
pn∑
i=1

PM

(∣∣∣βn,i − β̂B
n,i

∣∣∣ > ε | σ2, β̂n, Sn

)
I

(
σ2 ≤ 2θ̃0n

n

) ∣∣∣∣∣ β̂n, Sn

]

≤ EM

[
pn∑
i=1

2Φ

(
−
√

ε2(gn + 1)n

gnvn,iiσ2

)
I

(
σ2 ≤ 2θ̃0n

n

) ∣∣∣∣∣ β̂n, Sn

]

≤ 2pnEM

[
Φ

(
−
√

ε2(gn + 1)n2

2gnλmaxθ̃0n

) ∣∣∣∣∣ β̂n, Sn

]
= 2pnΦ

(
−
√

ε2(gn + 1)n2

2gnλmaxθ̃0n

)

where Φ(·) denotes the standard normal cdf. Then by the Mills ratio,

2pnΦ

(
−
√

ε2(gn + 1)n2

2gnλmaxθ̃0n

)
≤ 2pn

√
gnλmaxθ̃0n

πε2(gn + 1)n2
exp

(
−ε2(gn + 1)n2

4gnλmaxθ̃0n

)
.

This expression clearly tends to zero if θ̃0n/n is bounded above, so we may instead assume

that θ̃0n/n → ∞, which by inspection occurs if and only if (gn+1)−1||γn−β0n||22 → ∞.

Then θ̃0n ≤ 2nλ̆−1
0n (gn + 1)−1||γn − β0n||22 for all sufficiently large n, and hence

2pnΦ

(
−
√

ε2(gn + 1)n2

2gnλmaxθ̃0n

)

≤ 2pn

√
2λmax gn ||γn − β0n||22
πλ̆0nε2(gn + 1)2 n

exp

(
− λ̆0nε

2(gn + 1)2 n

8λmax gn ||γn − β0n||22

)
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≤

√
8λmax gn ||γn − β0n||22 log pn

πλ̆0nε2(gn + 1)2 n

× exp

[(
1− λ̆0nε

2(gn + 1)2 n

8λmax gn ||γn − β0n||22 log pn

)
log pn

]
→ 0 for every ε > 0

by the assumption that gn(gn + 1)−2(log pn)n
−1||γn − β0n||22 → 0. Therefore, posterior

consistency occurs.

Case 3: Suppose (gn + 1)−1||γn − β0n||∞ → 0, but now suppose that gn(gn +
1)−2(log pn)n

−1||γn − β0n||22 � 0. Then there exist a subsequence kn of n and a con-
stant δ > 0 such that gkn(gkn + 1)−2(log pkn)k

−1
n ||γkn − β0kn ||22 > δ for all n. Note

that posterior inconsistency of the subsequence PM (βkn | β̂kn , Skn) implies posterior

inconsistency of the overall sequence PM (βn | β̂n, Sn), so we may assume without loss
of generality that kn = n for notational convenience. Also, define Σn to be the pn × pn
matrix with elements Σn,ij := vn,ij/

√
vn,iivn,jj , where vn,ij denotes the ijth element of

n(XT
n Xn)

−1 as before. Then

PM

(
||βn − β̂B

n ||∞ > ε | β̂n, Sn

)
≥ EM

[
PM

(∣∣∣∣∣∣βn − β̂B
n

∣∣∣∣∣∣
∞

> ε | σ2, β̂n, Sn

)
I

(
σ2 ≥ θ̃0n

2n

) ∣∣∣∣∣ β̂n, Sn

]

≥ EM

[
PM

(
max

1≤i≤pn

∣∣∣βn,i − β̂B
n,i

∣∣∣ >√ε2
vn,i
λmin

∣∣∣∣ σ2, β̂n, Sn

)
I

(
σ2 ≥ θ̃0n

2n

) ∣∣∣∣∣ β̂n, Sn

]
.

Then we may write

PM

(
||βn − β̂B

n ||∞ > ε | β̂n, Sn

)
≥ EM

[
PM

(
max

1≤i≤pn

|Zi| >

√
(gn + 1)ε2n

gnλminσ2

∣∣∣∣∣ σ2

)
I

(
σ2 ≥ θ̃0n

2n

) ∣∣∣∣∣ β̂n, Sn

]
,

where Zn ∼ Npn(0pn ,Σn) and is independent of σ2 under PM . Now note that the
innermost conditional probability is a nondecreasing function of σ2, which implies that

PM

(
||βn − β̂B

n ||∞ > ε | β̂n, Sn

)
≥ EM

[
PM

(
max

1≤i≤pn

|Zi| >
√

2(gn + 1)ε2n2

gnλminθ̃0n

∣∣∣∣∣ σ2

)
I

(
σ2 ≥ θ̃0n

2n

) ∣∣∣∣∣ β̂n, Sn

]

= PM

(
max

1≤i≤pn

|Zi| >
√

2(gn + 1)ε2n2

gnλminθ̃0n

)
PM

(
σ2 ≥ θ̃0n

2n

∣∣∣∣∣ β̂n, Sn

)
,

since the entries of Σn depend only on XT
n Xn. Then Lemma 9 immediately implies

that PM (σ2 ≥ θ̃0n/2n | β̂n, Sn) → 1 a.s.(P0), so it suffices to show that the first



D. K. Sparks, K. Khare, and M. Ghosh 647

term is bounded away from zero for all sufficiently large n. Now define η0n := [2(gn +

1)ε2n2/gnλminθ̃0n]
1/2 and Σ̃n,i := Var(Zi | Zi+1, . . . , Zpn). Then

PM

(
max

1≤i≤pn

|Zi| ≤ η0n

)
= EM

[
PM ( |Z1| ≤ η0n | Z2, Z3, . . . , Zpn)

pn∏
i=2

I{|Zi|≤η0n}

]

≤
[
1− 2Φ

(
−η0n/

√
Σ̃n,1

)]
EM

[
pn∏
i=2

I{|Zi|≤η0n}

]

by Lemma 7 and the fact that Σ̃n,1 does not depend on Z2, Z3, . . . , Zpn . By repeated
conditioning on Zi+1, Zi+2, . . . , Zpn for i = 2, 3, . . . , pn − 1 and application of Lemma 7
as above, we find that

PM

(
max

1≤i≤pn

|Zi| ≤ η0n

)
≤

pn∏
i=1

[
1− 2Φ

(
−η0n/

√
Σ̃n,i

)]
.

Note that

θ̃0n ≥ nλ̆−1
0n

gn + 1
||γn − β0n||22 ≥ δ(gn + 1)n2

λmax gn log pn
,

which implies that

η0n ≤

√
2λmaxε2 log pn

δλmin
.

The eigenvalues of Σn are bounded below by λmin/λmax, so infn,i Σ̃n,i ≥ λmin/λmax by
Lemma 8. Then it follows that

PM

(
max

1≤i≤pn

|Zi| ≤ η0n

)
≤
[
1− 2Φ

(
−
√

2λ2
maxε

2 log pn
δλ2

min

)]pn

≤ exp

[
−2pnΦ

(
−
√

2λ2
maxε

2 log pn
δλ2

min

)]
.

Notice that if any subsequence of pn is bounded above, then the quantity

Φ[−(2λ2
maxε

2 log pn/δλ
2
min)

1/2]

is bounded away from zero along that subsequence, and thus posterior inconsistency
follows immediately. So we may instead assume that pn → ∞. Then

2λ2
maxε

2 log pn/δλ
2
min → ∞,

in which case the inequality

1− Φ(t) ≥ (t−1 − t−3)(2π)−1/2 exp(−t2/2) ≥ (2t)−1(2π)−1/2 exp(−t2/2)
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for large t may be applied for all sufficiently large n, yielding

PM

(
max

1≤i≤pn

|Zi| > η0n

)
≥ 1− exp

[
−pn

√
δλ2

min

4πλ2
maxε

2 log pn
exp

(
−λ2

maxε
2 log pn

δλ2
min

)]

= 1− exp

{
−

√
δλ2

min

4πλ2
maxε

2 log pn
exp

[(
1− λ2

maxε
2

δλ2
min

)
log pn

]}

→ 1 for ε <

√
δλ2

min

λ2
max

.

Therefore posterior consistency does not occur.

Proof (Proof of Lemma 10). Define δ := lim infn→∞ ||γn − β0n||22, and assume δ > 0.
Then

Tn

pn
=

Tn

θ0n

(
σ2
0 +

n

pnλ̆0n

||γn − β0n||22
)

>
Tn

θ0n

(
σ2
0 +

δ

2λmax

)
> σ2

0 +
δ

4λmax

for all sufficiently large n a.s.(P0), since Tn/θ0n → 1 a.s.(P0) by Lemma 4. Then

lim inf
n→∞

ĝEB
n > lim inf

n→∞

[(
n− pn + a− 2

Sn + b

)(
σ2
0 +

δ

4λmax

)
− 1

]
=

δ

4λmaxσ2
0

> 0 a.s.(P0)

since (n− pn + a− 2)/(Sn + b) → 1/σ2
0 a.s.(P0) by Lemma 3.

Proof (Proof of Theorem 2). By Theorem 1, we immediately have that posterior con-
sistency occurs if and only if both

||γn − β0n||∞
ĝEB
n + 1

→ 0 and
ĝEB
n log pn

(ĝEB
n + 1)2 n

||γn − β0n||22 → 0 a.s.(P0). (9)

We now consider three cases.

Case 1: Suppose there do not exist a subsequence kn of n and a constant A > 0 such
that ||γkn − β0kn ||22 → A and ||γkn − β0kn ||∞ � 0. Now let kn be a subsequence of n,
and consider two sub-cases.

Case 1.1: Suppose ||γkn − β0n||∞ → 0. Then clearly the first condition in (9) is
satisfied trivially. Note that for any further subsequence mn of kn for which ||γmn −
β0mn ||22 → 0, the second condition in (9) is satisfied trivially as well, so we may instead
assume lim infn→∞ ||γkn − β0kn ||22 > 0. Then for all sufficiently large n a.s.(P0),

ĝEB
kn

log pkn

(ĝEB
kn

+ 1)2 kn
||γkn − β0kn ||22

≤ log kn
kn

(
Skn + b

kn − pkn + a− 2

)(
θ0kn

Tkn

)(
pkn ||γkn − β0kn ||22

θ0kn

)
≤ log kn

kn

(
Skn + b

kn − pkn + a− 2

)(
θ0kn

Tkn

)
pknλmax

kn
→ 0 a.s.(P0) (10)

by Lemmas 3, 4, and 10. Thus, both conditions in (9) hold along the subsequence kn.
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Case 1.2: Note that Case 1.1 can be applied to any further subsequence mn of kn for
which ||γmn − β0mn ||∞ → 0, so we may suppose for Case 1.2 that lim infn→∞ ||γkn −
β0kn ||∞ > 0. Note also that in this case, there cannot exist any further subsequence mn

of kn for which ||γmn − β0mn ||22 converges to a nonzero constant, since this would con-
tradict the original supposition of Case 1. Then since lim infn→∞ ||γkn − β0kn ||22 ≥
lim infn→∞ ||γkn − β0kn ||2∞ > 0, it follows that ||γkn − β0kn ||22 → ∞. Then for all
sufficiently large n a.s.(P0),

1

ĝEB
kn

+ 1
||γkn − β0kn ||∞

=

(
Skn + b

kn − pkn + a− 2

)(
θ0kn

Tkn

)(
pkn ||γkn − β0kn ||∞

θ0kn

)
(11)

≤
(

Skn + b

kn − pkn + a− 2

)(
θ0kn

Tkn

)(
pknλmax

kn ||γkn − β0kn ||2

)
→ 0 a.s.(P0)

by Lemmas 3, 4, and 10, while (10) also holds by the same lemmas. Thus, both conditions
hold along the subsequence kn. Since Cases 1.1 and 1.2 together establish that both
conditions hold along any subsequence kn, they hold for the whole sequence, and therefore
posterior consistency occurs.

Case 2: Now suppose there exist a subsequence kn of n and a constant A > 0 such that
||γkn−β0kn ||22 → A > 0 and ||γkn−β0kn ||∞ � 0, and suppose α = 0. Note that Case 1.1
can be applied to any further subsequence mn of kn for which ||γmn −β0mn ||∞ → 0, so
we may suppose for Case 2 that lim infn→∞ ||γkn − β0kn ||∞ > 0. Then (10) and (11)
still hold by Lemmas 3, 4, and 10 since pkn/kn → 0 and lim infn→∞ ||γkn − β0kn ||2 ≥
lim infn→∞ ||γkn − β0kn ||∞ > 0. Hence, the two conditions hold for every subsequence,
and consequently for the overall sequence. Therefore posterior consistency occurs.

Case 3: Now suppose there exist a subsequence kn of n and a constant A > 0 such
that ||γkn −β0kn ||22 → A > 0 and ||γkn −β0kn ||∞ � 0, but suppose α > 0. As in Case 2,
we may suppose for Case 3 that lim infn→∞ ||γkn−β0kn ||∞ > 0. Then for all sufficiently
large n a.s.(P0),

||γkn − β0kn ||∞
ĝEB
kn

+ 1
=

(
Skn + b

kn − pkn + a− 2

)(
θ0kn

Tkn

)(
pkn ||γkn − β0kn ||∞

θ0kn

)

≥
(

Skn + b

kn − pkn + a− 2

)(
θ0kn

Tkn

)(
pknλmin

kn ||γkn − β0kn ||
2
2

)
× lim inf

n→∞
||γkn − β0kn ||∞

→ σ2
0αλmin

A
lim inf
n→∞

||γkn − β0kn ||∞ > 0 a.s.(P0)

by Lemmas 3, 4, and 10. The first condition fails for the subsequence kn and hence for
the overall sequence. Therefore posterior consistency does not occur.

Proof (Proof of Lemma 11). Assume that n−3 T 2
n EM [g2(g+1)−4 | β̂n, Sn] → 0 a.s.(P0).

By Lemma 2, to determine whether posterior consistency occurs, it suffices to consider
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whether PM (||βn − β̂n||∞ > ε | β̂n, Sn) → 0 a.s.(P0) for every ε > 0. By iterated
expectation and the triangle inequality,

EM

[
PM

(∣∣∣∣∣∣β̃B
n (g)− β̂n

∣∣∣∣∣∣
∞

> 2ε
∣∣∣ g, σ2, β̂n, Sn

) ∣∣∣ β̂n, Sn

]
− EM

[
PM

(∣∣∣∣∣∣βn − β̃B
n (g)

∣∣∣∣∣∣
∞

> ε
∣∣∣ g, σ2, β̂n, Sn

) ∣∣∣ β̂n, Sn

]
≤ EM

[
PM

(∣∣∣∣∣∣βn − β̂n

∣∣∣∣∣∣
∞

> ε
∣∣∣ g, σ2, β̂n, Sn

) ∣∣∣ β̂n, Sn

]
(12)

≤ EM

[
PM

(∣∣∣∣∣∣β̃B
n (g)− β̂n

∣∣∣∣∣∣
∞

> ε/2
∣∣∣ g, σ2, β̂n, Sn

) ∣∣∣ β̂n, Sn

]
+ EM

[
PM

(∣∣∣∣∣∣βn − β̃B
n (g)

∣∣∣∣∣∣
∞

> ε/2
∣∣∣ g, σ2, β̂n, Sn

) ∣∣∣ β̂n, Sn

]
.

Consider PM (||βn − β̃B
n (g)||∞ > ε | g, σ2, β̂n, Sn) for some arbitrary ε > 0 and g ≥ 0.

Under PM ,

βn − β̃B
n (g)

∣∣∣ g, σ2, β̂n, Sn ∼ Npn

(
0,

g

g + 1
σ2
(
XT

nXn

)−1
)
.

Let vn,11, . . . , vn,pnpn denote the diagonal elements of n(XT
n Xn)

−1, and write

PM

(∣∣∣∣∣∣βn − β̃B
n (g)

∣∣∣∣∣∣
∞

> ε
∣∣∣ g, σ2, β̂n, Sn

)
≤

pn∑
i=1

PM

(∣∣∣βn,i − β̃B
n,i(g)

∣∣∣ > ε
∣∣∣ g, σ2, β̂n, Sn

)
≤

pn∑
i=1

PM

([
βn,i − β̃B

n,i(g)
]4

> ε4
∣∣∣∣ g, σ2, β̂n, Sn

)

≤
pn∑
i=1

3g2σ4vn,ii
(g + 1)2n2ε4

≤ 3λmaxg
2σ4

(g + 1)2nε4
.

Then

EM

[
PM

(∣∣∣∣∣∣βn − β̃B
n (g)

∣∣∣∣∣∣
∞

> ε
∣∣∣ g, σ2, β̂n, Sn

) ∣∣∣ β̂n, Sn

]
≤ 3λmax

nε4
EM

(
g2σ4

(g + 1)2

∣∣∣∣ β̂n, Sn

)
=

3λmax

nε4
EM

[
g2

(g + 1)2
EM

(
σ4
∣∣ g, β̂n, Sn

) ∣∣∣∣ β̂n, Sn

]
.

Observe from the form of the posterior in (1) that under PM ,

σ2 | g, β̂n, Sn ∼ InverseGamma

(
n+ a− 2

2
,
Sn + b+ (gn + 1)−1Tn

2

)
.
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Therefore,

EM

[
PM

(∣∣∣∣∣∣βn − β̃B
n (g)

∣∣∣∣∣∣
∞

> ε
∣∣∣ g, σ2, β̂n, Sn

) ∣∣∣ β̂n, Sn

]
=

3λmax

nε4
EM

[
g2
[
Sn + b+ (gn + 1)−1Tn

]2
(g + 1)2(n+ a− 4)(n+ a− 6)

∣∣∣∣∣ β̂n, Sn

]

≤ 6λmax

nε4

(
Sn + b

n+ a− 6

)2

+
6λmax

nε4
T 2
n

(n+ a− 6)2
EM

[
g2

(g + 1)4

∣∣∣∣ β̂n, Sn

]
→ 0 a.s.(P0)

by Lemma 3 and the initial assumption. Then this result and the inequalities in (12)
imply that posterior consistency occurs if and only if

EM

[
PM

(∣∣∣∣∣∣β̃B
n (g)− β̂n

∣∣∣∣∣∣
∞

> ε
∣∣∣ g, σ2, β̂n, Sn

) ∣∣∣ β̂n, Sn

]
→ 0 a.s.(P0)

for every ε > 0. Since β̃B
n (g)− β̂n = (g+1)−1(γn − β̂n), we may equivalently state that

posterior consistency occurs if and only if PM [(g + 1)−1||γn − β̂n||∞ > ε | β̂n, Sn) →
0 a.s.(P0) for every ε > 0. But again by the triangle inequality,

PM

(
1

g + 1
||γn − β0n||∞ > 2ε

∣∣∣∣ β̂n, Sn

)
− PM

(
1

g + 1

∣∣∣∣∣∣β0n − β̂n

∣∣∣∣∣∣
∞

> ε

∣∣∣∣ β̂n, Sn

)
≤ PM

(
1

g + 1

∣∣∣∣∣∣γn − β̂n

∣∣∣∣∣∣
∞

> ε

∣∣∣∣ β̂n, Sn

)
(13)

≤ PM

(
1

g + 1
||γn − β0n||∞ > ε/2

∣∣∣∣ β̂n, Sn

)
+ PM

(
1

g + 1

∣∣∣∣∣∣β0n − β̂n

∣∣∣∣∣∣
∞

> ε/2

∣∣∣∣ β̂n, Sn

)
.

For any arbitrary ε > 0,

PM

(
1

g + 1

∣∣∣∣∣∣β0n − β̂n

∣∣∣∣∣∣
∞

> ε

∣∣∣∣ β̂n, Sn

)
≤ PM

(∣∣∣∣∣∣β0n − β̂n

∣∣∣∣∣∣
∞

> ε
∣∣∣ β̂n, Sn

)
= I

(∣∣∣∣∣∣β0n − β̂n

∣∣∣∣∣∣
∞

> ε
)
→ 0 a.s.(P0)

by Lemma 1, where I(·) denotes the usual indicator function. Then this result and (13)
together imply that posterior consistency occurs if and only if PM [(g + 1)−1||γn −
β0n||∞ > ε | β̂n, Sn] → 0 a.s.(P0) for every ε > 0.

Proof (Proof of Lemma 12). From the form of the posterior in (3) and the transfor-
mation in (4),

T 2
n

n3
EM

[
g2

(g + 1)4

∣∣∣∣ β̂n, Sn

]
≤ T 2

n

n3
EM

[
1

(g + 1)2

∣∣∣∣ β̂n, Sn

]
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=

T 2
n

∫ ∞

0

(g + 1)(n−pn+a−c−6)/2 [(g + 1)(Sn + b) + Tn]
−(n+a−2)/2

dg

n3

∫ ∞

0

(g + 1)(n−pn+a−c−2)/2 [(g + 1)(Sn + b) + Tn]
−(n+a−2)/2

dg

=

(Sn + b)2
∫ 1

Wn

u(n−pn+a−c−6)/2(1− u)(pn+c)/2 du

n3

∫ 1

Wn

u(n−pn+a−c−2)/2(1− u)(pn+c−4)/2 du

.

Now let Hn ∼ Beta((n−pn+a− c−4)/2, (pn+ c−2)/2) and H̃n ∼ Beta((n−pn+a−
c)/2, (pn + c− 2)/2) with both independent of β̂n and Sn under PM , and observe that

Hn is stochastically smaller than H̃n under PM . Also let Γ(·) denote the usual gamma
function. Continuing, we have that

T 2
n

n3
EM

[
g2

(g + 1)4

∣∣∣∣ β̂n, Sn

]

=
(Sn + b)2 Γ

(
n−pn+a−c−4

2

)
Γ
(
pn+c+2

2

)
PM

(
Hn > Wn | β̂n, Sn

)
n3 Γ

(
n−pn+a−c

2

)
Γ
(
pn+c−2

2

)
PM

(
H̃n > Wn | β̂n, Sn

)
≤ 1

n

(
Sn + b

n

)2
(pn + c)(pn + c− 2)

(n− pn + a− c− 2)(n− pn + a− c− 4)
→ 0 a.s.(P0)

by Lemma 3.

Proof (Proof of Lemma 13). Assume lim infn→∞ ||γn − β0n||22 ≥ δ for some δ > 0.
Then

lim sup
n→∞

Wn

= lim sup
n→∞

(
1 +

Tn

Sn + b

)−1

≤
(
1 + lim inf

n→∞

[
pnσ

2
0 + nλ̆−1

0n ||γn − β0n||22
n− pn

]
lim inf
n→∞

[
(n− pn) Tn

(Sn + b) θ0n

])−1

≤
(
1 +

α

1− α
+

δ

λmax(1− α)σ2
0

)−1

=
(1− α)λmaxσ

2
0

δ + λmaxσ2
0

< 1− α a.s.(P0)

by Lemmas 3 and 4.

Proof (Proof of Lemma 14). Assume ||γn − β0n||22 → ∞, and let ε > 0. Then

Wn =

(
1 +

Tn

Sn + b

)−1

=

(
1 +

pnσ
2
0 + nλ̆−1

0n ||γn − β0n||22
n− pn

[
(n− pn) Tn

(Sn + b) θ0n

])−1

→ 0 a.s.(P0)
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since the term in square brackets converges to 1/σ2
0 a.s.(P0) by Lemmas 3 and 4. This

establishes (i). Now write

ε−1 ||γn − β0n||∞ (Sn + b)

ε−1 ||γn − β0n||∞ (Sn + b) + Tn
=

(
1 +

ε Tn

||γn − β0n||∞ (Sn + b)

)−1

and observe that (
1 +

ε Tn

||γn − β0n||∞ (Sn + b)

)−1

=

⎛⎝1 +
ε
(
pnσ

2
0 + nλ̆−1

0n ||γn − β0n||22
)

(n− pn) ||γn − β0n||∞

[
(n− pn) Tn

(Sn + b) θ0n

]⎞⎠−1

≤
(
1 +

ε ||γn − β0n||2
λmax

[
(n− pn) Tn

(Sn + b) θ0n

])−1

→ 0 a.s.(P0)

since, once again, the term in square brackets converges to 1/σ2
0 a.s.(P0) by Lemmas 3

and 4. It then follows immediately that Ln(ε) → 0 a.s.(P0), establishing (ii).

Proof (Proof of Lemma 15). Assume that ||γn−β0n||22 → A > 0 and lim infn→∞ ||γn−
β0n||∞ > 0. Let ε > 0. Then lim supn→∞ Wn ≤ (1 − α)λmaxσ

2
0/(A + λmaxσ

2
0) <

1 a.s.(P0) by Lemma 13, and

lim sup
n→∞

L̃n(ε) = lim sup
n→∞

(
1 +

ε Tn

||γn − β0n||∞ (Sn + b)

)−1

= lim sup
n→∞

⎛⎝1 +
ε
(
pnσ

2
0 + nλ̆−1

0n ||γn − β0n||22
)

(n− pn) ||γn − β0n||∞

[
(n− pn) Tn

(Sn + b) θ0n

]⎞⎠−1

≤ lim sup
n→∞

(
1 +

ε ||γn − β0n||2
λmax

[
(n− pn) Tn

(Sn + b) θ0n

])−1

=

(
1 +

ε
√
A

λmaxσ2
0

)−1

=
λmaxσ

2
0

A1/2ε+ λmaxσ2
0

< 1 a.s.(P0)

since the term in square brackets converges to 1/σ2
0 a.s.(P0) by Lemmas 3 and 4. Define

L�(ε) = max

{
(1− α)λmaxσ

2
0

A+ λmaxσ2
0

,
λmaxσ

2
0

A1/2ε+ λmaxσ2
0

}
< 1,

and observe that lim supn→∞ Ln(ε) ≤ L�(ε) a.s.(P0). This establishes (i).

Now define Ã := lim infn→∞ ||γn − β0n||∞ > 0, and note that

lim inf
n→∞

Ln(ε)

≥ lim inf
n→∞

(
1 +

ε Tn

||γn − β0n||∞ (Sn + b)

)−1



654 Posterior Consistency under g-Priors

≥

⎛⎝1 + lim sup
n→∞

⎡⎣ε
(
pnσ

2
0 + nλ̆−1

0n ||γn − β0n||22
)

(n− pn) ||γn − β0n||∞

⎤⎦ lim sup
n→∞

[
(n− pn) Tn

(Sn + b) θ0n

]⎞⎠−1

,

which implies that

lim inf
n→∞

Ln(ε) ≥
(
1 +

ε
(
ασ2

0 +A/λmin

)
(1− α)Ãσ2

0

)−1

a.s.(P0)

by Lemmas 3 and 4. Then it can be seen that for any ζ < 1, there exists εζ > 0 such
that lim infn→∞ Ln(εζ) > ζ a.s.(P0), establishing (ii).

Proof (Proof of Lemma 16). Let ε > 0. Note that E(Zn) = an/(an + bn) → 1 − α,
and thus |an/(an + bn) − (1 − α)| ≤ ε/2 for all sufficiently large n. Also note that
Var(Zn) = anbn/[(an + bn)

2(an + bn + 1)] ≤ 1/an < 2/[n(1 − α)] for all sufficiently
large n. Then for all sufficiently large n,

P (1− α− ε ≤ Zn ≤ 1− α+ ε)

= P

(
1− α− an

an + bn
− ε ≤ Zn − an

an + bn
≤ 1− α− an

an + bn
+ ε

)
≥ P

(
− ε

2
≤ Zn − an

an + bn
≤ ε

2

)
≥ 1− 4

ε2
Var(Zn) ≥ 1− 8

n(1− α)ε2
→ 1,

where the second of the three inequalities is Chebyshev’s inequality.

Proof (Proof of Theorem 3). By Lemmas 11 and 12, posterior consistency occurs if

and only if PM [(g+1)−1||γn−β0n||∞ > ε | β̂n, Sn] → 0 a.s.(P0) for every ε > 0, which

by (5) occurs if and only if PM [Wn < Un < Ln(ε) | β̂n, Sn]/PM (Un > Wn | β̂n, Sn) →
0 a.s.(P0) for every ε > 0. We now consider the same three cases as in the proof of
Theorem 2.

Case 1: Suppose there do not exist a subsequence kn of n and a constant A > 0 such
that ||γkn − β0kn ||22 → A and ||γkn − β0kn ||∞ � 0. Let kn be a subsequence of n, and
let ε > 0. Now consider two sub-cases.

Case 1.1: Suppose ||γkn − β0kn ||∞ → 0. Then ε−1||γkn − β0kn ||∞ < 1 for all suf-
ficiently large n. This implies that Lkn(ε) = Wkn for all sufficiently large n a.s.(P0),

and thereforePM [Wkn < Ukn < Lkn(ε) | β̂n, Sn] = 0 for all sufficiently large n a.s.(P0).

Also, PM (Ukn > Wkn | β̂kn , Skn) > 0 for all n a.s.(P0) since Wkn < 1 for all n a.s.(P0).
Thus,

PM

[
Wkn < Ukn < Lkn(ε) | β̂kn , Skn

]
PM (Ukn > Wkn | β̂n, Sn)

→ 0 a.s.(P0)

by the combination of our results for its numerator and denominator.

Case 1.2: Note that Case 1.1 can be applied to any further subsequence mn

of kn for which ||γmn − β0mn ||∞ → 0, so we may suppose for Case 1.2 that
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lim infn→∞ ||γkn−β0kn ||∞ > 0. Note also that in this case, there cannot exist any further
subsequence mn of kn for which ||γmn −β0mn ||22 converges to a nonzero constant, since
this would contradict the original supposition of Case 1. Then since lim infn→∞ ||γkn −
β0kn ||22 ≥ lim infn→∞ ||γkn − β0kn ||2∞ > 0, it follows that ||γkn − β0kn ||22 → ∞. Then
Lemma 14 implies that both Wkn → 0 a.s.(P0) and Ln(ε) → 0 a.s.(P0), which in
turn implies that both Wkn < (1 − α)/2 and Lkn(ε) < (1 − α)/2 for all sufficiently
large n a.s.(P0). Then for all sufficiently large n a.s.(P0),

PM

[
Wkn < Ukn < Lkn(ε) | β̂kn , Skn

]
PM

(
Ukn > Wkn | β̂kn , Skn

) ≤
PM

[
Ukn <

1− α

2

∣∣∣∣ β̂kn , Skn

]
PM

[
Ukn >

1− α

2

∣∣∣∣ β̂kn , Skn

] → 0 a.s.(P0)

by Lemma 16. Finally, since Cases 1.1 and 1.2 together establish that the relevant con-
dition holds along any subsequence kn, it holds for the whole sequence, and therefore
posterior consistency occurs.

Case 2: Now suppose there exist a subsequence kn of n and a constant A > 0 such
that ||γkn − β0kn ||22 → A > 0 and ||γkn − β0kn ||∞ � 0, and suppose α = 0. Note that
Case 1 can be applied to any subsequence mn of n for which either ||γmn − β0mn ||22
does not converge to any nonzero constant or ||γmn − β0mn ||∞ → 0, so it suffices
to show that the relevant condition holds along the subsequence kn. Note also that
this means we may suppose for Case 2 that lim infn→∞ ||γkn − β0kn ||∞ > 0. Now let
ε > 0. By Lemma 13, lim supn→∞ Wkn ≤ λmaxσ

2
0/(A+λmaxσ

2
0) a.s.(P0), which implies

that Wkn < 2λmaxσ
2
0/(A + 2λmaxσ

2
0) for all sufficiently large n a.s.(P0). Moreover, by

Lemma 15, there exists L�(ε) < 1 such that lim supn→∞ Lkn(ε) ≤ L�(ε) a.s.(P0), which
implies that Lkn(ε) < [1 + L�(ε)]/2 for all sufficiently large n a.s.(P0). Then for all
sufficiently large n a.s.(P0),

PM

[
Wkn < Ukn < Lkn(ε) | β̂kn , Skn

]
PM

(
Ukn > Wkn | β̂kn , Skn

)

≤
PM

[
Ukn <

1 + L�(ε)

2

∣∣∣∣ β̂kn , Skn

]
PM

(
Ukn >

2λmaxσ
2
0

A+ 2λmaxσ2
0

∣∣∣∣ β̂kn , Skn

) → 0 a.s.(P0)

by Lemma 16. Therefore posterior consistency occurs.

Case 3: Now suppose there exist a subsequence kn of n and a constant A > 0 such
that ||γkn−β0kn ||22 → A > 0 and ||γkn−β0kn ||∞ � 0, but suppose α > 0. By Lemma 13,
lim supn→∞ Wkn ≤ (1 − α)λmaxσ

2
0/(A + λmaxσ

2
0) a.s.(P0), which implies that Wkn <

2(1−α)λmaxσ
2
0/(A+2λmaxσ

2
0) for all sufficiently large n a.s.(P0). By Lemma 15, there

exists ε1−α/4 > 0 such that lim infn→∞ Lkn(ε1−α/4) ≥ 1 − α/4 a.s.(P0), which implies
that Lkn(ε1−α/4) > 1−α/2 for all sufficiently large n a.s.(P0). Then for all sufficiently
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large n a.s.(P0),

PM

[
Wkn < Ukn < Lkn(ε1−α/4)

∣∣ β̂kn , Skn

]
PM

(
Ukn > Wkn | β̂kn , Skn

)
≥ PM

[
Wkn < Ukn < Lkn(ε1−α/4)

∣∣ β̂kn , Skn

]
≥ PM

[
2(1− α)λmaxσ

2
0

A+ 2λmaxσ2
0

< Ukn < 1− α

2

∣∣∣∣ β̂kn , Skn

]
→ 1 a.s.(P0)

by Lemma 16. Since the relevant condition fails to hold for the subsequence kn, it fails
to hold for the overall sequence. Therefore posterior consistency does not occur.

Proof (Proof of Lemma 17). Consider two cases.

Case 1: Suppose ||γn − β0n||22 → 0. Then θ0n = pnσ
2
0 + nλ̆0n||γn − β0n||22 ≤ nσ2

0 for
all sufficiently large n. This result and (8) imply that

(μ4)0 (Tn) := E0

[
(Tn − θ0n)

4
]
≤ 48σ4

0θ
2
0n + 192σ6

0θ0n ≤ 96n2σ8
0

for all sufficiently large n. Then there exists N such that

∞∑
n=N

P0

(
Tn > 2nσ2

0

)
≤

∞∑
n=N

P0

(
|Tn − θ0n| > nσ2

0

)
≤

∞∑
n=N

96n2σ8
0

n4σ8
0

= 96

∞∑
n=N

1

n2
< ∞

by Markov’s inequality applied to (Tn−θ0n)
4, which in turn implies by the Borel-Cantelli

lemma that lim supn→∞(Tn/n) ≤ 2σ2
0 a.s.(P0). Therefore, n−3 T 2

n EM [g2(g + 1)−4 |
β̂n, Sn] ≤ n−3 T 2

n → 0 a.s.(P0).

Case 2: Note immediately that Case 1 can be applied to any subsequence kn of n for
which ||γn−β0n||22 → 0, so we may suppose for Case 2 that lim infn→∞ ||γn−β0n||22 > 0.
Then lim supn→∞ Wn < 1−α by Lemma 13. Define ψn(u) := I(Wn,1)(u) exp[−nWn(1−
u)/2(u − Wn)], where I denotes the usual indicator function, and note that this is a
nondecreasing function of u on the interval (0, 1). Using the form of the posterior in (6)
and the transformation in (4), we may write

T 2
n

n3
EM

[
g2

(g + 1)4

∣∣∣∣ β̂n, Sn

]

=

T 2
n

∫ ∞

0

(g + 1)(n−pn+a−10)/2[
(g + 1)(Sn + b) + Tn

]−(n+a−2)/2
g1/2 exp

(
− n

2g

)
dg

n3

∫ ∞

0

(g + 1)(n−pn+a−2)/2[
(g + 1)(Sn + b) + Tn

]−(n+a−2)/2
g−3/2 exp

(
− n

2g

)
dg

=

(Sn + b)4
∫ 1

0

u(n−pn+a−c−10)/2(1− u)(pn+4)/2

[
u−Wn

Wn(1− u)

]1/2
ψn(u) du

n3 T 2
n

∫ 1

0

u(n−pn+a−c−2)/2(1− u)(pn−4)/2

[
u−Wn

Wn(1− u)

]−3/2

ψn(u) du
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≤
(Sn + b)2

∫ 1

0

u(n−pn+a−c−9)/2(1− u)(pn+3)/2 ψn(u) du

n3(1−Wn)
2

∫ 1

0

u(n−pn+a−c−5)/2(1− u)(pn−1)/2 ψn(u) du

.

Now let hn and h̃n denote the densities with respect to Lebesgue measure of Beta((n−
pn + a− 7)/2, (pn + 5)/2) and Beta((n− pn + a− 3)/2, (pn + 1)/2) random variables,
respectively. Then we may continue by writing

T 2
n

n3
EM

[
g2

(g + 1)4

∣∣∣∣ β̂n, Sn

]

≤
(Sn + b)2 Γ

(
n− pn + a− 7

2

)
Γ

(
pn + 5

2

) ∫ 1

0

hn(u) ψn(u) du

n3(1−Wn)
2 Γ

(
n− pn + a− 3

2

)
Γ

(
pn + 1

2

) ∫ 1

0

h̃n(u) ψn(u) du

≤ (Sn + b)2 (pn + 3)(pn + 1)

n3(1−Wn)2 (n− pn + a− 5)(n− pn + a− 7)
→ 0 a.s.(P0).

Note that the last inequality holds because a random variable with density hn is stochas-
tically smaller than a random variable with density h̃n and because ψn is nondecreasing
on (0, 1), while the almost sure convergence to zero is by Lemma 3 and the fact that
lim supn→∞ Wn < 1− α ≤ 1 a.s.(P0) by Lemma 13.

Proof (Proof of Lemma 18). Note immediately that both (i) and (ii) are trivial if ξ = 0
or ξ ≥ 1, so assume 0 < ξ < 1. Next, by Stirling’s approximation, we may bound the
normalizing constant by

log
Γ(an + bn)

Γ(an)Γ(bn)
≤ log

(an + bn)
an+bn−1/2

a
an−1/2
n b

bn−1/2
n

for all sufficiently large n. We may rewrite this as

log
Γ(an + bn)

Γ(an)Γ(bn)
≤ an log

(
an + bn

an

)
+ bn log

(
an + bn

bn

)
+

1

2
log

(
anbn

an + bn

)
for all sufficiently large n. Then

P (Zn ≤ ξ)

=
Γ(an + bn)

Γ(an)Γ(bn)

∫ ξ

0

zan−1(1− z)bn−1 dz

≤ Γ(an + bn)

Γ(an)Γ(bn)

∫ ξ

0

zan−1 dz =
Γ(an + bn) ξ

an

Γ(an)Γ(bn) an

≤ exp

[
an log ξ − log an + an log

(
an + bn

an

)
+ bn log

(
an + bn

bn

)
+

1

2
log

(
anbn

an + bn

)]
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for all sufficiently large n. Now observe that

1

n
logP (Zn ≤ ξ)

≤ an
n

log ξ − 1

n
log an +

an
n

log

(
an + bn

an

)
+

bn
n

log

(
an + bn

bn

)
+

1

2n
log

(
anbn

an + bn

)
→
{
(1− α) log ξ − (1− α) log(1− α)− α logα if α > 0,

log ξ if α = 0.

If α > 0, then (1−α) log(1−α)+α logα ≥ − log 2, and thus lim supn→∞ n−1 logP (Zn ≤
ξ) ≤ (1−α) log ξ+log 2. Then n−1 logP (Zn ≤ ξ) ≤ (1−α) log ξ+log 4 for all sufficiently

large n, which implies (i). If instead α = 0, then lim supn→∞ n−1 logP (Zn ≤ ξ) ≤ log ξ,

so n−1 logP (Zn ≤ ξ) ≤ 1
2 log ξ for all sufficiently large n (noting that log ξ < 0). This

implies (ii).

Proof (Proof of Lemma 19). Let δ = lim infn→∞ ||γn−β0n||22 > 0. Then by Lemma 13,

lim supn→∞ Wn ≤ (1 − α)λmaxσ
2
0/(δ + λmaxσ

2
0) a.s.(P0), which implies that Wn <

2(1−α)λmaxσ
2
0/(δ+2λmaxσ

2
0) < 1−α for all sufficiently large n a.s.(P0). Then for all

sufficiently large n a.s.(P0),

Rn ≥
∫ 1

(1−α+Wn)/2

fn(u)

[
u−Wn

(1− u)

]−3/2

exp

[
−nWn(1− u)

2(u−Wn)

]
du

≥ exp

(
− nWn

1− α−Wn

)∫ 1

(1−α+Wn)/2

fn(u)

[
u

(1− u)

]−3/2

du

=

Γ

(
n− pn + a− 3

2

)
Γ

(
pn + 1

2

)
Γ

(
n− pn + a

2

)
Γ

(
pn − 2

2

) exp

(
− nWn

1− α−Wn

)

× PM

(
1− α+Wn

2
< Ũn < 1

∣∣∣∣ β̂n, Sn

)

≥
Γ

(
n− pn + a− 3

2

)
Γ

(
pn + 1

2

)
Γ

(
n− pn + a

2

)
Γ

(
pn − 2

2

) exp

(
− nWn

1− α−Wn

)

× PM

[(
δ + 4λmaxσ

2
0

2δ + 4λmaxσ2
0

)
(1− α) < Ũn < 1

]
(14)

where Ũn ∼ Beta((n− pn +a− 3)/2, (pn+1)/2), independent of β̂n and Sn, under PM .

For all sufficiently large n, Stirling’s approximation yields that
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Γ

(
n− pn + a− 3

2

)
Γ

(
pn + 1

2

)
Γ

(
n− pn + a

2

)
Γ

(
pn − 2

2

)

≥

(
n− pn + a− 3

2

)(n−pn+a−4)/2

exp

(
−n− pn + a− 3

2

)
2

(
n− pn + a

2

)(n−pn+a−1)/2

exp

(
−n− pn + a

2

)

×

(
pn + 1

2

)pn/2

exp

(
−pn + 1

2

)
(
pn − 2

2

)(pn−3)/2

exp

(
−pn − 2

2

)
=

1

2

(
n− pn + a− 3

n− pn + a

)(n−pn+a−4)/2(
pn + 1

pn − 2

)(pn−3)/2(
pn + 1

n− pn + a

)3/2

.

Then for all sufficiently large n,

Γ

(
n− pn + a− 3

2

)
Γ

(
pn + 1

2

)
Γ

(
n− pn + a

2

)
Γ

(
pn − 2

2

) ≥ 1

4

(
pn + 1

n− pn + a

)3/2

≥ 2 (4n)−3/2. (15)

Now observe that

PM

[(
δ + 4λmaxσ

2
0

2δ + 4λmaxσ2
0

)
(1− α) < Ũn < 1

]
→ 1

by Lemma 16, which implies that

PM

[(
δ + 4λmaxσ

2
0

2δ + 4λmaxσ2
0

)
(1− α) < Ũn < 1

]
>

1

2
(16)

for all sufficiently large n. Then by combining Inequalities 14, 15, and 16, we have that
for all sufficiently large n a.s.(P0),

Rn ≥ (4n)−3/2 exp

(
− nWn

1− α−Wn

)
= exp

{
−n

[
Wn

1− α−Wn
+

3

2n
log(4n)

]}
.

Finally, take K = 2 lim supn→∞[Wn/(1− α−Wn)]. Observe that K < ∞ a.s.(P0) due
to the fact that lim supn→∞ Wn ≤ (1− α)λmaxσ

2
0/(δ + λmaxσ

2
0) < 1− α a.s.(P0). Then

Rn ≥ exp(−nK) for all sufficiently large n a.s.(P0).

Proof (Proof of Lemma 20). Let ε > 0, and assume ||γn − β0n||22 → ∞. Then by
Lemma 14, Wn → 0 a.s.(P0) and Ln(ε) → 0 a.s.(P0). Next, observe that the last two
terms of the integrand in Qn(ε) comprise an unnormalized InverseGamma(1/2, nWn/2)
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density in (u−Wn)/(1−u), the mode of which occurs at nWn/3. Then for all sufficiently
large n,

Qn(ε) ≤
∫ Ln(ε)

Wn

fn(u)

(
nWn

3

)−3/2

exp

(
−3

2

)
du ≤ 2 (nWn)

−3/2
∫ Ln(ε)

0

fn(u) du

≤ 22n+1 (nWn)
−3/2

[Ln(ε)]
n(1−α)

by Lemma 18. Now note that if ε−1||γn − β0n||∞ ≤ 1, then Ln(ε) = Wn, in which case
Qn(ε) = 0 and the result is trivial. So instead assume that ε−1||γn − β0n||∞ > 1, which
in turn implies that Ln(ε) ≤ ε−1||γn − β0n||∞Wn. Then

Qn(ε) ≤ 22n+1

(
n(Sn + b)

Sn + b+ Tn

)−3/2(
ε−1||γn − β0n||∞(Sn + b)

ε−1||γn − β0n||∞(Sn + b) + Tn

)n(1−α)

≤ 22n+1 n−3/2

⎛⎝1 +

(
pnσ

2
0 + nλ̆−1

0n ||γn − β0n||22
)

n− pn

[
(n− pn) Tn

(Sn + b) θ0n

]⎞⎠3/2

×

⎛⎝1 +
ε
(
pnσ

2
0 + nλ̆−1

0n ||γn − β0n||22
)

(n− pn) ||γn − β0n||∞

[
(n− pn) Tn

(Sn + b) θ0n

]⎞⎠−n(1−α)

≤ 22n+1 n−3/2

(
4 ||γn − β0n||22
(1− α)λ̆0nσ2

0

)3/2(
ε ||γn − β0n||2
2(1− α)λ̆0nσ2

0

)−n(1−α)

= 2n(3−α)+4(nε)−3/2
(
ε−1(1− α)λmaxσ

2
0

)n(1−α)−3/2 ||γn − β0n||−n(1−α)+3
2

for all sufficiently large n a.s.(P0) by Lemmas 3 and 4 since the quantity in square
brackets converges to 1/σ2

0 a.s.(P0). Now continue by writing that for all sufficiently
large n a.s.(P0),

Qn(ε)

≤ exp

{
−n

[(
1− α− 3

n

)
log (||γn − β0n||2)−

(
1− α− 3

2n

)
log
(
ε−1(1− α)λmaxσ

2
0

)
+

3

2n
log(nε)−

(
3− α+

4

n

)
log 2

]}
= exp [−nκn(ε)] ,

where κn(ε) → ∞ is defined to be the quantity in square brackets.

Proof (Proof of Lemma 21). Assume ||γn−β0n||22 → A > 0, lim infn→∞ ||γn−β0n||∞ >
0, and α = 0. Let ε > 0. Note that Rn > 0 for all n a.s.(P0) since Wn < 1 for
all n a.s.(P0). Then whenever Ln(ε) ≤ Wn, we immediately have that Qn(ε)/Rn = 0
exactly, so we may instead assume that Ln(ε) > Wn for all n. By Lemma 15, there exists
L�(ε) < 1 such that lim supn→∞ Ln(ε) ≤ L�(ε) a.s.(P0), which implies that Ln(ε) < [1+
L�(ε)]/2 for all sufficiently large n a.s.(P0). Then we may write that for all sufficiently
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large n a.s.(P0),

Rn ≥
∫ 1

[1+Ln(ε)]/2

fn(u)

[
u−Wn

(1− u)

]−3/2

exp

[
−nWn(1− u)

2(u−Wn)

]
du

≥ exp

{
− nWn [1− Ln(ε)]

2 [1 + Ln(ε)− 2Wn]

}∫ 1

[3+L�(ε)]/4

fn(u)

[
u

(1− u)

]−3/2

du

≥
Γ

(
n− pn + a− 3

2

)
Γ

(
pn + 1

2

)
Γ

(
n− pn + a

2

)
Γ

(
pn − 2

2

) exp

{
−nWn [1− Ln(ε)]

4 [Ln(ε)−Wn]

}

× PM

(
3 + L�(ε)

4
< Ũn < 1

∣∣∣∣ β̂n, Sn

)
≥ (4n)−3/2 exp

{
−nWn [1− Ln(ε)]

4 [Ln(ε)−Wn]

}
(17)

by Inequalities 15 and 16. Next, write Qn(ε) as

Qn(ε) =

∫ Ln(ε)

Wn

fn(u)

[
u−Wn

(1− u)

]−3/2

exp

[
−Wn(1− u)

2(u−Wn)

]
exp

[
− (n− 1)Wn(1− u)

2(u−Wn)

]
du.

The second and third terms of the integrand comprise an unnormalized

InverseGamma(1/2,Wn/2)

density in (u−Wn)/(1− u), which has mode Wn/3. Then

Qn(ε) ≤
(
Wn

3

)−3/2

exp

(
−3

2

)
exp

{
− (n− 1)Wn [1− Ln(ε)]

2 [Ln(ε)−Wn]

}∫ Ln(ε)

0

fn(u) du,

≤ (2Wn)
−3/2

exp

{
− (n− 1)Wn [1− Ln(ε)]

2 [Ln(ε)−Wn]

}
[Ln(ε)]

n/2

by Lemma 18. Then this result and Inequality 17 together yield that for all sufficiently
large n a.s.(P0),

Qn(ε)

Rn
≤
(
Wn

2n

)−3/2

[Ln(ε)]
n/2

exp

{
−nWn [1− Ln(ε)]

2 [Ln(ε)−Wn]

(
n− 1

n
− 1

2

)}
≤
(

2n

Wn

)3/2

exp

{
−nWn [1− L�(ε)]

16

}
. (18)

Now observe that

lim inf
n→∞

Wn

= lim inf
n→∞

(
1 +

Tn

Sn + b

)−1
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= lim inf
n→∞

(
1 +

pnσ
2
0 + nλ̆−1

0n ||γn − β0n||22
n− pn

[
(n− pn) Tn

(Sn + b) θ0n

])−1

≥
(
1 +A/λminσ

2
0

)−1
=

λminσ
2
0

A+ λminσ2
0

a.s.(P0),

which implies that Wn > λminσ
2
0/(2A+λminσ

2
0) for all sufficiently large n a.s.(P0). We

may combine this with Inequality 18 to yield that for all sufficiently large n a.s.(P0),

Qn(ε)

Rn
≤
[
2n(2A+ λminσ

2
0)

λminσ2
0

]3/2
exp

{
−nλminσ

2
0 [1− L�(ε)]

16(2A+ λminσ2
0)

}
→ 0 a.s.(P0)

since L�(ε) < 1.

Proof (Proof of Theorem 4). By Lemmas 11 and 17, posterior consistency occurs if

PM [(g+1)−1||γn−β0n||∞ > ε | β̂n, Sn] → 0 a.s.(P0) for every ε > 0. Then by (7), this

occurs if Qn(ε)/Rn → 0 a.s.(P0) for every ε > 0. We now proceed according to cases

similar to those in the proofs of the previous theorems.

Case 1: Suppose there do not exist a subsequence kn of n and a constant A > 0 such

that ||γkn − β0kn ||22 → A and ||γkn − β0kn ||∞ � 0. Let kn be a subsequence of n, and

let ε > 0. Now consider two sub-cases.

Case 1.1: Suppose ||γkn−β0n||∞ → 0. Then ε−1||γkn−β0kn ||∞ < 1 for all sufficiently

large n a.s.(P0). This implies that Lkn(ε) = Wkn and Qkn(ε) = 0 for all sufficiently

large n a.s.(P0). Also, Rkn > 0 for all n a.s.(P0) since Wkn < 1 a.s.(P0). Therefore,

Qkn(ε)/Rkn → 0 a.s.(P0).

Case 1.2: Note that Case 1.1 can be applied to any further subsequence mn of kn for

which ||γmn − β0mn ||∞ → 0, so we may suppose for Case 1.2 that lim infn→∞ ||γkn −
β0kn ||∞ > 0. Note also that in this case, there cannot exist any further subsequence mn

of kn for which ||γmn − β0mn ||22 converges to a nonzero constant, since this would con-

tradict the original supposition of Case 1. Then since lim infn→∞ ||γkn − β0kn ||22 ≥
lim infn→∞ ||γkn−β0kn ||2∞ > 0, it follows that ||γkn−β0kn ||22 → ∞. Observe that by Lem-

mas 19 and 20, there exist a constant K and a sequence of constants κn(ε) → ∞ such

that Qkn(ε)/Rkn ≤ exp {−n [κn(ε)−K]} → 0 a.s.(P0). Finally, since Cases 1.1 and 1.2

together establish that Qkn(ε)/Rkn → 0 a.s.(P0) for every subsequence kn, it follows that

Qn(ε)/Rn → 0 a.s.(P0), and therefore posterior consistency occurs.

Case 2: Now suppose there exist a subsequence kn of n and a constant A > 0 such

that ||γkn − β0kn ||22 → A > 0 and ||γkn − β0kn ||∞ � 0, and suppose α = 0. Note that

Case 1 can be applied to any subsequence mn of n for which either ||γmn −β0mn ||22 does

not converge to any nonzero constant or ||γmn − β0mn ||∞ → 0, so it suffices to show

that Qkn(ε)/Rkn → 0 a.s.(P0). Note also that this means we may suppose for Case 2

that lim infn→∞ ||γkn − β0kn ||∞ > 0. Now let ε > 0. Then we immediately have that

Qkn(ε)/Rn → 0 a.s.(P0) by Lemma 21. Therefore posterior consistency occurs.
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