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ASYMPTOTIC THEORY OF GENERALIZED INFORMATION
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Information criteria, such as Akaike’s information criterion and Bayesian
information criterion are often applied in model selection. However, their
asymptotic behaviors for selecting geostatistical regression models have not
been well studied, particularly under the fixed domain asymptotic framework
with more and more data observed in a bounded fixed region. In this article,
we study the generalized information criterion (GIC) for selecting geosta-
tistical regression models under a more general mixed domain asymptotic
framework. Via uniform convergence developments of some statistics, we
establish the selection consistency and the asymptotic loss efficiency of GIC
under some regularity conditions, regardless of whether the covariance model
is correctly or wrongly specified. We further provide specific examples with
different types of explanatory variables that satisfy the conditions. For exam-
ple, in some situations, GIC is selection consistent, even when some spatial
covariance parameters cannot be estimated consistently. On the other hand,
GIC fails to select the true polynomial order consistently under the fixed do-
main asymptotic framework. Moreover, the growth rate of the domain and the
degree of smoothness of candidate regressors in space are shown to play key
roles for model selection.

1. Introduction. With the advent of data collection technologies, more and
more data, such as remote sensing data or environmental monitoring data, are col-
lected in space and managed by geographical information systems. In many ap-
plications, a response of interest is observed on a set of sites in space, and it is of
interest to apply a geostatistical regression model to predict the response at unsam-
pled sites with the aid of auxiliary/explanatory variables. For example, in precision
agriculture, it is of interest to predict crop yield based on some explanatory vari-
ables involving, for example, climatic conditions, soil types, fertilizers, cropping
practices, weeds and topographic features. Not only do we aim to identify the im-
portant explanatory variables, but the precision of yield also depends on how well
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the explanatory variables are chosen, which if not chosen properly, may result in
poor performance, particularly when the number of explanatory variables is large.
Clearly, model selection is essential in geostatistics.

There are two different asymptotic frameworks in geostatistics. One is called
the increasing domain asymptotic framework, where the observation region grows
with the sample size. The other is called the fixed domain asymptotic (or infill
asymptotic) framework, where the observation region is bounded and fixed with
more and more data taken more densely in the region. It is known that the two
frameworks lead to possibly different asymptotic behaviors in covariance param-
eter estimation. However, little is known about their effects on model selection.
In general, asymptotic behaviors of the estimated parameters under the increasing
domain framework are more standard. For example, the maximum likelihood es-
timates of covariance parameters are typically consistent and asymptotically nor-
mal when fitted by a correct model [Mardia and Marshall (1984)]. In contrast,
not all covariance parameters can be estimated consistently under the fixed do-
main asymptotic framework, even for the simple exponential covariance model in
one dimension with no consideration of explanatory variables [Ying (1991); Chen,
Simpson and Ying (2000)]. The readers are refereed to Stein (1999) for more
details regarding fixed domain asymptotics. Some discussion concerning which
asymptotic framework is more appropriate can also be found in Zhang and Zim-
merman (2005).

Many model selection methods have been applied in geostatistical regression,
such as Akaike’s information criterion [AIC, Akaike (1973)], Bayesian informa-
tion criterion [BIC, Schwartz (1978)], the generalized information criterion [GIC,
Nishii (1984)] and the cross validation method [Stone (1974)]. Note that GIC con-
tains a range of criteria, including both AIC and BIC, governed by a tuning param-
eter. Although theoretical properties of these selection methods have been thor-
oughly established in linear regression and time series model selection [e.g., Shao
(1997), McQuarrie and Tsai (1998), Ing and Wei (2005), Ing (2007)], only limited
results are available for selecting geostatistical regression models. For example,
Hoeting et al. (2006) provided some heuristic arguments for AIC in geostatistical
model selection when the spatial process of interest is observed with no measure-
ment error. They show via a simulation study that spatial dependence has to be
considered, which if ignored, may result in unsatisfactory results. Huang and Chen
(2007) developed a technique of estimating the mean squared prediction error for
a general spatial prediction procedure using the generalized degrees of freedom
and derived some asymptotic efficiency results. For linear mixed models, Jiang
and Rao (2003) developed some consistent procedures similar to GIC. Pu and Niu
(2006) derived conditions under which GIC is selection consistent. Jiang et al.
(2008) introduced a fence method for mixed model selection and showed its con-
sistency under some regularity conditions. Jones (2011) proposed a modified BIC,
which replaces the sample size in the penalty of the original BIC by an effective
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sample size to account for correlations in linear mixed models. Vaida and Blan-
chard (2005) proposed the conditional Akaike’s information criterion (CAIC) and
argued that it is more appropriate than AIC when the focus is on subjects/clusters
requiring prediction of random effects. In addition, selection among semiparamet-
ric regression models and penalized smoothing spline models [e.g., Chapter 4,
Ruppert, Wand and Carroll (2003)] can also be formulated in terms of random-
effect selection in linear mixed models. The asymptotic theory of AIC for this type
of model was given by Shi and Tsai (1999), and that for BIC was given by Bunea
(2004). A recent review of linear and generalized linear mixed model selection can
also be found in Müller, Scealy and Welsh (2013).

Although the geostatistical regression model can be regarded as a linear mixed
model with one random effect, its asymptotic behavior is surprisingly subtler than
a usual linear mixed model for the following three reasons. First, variables in a geo-
statistical regression model are sampled from a spatial process, resulting in small
“effective sample size” unless the spatial domain is allowed to grow quickly. Sec-
ond, unlike some random-effect models with independent random components,
spatial dependence forces all variables to depend in a complex way, making it
very difficult to handle asymptotically. Third, under the fixed domain asymptotic
framework, classical regularity conditions are generally not satisfied, and tradi-
tional approaches for establishing asymptotic results are typically not applicable.
To the best of our knowledge, asymptotic properties of GIC for geostatistical re-
gression model selection have yet to be developed, particularly under the fixed
domain asymptotic framework, where nonstandard behaviors are often expected.
In this article, we focus on GIC for geostatistical regression model selection re-
gardless of whether the covariance model is correctly or wrongly specified. Al-
though a conditional-type criterion, such as CAIC may be more appropriate when
spatial prediction is of main interest, it is beyond the scope of this paper. Major
accomplishments are listed in the following:

(1) We establish a general theory of GIC for the selection consistency and the
asymptotic loss efficiency under mild regularity conditions in a general mixed do-
main asymptotic framework, which includes both the fixed and increasing domain
asymptotics. In particular, we allow the possibilities that some covariance param-
eters may converge to a nondegenerate distribution and the covariance model may
be mis-specified.

(2) We provide some examples that satisfy the aforementioned regularity condi-
tions under exponential covariance models in one and two dimensions, and demon-
strate how selection consistency is affected by candidate regressors.

We shall show that the asymptotic behaviors of GIC are related to how fast the
domain grows with the sample size. In addition, some nonstandard properties of
GIC under the fixed domain asymptotic framework will be highlighted. For ex-
ample, under fixed domain asymptotics, GIC fails to identify the correct order of
polynomial consistently regardless of the tuning parameter value, even when the
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underlying covariance model is correctly specified. On the other hand, for a prop-
erly chosen tuning parameter value, GIC is selection consistent when candidate
explanatory variables are generated from some spatial dependent processes.

This article is organized as follows. Section 2 gives a brief introduction of geo-
statistical regression models and GIC. Our main results for the consistency and the
asymptotic loss efficiency of GIC are presented in Sections 3 and 4. Specifically,
in Section 3, we assume that the covariance model is specified correctly. While
in Section 4, we consider the covariance model to be mis-specified. In Section 5,
we provide some examples that satisfy the regularity conditions. Finally, a brief
discussion is provided in Section 6.

2. Models and criteria.

2.1. Geostatistical regression models. Consider a spatial process, {S(s) : s ∈
D ⊂ R

d}. Suppose that we observe data {Z(sn1), . . . ,Z(snn)} according to the
following measurement equation:

Z(sni) = S(sni) + ε(sni)
(2.1)

= μ0(sni) + η(sni) + ε(sni); i = 1, . . . , n,

where μ0(·) is the mean function, η(·) is a zero-mean Gaussian spatial depen-
dent process with sups∈D E(η2(s)) < ∞ and {ε(sni) : i = 1, . . . , n} are Gaussian
white-noise variables with variance v2, independent of S(·) = μ0(·) + η(·), corre-
sponding to measurement errors.

In addition to Z(sni)’s, we observe x(sni) = (1, x1(sni), . . . , xpn(sni))
′, a (pn +

1)-vector of explanatory variables, for i = 1, . . . , n. We consider the geostatistical
regression model

Z(sni) = x(sni)
′βn + η(sni) + ε(sni); sni ∈ D, i = 1, . . . , n,

where βn = (β0, β1, . . . , βpn)
′. This model reduces to the usual linear regression

model when η(·) is absent. Similarly to linear regression, a large model that con-
tains many insignificant variables may produce a large variance, resulting in low
predictive power. On the other hand, a model that ignores some important variables
may suffer from a large bias. To strike a good balance between (squared) bias and
variance, it is essential to include only significant variables in the model. Clearly,
variable selection is essential not only in regression but also in geostatistical re-
gression.

We use α ⊆ {1, . . . , pn} to denote a model, which consists of the indices of the
corresponding explanatory variables. Let An ⊆ 2{1,...,pn} be the set of all candidate
models with ∅ being the intercept-only model. Let Xn be the n × (pn + 1) matrix
with the ith row, x(sni)

′; 1 ≤ i ≤ n. Also let Xn(α) be an n×(p(α)+1) sub-matrix
of Xn containing a column 1 (corresponding to the intercept) and the columns
corresponding to α ∈ An, and βn(α) be the sub-vector of βn corresponding to
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Xn(α). A model α is said to be correct if μ0(s) can be written as β0 +∑
j∈α βjxj (s)

for all s ∈ D. If there exists a correct model, we denote the correct model having
the smallest number of variables by α0

n = arg minα∈A0
n
p(α), where A0

n is the set
of all correct models.

The geostatistical regression model α can be written in a matrix form as

Zn = (
Z(sn1), . . . ,Z(snn)

)′ = Xn(α)βn(α) + ηn + εn; α ∈An,(2.2)

where ηn = (η(sn1), . . . , η(snn))
′ ∼ N(0,�nη) and εn = (ε(sn1), . . . , ε(snn))

′ ∼
N(0, v2In) with �nη = E(ηnη

′
n) and In denoting the n × n identity matrix. Hence

the mean and the variance of Zn conditional on Xn based on model α ∈ An are
Xn(α)βn(α) and

�n(θ) = �nη + v2In,(2.3)

where θ is a covariance parameter vector belonging to some parameter space �.
Throughout the paper, we assume that �n(θ) is continuous on θ ∈ �. We denote
the true covariance matrix by �n0 and the true mean of Zn conditional on Xn by
μn0. In other words, given Xn, the data Zn are generated from N(μn0,�n0).

In order to facilitate mathematical exposition, the asymptotic results established
in Sections 3 and 4 focus only on the case where Xn is nonrandom. These results
are also valid in the almost sure sense when Xn is random, provided that the re-
quired conditions involving Xn hold for almost all sequences Xn; n ∈ {1,2, . . .}.
We further illustrate these results in Section 5 using either random or nonran-
dom Xn.

2.2. Generalized information criterion. For notational simplicity, we suppress
the dependence of Xn,Xn(α),βn,βn(α),Zn, ηn, εn, �nη, In, �n(θ), �n0, μn0
and sni on n in the rest of this paper. To estimate β and θ , we consider maximum
likelihood (ML). We assume that �−1(θ) and (X′�−1(θ)X)−1 exist for θ ∈ �. The
ML estimate of θ based on α ∈ An, denoted by θ̂(α), is obtained by maximizing
the following profile log-likelihood function:

�(α; θ) = −1
2n log(2π) − 1

2 log det
(
�(θ)

)
− 1

2

(
Z − μ̂(α; θ)

)′
�−1(θ)

(
Z − μ̂(α; θ)

)
,

where μ̂(α; θ) = X(α)β̂(α; θ), and

β̂(α; θ) = (
X(α)′�−1(θ)X(α)

)−1X(α)′�−1(θ)Z.

Specifically, �(α; θ̂(α)) = supθ∈� �(α; θ), and β̂(α; θ̂(α)) is the ML estimate of
β(α). For α ∈ An and θ ∈ �, let

M(α; θ) = X(α)
(
X(α)′�−1(θ)X(α)

)−1X(α)′�−1(θ),(2.4)

A(α; θ) = I − M(α; θ).(2.5)
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Then μ̂(α; θ) = M(α; θ)Z and Z − μ̂(α; θ) = A(α; θ)Z. Note that M2(α; θ) =
M(α; θ), M(α; θ)X(α) = X(α), and

M(α; θ)′�−1(θ)M(α; θ) = �−1(θ)M(α; θ),

A(α; θ)′�−1(θ)A(α; θ) = �−1(θ)A(α; θ).

Therefore, by (2.4) and (2.5), the profile log-likelihood function can also be written
as

�(α; θ) = −1
2n log(2π) − 1

2 log det
(
�(θ)

) − 1
2μ′

0�
−1(θ)A(α; θ)μ0

− μ′
0�

−1(θ)A(α; θ)(η + ε) − 1
2(η + ε)′�−1(θ)(η + ε)(2.6)

+ 1
2(η + ε)′�−1(θ)M(α; θ)(η + ε); α ∈ An, θ ∈ �.

To identify the smallest correct model α0
n, one may adopt the GIC of Nishii

(1984),

	τn(α) = −2�
(
α; θ̂(α)

) + τnp(α); α ∈ An,(2.7)

where τn is a tuning parameter controlling the trade-off between goodness-of-
fit and the model parsimoniousness. The criterion includes AIC (when τn = 2)
and BIC [when τn = log(n)] as special cases, and has been widely used in
many statistical areas. The model selected by GIC based on τn is denoted by
α̂τn = arg minα∈An

	τn(α). In the next section, we shall first investigate GIC for
variable selection when the covariance model is correctly specified.

3. Variable selection under a correct covariance model. The asymptotic
properties of GIC will be derived in terms of the Kullback–Leibler (KL) loss,
which for α ∈An and θ ∈ � is given by

L(α; θ) =
∫

Y∈Rn
f (Y;μ0,�0) log

f (Y;μ0,�0)

f (Y; μ̂(α; θ),�(θ))
dY

= 1

2
log det

(
�(θ)

) − 1

2
log det(�0) + 1

2
tr

(
�0�

−1(θ)
)

− n

2
+ 1

2

(
μ̂(α; θ) − μ0

)′
�−1(θ)

(
μ̂(α; θ) − μ0

)
,

where μ̂(α; θ) = X(α)β̂(α; θ) and f (·;μ,�) is the Gaussian density function
with mean μ and covariance matrix �. Note that L(α; θ) ≥ 0, for any α ∈ An

and θ ∈ �. When μ0 is known, the KL loss for θ ∈ � is given by

L0(θ) = 1
2

{
log det

(
�(θ)

) − log det(�0) + tr
(
�0�

−1(θ)
) − n

}
.

Then the optimal vector of θ ∈ �, which minimizes the KL loss, is given by

θ0 = arg inf
θ∈�

L0(θ).



ASYMPTOTICS FOR GEOSTATISTICAL REGRESSION MODEL SELECTION 2447

Clearly, �0 = �(θ0) and L0(θ0) = 0, if the covariance model class contains the
correct model. In this case, θ0 is the true covariance parameter vector of θ . Let
R(α; θ) = E(L(α; θ)). By (2.4) and (2.5), we have

L(α; θ) = L0(θ) + 1
2μ′

0�
−1(θ)A(α; θ)μ0

(3.1)
+ 1

2(η + ε)′�−1(θ)M(α; θ)(η + ε),

R(α; θ) = L0(θ) + 1
2μ′

0�
−1(θ)A(α; θ)μ0

(3.2)
+ 1

2 tr
(
�−1(θ)M(α; θ)�0

)
,

for α ∈ An and θ ∈ �, where μ′
0�

−1(θ)A(α; θ)μ0 = ‖�−1/2(θ)A(α; θ)μ0‖2,
which results from using a wrong regression model, and is equal to 0 when α ∈ A0

n.
In particular, for α ∈ A0

n and �0 = �(θ0),

L(α; θ0) = 1
2(η + ε)′�−1(θ0)M(α; θ0)(η + ε),(3.3)

R(α; θ0) = 1
2p(α).(3.4)

Consider a model selection procedure α̂ that maps data to α ∈ An. We say that
α̂ is consistent if limn→∞ P {α̂ = α0

n} = 1, and α̂ is asymptotically loss efficient if

L(α̂; θ̂(α̂))

minα∈An L(α; θ̂(α))

P→1,(3.5)

as n → ∞. When η(·) is absent, geostatistical regression reduces to the usual lin-
ear regression with a property that limn→∞ P {L(α0

n) = infα∈An L(α)} = 1; see
Shao (1997) for more details. In this case, pursuing consistency is equivalent to
finding the model with the smallest KL loss. However, α0

n may not always lead
to the smallest KL loss when �η has to be estimated, making asymptotic loss ef-
ficiency more difficult to derive. In addition, the possible inconsistency of θ̂(α)

for α ∈ An under the fixed domain asymptotic framework further complicates the
development of asymptotic theory for GIC.

Let λmin(Q) and λmax(Q) be the smallest and the largest eigenvalue of a square
matrix Q. We impose the following regularity conditions for model selection:

(C1) λmin(�(θ)) > 0 for all n and θ ∈ �, and

lim sup
n→∞

sup
θ∈�

λmax
(
�−1/2(θ)�0�

−1/2(θ)
)
< ∞.

(C2) For α ∈An \A0
n, there exists θα ∈ �, not depending on n, such that

sup
α∈An\A0

n

∣∣∣∣�(α; θ̂(α)) − �(α; θα)

R(α; θα) − L0(θ0)

∣∣∣∣ = op(1),

sup
α∈An\A0

n

∣∣∣∣L(α; θ̂(α)) − L(α; θα)

R(α; θα) − L0(θ0)

∣∣∣∣ = op(1).



2448 C.-H. CHANG, H.-C. HUANG AND C.-K. ING

Moreover,

sup
α∈A0

n

∣∣�(
α; θ̂(α)

) − �(α; θ0)
∣∣ = Op(1),

sup
α∈A0

n

∣∣L(
α; θ̂(α)

) − L(α; θ0)
∣∣ = Op(1).

(C3) For θα defined in (C2),

lim
n→∞

∑
α∈An\A0

n

1

(R(α; θα) − L0(θ0))q
= 0,

for some q > 0.
(C4) For θα defined in (C2),

lim
n→∞ sup

α∈An\A0
n

∣∣∣∣ tr(�0(�
−1
0 − �−1(θα))M(α; θα))

R(α; θα) − L0(θ0)

∣∣∣∣ = 0.

(C5) For θα defined in (C2),

sup
α∈An\A0

n

∣∣∣∣ tr(((η + ε)(η + ε)′ − �0)(�
−1(θα) − �−1(θ0)))

R(α; θα) − L0(θ0)

∣∣∣∣ = op(1).

While L0(θ0) = 0 for a correct spatial covariance model, we still keep L0(θ0)

in (C2)–(C5) because L0(θ0) �= 0 under covariance mis-specification, which will
be discussed in Section 4. In the rest of this section, we shall assume �0 = �(θ0),
yielding L0(θ0) = 0. Condition (C1), imposing some constraints on the family
of covariance matrices parameterized by θ ∈ �, is usually satisfied when � is
compact. Condition (C2) generally holds when θ̂(α) converges in probability to
some θα ∈ �, not necessarily equal to θ0. Surprisingly, it can hold even if θ̂(α)

does not converge in probability; see Section 5 for some examples in which the
domain D is fixed with n. Condition (C3) is easily met when |An \ A0

n| (i.e., the
number of models in An \A0

n) is bounded and

min
α∈An\A0

n

∥∥�−1/2(θα)A(α; θα)μ0
∥∥2 → ∞,

as n → ∞. Moreover, (C5) can be verified using some moment bounds for
quadratic forms in η + ε, and (C4) is ensured by (C3) when pn is bounded.

Conditions (C1)–(C5) appear to be natural generalizations of the conditions
used to establish the asymptotic loss efficiency in usual linear regression mod-
els. To see this, note that if �0 = �(θ0) is known (or, equivalently, � = {θ0}),
then (C1), (C2), (C4) and (C5) become redundant, and only (C3) is needed, which
corresponds to (A.3) of Li (1987) or (2.6) of Shao (1997). This is the only assump-
tion needed to derive the asymptotic loss efficiency of AIC under model (2.2) with
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η(·) = 0, v2 known, si = i; i = 1, . . . , n, and |A0
n| ≤ 1. For more details, see The-

orem 1 of Shao (1997). On the other hand, when θ0 is unknown, (C1), (C2), (C4)
and (C5) seem indispensable for dealing with the inherent difficulties in model
selection under (2.2). That is, the ML estimate of θ may not only vary across
candidate models, but may also converge to wrong parameter vectors or have no
probability limits. In the following theorem, these four conditions will be used in
conjunction with (C3) to establish the consistency and the asymptotic loss effi-
ciency of AIC, extending Theorem 1 of Shao (1997) to the geostatistical model
described in (2.2) and (2.3).

THEOREM 3.1. Consider the data generated from (2.1) and the model given
by (2.2) and (2.3) with θ0 being the true covariance parameter vector [i.e.,
var(Z) = �(θ0)]. Suppose that conditions (C1)–(C5) are satisfied:

(i) If |A0
n| ≤ 1, then α̂2 is asymptotically loss efficient. If, in addition, |A0

n| = 1
and lim supn→∞ p(α0

n) < ∞, then α̂2 is consistent.
(ii) If |A0

n| ≥ 2 for sufficiently large n and either of the following is satisfied for
some m > 0,

lim
n→∞

∑
α∈A0

n

1

pm(α)
= 0,(3.6)

lim
n→∞

∑
α∈A0

n\{α0
n}

1

(p(α) − p(α0
n))

m
= 0.(3.7)

Then α̂2 is asymptotically loss efficient. If, in addition, (3.7) holds and
lim supn→∞ p(α0

n) < ∞, then α̂2 is consistent.

PROOF. We begin by showing that

	2(α) = ν + 2L(α; θα) + op

(
L(α; θα)

)
,(3.8)

uniformly for α ∈ An \ A0
n, where ν = n log(2π) + log det(�(θ0)) + (η +

ε)′�−1(θ0)(η + ε) is independent of α. By (2.7) and (C2), we have

	2(α) = −2�(α; θα) + 2p(α) + op

(
R(α; θα)

)
= n log(2π) + log det

(
�(θα)

) + Z′A(α; θα)′�−1(θα)A(α; θα)Z

+ 2p(α) + op

(
R(α; θα)

)
= n log(2π) + log det

(
�(θα)

) + μ′
0�

−1(θα)A(α; θα)μ0

+ 2μ′
0�

−1(θα)A(α; θα)(η + ε)

+ (η + ε)′�−1(θα)A(α; θα)(η + ε) + 2p(α) + op

(
R(α; θα)

)
,
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uniformly for α ∈An \A0
n. It follows from (3.1) that

	2(α) = n log(2π) + log det
(
�(θ0)

) + (η + ε)′�−1(θα)(η + ε)

− tr
(
�(θ0)�

−1(θα)
) + n + 2L(α; θα)

− 2(η + ε)′�−1(θα)M(α; θα)(η + ε)

+ 2μ′
0�

−1(θα)A(α; θα)(η + ε) + 2p(α) + op

(
R(α; θα)

)
(3.9)

= n log(2π) + log det
(
�(θ0)

) + (η + ε)′�−1(θ0)(η + ε)

+ tr
((

(η + ε)(η + ε)′ − �(θ0)
)(

�−1(θα) − �−1(θ0)
))

+ 2L(α; θα) − 2(η + ε)′�−1(θα)M(α; θα)(η + ε) + 2p(α)

+ 2μ′
0�

−1(θα)A(α; θα)(η + ε) + op

(
R(α; θα)

)
,

uniformly for α ∈ An \A0
n. Therefore, by (C5), for (3.8) to hold, it suffices to show

that

(η + ε)′�−1(θα)M(α; θα)(η + ε) − p(α) = op

(
R(α; θα)

)
,(3.10)

μ′
0�

−1(θα)A(α; θα)(η + ε) = op

(
R(α; θα)

)
,(3.11)

uniformly for α ∈An \A0
n, and

sup
α∈An\A0

n

∣∣∣∣L(α; θα)

R(α; θα)
− 1

∣∣∣∣ = op(1).(3.12)

First, we prove (3.10). By (C4), we have

E
{
(η + ε)′�−1(θα)M(α; θα)(η + ε)

} − p(α) = o
(
R(α; θα)

)
,

uniformly for α ∈ An \ A0
n. Let c(α) = tr(�(θ0)�

−1(θα)M(α; θα))/p(α). Then
by (2.4) and (C1), lim supn→∞ supα∈An\A0

n
c(α) < ∞. Thus for (3.10) to hold, it

suffices to show that

(η + ε)′�−1(θα)M(α; θα)(η + ε) − c(α)p(α)

= op

(
R(α; θα)

)
,

uniformly for α ∈ An \ A0
n. Applying Chebyshev’s inequality, we have for any

ε > 0,

P

{
sup

α∈An\A0
n

∣∣∣∣(η + ε)′�−1(θα)M(α; θα)(η + ε) − c(α)p(α)

R(α; θα)

∣∣∣∣ > ε

}

≤ ∑
α∈An\A0

n

E|(η + ε)′�−1(θα)M(α; θα)(η + ε) − c(α)p(α)|2q

ε2qR2q(α; θα)
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≤ ∑
α∈An\A0

n

c1{tr(�(θ0)�
−1(θα)M(α; θα)�(θ0)�

−1(θα)M(α; θα))}q
ε2qR2q(α; θα)

≤ ∑
α∈An\A0

n

c2p
q(α)

ε2qR2q(α; θα)

≤ ∑
α∈An\A0

n

c3

ε2qRq(α; θα)
,

for some constants c1, c2, c3 > 0, where the second inequality follows from The-
orem 2 of Whittle (1960) that E(|y′Ay − E(y′Ay)|)2q ≤ c1(tr(A2))q for y =
�−1/2(θ0)(η + ε) ∼ N(0, I) and A = �1/2(θ0)�

−1(θα)M(α; θα)�1/2(θ0), the
third inequality follows from (C1), and the last inequality follows from (C4).
Therefore by (C3), we obtain (3.10).

Next, we prove (3.11). Similar to the proof of (3.10), we have

P

{
sup

α∈An\A0
n

∣∣∣∣μ
′
0�

−1(θα)A(α; θα)(η + ε)

R(α; θα)

∣∣∣∣ > ε

}

≤ ∑
α∈An\A0

n

E|μ′
0�

−1(θα)A(α; θα)(η + ε)|2q

ε2qR2q(α; θα)

≤ ∑
α∈An\A0

n

c4(μ
′
0�

−1(θα)A(α; θα)�(θ0)A(α; θα)′�−1(θα)μ0)
q

ε2qR2q(α; θα)

≤ ∑
α∈An\A0

n

c5(μ
′
0�

−1(θα)A(α; θα)μ0)
q

ε2qR2q(α; θα)

≤ ∑
α∈An\A0

n

c6

ε2qRq(α; θα)
,

for some constant c4, c5, c6 > 0, where the second inequality follows from The-
orem 2 of Whittle (1960) that E(|a′y|)2q ≤ c4(a′a)q for y = �−1/2(θ0)(η +
ε) ∼ N(0, I) and a = �1/2(θ0)A(α; θα)�−1(θα)μ0, the third inequality follows
from (C1), and the last inequality follows from (3.2). Therefore by (C3), we ob-
tain (3.11).

It remains to prove (3.12). By (3.1) and (3.2), for α ∈ An \A0
n,

L(α; θα) − R(α; θα) = (η + ε)′�−1(θα)M(α; θα)(η + ε)

− tr
(
�−1(θα)M(α; θα)�(θ0)

)
.
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It follows from (C1), (C3) and an argument similar to one used to prove (3.10)
that

sup
α∈An\A0

n

∣∣∣∣L(α; θα)

R(α; θα)
− 1

∣∣∣∣

= sup
α∈An\A0

n

∣∣∣∣(η + ε)′�−1(θα)M(α; θα)(η + ε)

R(α; θα)

− tr(�−1(θα)M(α; θα)�(θ0))

R(α; θα)

∣∣∣∣ = op(1).

This gives (3.12). Thus (3.8) is established.
(i) If |A0

n| = 0, it follows from (3.8), (3.12) and (C2) that α̂2 is asymptotically
loss efficient. If |A0

n| = 1 and limn→∞ p(α0
n) = ∞, by (3.8), to show the asymp-

totic loss efficiency of α̂2, it suffices to show that

	2(α) = ν + 2L(α; θ0) + op

(
L(α; θ0)

); α ∈ A0
n.(3.13)

By (2.6), (3.3) and (C2),

	2(α) = −2�(α; θ0) + 2p(α) + Op(1)

= ν − 2
{
(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − p(α)

}
(3.14)

+ 2L(α; θ0) + Op(1); α ∈ A0
n.

Therefore, by (3.3), (3.4) and an argument similar to that used to prove (3.8), we
have ∣∣∣∣(η + ε)′�−1(θ0)M(α0

n; θ0)(η + ε) − p(α0
n)

p(α0
n)

∣∣∣∣ = op(1),(3.15)

∣∣∣∣L(α0
n; θ0)

R(α0
n; θ0)

− 1
∣∣∣∣ = op(1).(3.16)

These together with (3.14) give (3.13). If |A0
n| = 1 and lim supn→∞ p(α0

n) < ∞,
then the consistency and the asymptotical loss efficiency are ensured by

L
(
α; θ̂(α)

) − L
(
α0

n; θ̂
(
α0

n

)) P→ ∞,(3.17)

	2(α) − 	2
(
α0

n

) P→ ∞,(3.18)

uniformly for α ∈An \ {α0
n}, as n → ∞. First, (3.17) follows from

L
(
α0

n; θ̂
(
α0

n

)) = L
(
α0

n; θ0
) + Op(1)

= 1
2(η + ε)′�−1(θ0)M

(
α0

n; θ0
)
(η + ε) + Op(1)(3.19)

= op

(
L

(
α; θ̂(α)

))
,
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uniformly for α ∈An \ {α0
n}, where the first equality follows from (C2), the second

equality follows from (3.1) and the last equality follows from (3.12), (C2), (C3)
and lim supn→∞ p(α0

n) < ∞. It remains to prove (3.18). By (3.14), we have

	2
(
α0

n

) = ν − (η + ε)′�−1(θ0)M
(
α0

n; θ0
)
(η + ε) + 2p

(
α0

n

) + Op(1)
(3.20)

= ν + op

(
L

(
α; θ̂(α)

))
,

uniformly for α ∈ An \ {α0
n}, where the last equality follows from an argument

similar to that used to prove (3.19). This together with (3.8) implies (3.18). This
completes the proof of (i).

(ii) First, suppose that (3.6) is satisfied. In view of (3.8), it suffices to show
that (3.13) holds uniformly for α ∈A0

n. Similarly to the proofs of (3.15) and (3.16),
we only need to show that

sup
α∈A0

n

∣∣∣∣(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − p(α)

p(α)

∣∣∣∣ = op(1),(3.21)

sup
α∈A0

n

∣∣∣∣L(α; θ0)

R(α; θ0)
− 1

∣∣∣∣ = op(1).(3.22)

By an argument similar to that used to prove (3.10), we have

P

{
sup

α∈A0
n

∣∣∣∣(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − p(α)

p(α)

∣∣∣∣ > ε

}

≤ ∑
α∈A0

n

E|(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − p(α)|2m

ε2mp2m(α)
≤ ∑

α∈A0
n

c7

ε2mpm(α)
,

for some constant c7 > 0, as n → ∞. This together with (3.3), (3.4) and (3.6)
gives (3.21) and (3.22). Therefore, (3.13) holds uniformly for α ∈ A0

n.
Finally, suppose that (3.7) is satisfied. If limn→∞ p(α0

n) = ∞, it implies (3.6)
and hence α̂2 is asymptotically loss efficient. If lim supn→∞ p(α0

n) < ∞, by (3.17)
and (3.18), it remains to show that

L
(
α; θ̂(α)

) − L
(
α0

n; θ̂
(
α0

n

)) P→ ∞,(3.23)

	2(α) − 	2
(
α0

n

) P→ ∞,(3.24)

uniformly for α ∈A0
n \ {α0

n}, as n → ∞. First, we prove (3.23). By (3.4) and (C2),

L
(
α; θ̂(α)

) − L
(
α0

n; θ̂
(
α0

n

))
= L(α; θ0) − L

(
α0

n; θ0
) + Op(1)

(3.25)
= 1

2(η + ε)′�−1(θ0)
{
M(α; θ0) − M

(
α0

n; θ0
)}

(η + ε) + Op(1)

= 1
2

(
p(α) − p

(
α0

n

)) + op

(
p(α) − p

(
α0

n

))
,
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uniformly for α ∈A0
n \ {α0

n}, where the last equality follows from

sup
α∈A0

n\{α0
n}

∣∣∣∣(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − p(α)

p(α) − p(α0
n)

− (η + ε)′�−1(θ0)M(α0
n; θ0)(η + ε) − p(α0

n)

p(α) − p(α0
n)

∣∣∣∣ = op(1),

which can be obtained in a way similar to the proof of (3.15). This together
with (3.7) gives (3.23). Next, we prove (3.24). By (3.14) and (3.25), we have

	2(α) − 	2
(
α0

n

) = 2L
(
α; θ̂(α)

) − 2L
(
α0

n; θ̂
(
α0

n

)) + op

(
p(α) − p

(
α0

n

))
= p(α) − p

(
α0

n

) + op

(
p(α) − p

(
α0

n

))
,

uniformly for α ∈ A0
n \ {α0

n}. This together with (3.7) gives (3.24). This completes
the proof of (ii). �

REMARK 3.1. When θ = θ0 is known, Theorem 3.1 reduces to the standard
asymptotic theory of AIC in linear regression; see Theorem 1 of Shao (1997). In
this case, (C1), (C2), (C4) and (C5) are not needed.

REMARK 3.2. Although Theorem 3.1 only obtains the consistency of α̂2 un-
der lim supn→∞ p(α0

n) < ∞, the consistency result can be extended to
limn→∞ p(α0

n) = ∞ if p(α0
n) = o(infα∈An\A0

n
R(α; θ0)).

REMARK 3.3. When |A0
n| ≥ 2, AIC is generally not able to identify α0

n almost
surely. A heavier penalty τn of GIC (e.g., BIC) is needed for consistency.

THEOREM 3.2. Consider the data generated from (2.1) and the model given
by (2.2) and (2.3) with θ0 being the true covariance parameter vector [i.e.,
var(Z) = �(θ0)]. Suppose that (C1)–(C5) are satisfied. In addition, suppose that
limn→∞ τn = ∞, and for θα defined in (C2),

lim
n→∞ sup

α∈An\A0
n

τnpn

R(α; θα)
= 0.(3.26)

(i) If |A0
n| = 0, then α̂τn is asymptotically loss efficient.

(ii) If |A0
n| ≥ 1 and

lim
n→∞

∑
α∈A0

n

1

pm(α)
< ∞,(3.27)

for some m > 0, then α̂τn is consistent.
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PROOF. (i) By (3.8) and (3.26), we have

	τn(α) = ν + 2L(α; θα) + op

(
L(α; θα)

)
,(3.28)

uniformly for α ∈ An \ A0
n. Thus by (3.12) and (C2), α̂τn is asymptotically loss

efficient.
(ii) By (2.6) and (C2), we have for α ∈ A0

n,

	τn(α) = −2�(α; θ0) + τnp(α) + Op(1)
(3.29)

= ν − (η + ε)′�−1(θ0)M(α; θ0)(η + ε) + τnp(α) + Op(1),

where ν is defined in (3.8). By (3.27) and an argument similar to that used to
prove (3.21), we have

sup
α∈A0

n

∣∣∣∣(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − p(α)

τnp(α)

∣∣∣∣ = op(1).(3.30)

This and (3.29) give

	τn(α) = ν + (τn − 1)p(α) + op

(
τnp(α)

)
,(3.31)

uniformly for α ∈ A0
n. Thus

lim
n→∞P

{
α̂τn ∈A0

n \ {
α0

n

}} = 0.(3.32)

By (3.26), (3.28) and (3.31), we have

min
α∈An\A0

n

	τn(α) − 	τn

(
α0

n

) P→∞,

as n → ∞. This together with (3.32) implies that α̂τn is consistent. This completes
the proof. �

Unlike the KL loss function in usual linear regression models, L(α, θ̂(α)) does
not necessarily have the minimum at α = α0

n, and hence selection consistency may
not lead to asymptotic loss efficiency in geostatistical regression models. Never-
theless, when θ = θ0 is known, Theorem 3.2 reduces to the standard asymptotic
theory of GIC in linear regression [see Theorem 2 of Shao (1997)], in which se-
lection consistency is known to imply asymptotic loss efficiency. This property
continues to hold if θ̂(α) in (2.7), and (3.5) is replaced by a common estimate θ̂ ,
independent of α. Then for α ∈ A0

n \ {α0
n},

L(α; θ̂) − L
(
α0

n; θ̂
) = (η + ε)′�−1(θ̂)

(
M(α; θ̂) − M

(
α0

n; θ̂
))

(η + ε) ≥ 0,

almost surely.
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COROLLARY 3.1. Consider the data generated from (2.1) and the model
defined in (2.2) and (2.3) with θ0 being the true covariance parameter vec-
tor [i.e., var(Z) = �(θ0)]. Suppose that (C1)–(C5) are satisfied with θ̂(α) and
θα in (C2)–(C5) being replaced by θ̂ and a constant vector θc ∈ �, indepen-
dent of α. Let α̂τn be the model selected by a modified GIC criterion with θ̂(α)

in (2.7) being replaced by θ̂ . In addition, suppose that limn→∞ τn = ∞, and
limn→∞ supα∈An\A0

n

τnpn

R(α;θc)
= 0.

(i) If |A0
n| = 0, then α̂τn is asymptotically loss efficient in the sense that

L(α̂τn; θ̂)/ infα∈An L(α; θ̂)
P→1, as n → ∞.

(ii) If |A0
n| ≥ 1 and (3.27) holds, then α̂τn is consistent and asymptotically loss

efficient in the sense that L(α̂τn; θ̂)/ infα∈An L(α; θ̂)
P→1, as n → ∞.

4. Variable selection under an incorrect covariance model. In this section,
we establish the asymptotic theory of GIC for variable selection, when the covari-
ance model is mis-specified with �0 �= �(θ0), yielding L0(θ0) �= 0. To ensure that
the asymptotic optimality of GIC for �0 = �(θ0) carries over to this case, we need
a stronger condition in place of (C4):

(C4′) For θα defined in (C2),

lim
n→∞ sup

α∈An\A0
n

pn

R(α; θα) − L0(θ0)
= 0.

THEOREM 4.1. Consider the data generated from (2.1) and the model given
by (2.2) and (2.3). Suppose that the conditions (C1)–(C3), (C4′) and (C5) are
satisfied:

(i) If |A0
n| ≤ 1, then α̂2 is asymptotically loss efficient. If |A0

n| = 1, then α̂2 is
consistent.

(ii) If |A0
n| ≥ 2 for sufficient large n, |A0

n|q = o(L0(θ0)) for some q > 0, and

lim
n→∞

pn

L0(θ0)
= 0,(4.1)

then α̂2 is asymptotically loss efficient.

PROOF. Let L∗(α; θα) = L(α; θα)−L0(θ0); α ∈An \A0
n. We begin by show-

ing that

	2(α) = ν + 2L∗(α; θα) + op

(
L∗(α; θα)

)
,(4.2)
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uniformly for α ∈ An \A0
n, where ν is defined in (3.8) and is independent of α. By

an argument similar to that used to prove (3.9), we have

	2(α) = n log(2π) + log det(�0) + n − tr
(
�0�

−1(θ)
)

+ (η + ε)′�−1(θ0)(η + ε)

+ tr
((

(η + ε)(η + ε)′ − �0
)(

�−1(θα) − �−1(θ0)
))

+ 2L(α; θα) − 2(η + ε)′�−1(θα)M(α; θα)(η + ε) + 2p(α)

+ 2μ′
0�

−1(θα)A(α; θα)(η + ε) + op

(
R(α; θα)

)
= ν + tr

((
(η + ε)(η + ε)′ − �0

)(
�−1(θα) − �−1(θ0)

))
+ 2L∗(α; θα) − 2(η + ε)′�−1(θα)M(α; θα)(η + ε) + 2p(α)

+ 2μ′
0�

−1(θα)A(α; θα)(η + ε) + op

(
R(α; θα)

)
,

uniformly for α ∈An \A0
n. Hence by (C5) and an argument similar to that used to

prove (3.8), for (4.2) to hold, it suffices to show that

(η + ε)′�−1(θα)M(α; θα)(η + ε) − p(α) = op

(
R(α; θα) − L0(θ0)

)
,

μ′
0�

−1(θα)A(α; θα)(η + ε) = op

(
R(α; θα) − L0(θ0)

)
,

uniformly for α ∈ An \A0
n, and

sup
α∈An\A0

n

∣∣∣∣ L∗(α; θα)

R(α; θα) − L0(θ0)
− 1

∣∣∣∣ = op(1).(4.3)

The above three equations follow from arguments similar to those used to
prove (3.10)–(3.12).

(i) Clearly, (4.2) implies (3.8). Therefore, if |A0
n| = 0, it follows from (4.3)

and (C2) that α̂2 is asymptotically loss efficient. On the other hand, if |A0
n| = 1,

it suffices to show (3.17) and (3.18). First, we prove (3.17). By (C3), (C4′)
and an argument similar to that used to prove (3.19), we have L∗(α0

n; θ̂(α0
n)) =

op(L∗(α; θ̂(α))), uniformly for α ∈ An \ {α0
n}. Next, we prove (3.18). By (C3),

(C4′) and an argument similar to that used to prove (3.20), we have 	2(α
0
n) =

ν∗ + op(L∗(α; θ̂(α))), uniformly for α ∈ An \ {α0
n}. This together with (4.2) im-

plies (3.18), and hence the proof of (i) is complete.
(ii) In view of (3.8), it suffices to show that

	2(α) = ν∗ + 2L(α; θ0) + op

(
L(α; θ0)

)
,(4.4)

uniformly for α ∈ A0
n, where ν∗ = ν − 2L0(θ0) with ν being defined in (3.8). By

an argument similar to that used to prove (3.14), we have

	2(α) = ν∗ − 2
{
(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − p(α)

}
(4.5)

+ 2L(α; θ0) + Op(1); α ∈ A0
n.
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Therefore, by an argument similar to that used to prove (3.13), we only need to
show that

(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − p(α) = op

(
L(α; θ0)

)
,(4.6)

uniformly for α ∈A0
n and

sup
α∈A0

n

∣∣∣∣L(α; θ0)

R(α; θ0)
− 1

∣∣∣∣ = op(1).(4.7)

First, we prove (4.6). Clearly, by (2.4) and (C1), we have

E
(
(η + ε)′�−1(θ0)M(α; θ0)(η + ε)

) = c(α)p(α),(4.8)

where lim supn→∞ supα∈An
c(α) < ∞. Hence by (3.2) and (4.1), c(α)p(α) −

p(α) = o(R(α; θ0)) uniformly for α ∈ A0
n. It remains to show that

(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − c(α)p(α) = op

(
R(α; θ0)

)
,

uniformly for α ∈A0
n. Applying Chebyshev’s inequality, we have for any ε > 0,

P

{
sup

α∈A0
n

∣∣∣∣(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − c(α)p(α)

R(α; θ0)

∣∣∣∣ > ε

}

≤ ∑
α∈A0

n

E|(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − c(α)p(α)|2m

ε2mR2m(α; θ0)

≤ ∑
α∈A0

n

c1{tr(�0�
−1(θ0)M(α; θ0)�0�

−1(θ0)M(α; θ0))}m
ε2mR2m(α; θ0)

≤ ∑
α∈A0

n

c2p
m(α)

ε2mL2m
0 (θ0)

≤ ∑
α∈A0

n

c3

ε2mLm
0 (θ0)

,

where the second-to-last equality follows from (C1) and R(α; θ0) ≥ L0(θ0), for
α ∈An, and the last equality follows from (4.1). Taking m = 1/q , we obtain (4.6).
Next, we prove (4.7). By (3.1), (3.2) and (4.8), we have for α ∈ A0

n,

L(α; θ0) − R(α; θ0) = 1
2

{
(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − c(α)p(α)

}
,

where lim supn→∞ supα∈A0
n
c(α) < ∞. Thus (4.7) follows from an argument sim-

ilar to that used to prove (4.6). Thus we obtain (4.4). This completes the proof.
�

THEOREM 4.2. Under the setup of Theorem 4.1, suppose that limn→∞ τn =
∞, and

lim
n→∞ sup

α∈An\A0
n

τnpn

R(α; θα) − L0(θ0)
= 0.(4.9)
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(i) If |A0
n| = 0, then α̂τn is asymptotically loss efficient.

(ii) If |A0
n| ≥ 1, |A0

n|q = o(L0(θ0)) for some q > 0, and (3.27) is satisfied, then
α̂τn is consistent and asymptotically loss efficient.

PROOF. (i) By (4.2) and (4.9), we have 	τn(α) = ν + 2L∗(α; θα) + op(L∗(α;
θα)), uniformly for α ∈ An \A0

n, and hence

	τn(α) = ν∗ + 2L(α; θα) + op

(
L(α; θα)

)
,(4.10)

uniformly for α ∈ An \A0
n. In addition, (4.3) gives

sup
α∈An\A0

n

∣∣∣∣L(α; θα)

R(α; θα)
− 1

∣∣∣∣ = op(1).(4.11)

These together with (C2) imply that α̂τn is asymptotically loss efficient.
(ii) First, we prove the asymptotic loss efficiency of α̂τn . By (4.7) and (4.11), we

have

sup
α∈An

∣∣∣∣L(α; θ0)

R(α; θ0)
− 1

∣∣∣∣ = op(1).(4.12)

By (4.9) and an argument similar to that used to prove (4.4), we have

	τn(α) = ν∗ + 2L(α; θ0) + op

(
L(α; θ0)

)
,

uniformly for α ∈ A0
n. This together with (4.10), (4.12) and (C2) implies that α̂τn

is asymptotically loss efficient.
Next, we prove the consistency of α̂τn . By (4.5) and (4.8), we have for α ∈ A0

n,

	τn(α) = ν − {
(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − c(α)p(α)

}
(4.13)

+ (
τn − c(α)

)
p(α) + op

(
τnp(α)

)
.

By (3.27) and an argument similar to that used to prove (3.30), we have

sup
α∈A0

n

∣∣∣∣(η + ε)′�−1(θ0)M(α; θ0)(η + ε) − c(α)p(α)

τnp(α)

∣∣∣∣ = op(1).

Hence by (4.13),

	τn(α) = ν + (
τn − c(α)

)
p(α) + op

(
τnp(α)

)
,(4.14)

uniformly for α ∈ A0
n. Thus we obtain (3.32). In addition, by (4.9), (4.10)

and (4.14),

min
α∈An\A0

n

	τn(α) − 	τn

(
α0

n

) P→∞,

as n → ∞. This together with (3.32) implies that α̂τn is consistent. This completes
the proof. �
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REMARK 4.1. Recall that in (ii) of Theorem 3.2, asymptotic loss efficiency of
GIC is generally not satisfied, unless θ̂(α)’s are replaced by a common estimate.
In contrast, in (ii) of Theorem 4.2, we have, from (3.1) and an argument similar
to that used to prove (4.6) that L(α; θ0) = L0(θ0) + op(L0(θ0)), uniformly for
α ∈A0

n, which leads to

L(α; θ̂(α))

minα′∈An
L(α′; θ̂(α′))

P→1,

for any α ∈ A0
n, indicating that the asymptotic loss efficiency can be achieved for

any correct model.

5. Examples. In this section, we provide some specific examples for GIC that
satisfy regularity conditions (C1)–(C5). Throughout this section, we assume that
pn = p, An = A, A0

n = A0 and α0
n = α0 are fixed, and give proofs of the theoreti-

cal results in the supplemental material [Chang, Huang and Ing (2014)].

5.1. One-dimensional examples. First, we consider spatial models in the one-
dimensional space with D = [0, nδ] ⊆ R; δ ∈ [0,1). We assume the exponential
covariance model for η(·),

cov
(
η(s), η

(
s∗)) = σ 2 exp

(−κ
∣∣s − s∗∣∣); s, s∗ ∈ D,(5.1)

where σ 2 > 0 is the variance parameter, and κ > 0 is a spatial dependence pa-
rameter. We also assume that the data are uniformly sampled at si = in−(1−δ);
i = 1, . . . , n, si ∈ D. Clearly, δ = 0 corresponds to the fixed domain asymptotic
framework with D = [0,1], and a larger δ corresponds to a faster growth rate of
the domain. Note that σ 2κ is often referred to as a microergodic parameter under
fixed domain asymptotics [Stein (1999)].

The following proposition allows us to replace (C1)–(C5) in Theorems 3.1
and 3.2 by simpler conditions.

PROPOSITION 5.1. Consider �(θ) in (2.3), where �η is given by (5.1) and
si = in−(1−δ); i = 1, . . . , n, for some δ ∈ [0,1). Let θ = (v2, σ 2, κ)′. Then for any
compact set � ⊆ (0,∞)3 and any θ0 = (v2

0, σ 2
0 , κ0)

′ ∈ �,

0 < lim inf
n→∞ inf

θ∈�
λmin

(
�−1/2(θ)�(θ0)�

−1/2(θ)
)

(5.2)
≤ lim sup

n→∞
sup
θ∈�

λmax
(
�−1/2(θ)�(θ0)�

−1/2(θ)
)
< ∞.

PROOF. The proof follows directly from Proposition 2.1 of Chang, Huang and
Ing (2013). �



ASYMPTOTICS FOR GEOSTATISTICAL REGRESSION MODEL SELECTION 2461

THEOREM 5.1. Consider the data generated from (2.1) and the model given
by (2.2) and (2.3) with θ0 being the true covariance parameter vector [i.e.,
var(Z) = �(θ0)]. Assume the setup of Proposition 5.1 with δ ∈ (0,1). Suppose

that θ̂(α)
P→ θα for some θα ∈ �; α ∈ A, and

min
α∈A\A0

R(α; θα) → ∞,(5.3)

as n → ∞. Then α̂2 is asymptotically loss efficient if |A0| ≤ 1. In addition, suppose
that limn→∞ τn = ∞ and τn = o(minα∈A\A0 R(α; θα)).

(i) If |A0| = 0, then α̂τn is asymptotically loss efficient.
(ii) If |A0| ≥ 1, then α̂τn is consistent.

REMARK 5.1. The assumption, θ̂(α)
P→ θα ; α ∈ A, is generally satisfied un-

der the increasing domain asymptotic framework, and is guaranteed to hold when
R(α; θ0) = o(nδ), for all α ∈ A \ A0; see Theorem 2.3 of Chang, Huang and Ing
(2013). In fact, as given by Theorems 5.2–5.4, the assumption continues to hold
even if R(α; θ0) > cnδ for α ∈ A \A0 and some constant c > 0.

Although the theorem is established under the increasing domain asymptotic
framework, the theorem remains valid in some situations even when θ̂(α) fails
to converge for some α ∈ A under the fixed domain asymptotic framework with
δ = 0. As mentioned at the end of Section 2.1, our asymptotic results of GIC are
still valid for random X. In what follows, we provide three examples based on
different classes of regressors that are either random or fixed. We derive the con-
sistency of GIC not only for δ ∈ (0,1) but also for δ = 0 without requiring the
regularity conditions. The three examples below can be seen to have increasing
degrees of smoothness in space, leading to different conditions to ensure the con-
sistency of GIC.

EXAMPLE 5.1 (White-noise processes). Consider p regressors, xj (·); j =
1, . . . , p, generated from independent white-noise processes with

xj (s) ∼ N
(
0, v2

j

); s ∈ [
0, nδ], j = 1, . . . , p,

for some δ ∈ [0,1), where v2
j > 0; j = 1, . . . , p.

EXAMPLE 5.2 (Spatially dependent processes). Consider p regressors, xj (·);
j = 1, . . . , p, generated from independent zero-mean Gaussian spatial processes
with covariance functions

cov
(
xj (s), xj

(
s′)) = σ 2

j exp
(−κj

∣∣s − s′∣∣); s, s′ ∈ [
0, nδ],

for some δ ∈ [0,1), where σ 2
j , κj > 0; j = 1, . . . , p.
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EXAMPLE 5.3 (Monomials). Consider p regressors, xj (·); j = 1, . . . , p,

xj (s) = n−δj sj ; s ∈ [
0, nδ],

for some δ ∈ [0,1). Note that a scaling factor n−δj is introduced to standard-

ize xj (·) so that 1
nδ

∫ nδ

0 (xj (s) − x̄j )
2 ds does not depend on n, where x̄j =

1
nδ

∫ nδ

0 xj (s) ds.

THEOREM 5.2. Consider the model defined in (2.2) with the white-noise re-
gressors given by Example 5.1. Suppose that Z ∼ N(Xβ0,�(θ0)) conditional
on X, where β0 = (β0,0, . . . , β0,p)′ ∈ R

p+1 and θ0 = (v2
0, σ 2

0 , κ0)
′ ∈ � ⊆ (0,∞)3

are constant vectors, and �(θ0) is given by Proposition 5.1 for some δ ∈ [0,1).
Assume that � is compact and

θ0 +
( ∑

j∈α0\α
β2

0,j v
2
j ,0,0

)′
∈ �; α ∈ A.

If limn→∞ τn = ∞ and τn = o(n), then limn→∞ P {α̂τn = α0} = 1.

REMARK 5.2. Theorem 5.2 assumes A0 �= ∅. Suppose that μ0(·) has an ad-
ditional unobserved term ζ(·), which is also a white-noise process,

μ0(s) = β0,0 +
p∑

j=1

β0,j xj (s) + ζ(s); s ∈ D,(5.4)

and hence |A0| = 0. Then by Theorem 5.1 and an argument similar to that in proof
of Theorem 5.2 for δ = 0, GIC is also asymptotically loss efficient for δ ∈ [0,1),
provided that limn→∞ τn = ∞ and τn = o(n).

THEOREM 5.3. Consider the model defined in (2.2) with the spatially depen-
dent regressors given by Example 5.2. Suppose that Z ∼ N(Xβ0,�(θ0)) con-
ditional on X, where β0 = (β0,0, . . . , β0,p)′ ∈ R

p+1 and θ0 = (v2
0, σ 2

0 , κ0)
′ ∈

� ⊆ (0,∞)3 are constant vectors, and �(θ0) is given by Proposition 5.1 with
δ ∈ [0,1). Assume that � is compact and θ0 + (0,

∑
j∈α0\α β2

0,j σ
2
j , κ∗

α)′ ∈ � for

any α ∈ A, where κ∗
α = (σ 2

0 + ∑
j∈α0\α β2

0,j σ
2
j )−1(

∑
j∈α0\α β2

0,j σ
2
j (κj − κ0)). If

limn→∞ τn = ∞ and τn = o(n(1+δ)/2), then limn→∞ P {α̂τn = α0} = 1.

REMARK 5.3. Theorem 5.3 assumes A0 �= ∅. Suppose that μ0(·) is given
by (5.4), where ζ(·) is an unobserved spatial dependent process given in Exam-
ple 5.2. Then by Theorem 5.1 and an argument similar to that in proof of Theo-
rem 5.3 for δ = 0, GIC is also asymptotically loss efficient for δ ∈ [0,1), provided
that limn→∞ τn = ∞ and τn = o(n(1+δ)/2).
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THEOREM 5.4. Consider the model defined in (2.2) with the monomial
regressors given by Example 5.3. Suppose that Z ∼ N(Xβ0,�(θ0)), where
β0 = (β0,0, . . . , β0,p)′ ∈ R

p+1 and θ0 = (v2
0, σ 2

0 , κ0)
′ ∈ � ⊆ (0,∞)3 are con-

stant vectors, and �(θ0) is given by Proposition 5.1 with δ ∈ (0,1). Assume
that A = {∅, {1}, {1,2}, . . . , {1, . . . , p}}, � is compact, and θ0 + (0, γ (k),

−(σ 2
0 + γ (k))−1γ (k)κ0)

′ ∈ �; k = 0,1, . . . , p, where γ (k) = β ′
0Vp,pβ0 −

β ′
0Vp,kV−1

k,kVk,pβ0 and Vk,p = ( 1
i+j−1)(k+1)×(p+1). If limn→∞ τn = ∞ and

τn = o(nδ), then limn→∞ P {α̂τn = α0} = 1.

REMARK 5.4. Theorem 5.4 assumes A0 �= ∅. Suppose that μ0(·) is given
by (5.4), where ζ(s) = n−δksk ; s ∈ D, is an unobserved function with k > p. Then
by Theorem 5.1, GIC can be shown to be asymptotically loss efficient for δ ∈
(0,1), provided that limn→∞ τn = ∞ and τn = o(nδ).

The results of Theorems 5.2–5.4 show that the consistency of GIC depends on
not only the smoothness of regressors in space but also the growth rate of the
domain. Evidently, GIC is more difficult to identify the true model when the can-
didate regressors are smoother in space. Although there exists τn such that GIC is
consistent for either white-noise regressors or spatially dependent regressors under
the fixed domain asymptotic framework, interestingly, as shown in the next theo-
rem, consistent polynomial order selection turns out not possible when the true
model has at least one nonzero regression coefficient and |A0| ≥ 2 under the fixed
domain asymptotic framework.

THEOREM 5.5 (Inconsistency). Consider the same setup as in Theorem 5.4,
except that δ = 0:

(i) If limn→∞ τn = ∞, then limn→∞ P {α̂τn = {∅}} = 1.
(ii) If α0 �= {∅} and lim infn→∞ τn > 0, then limn→∞ P {α̂τn = α0} < 1.

5.2. A two-dimensional exponential model. Consider the multiplicative expo-
nential covariance model

cov
(
η(s), η

(
s∗)) = σ 2 exp

(−κ
{∣∣s1 − s∗

1
∣∣ + ∣∣s2 − s∗

2
∣∣}),(5.5)

parameterized by σ 2 > 0 and κ > 0, where s = (s1, s2) and s∗ = (s∗
1 , s∗

2 ) ∈ D =
[0, nδ/2]2 ⊆ R

2; δ ∈ [0,1). Clearly, δ = 0 corresponds to the fixed domain asymp-
totic framework with D = [0,1]2, and a larger δ corresponds to a faster growth
rate of the domain.

Similarly to the one-dimensional case, we first prove (5.2), which is the key to
show (C1)–(C5).

PROPOSITION 5.2. Consider �(θ) in (2.3) with �η given by (5.5), v2 = 0,
and sk = (im−(1−δ), jm−(1−δ)); k = i + (j − 1)m; i, j = 1, . . . ,m, for some inte-
ger m = n1/2, where δ ∈ [0,1). Let θ = (σ 2, κ)′. Then (5.2) holds for any compact
set � ⊆ (0,∞)2 and any θ0 = (σ 2

0 , κ0)
′ ∈ �.
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PROOF. Write

�(θ) = σ 2B(θ) ⊗ B(θ),(5.6)

where B(θ) = (ρ|i−j |)m×m and ρ = exp(−κm−(1−δ)). By (5.6),

λmax
(
�−1/2(θ)�(θ0)�

−1/2(θ)
)

≤ σ 2
0

σ 2 λmax
((

B(θ0) ⊗ B(θ0)
)(

B−1(θ) ⊗ B−1(θ)
))

= σ 2
0

σ 2 λmax
((

B(θ0)B−1(θ)
) ⊗ (

B(θ0)B−1(θ)
))

= σ 2
0

σ 2 λ2
max

((
B(θ0)B−1(θ)

))
< ∞,

where the last inequality follows from Proposition 2.1 of Chang, Huang and Ing
(2013). This gives the last inequality of (5.2). The proof for the first inequality
of (5.2) is analogous and omitted. This completes the proof. �

THEOREM 5.6. Consider the data generated from (2.1), the model given
by (2.2) and (2.3) and the setup of Proposition 5.2 with δ ∈ [0,1). Suppose that

θ̂(α)
P→ θα for some θα ∈ �; α ∈ A, and (5.3) holds. Then α̂2 is asymptoti-

cally loss efficient if |A0| ≤ 1. In addition, suppose that limn→∞ τn = ∞ and
τn = o(minα∈A\A0 R(α; θα)).

(i) If |A0| = 0, then α̂τn is asymptotically loss efficient.
(ii) If |A0| ≥ 1, then α̂τn is consistent.

REMARK 5.5. As in the one-dimensional case, the assumption, θ̂(α)
P→ θα ;

α ∈ A \ A0, is generally satisfied. In fact, the assumption is guaranteed to hold
when R(α; θ0) = o(n(1+δ)/2), for any α ∈ A; see Lemma A.5 of Chang, Huang
and Ing (2014).

Here we consider only a multiplicative exponential model because of two dif-
ficulties. First, for the two-dimensional exponential covariance model, the asymp-
totic distribution of the ML estimate of (σ 2κ, κ)′ is needed but has yet to be de-
rived unless κ is assumed known [Du, Zhang and Mandrekar (2009), Wang and
Loh (2011)]. Second, our proof relies on a decomposition of the log-likelihood
into different layers having different orders of magnitude. Such a decomposition
requires an innovative treatment of the log-likelihood for the two-dimensional ex-
ponential model. Further research is needed to characterize the asymptotic behav-
ior of GIC under the two-dimensional exponential covariance model or the more
general Matérn covariance model [Matérn (1986)], but is beyond the scope of this
paper.
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6. Summary and discussion. In this article, we study the asymptotic proper-
ties of GIC for geostatistical model selection regardless of whether the covariance
model is correct or wrong, and establish conditions under which GIC is consistent
and asymptotically loss efficient. Some specific examples that satisfy the regular-
ity conditions are also provided. To the best of our knowledge, this research is the
first to provide such results for GIC in geostatistical regression model selection.

The method we developed also sheds some light for solving linear mixed model
selection problems involving parameters that cannot be estimated consistently. For
example, consider a simple Laird–Ware model [Laird and Ware (1982)],

Zij = x′
ijβ + ηi + εij ; i = 1, . . . ,m, j = 1, . . . , ni,(6.1)

where xij ’s are p-vector of fixed effects, and ηi ∼ N(0, σ 2) is the random effect for
subject i, independent of εij ∼ N(0, v2). Here β ∈ R

p is the regression-coefficient
vector, and θ = (σ 2, v2)′ consists of random-effect parameters. Clearly, σ 2 in (6.1)
cannot be estimated consistently when m is fixed [Longford (2000)]. Nevertheless,
as shown below, it is still possible to derive a condition analogous to (C2). For
simplicity, we consider a simple case of (6.1) with mean zero and no fixed effect.
Let θ̂ be the ML estimate of θ and θ0 = (v2

0, σ 2
0 )′ be the true parameter value.

Applying an argument similar to that used to prove (2.10) of Chang, Huang and
Ing (2013), twice the negative log-likelihood of (6.1) can be written as

−2�(θ) = n log(2π) +
m∑

j=1

lognj + n logv2 + n
v2

0

v2 + h(θ) + Op(1),(6.2)

where n = ∑m
i=1 ni , h(θ) = ∑m

i=1{ε′
i�

−1
i εi − E(ε′

i�
−1
i εi )}, εi = (εi1, . . . , εi,ni

)′
and �j = σ 21nj

1′
nj

+ v2Inj
. We shall show that �(θ̂) = �(θ0) + Op(1). Applying

an argument similar to that used to prove Theorem 2.2 in Chang, Huang and Ing
(2013),

θ̂ = (
v2

0, σ 2
0
)′ + (

Op

(
n−1/2)

,Op(1)
)′
.(6.3)

Let �n = {θ ∈ � : |σ 2 −σ 2
0 | < M, |v2 −v2

0 | ≤ Mn−1/2} for any constant M > 0.
By Lemma B.1 of Chan and Ing (2011) and an argument similar that used to
prove (2.12) in Chang, Huang and Ing (2013), we have

E
(

sup
θ∈�n

∣∣h(θ) − h(θ0)
∣∣2)

≤ sup
θ∈�n

{(
v2 − v2

0
)2 var

(
∂

∂v2 h(θ)

)
+ (

σ 2 − σ 2
0
)2 var

(
∂

∂σ 2 h(θ)

)}

= O(1),

which implies h(θ̂) − h(θ0) = Op(1). This together with (6.2) and (6.3) gives
�(θ̂) = �(θ0) + Op(1), indicating some possibility to establish the asymptotic the-
ory of GIC for the Laird–Ware model, even when some random-effect parameter
cannot be consistently estimated.
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TABLE 1
Frequencies of models selected by BIC based on 100 simulation replicates, where ∅ denotes the

intercept only model and α0 denotes the correct model

μ(s) = 1 + s2 sin(π/s) μ(s) = 1 + s sin(π/s)

n ∅∅∅ α0
∅∅∅ α0

100 67 33 38 62
500 66 34 23 77

1000 76 24 8 92

In this article, we focus only on variable selection under a certain covariance
model. Clearly, simultaneous selection of both variables and covariance models
is an interesting problem that deserves further investigation. Although we believe
that the framework we developed in this article can be generalized to this problem,
it will require introducing more complex notation.

In addition, some more efforts are needed to completely characterize GIC, even
for the exponential covariance model in one dimension. We note that both the
candidate regressors in Examples 5.1 and 5.2 are not of bounded variation (BV),
whereas the polynomial regressors given by Example 5.3 are BV functions. It
is of interest to know if BV plays an important role. We conducted a small test
simulation experiment under the setup of (2.2) with only one regressor x(·) and
v2 = 0.5, where μ(s) = 1 + x(s), η(·) is given by (5.1) with σ 2 = 0.5 and κ = 1,
and data are sampled at {1/n,2/n, . . . ,1}. We consider two functions for x(·),
which are f1(s) = s2 sin(π/s) and f2(s) = s sin(π/s), in combination with three
different sample sizes (n = 100,500,1000). Note that f1(·) is of bounded varia-
tion on [0,1], and f2(·) is not. The results based on 100 simulation replicates with
known σ 2, κ and v2 are shown in Table 1. Clearly, GIC has better ability in iden-
tifying the correct model when f2(·), rather than f1(·), is used as the regressor,
which partially supports that BV may be an important factor.

SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic theory of generalized information criterion for
geostatistical regression model selection” (DOI: 10.1214/14-AOS1258SUPP;
.pdf). The supplement materials contain the proofs of all theorems in Section 5.
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