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EXACT ROSENTHAL-TYPE BOUNDS

BY IOSIF PINELIS

Michigan Technological University

It is shown that, for any given p ≥ 5, A > 0 and B > 0, the exact upper
bound on E|∑Xi |p over all independent zero-mean random variables (r.v.’s)
X1, . . . ,Xn such that

∑
EX2

i = B and
∑

E|Xi |p = A equals cpE|�λ − λ|p ,

where (λ, c) ∈ (0,∞)2 is the unique solution to the system of equations
cpλ = A and c2λ = B, and �λ is a Poisson r.v. with mean λ. In fact, a more
general result is obtained, as well as other related ones. As a tool used in the
proof, a calculus of variations of moments of infinitely divisible distributions
with respect to variations of the Lévy characteristics is developed.

1. Introduction, summary, and discussion. Let X denote the class of all
finite sequences X = (X1, . . . ,Xn) of independent zero-mean random variables
(r.v.’s). For any X = (X1, . . . ,Xn) ∈ X , let

SX := X1 + · · · + Xn.(1)

Take any real number

p > 2(2)

and any positive real numbers A and B . Consider

Xp;A,B :=
{

X = (X1, . . . ,Xn) ∈ X :
n∑
1

EX2
i = B,

n∑
1

E|Xi |p = A

}
,(3)

Xp;≤A,≤B :=
{

X = (X1, . . . ,Xn) ∈ X :
n∑
1

EX2
i ≤ B,

n∑
1

E|Xi |p ≤ A

}
,(4)

Ep;A,B := sup
{
E|SX|p : X ∈ Xp;A,B

}
,(5)

Ep;≤A,≤B := sup
{
E|SX|p : X ∈ Xp;≤A,≤B

}
.(6)

Rosenthal’s upper bound (Theorem 3 in [30]) can be presented by the inequality

Ep;A,B ≤ Cp max
(
A,Bp/2)

,(7)
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with Cp := (p/2)p/22p+p2/4. In particular, this implies that Ep;A,B < ∞. For
some of the subsequent developments, see, for example, Sections 4 and 5 in [11],
[8, 12] and references therein.

PROPOSITION 1.1. One has ∅ �= Xp;A,B ⊆ Xp;≤A,≤B . Moreover, one has
the homogeneity property Ep;κpA,κ2B = κpEp;A,B for all real κ > 0. Furthermore,
Ep;A,B is nondecreasing in A and in B and hence

Ep;≤A,≤B = Ep;A,B.(8)

All the necessary proofs are deferred to Sections 2 and 3. In particular, Propo-
sition 1.1 will be proved in Section 3.

Using Proposition 1.1, one can easily see (cf. [8]) that the problem of finding
a good expression of Ep;A,B is equivalent to that of finding, for an arbitrary bal-
ancing parameter γ ∈ (0,∞), a good expression of the best constant Cp;γ in the
Rosenthal-type inequality

Ep;A,B ≤ Cp;γ max
(
γA,Bp/2);(9)

cf. (7). Indeed, one has:

PROPOSITION 1.2. Cp;γ = Ep;1/γ,1 and Ep;A,B = Bp/2Cp;Bp/2/A.

The idea of balancing the contributions of the terms A and Bp/2 in the Rosen-
thal-type bounds, depending on the relative sizes of these terms, goes back at least
to the Corollary in [26]; see also Sections 4 and 5, Remark 6.8, and Theorem 8.3
in [11], Proposition 9.2 in [19], Corollaries 3.1, 3.2 in [23], and Corollaries 2, 3, 4
in [20].

For any real λ > 0, let �λ denote a r.v. with the Poisson distribution with
mean λ, and then introduce the corresponding centered r.v.

�̃λ := �λ − λ.

Using Theorem 4 by Utev [32], Bestsennaya and Utev [1] showed that

Ep;A,B = cpE|�̃λ|p if p = 4,6, . . . ,(10)

where

λ := λp(A,B) :=
(

Bp/2

A

)2/(p−2)

and c := cp(A,B) :=
(

A

B

)1/(p−2)

,(11)

so that the pair (λ, c) ∈ (0,∞)2 is the unique solution to the system of equations

c2λ = B and cpλ = A.

Obviously, if p is an even natural number, then the absolute pth moment E|X|p
of a r.v. X is the same as its pth moment EXp . This fact allows the proof in [1] to



EXACT ROSENTHAL-TYPE BOUNDS 2513

be based on the well-known representation of moments in terms of cumulants and
the log-convexity of

∫
R

|x|rG(dx) in r > 0, for any nonnegative measure G.
Under the additional restriction that the Xi’s be symmetric(ally distributed),

exact Rosenthal-type bounds were obtained in [4, 7, 8, 32]. In particular, it was
shown by Utev [32] that

sup
X∈Xp;≤A,≤B,

X is symmetric

E|SX|p = sup
X∈Xp;A,B,

X is symmetric

E|SX|p = cpE
∣∣�λ/2 − ��

λ/2

∣∣p(12)

if p > 4, where λ and c are as in (11), and ��
λ/2 is an independent copy of �λ/2.

Take any

q ∈ (2,p](13)

and then take any r.v. X such that

E|X|q < ∞.(14)

Consider

Xp;X;A,B := {X ∈ Xp;A,B : X is independent of X},
(15)

Xp;X;≤A,≤B := {X ∈ Xp;≤A,≤B : X is independent of X}.
The main result of the present paper is:

THEOREM 1.3. Suppose that p ≥ q ≥ 5 and EX = 0. Then

sup
X∈Xp;X;≤A,≤B

E|X + SX|q = sup
X∈Xp;X;A,B

E|X + SX|q
(16)

= max
(
E|X + c�̃λ|q,E|X − c�̃λ|q)

,

where λ and c are as in (11), and the r.v. �̃λ is independent of X.

In the special case when X = 0 and q = p, Theorem 1.3 yields

Ep;A,B = Ep;≤A,≤B = cpE|�̃λ|p if p ≥ 5;
cf. (10).

Allowing q in Theorem 1.3 to differ from p not only provides a more general
result, but also helps with the proof. Indeed, Theorem 1.3 will be first proved in
the case when p > q > 5 [see (114)], and then the proof will be completed by limit
transitions in q and in p.
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REMARK 1.4. It is of substantial interest to obtain exact Rosenthal-type in-
equalities for moment functions more general than the function | · |p used in The-
orem 1.3; cf., for example, [3, 4]. In fact, one can indeed easily extend the result
of Theorem 1.3 to the class of all moment functions of the form

x 	−→
∫
[5,p]×[0,∞)

(a + x)r+ν1(dr × da)

(17)
+

∫
[5,p]×[0,∞)

(a − x)r+ν2(dr × da),

where ν1 and ν2 are any nonnegative Borel measures on the set [5,p]×[0,∞) such
that the resulting moment function is real-valued; of course, the moment function
x 	→ |x|p(= x

p
+ + (−x)

p
+) is just one member of this class; as usual, we let x+ :=

0∨x and xr+ := (x+)r for all real x and all real r > 0. To see why this extension of
Theorem 1.3 is valid, one needs to look at the place in the proof of the theorem that
imposes the narrowest restriction on the moment function—which is the condition
that the difference h′′(uαs) − up−4h′′(αs), considered in (72), be strictly positive
for all u, α, and s in (0,1). The class of functions given by (17) may be compared
with classes of moment functions considered, for example, in [10, 13, 15].

In what follows, to avoid repetitiveness, it is assumed that the different instances
of

all r.v.’s entering the same expression are independent.

Thus, conditions such as that of the independence of the r.v.’s �̃λ and X in Theo-
rem 1.3 may not be explicitly stated in the sequel.

Theorem 1.3 is complemented by:

THEOREM 1.5. Suppose that p ∈ (2,3] and E|X|p < ∞ (the condition
EX = 0 is not needed here). Then

sup
X∈Xp;X;≤A,≤B

E|X + SX|p = sup
X∈Xp;X;A,B

E|X + SX|p
(18)

= A + E
∣∣X + B1/2Z

∣∣p.

Here and in what follows, Z ∼ N(0,1), unless specified otherwise.

Theorem 1.5 is based on a result by Tyurin [31]. In the case p = 3, important for
applications to Berry–Esseen bounds, a certain refinement of (18) was obtained in
Corollary 2 from [22], based on the main result in the paper [16], a shorter version
of which appeared in [24].

One has the following interpretation of the last expression in (18), in terms
of centered Poisson r.v.’s �̃λ1 and �̃λ2 (such that the r.v.’s X, �̃λ1 , and �̃λ2 are
independent).
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PROPOSITION 1.6. Suppose that p ∈ (2,3] and E|X|p < ∞. Then

A + E
∣∣X + B1/2Z

∣∣p
= lim

(
E|X + c1�̃λ1 + c2�̃λ2 |p :(19)

(c1, c2, λ1, λ2) ∈ Qp;A,B, c1 → 0, |c2| → ∞)
,

where

Qp;A,B := {
(c1, c2, λ1, λ2) ∈ R

2 × (0,∞)2 :
(20)

c2
1λ1 + c2

2λ2 = B, |c1|pλ1 + |c2|pλ2 = A
}
.

Proposition 1.6 will be useful in the proof of Theorem 1.5.
Now one can present a unified form of the exact upper bounds in (16) and (18):

COROLLARY 1.7. Suppose that p ∈ (2,3] ∪ [5,∞) and E|X|p < ∞. For p ∈
[5,∞), also suppose that EX = 0. Then

sup
X∈Xp;X;≤A,≤B

E|X + SX|p

= sup
X∈Xp;X;A,B

E|X + SX|p(21)

= sup
{
E|X + c1�̃λ1 + c2�̃λ2 |p : (c1, c2, λ1, λ2) ∈ Qp;A,B

}
.

By Theorem 1.5 and Proposition 1.6, for p ∈ (2,3] the last supremum in (21)
is “attained in the limit” as c1 → 0 and |c2| → ∞, whereas, by Theorem 1.3, for
p ≥ 5 the same supremum is (actually) attained at (c1, c2, λ1, λ2) = (c,0, λ,0) or
at (c1, c2, λ1, λ2) = (−c,0, λ,0), where λ and c are as in (11).

The cases p ∈ (3,4) and p ∈ (4,5) remain open. Certain considerations suggest
that Theorem 1.5 should hold for p ∈ (3,4) as well, whereas Theorem 1.3 should
hold for p ∈ (4,5)—at least when q = p. For q = p = 4, it is easy to see that the
“answers” in (16) and (18) coincide with each other:

E|X + c�̃λ|4 = E|X − c�̃λ|4 = A + E
∣∣X + B1/2Z

∣∣4.
This situation may be compared with the one concerning the exact Khinchin-

type upper bound. There the summands are weighted independent Rademacher
r.v.’s X1 = a1ε1, . . . ,Xn = anεn, where P(εi = ±1) = 1/2, and the weights
a1, . . . , an are real numbers subject to the restriction

∑n
1 a2

i = 1. Since these sum-
mands have each a simplest symmetric distribution, and there is only one restric-
tion here on the sum of the moments,

∑n
1 EX2

i = ∑n
1 a2

i , it appears that the problem
of the exact Khinchin-type upper bound is significantly simpler than its Rosenthal-
type counterpart. Indeed, in 1960 Whittle [33] gave a very simple proof of the ex-
act Khinchin-type upper bound, E|Z|p , for the case p ≥ 3. The proof in [33] was
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based on the fact that, again for p ≥ 3, the second derivative of |x|p in x is convex
in x ∈ R. It was claimed in [33] that the result holds for all real p ≥ 2, but that
was not supported by the proof. Actually, the problem of the exact Khinchin-type
upper bound in the case p ∈ (2,3) turned to be very difficult and was solved only
in 1981 by Haagerup [6]. Haagerup’s proof was somewhat simplified in [9]; see
also [25]. One may speculate that the case p ≥ 5 in the Rosenthal-type context is
parallel to the case p ≥ 3 in the Khinchin-type one, whereas the Rosenthal-type
case of a small noninteger p ∈ (3,4) ∪ (4,5) is parallel to the Khinchin-type case
of p ∈ (2,3). If so, the remaining Rosenthal-type case of p ∈ (3,4) ∪ (4,5) may
be exceedingly difficult, on comparing the treatment of the Rosenthal-type case of
p ≥ 5 in the present paper with that of the Khinchin-type case of p ≥ 3 in [33]. One
may also note here that the condition p ≥ 5 will be used twice, and in rather dif-
ferent ways, in the proof of Theorem 1.3, namely in the proofs of Propositions 2.9
and 2.11.

For the symmetric case, one has:

THEOREM 1.8. Suppose that p ≥ q ≥ 5 and EX = 0. Then

sup
X∈Xp;X;≤A,≤B,

X is symmetric

E|X + SX|q

(22)
= sup

X∈Xp;X;A,B,

X is symmetric

E|X + SX|q = E
∣∣X + c�λ/2 − c��

λ/2

∣∣q,

where λ and c are as in (11) and, as in (12), ��
λ/2 is an independent copy of �λ/2.

Theorem 1.8 generalizes (12), but only for p ≥ 5. The generalization has two
aspects: (i) letting q differ from p and (ii) introducing the extra summand X. Note
that X is not required to be symmetric in Theorem 1.8.

An advantage of having the extra summand X is illustrated by the following
straightforward combination of Theorems 1.3 and 1.8.

COROLLARY 1.9. Suppose that p ≥ q ≥ 5 and EX = 0. Take any positive
real numbers A0,B0,A1,B1. For each j ∈ {0,1}, let λj := λp(Aj ,Bj ) and cj :=
cp(Aj ,Bj ), in accordance with (11). Then

sup
X∈Xp;≤A0,≤B0 ,

Y∈Xp;≤A1,≤B1 ,

X is symmetric,
X,X,Y are independent

E|X + SX + SY|q = sup
X∈Xp;A0,B0 ,

Y∈Xp;A1,B1 ,

X is symmetric,
X,X,Y are independent

E|X + SX + SY|q

= E
∣∣X + c0�λ0/2 − c0�

�
λ0/2 + c1�̃λ1

∣∣q(23)

∨ E
∣∣X + c0�λ0/2 − c0�

�
λ0/2 − c1�̃λ1

∣∣q.
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This follows immediately from Theorems 1.8 and 1.3, by taking first the supre-
mum in X (say) and then in Y.

Note that, in the case when X is symmetric (or, in particular, zero), the maxi-
mum in (23) simplifies to E|X + c0�λ0/2 − c0�

�
λ0/2 + c1�̃λ1 |q .

Corollary 1.9 may be useful when some, but not all, of the independent sum-
mands are known to be symmetric.

For the calculation of absolute moments, especially such more complicated ones
as in the maximum expression in (23), Fourier- or Fourier–Laplace-type identities
such as those given in [18] can be effective; one of such identities will be repro-
duced in the present paper as (40).

2. Proof of Theorem 1.3.

2.1. Domination by the accompanying compound Poisson distribution.

THEOREM A. Let f :R → R be any twice continuously differentiable func-
tion such that f and f ′′ are convex. Let G be any finite nonnegative Borel measure
on R such that G({0}) = 0 and

∫
R

xG(dx) = 0, and then let XG be any r.v. with
the characteristic function t 	→ exp

∫
R
(eitx − 1)G(dx). Then

sup
{
Ef (SX) : X ∈ X ,GX = G

} = Ef (XG),

where SX is as in (1) and GX is the “sum of the tails” measure defined by

GX(E) := ∑
P
(
Xi ∈ E \ {0})

for all Borel subsets E of R. In particular, for all x ∈ R and all real p ≥ 3,

sup
{
E|SX − x|p : X ∈ X ,GX = G

} = E|XG − x|p,

sup
{
E(SX − x)

p
+ : X ∈ X ,GX = G

} = E(XG − x)
p
+.

Theorem A is essentially the same as the mentioned Theorem 4 by Utev [32];
cf. [14, 27, 29]. The assumptions on f in Theorem 4 from [32], were slightly
different; namely, it was assumed there that f ′′ is convex whereas f is nonnegative
and satisfies a certain limited growth condition, which latter may be dropped, by
Proposition 1 and Lemma 4 in [15], provided that f and f ′′ are convex, as in
Theorem A.

REMARK. If a r.v. X has a finite expectation and a function f :R → R is
convex, then, by Jensen’s inequality, Ef (X) always exists in (−∞,∞].

Let us complement Theorem A by the following standard lemma; cf., for exam-
ple, [27, 28] or the paragraphs containing formulas (6.1) and (6.2) in [11].
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LEMMA 2.1. Let G be any finite nonnegative Borel measure on R such that∫
R

|x|pG(dx) = A and
∫
R

x2G(dx) = B; such a measure G exists. Let then XG

be any r.v. with the characteristic function t 	→ exp
∫
R
(eitx − 1 − itx)G(dx). Then

there exists a sequence (Zn) in Xp;A,B such that SZn

D−→ XG, where
D−→ denotes

the convergence in distribution. In particular, it follows that Xp;A,B �= ∅.

The conditions on G in Lemma 2.1 are different from those in Theorem A.
In particular, the conditions G({0}) = 0 and

∫
R

xG(dx) = 0 are not required in
Lemma 2.1. However, when the condition

∫
R

xG(dx) = 0 does hold, the defini-
tion of the r.v. XG in Lemma 2.1 is consistent with that in Theorem A. Also, the
condition p ≥ 5 imposed in Theorem 1.3 is not needed in Lemma 2.1; rather, it is
enough to assume there that the general condition (2) holds.

PROOF OF LEMMA 2.1. First, concerning the existence of G, note that all the
conditions on G imposed in Lemma 2.1 are satisfied by the measure λδc, where λ

and c are as in (11) and δu denotes the Dirac probability measure at u.
Next, for each natural n and all j ∈ {1, . . . , n}, let

Zj,n := Wj,n − EWj,n,(24)

where the Wj,n’s are independent identically distributed r.v.’s with the distribution
determined by the condition that

Ef (Wj,n) = f (0) + κn

n

∫
R

[
f (γnx) − f (0)

]
G(dx)(25)

for all (say) bounded or nonnegative Borel functions f :R→R, and where in turn
κn and γn are positive real numbers such that κn

n

∫
R

G(dx) ≤ 1; the latter condition
is precisely what is needed for formula (25) to define a probability distribution. It
follows that for r ∈ {2,p},

n∑
1

E|Zj,n|r = nE|Z1,n|r = Fr

(
1

n
, κn, γn

)
,

where

Fr(α, κ, γ ) := |κγmG|r |α|r−1 signα + κγ r
∫
R

(|x − καmG|r − |καmG|r)G(dx)

and mG := ∫
R

xG(dx). Introducing now the vector function F := (F2,Fp), we
see that it is continuously differentiable on R × (0,∞)2, and the Jacobian matrix(∂F2

∂κ

∂F2
∂γ

∂Fp
∂κ

∂Fp
∂γ

)
at the point (α, κ, γ ) = (0,1,1) is

(
B 2B

A pA

)
, which is nonsingular. More-

over, F(0,1,1) = (B,A). So, by the implicit function theorem, there exist a pos-
itive real number α0 and continuously differentiable functions κ̃ : (−α0, α0) → R

and γ̃ : (−α0, α0) → R such that κ̃(0) = γ̃ (0) = 1 and F(α, κ̃(α), γ̃ (α)) = (B,A)
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for all α ∈ (−α0, α0). For all natural n > 1/α0, letting now κn := κ̃( 1
n
) and

γn := γ̃ ( 1
n
), one sees that

∑n
1 E|Zj,n|2 = B and

∑n
1 E|Zj,n|p = A, so that Zn :=

(Z1,n, . . . ,Zn,n) ∈ Xp;A,B . Thus, indeed Xp;A,B �= ∅.
Moreover, κn → κ̃(0) = 1 and γn → γ̃ (0) = 1 (the convergence in this context

is of course as n → ∞). So, by (24) and (25),

E exp(itSZn
) =

[
1 + κn

n

∫
R

(
eitγnx − 1

)
G(dx)

]n

e−itκnγnmG

−→ exp
∫
R

(
eitx − 1 − itx

)
G(dx) = E exp(itXG)

for all real t , so that indeed SZn

D−→ XG. �

2.2. Zero-mean truncation of zero-mean r.v.’s.

PROPOSITION 2.2. Let Y be any zero-mean r.v. Then for any real M > 0 there
is an r.v. YM with the following properties:

(i) EYM = 0;
(ii) |YM | ≤ M ∧ |Y |;

(iii) Ef (YM) ≤ Ef (Y ) for all convex functions f :R→R;
(iv) YM → Y almost surely (a.s.) as M → ∞.

This follows immediately from Proposition 3.15 in [17], and Jensen’s inequality
on letting

YM := Y I(EM) = E(Y |FM),

where EM := {|Y | ≤ M, |r(Y,U)| ≤ M}, U is any r.v. which is independent of Y

and uniformly distributed on the unit interval [0,1], r stands for the reciprocating
function of (the distribution of) the r.v. Y in accordance with the definition (for-
mula (2.6) in [17]), and FM is the σ -algebra generated by all events of the form
EM ∩ {Y ≤ y,U ≤ u} with any real y and u. Note that, by Proposition 3.6 in [17],
|r(Y,U)| < ∞ a.s. The r.v. U , which may be referred to as a randomizing r.v., is
used to split atoms of the distribution of Y , as such splitting may be needed to
satisfy the condition EYM = 0.

2.3. Differentiation under the integral sign. Take any measurable space
(�,F ) with a measure μ :F → C. Take also any t∗ ∈ (0,∞). Let f :� ×
[0, t∗) → R. Suppose that for each t ∈ [0, t∗) the function � � ω 	→ f (ω, t) is
μ-integrable, and let

F(t) :=
∫
�

μ(dω)f (ω, t).
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Suppose also that, for each ω ∈ �, the function [0, t∗) � t 	→ f (ω, t) is continuous
and has a right-continuous right-hand side derivative [0, t∗) � t 	→ (∂2f )(ω, t) ∈
[−∞,∞] such that the function � � ω 	→ (∂2f )(ω, t) is F -measurable, for each
t ∈ [0, t∗).

LEMMA 2.3. Suppose that for each pair (t, ε) ∈ [0, t∗) × (0,∞) there exist
a set �t,ε ∈ F , a measurable function gt,ε :�t,ε → [0,∞] and a real number
ht,ε ∈ (0, t∗ − t) such that

∫
�t,ε

|dμ|gt,ε < ∞,∣∣(∂2f )(ω, v)
∣∣ ≤ gt,ε(ω) for all (ω, v) ∈ �t,ε × [t, t + ht,ε)(26)

and

sup
v∈[t,t+ht,ε)

∫
�\�t,ε

∣∣μ(dω)(∂2f )(ω, v)
∣∣−→

ε↓0
0.(27)

Then

F ′(t+) := lim
h↓0

F(t + h) − F(t)

h
= I (t) :=

∫
�

μ(dω)(∂2f )(ω, t) ∈ C.(28)

The following lemma is a special case of Lemma 2.3.

LEMMA 2.4. Suppose that there exists a μ-integrable function g :� → [0,∞]
such that ∣∣(∂2f )(ω, t)

∣∣ ≤ g(ω) for all (ω, t) ∈ � × [0, t∗).(29)

Then (28) holds.

Lemma 2.4 is apparently rather common; cf., for example, Theorem (2.27)(b)
in [5]. Lemma 2.3 will be used in the proof of Proposition 2.11. More gener-
ally, this lemma should be useful in certain situations when the condition (29) of
the boundedness of (∂2f )(ω, t) in t for each ω is violated. More specifically, in
such situations (i) (∂2f )(ω, t) could have blow-up singularities and hence be un-
bounded in t for each ω in a somewhat “small” exceptional set � \ �ε , and yet
(ii) the integration of |(∂2f )(ω, t)| with respect to |μ(dω)| would smooth out the
singularities, resulting in a small value of the integral over the “small” set �\�ε—
as is assumed in (27). Even though such situations seem rather natural and their
treatment is rather straightforward, I have been unable to find in the literature a
statement similar enough to Lemma 2.3. So, for the readers’ convenience, a proof
of Lemma 2.3 is provided below.

PROOF OF LEMMA 2.3. Take any t ∈ [0, t∗), ε ∈ (0,∞), and h ∈ (0, ht,ε).
Then

F(t + h) − F(t)

h
=

∫
�

μ(dω)
f (ω, t + h) − f (ω, t)

h
(30)

=
∫
�

μ(dω)

∫ 1

0
ds(∂2f )(ω, t + sh) = I1,ε,h(t) + I2,ε,h(t),



EXACT ROSENTHAL-TYPE BOUNDS 2521

where

I1,ε,h(t) :=
∫
�t,ε

μ(dω)

∫ 1

0
ds(∂2f )(ω, t + sh)

and

I2,ε,h(t) :=
∫
�\�t,ε

μ(dω)

∫ 1

0
ds(∂2f )(ω, t + sh).

In view of the right continuity of (∂2f )(ω, t) in t and the condition (26), by the
dominated convergence theorem,

I1,ε,h(t)−→
h↓0

I1,ε,0(t) =
∫
�t,ε

μ(dω)(∂2f )(ω, t).(31)

It also follows that the integral I1,ε,0(t) exists in the Lebesgue sense (and is finite).
Next,

sup
h∈[0,ht,ε)

∣∣I2,ε,h(t)
∣∣ ≤ sup

h∈[0,ht,ε)

s∈(0,1)

∫
�\�t,ε

∣∣μ(dω)(∂2f )(ω, t + sh)
∣∣−→

ε↓0
0(32)

by (27). It also follows from (27) that the integral

I2,ε,0(t) =
∫
�\�t,ε

μ(dω)(∂2f )(ω, t)

exists in the Lebesgue sense (and is finite) provided that ε is small enough. So,
the integral I (t), defined in (28), exists in the Lebesgue sense (and is finite),
since I (t) = I1,ε,0(t) + I2,ε,0(t). Moreover, (32) implies I2,ε,0(t)−→

ε↓0
0. Hence,

I1,ε,0(t) = I (t)− I2,ε,0(t)−→
ε↓0

I (t). Combining now (30), (31) and (32), one com-

pletes the proof of the lemma. �

2.4. A calculus of variations of moments of infinitely divisible distributions with
respect to variations of the Lévy characteristics. For any finite nonnegative Borel
measure H on R, let YH denote any r.v. such that

EeitYH = exp
{
−t2

∫
R

H(du)(R1 exp)(0; itu)

}
(33)

for all t ∈ R, where, for any m ∈ {0,1, . . .}, any (m + 1)-times continuously dif-
ferentiable function g :R→R, and any real x and u,

(Rmg)(x;u) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

um+1

(
g(x + u) −

m∑
j=0

uj

j ! g
(j)(x)

)
, if u �= 0,

1

(m + 1)!g
(m+1)(x), if u = 0

(34)

= 1

m!
∫ 1

0
ds(1 − s)mg(m+1)(x + su).(35)
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This definition of YH is valid, as the right-hand side expression in (33) does define
a characteristic function (c.f.) of (an infinitely divisible) probability distribution,
which is the weak limit of a sequence of centered compound Poisson distributions.
Let (

z

j

)
:= z(z − 1) · · · (z − j + 1)

j ! for all z ∈ C and all j ∈ {0,1, . . .}.

LEMMA 2.5. Take any q ∈ (2,∞), t0 ∈ (0,∞) and σ ∈ (0,∞). Let H be a
nonnegative Borel measure on R, and let � be a real-valued Borel measure on R

such that the measure

Ht := H + t�(36)

is nonnegative for all t ∈ [0, t0]. Let Y be a r.v. independent of YHt , where YHt is
defined according to (33). Suppose also that∫

R

(
P(Y ∈ du) + H(du) + ∣∣�(du)

∣∣)eσ |u| < ∞.(37)

Then for all t ∈ [0, t0)(
∂

∂t

)+
E|Y + YHt |q

(38)

= 2!
(

q

2

)∫
R

�(du)

∫ 1

0
ds(1 − s)E|su + Y + YHt |q−2,

where ( ∂
∂t

)+ denotes the right-hand side partial derivative in t .
Moreover, if q > 4, then for all t ∈ [0, t0)(

∂2

∂t2

)+
E|Y + YHt |q

= 4!
(

q

4

)∫
R2

�(du1)�(du2)(39)

×
∫
(0,1)2

ds1 ds2(1 − s1)(1 − s2)E|s1u1 + s2u2 + Y + YHt |q−4,

where ( ∂2

∂t2 )
+ := ( ∂

∂t
)+( ∂

∂t
)+ denotes the second right-hand side partial derivative

in t .
Identities (38) and (39) hold if the four instances therein of the absolute-value

function x 	→ |x| are replaced by the four instances of the positive-part function
x 	→ x+ := 0 ∨ x or the four instances of the negative-part function x 	→ x− :=
(−x)+.

PROOF. By Theorem 1 in [18],

E(Y + YHt )
q
+ = κq

∫
Re z=σ

dz

zq+1 EezY E exp{zYHt },(40)
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where x
q
+ := (x+)q for all x ∈ R and

κq := �(q + 1)

2πi
;(41)

here and below in this proof, by default, t ∈ [0, t0). By (33) and analytic continua-
tion, for all z ∈ C with Re z = σ

E exp{zYHt } = exp
{
z2

∫
R

Ht(du)(R1 exp)(0; zu)

}
,(42)

whence, by (36),(
∂

∂t

)+
E exp{zYHt } = E exp{zYHt }z2

∫
R

�(du)(R1 exp)(0; zu).(43)

In view of (34), Re[z2(R1 exp)(0; zu)] ≤ σ 2(R1 exp)(0;σu) ≤ σ 2eσ |u|/2 and
|(R1 exp)(0; zu)| ≤ eσ |u|/2 for all u ∈ R and all z ∈ C with Re z = σ > 0. It fol-
lows by (42) and (37) that, again for all z ∈ C with Re z = σ > 0,

sup
t∈[0,t0]

∣∣E exp{zYHt }
∣∣ ≤ exp

{
σ 2

2

∫
R

(
H(du) + t0

∣∣�(du)
∣∣)eσ |u|

}
< ∞

and ∣∣∣∣
∫
R

�(du)(R1 exp)(0; zu)

∣∣∣∣ ≤
∫
R

∣∣�(du)
∣∣eσ |u|/2 < ∞.

Also,
∫
Re z=σ |z2 dz

zq+1 | < ∞, since q > 2 and σ ∈ (0,∞). So, by Lemma 2.4,

(
∂

∂t

)+
E(Y + YHt )

q
+ = κq

∫
Re z=σ

dz

zq+1 EezY

(
∂

∂t

)+
E exp{zYHt }.(44)

Further, by (35), (R1 exp)(0; zu) = ∫ 1
0 ds(1 − s)eszu. Hence, by (44), (43), the Fu-

bini theorem, (41), and (40),(
∂

∂t

)+
E(Y + YHt )

q
+

= κq

∫
Re z=σ

dz

zq+1 EezY EezYHt z2
∫
R

�(du)

∫ 1

0
ds(1 − s)eszu

= κq

κq−2

∫
R

�(du)

∫ 1

0
ds(1 − s)κq−2

∫
Re z=σ

dz

zq−1 Eez(su+Y )EezYHt

= 2!
(

q

2

)∫
R

�(du)

∫ 1

0
ds(1 − s)E(su + Y + YHt )

q−2
+ .

This proves (38) for the function x 	→ x+ in place of the function x 	→ |x|.
Now (39), again for the function x 	→ x+, follows by Lemma 2.4.
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The case of the function x 	→ x− can be considered quite similarly. Alterna-
tively, this case can be simply reduced to the case of the function x 	→ x+ by ob-

serving that, with H−
t (du) := Ht(−du), one has −YHt

D= YH−
t

, where D= denotes
the equality in distribution.

Finally, the case of the function x 	→ |x| follows immediately from the consid-
ered two cases by the obvious identity |x|r = xr+ +xr− for all r ∈ (0,∞) and x ∈ R.

�

Results similar to Lemma 2.5, but for general moment functions f in place of
the power-like moment functions | · |q , ·q+ and ·q− in Lemma 2.5, were obtained
by lengthier direct probabilistic arguments in earlier versions of this paper [21].
It is possible to obtain such more general results by the Fourier–Laplace method
as well, by decomposing f into harmonics, the way this was done in [18] for the
function ·p+. However, this possibility will not be pursued here.

2.5. Main propositions in the proof of Theorem 1.3. Let H denote the set of
all nonnegative Borel measures on R. Take any real numbers p > 3, A > 0, B > 0,
and M > 0, and introduce the following subsets of the set H :

Hp;A,B :=
{
H ∈ H :

∫
H(dx) = B,

∫
|x|p−2H(dx) = A

}
,(45)

Hp;≤A,≤B :=
{
H ∈ H :

∫
H(dx) ≤ B,

∫
|x|p−2H(dx) ≤ A

}
,(46)

Hp;A,B;M := {
H ∈ Hp;A,B : suppH ⊆ [−M,M]},(47)

Hp;≤A,≤B;M := {
H ∈ Hp;≤A,≤B : suppH ⊆ [−M,M]},(48)

where suppH stands for the support set of the measure H ; we also write
∫

for
∫
R

.
Note that the set Hp;≤A,≤B obviously contains the other three of the above four
sets.

REMARK 2.6. Given any positive real A, B , and M , for the condition
Hp;A,B;M �= ∅ to hold it is clearly necessary that

A ≤ BMp−2(49)

or, equivalently, B ≥ A/Mp−2 or, equivalently,

M ≥ c,(50)

where c = cp(A,B) as in (11).
Therefore, in the statements concerning Hp;A,B;M , let us assume by default that

this restriction on A, B , and M holds.

In Propositions 2.7–2.11 below, let X be any bounded zero-mean r.v.
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Let then

Sp,q;A,B;X;M := sup
{
E|X + YH |q :H ∈ Hp;A,B;M

}
,(51)

Sp,q;≤A,≤B,X;M := sup
{
E|X + YH |q :H ∈ Hp;≤A,≤B;M

}
,(52)

where YH and q are as in (33) and (13), respectively.

PROPOSITION 2.7. The supremum Sp,q;≤A,≤B,X;M is finite and attained. If
A ≤ BMp−2 (recall Remark 2.6), then the supremum Sp,q;A,B;X;M is finite and
attained as well.

PROPOSITION 2.8. Suppose that p ≥ q > 4. Then the supremum
Sp,q;A,B;X;M is (strictly) increasing in B ∈ [A/Mp−2,∞) for each A ∈ (0,∞)

and in A ∈ (0,BMp−2] for each B ∈ (0,∞); in particular, it follows that

Sp,q;A,B;X;M = Sp,q;≤A,≤B,X;M(53)

for any positive real A, B , and M such that A ≤ BMp−2.

Introduce the set

H∗,p,q;A,B;X;M
(54)

:= {
H ∈ Hp;A,B;M : E|X + YH |q = Sp,q;A,B;X;M = Sp,q;≤A,≤B,X;M

}
of the maximizers of E|X +YH |q over all H ∈ Hp;A,B;M or, equivalently, over all
H ∈ Hp;≤A,≤B;M . According to Propositions 2.7 and 2.8,

H∗,p,q;A,B;X;M �= ∅.

PROPOSITION 2.9. Suppose that p ≥ q > 5. Take any H ∈ H∗,p,q;A,B;X;M .
Then

card
(
(0,∞) ∩ suppH

) ≤ 1 and card
(
(−∞,0) ∩ suppH

) ≤ 1,(55)

where card denotes the cardinality of the set.

PROPOSITION 2.10. Suppose that p ≥ q > 4. Take any H ∈ H∗,p,q;A,B;X;M .
Then H({0}) = 0.

PROPOSITION 2.11. Suppose that p ≥ q > 5. Take any H ∈ H∗,p,q;A,B;X;M .
Suppose also that the set suppH is contained in the open interval (−M,M). Then
card suppH = 1.

PROPOSITION 2.12. Suppose that p ≥ q > 2. Let the quadruple (c1, c2,

w1,w2) ∈ R
2 × [0,∞)2 vary so that w1 + w2 = B , c1 → b, |c2| → ∞, and

|c2|q−2w2 → a, for some a ∈ [0,A] and b ∈ [−c, c], where c is as in (11). Then,
for H := Hc1,c2,w1,w2 := w1δc1 + w2δc2 ,

E|X + YH |q −→ a + E|X + YBδb
|q .
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PROOF OF PROPOSITION 2.7. Let us only show that the supremum
Sp,q;A,B;X;M is finite and attained; that Sp,q;≤A,≤B,X;M is so is shown sim-
ilarly and even a bit more easily. Let (Hm) be a sequence in Hp;A,B;M such
that E|X + YHm |q → Sp,q;A,B;X;M . Because the interval [−M,M] is compact
and the functions 1 and | · |p−2 are continuous and bounded on [−M,M], with-
out loss of generality (w.l.o.g.) the sequence (Hm) converges weakly to some

H ∈ Hp;A,B;M . So, by (33) and (35), YHm

D−→ YH , since (R1 exp)(0; itu) is con-
tinuous and bounded in u ∈ [−M,M]. Moreover, by the analytic extension of (33),
for any H̃ ∈ Hp;A,B;M

E cosh(kY
H̃

) = 1

2
exp

{
k2

∫
H̃ (du)(R1 exp)(0;ku)

}

+ 1

2
exp

{
k2

∫
H̃ (du)(R1 exp)(0;−ku)

}
(56)

≤ exp
{
k2B(R1 exp)

(
0; |k|M)}

< ∞
for all real k—because, by (35), (R1 exp)(0;u) is increasing in u ∈ R. Also, |X +
YHm |q ≤ 2q−1(|X|q + |YHm |q). So, by [2], Theorem 5.4,

Sp,q;A,B;X;M = lim
m

E|X + YHm |q = E|X + YH |q < ∞.(57) �

PROOF OF PROPOSITION 2.8. Let us show that Sp,q;A,B;X;M is increasing in
A and in B; then (53) follows immediately.

In accordance with Proposition 2.7, take any H ∈ Hp;A,B;M such that E|X +
YH |q = Sp,q;A,B;X;M . Then Ht := H + tδ0 ∈ Hp;A,B+t;M for all real t ≥ 0,
where, as before, δu denotes the Dirac probability measure at u. So, by Lemma 2.5,
the right derivative of E|X + YHt |q in t at t = 0 is

(q
2

)
E|X + YH |q−2 > 0; the last

inequality is strict because the measure H is in Hp;A,B;M and hence nonzero,
which in turn implies that the r.v. YH is nondegenerate. Therefore, for the lower
right derivative of Sp,q;A,B;X;M in B one has

lim inf
t↓0

Sp,q;A,B+t,X;M − Sp,q;A,B;X;M
t

≥ lim inf
t↓0

E|X + YHt |q − E|X + YH |q
t

= lim
t↓0

E|X + YHt |q − E|X + YH |q
t

=
(

q

2

)
E|X + YH |q−2 > 0.

Next, note that Sp,q;A,B;X;M is left-upper semi-continuous in B ∈ (A/Mp−2,∞);
that is,

lim sup
B̃↑B

S
p,q;A,B̃,X;M ≤ Sp,q;A,B;X;M.
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Indeed, take any sequence (Bm) such that Bm ↑ B and

lim
m→∞Sp,q;A,Bm,X;M > Sp,q;A,B;X;M.

By Proposition 2.7, for each large enough m there is some measure Hm ∈
H (p,A,Bm;M) such that E|X + YHm |q = Sp,q;A,Bm,X;M . Passing to a sub-
sequence of the sequence (Bm), w.l.o.g. one may assume that Hm converges
weakly on the compact set [−M,M] to some measure H∗. Since the func-
tions 1, | · |p−2, and | · |q are continuous, it follows that H∗ ∈ H (p,A,B;M) and
Sp,q;A,Bm,X;M = E|X + YHm |q −→ E|X + YH∗ |q ≤ Sp,q;A,B;X;M as m → ∞,
which contradicts the assumption on the sequence (Bm). This completes the proof
that Sp,q;A,B;X;M is increasing in B .

To show that Sp,q;A,B;X;M is increasing in A, take any A ∈ (0,BMp−2);
cf. (49). Then

H
(
(−M,M)

)
> 0,(58)

because otherwise suppH ⊆ {−M,M} and hence A = BMp−2. So, there exists
some b ∈ (−M,M) ∩ suppH . For δ ∈ (0,∞) and t ∈ [0,∞), let now

Ht := Hδ,t := H + t�,(59)

where � = �δ is the real-valued Borel measure on R defined by the condition that∫
R

f (u)�(du) = M + b

2M
f (M) + M − b

2M
f (−M)

(60)

− 1

H([b − δ, b + δ])
∫
[b−δ,b+δ]

f (u)H(du)

for all locally bounded (say) Borel functions f :R → R; note that H([b − δ, b +
δ]) > 0, by the condition b ∈ suppH . Also, then the measure Ht is nonnegative for
all t ∈ [0, t0], where t0 := H([b − δ, b + δ]) > 0. So, letting

h(x) := 2!
(

q

2

)
E|x + X + YH |q−2(61)

for all x ∈ R, by Lemma 2.5 one has

lim
δ↓0

lim
t↓0

E|X + YHt |q − E|X + YH |q
t

(62)

=
∫ 1

0
ds(1 − s)

(
M + b

2M
h(Ms) + M − b

2M
h(−Ms) − h(bs)

)
> 0,

because q > 4, and the r.v. YH is nondegenerate, whence the function h is strictly
convex. Thus, eventually

Sp,q;A,B;X;M = E|X + YH |q < E|X + YHt |q .(63)
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In this context, we say that an assertion A = Aδ,t holds “eventually” if ∃δ∗ ∈
(0,∞) ∀δ ∈ (0, δ∗) ∃tδ ∈ (0, t0) ∀t ∈ (0, tδ) Aδ,t holds; recall here that, in view
of (59) and (60), Ht depends not only on t but also on δ.

On the other hand, for all t ∈ (0, t0) one has
∫
R

Ht(dx) = ∫
R

H(dx) +
t
∫
R

�(dx) = B + t
∫
R

�(dx) = B and
∫
R

|x|p−2Ht(dx) = A + ta and hence Ht ∈
H (p,A + ta,B;M), where a := ∫

R
|x|p−2�(dx) ≥ (Mp−2 − (|b| + δ)p−2) > 0

for all small enough δ > 0. So, by (51), eventually Sp,q;A+ta,B,X;M ≥ E|X +
YHt |q , whence, by (63), Sp,q;·,B,X;M is increasing in a right neighborhood of the
previously chosen value of A ∈ (0,BMp−2).

Since A was chosen arbitrarily in the interval (0,BMp−2), to complete the
proof of Proposition 2.8, it remains to note that Sp,q;A,B;X;M is left-upper semi-
continuous in A ∈ (0,BMp−2]; this semi-continuity property is established quite
similarly to the left-upper semi-continuity in B , proved earlier. �

PROOF OF PROPOSITION 2.9. To obtain a contradiction, suppose that there
exist b and b1 such that 0 < b < b1 < ∞ and {b, b1} ⊆ suppH . In view of possible
rescaling [i.e., replacing X, A, B , M and H(dx) by X/b1, A/b

p
1 , B/b2

1, M/b1,
and H(b1 dy)/b2

1, resp.], w.l.o.g. assume that b1 = 1, so that

0 < b < 1.

By (54),

Sp,q;≤A,≤B,X;M = E|X + YH |q.(64)

Introduce now

k := b2(1 − bp−3)

p − 3
,(65)

take any

a ∈ (0,1/k)(66)

and then also introduce

ε := a
(
b − bp−1 − (p − 2)k

)
,

ã := 1 + a
(
bp−1 + (p − 1)k

)
, and(67)

b̃ := 1 − ka.

Note that the conditions (67) and (66) imply b̃ ∈ (0,1). Observe also that ε =
abr(b)/(p−3), where r(b) := p−3− (p−2)b+bp−2, and r(1) = 0 and r ′(b) =
−(p − 2)(1 − bp−3) < 0 for b ∈ (0,1), so that ε > 0.
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Define the real-valued measure � = �a,δ by the condition∫
R

f (u)�(du)

= εf (0) + ãb̃f (b̃) − ab

H([b − δ, b + δ])
∫
[b−δ,b+δ]

f (u)H(du)(68)

− 1

H([1 − δ,1 + δ])
∫
[1−δ,1+δ]

f (u)H(du)

for all locally bounded (say) Borel functions f :R → R, where δ is any real
number in the interval (0, 1−b

2 ), so that the denominators H([b − δ, b + δ])
and H([1 − δ,1 + δ]) are strictly positive, and the intervals [b − δ, b + δ] and
[1− δ,1+ δ] are disjoint, in view of the assumptions {b, b1} ⊆ suppH and b1 = 1.
For t ∈ [0,∞), let now

Ht := Ha,δ,t := H + t�.(69)

This measure is nonnegative for all t ∈ [0, t0], where

t0 := min
(

1

ab
H

([b − δ, b + δ]),H ([1 − δ,1 + δ])) > 0.

By Lemma 2.5,

lim
δ↓0

lim
t↓0

E|X + YHa,δ,t |q − E|X + YH |q
t

=
∫ 1

0
ds(1 − s)

[
εh(0) + ãb̃h(sb̃) − abh(sb) − h(s)

]
,

where the function h is still defined by (61).
Letting further a ↓ 0 and using Lemma 2.4, one obtains

L := 1

b2 lim
a↓0

1

a
lim
δ↓0

lim
t↓0

E|X + YHa,δ,t |q − E|X + YH |q
t

(70)

=
∫ 1

0
ds(1 − s)F (b, s),

where, in view of (67), (65), (34) and (35),

F(b, s) := 1

b2

d

da

[
εh(0) + ãb̃h(sb̃) − abh(sb) − h(s)

]∣∣∣
a=0

= 1

b2

{(
bp−1 + (p − 2)k

)(
h(s) − h(0)

) − b
(
h(sb) − h(0)

) − ksh′(s)
}

= h(s) − h(0) − h(sb) − h(0)

b
+ 1 − bp−3

p − 3

[
h(s) − h(0) − sh′(s)

]
(71)



2530 I. PINELIS

=
∫ 1

0
dα s

[
h′(αs) − h′(αsb)

] −
∫ 1

b
duup−4s2(R1h)(s;−s)

=
∫ 1

0
dα sαs

∫ 1

b
duh′′(uαs) −

∫ 1

b
duup−4s2

∫ 1

0
dθ(1 − θ)h′′(s − θs)

= s2
∫ 1

b
du

∫ 1

0
dα α

[
h′′(uαs) − up−4h′′(αs)

]
.

By (61) and Lemma 2.4, for x ∈ R and u ∈ (0,∞)

uq−4h′′(x)

q(q − 1)(q − 2)(q − 3)
= ψux(u),

where ψv(u) := E|v +uW |q−4 for all v ∈ R and W := X +YH . Note that, in view
of the condition EX = 0 and the definition (33), EW = 0. Also, EW 2 > 0, because
card suppH ≥ 2 > 0 and hence H �= 0 and thus the r.v. YH is nondegenerate. Also,
clearly h′′ ≥ 0. Therefore and because p ≥ q > 5, for all u, α and s in (0,1)

h′′(uαs) − up−4h′′(αs)

q(q − 1)(q − 2)(q − 3)
≥ h′′(uαs) − uq−4h′′(αs)

q(q − 1)(q − 2)(q − 3)
(72)

= ψuαs(1) − ψuαs(u).

Recalling that q > 5, one sees that for each v ∈ (0,∞) the function ψv is convex,
with ψ ′

v(0) = 0 and ψ ′′
v (0) = (q −4)(q −5)EW 2vq−6 > 0. This implies that ψv(u)

is strictly increasing in u ≥ 0, which shows that the expression ψuαs(1) − ψuαs(u)

in (72) is strictly positive. Thus, by (70), (71) and (72), L > 0. Now (64) implies
that eventually

Sp,q;≤A,≤B,X;M = E|X + YH |q < E|X + YHa,δ,t |q .

In this context, we say that an assertion A = Aa,δ,t holds “eventually” if ∃a0 ∈
(0,∞) ∀a ∈ (0, a0) ∃δ∗

a ∈ (0,∞) ∀δ ∈ (0, δ∗
a) ∃ta,δ ∈ (0, t0) ∀t ∈ (0, ta,δ) Aa,δ,t

holds.
Thus, we obtain a contradiction with the definition of Sp,q;≤A,≤B,X;M in (52),

because, as we shall check in moment, Ha,δ,t ∈ Hp;≤A,≤B;M eventually. Indeed,
by (68), (67), and (65),∫

R

�(dx) = ε + ãb̃ − ab − 1

= a
(
b − bp−1 − (p − 2)k

)
+ (1 − ka)

(
1 + a

[
bp−1 + (p − 1)k

]) − ab − 1

< ab − a
(
bp−1 + (p − 2)k

) + 1 + [
bp−1 + (p − 2)k

]
a − ab − 1

= 0,
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so that ∫
R

Ha,δ,t (dx) =
∫
R

H(dx) + t

∫
R

�(dx) <

∫
R

H(dx) = B.(73)

Similarly,

lim
δ↓0

∫
R

|x|p−2�(dx) = ãb̃p−1 − abp−1 − 1 < 0,

where the inequality holds eventually, for all small enough a > 0. Indeed, in view
of (67), this inequality can be rewritten as

fγ (u) := [
1 + (γ + r)u

]
(1 − u)r − (1 + γ u) < 0,(74)

with r := p − 1 > 0, u := ka, and γ := br/k ≥ 0. Note that eventually u ∈ (0,1).
To verify inequality (74) for such u, note that fγ (u) decreases in γ , so that w.l.o.g.
γ = 0. The inequality f0(u) < 0 is equivalent to ln(1 + ru) + r ln(1 − u) < 0,
which is easy to check for u ∈ (0,1) by differentiation. It follows that [cf. (73)]∫
R

|x|p−2Ha,δ,t (dx) <
∫
R

|x|p−2H(dx) = A eventually.
Also, the conditions H ∈ Hp;≤A,≤B;M , {b, b1} ⊆ suppH and b1 = 1 im-

ply suppH ⊆ [−M,M] and hence M ≥ 1. So, suppHa,δ,t ⊆ suppH ∪ {0, b̃} ⊆
[−M,M] eventually, in view of (67).

By (48), we conclude that indeed Ha,δ,t ∈ Hp;≤A,≤B;M eventually. Thus, in-
deed the assumption that there exist b and b1 such that 0 < b < b1 < ∞ and
{b, b1} ⊆ suppH leads to a contradiction, which proves the first inequality in (55).
The second inequality there can be proved quite similarly or, alternatively, quickly
obtained from the first one by a reflection. �

PROOF OF PROPOSITION 2.10. The proof is somewhat similar to that Propo-
sition 2.9. Suppose that, to the contrary,

σ :=
√

H
({0}) > 0.(75)

On the other hand, recalling definition (47) of Hp;A,B;M and the conditions H ∈
Hp;A,B;M and A > 0, one sees that necessarily suppH \ {0} �= ∅. So, in view of
possible rescaling and reflection, w.l.o.g.

1 ∈ suppH.

Take now any β ∈ (0, (
p−2
p−1)1/(p−2)), so that

ε := βp−2

p − 2
∈

(
0,

1

p − 1

)
⊂ (0,1).(76)

Introduce then

ã := 1 − (p − 1)ε

(1 − ε)p
and b̃ := 1 − ε.(77)
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Define the real-valued measure � := �β,δ by the condition∫
R

f (u)�(du) = 1

2
f (β) + 1

2
f (−β) − f (0) + ãb̃f (b̃)

(78)

− 1

H([1 − δ,1 + δ])
∫
[1−δ,1+δ]

f (u)H(du)

for all locally bounded (say) Borel functions f :R → R, where δ is any positive
real number, so that H([1 − δ,1 + δ]) > 0. For σ as in (75), let

t0 := σ 2 ∧ H
([1 − δ,1 + δ]).

Then t0 > 0 and for all t ∈ [0, t0] the measure

Ht := Hβ,δ,t := H + t�(79)

is nonnegative. By Lemma 2.5,

L (β) := lim
δ↓0

lim
t↓0

E|X + YHβ,δ,t |q − E|X + YH |q
t

(80)

=
∫ 1

0
ds(1 − s)

[
1

2
h(sβ) + 1

2
h(−sβ) − h(0) + ãb̃h(sb̃) − h(s)

]
,

where h is still defined by (61). Let now β ↓ 0. Then, in view of (77) and (76),
the expression ãb̃h(sb̃) − h(s) in (80) is O(ε) = O(βp−2) = o(β2) uniformly
over s ∈ [0,1]. Concerning the other part of the expression in the brackets in (80),
by (34) and (35),

1

2
h(u) + 1

2
h(−u) − h(0) = u2

2

[
(R1h)(0;u) + (R1h)(0;−u)

]

= u2

2

∫ 1

−1
dv

(
1 − |v|)h′′(vu)

for all u ∈ R. So,

L (β) = β2

2

∫ 1

0
ds(1 − s)s2

∫ 1

−1
dv

(
1 − |v|)h′′(vsβ) + o

(
β2)

,

whence

lim
β↓0

lim
δ↓0

lim
t↓0

E|X + YHβ,δ,t |q − E|X + YH |q
β2t/24

= h′′(0) = 4!
(

q

4

)
E|W |q−4,

where W = X + YH , which is a nondegenerate r.v., so that E|W |q−4 > 0.
Now (64) implies that eventually

Sp,q;≤A,≤B,X;M = E|X + YH |q < E|X + YHβ,δ,t |q.
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In this context, we say that an assertion A = Aβ,δ,t holds “eventually” if
∃β0 ∈ (0, (

p−2
p−1)1/(p−2)) ∀β ∈ (0, β0) ∃δ∗

β ∈ (0,∞) ∀δ ∈ (0, δ∗
β) ∃tβ,δ ∈ (0, t0)

∀t ∈ (0, tβ,δ) Aβ,δ,t holds.
Thus, we obtain a contradiction with the definition of Sp,q;≤A,≤B,X;M in (52),

because, as we shall check in moment, Hβ,δ,t ∈ Hp;≤A,≤B;M eventually. Indeed,
by (78) and (77), ∫

R

�(dx) = ãb̃ − 1 = 1 − (p − 1)ε

(1 − ε)p−1 − 1 < 0,

so that ∫
R

Hβ,δ,t (dx) =
∫
R

H(dx) + t

∫
R

�(dx) <

∫
R

H(dx) ≤ B,

by (79) and (48). Next, by (77),

lim
δ↓0

∫
R

|x|p−2�(dx)

= βp−2 + ãb̃p−1 − 1 = (p − 2)ε + 1 − (p − 1)ε

1 − ε
− 1

= −(p − 2)ε2

1 − ε
< 0.

It follows that eventually∫
R

|x|p−2Hβ,δ,t (dx)

=
∫
R

|x|p−2H(dx) + t

∫
R

|x|p−2�(dx) <

∫
R

|x|p−2H(dx) ≤ A,

again by (79) and (48).
Also, the conditions H ∈ Hp;≤A,≤B;M and 1 ∈ suppH imply M ≥ 1. So, even-

tually suppHβ,δ,t ⊆ suppH ∪ {β,−β, b̃} ⊆ [−M,M] in view of (77).
By (48), we conclude that indeed Hβ,δ,t ∈ Hp;≤A,≤B;M eventually. Thus, as-

sumption (75) leads to a contradiction. �

PROOF OF PROPOSITION 2.11. By Propositions 2.9 and 2.10 and the condi-
tion suppH ⊆ (−M,M),

H = w1δc1 + w2δ−c2(81)

for some c1 and c2 in the interval (0,M) and some nonnegative real w1 and w2
such that

w1 + w2 = B and c
p−2
1 w1 + c

p−2
2 w2 = A.(82)
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It is enough to show that w1 ∧ w2 = 0. To obtain a contradiction, suppose the
contrary,

w := w1 ∧ w2 > 0.(83)

Then, by the implicit function theorem, there exist a real number τ∗ > 0 and an
infinitely differentiable mapping (−τ∗, τ∗) � τ 	→ (c̃1(τ ), c̃2(τ )) such that

c̃1(0) = c1, c̃2(0) = c2,(84)

and for each τ ∈ (−τ∗, τ∗) one has c̃′
1(τ )c̃′

2(τ ) �= 0,

0 < c̃1(τ ), c̃2(τ ) < M and c̃1(τ )p−2 + c̃2(τ )p−2 = c
p−2
1 + c

p−2
2 .(85)

(In this case, this mapping could also be defined explicitly, e.g., by the for-
mulas c̃1(τ ) = (c

p−2
1 + τ)1/(p−2) and c̃2(τ ) = (c

p−2
2 − τ)1/(p−2), with τ∗ =

1
2 min[Mp−2 − c

p−2
1 ,Mp−2 − c

p−2
2 , c

p−2
1 , c

p−2
2 ].) Note that the condition

c̃′
1(τ )c̃′

2(τ ) �= 0, taken together with (85), implies

c̃′
1(τ )c̃′

2(τ ) < 0.(86)

By choosing a possibly smaller real τ∗ > 0, let us assume w.l.o.g. that, on the
interval (−τ∗, τ∗), the derivatives of any order of the functions c̃1 and c̃2 are each
uniformly continuous and hence bounded, and also that the functions c̃1 and c̃2 are
each positive and bounded away from 0.

For each τ ∈ (−τ∗, τ∗), introduce the real-valued measure

�τ := δc̃1(τ ) + δ−c̃2(τ ) − δc1 − δ−c2(87)

and then the measures

Ht,τ := H + t�τ for t ∈ (−w,w),(88)

where w is as in (83). By (47), (45), (81), (82) and (85), these measures are all
in Hp;A,B;M .

In the rest of this proof, it is assumed that τ ∈ (−τ∗, τ∗), t ∈ (−w,w), {j, k, �} ⊂
{1,2,3,4}, and x ∈ R—unless otherwise indicated.

Letting now

gt,τ (x) := E|x + X + YHt,τ |q,(89)

then using Lemma 2.5 and recalling (87), one has

D(τ ) := ∂2gt,τ (0)

∂t2

∣∣∣∣
t=0

=
∫
�

μ(dω)

∫
R2

�τ(du1)�τ (du2)h(x + su1 + tu2)(90)

=
∫
�

μ(dω)Fω(τ),
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where

� := (0,1)2 ×R, ω := (s, t, x) ∈ �,

μ(dω) := dt ds(1 − t)(1 − s)P(X + YH ∈ dx),(91)

Fω(τ) :=
4∑

j,k=1

vjvkh
(
x + sbj (τ ) + tbk(τ )

)
,(92)

h(x) := 4!
(

q

4

)
|x|q−4,(93)

(v1, v2, v3, v4) := (1,1,−1,−1),(94) (
b1(τ ), b2(τ ), b3(τ ), b4(τ )

) := (
c̃1(τ ),−c̃2(τ ), c1,−c2

)
.(95)

Next,

D(τ ) =
4∑

j,k=1

vjvkDj,k(τ ),(96)

where

Dj,k(τ ) :=
∫
�

μ(dω)h
(
x + sbj (τ ) + tbk(τ )

)
.(97)

By Lemma 2.4,

D ′
j,k(τ ) =

∫
�

μ(dω)f (ω, τ),(98)

where

f (ω, τ) := fj,k(ω, τ ) := h′(x + sbj (τ ) + tbk(τ )
)[

sb′
j (τ ) + tb′

k(τ )
]
,(99)

which is clearly bounded in (ω, τ ) ∈ �× (−τ∗, τ∗). For each ε ∈ [0,∞), introduce
the set

�ε := �j,k;ε := {
ω = (s, t, x) ∈ � :

∣∣x + sbj (0) + tbk(0)
∣∣ > ε

}
.(100)

Since bj (τ ) is uniformly continuous in τ ∈ (−τ∗, τ∗) for each j , one sees that
|x + sbj (τ ) + tbk(τ )| is continuous in τ uniformly over all (ω, τ, j, k) ∈ � ×
(−τ∗, τ∗) × {1,2,3,4} × {1,2,3,4}. So, by further decreasing (if necessary) the
value of τ∗ > 0, let us assume, again w.l.o.g., that∣∣x + sbj (τ ) + tbk(τ )

∣∣ > ε/2 for all (ω, τ ) ∈ �ε × (−τ∗, τ∗),(101) ∣∣x + sbj (τ ) + tbk(τ )
∣∣ ≤ 2ε for all (ω, τ ) ∈ (� \ �ε) × (−τ∗, τ∗).(102)

By (99), for (ω, τ ) ∈ �0 × (−τ∗, τ∗), the partial derivative of f (ω, τ) in τ is

(∂2f )(ω, τ) = D1(ω, τ ) + D2(ω, τ ),(103)
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where

D1(ω, τ ) := h′(x + sbj (τ ) + tbk(τ )
)[

sb′′
j (τ ) + tb′′

k (τ )
]
,

D2(ω, τ ) := h′′(x + sbj (τ ) + tbk(τ )
)[

sb′
j (τ ) + tb′

k(τ )
]2

.

In view of the condition q > 5, definition (93), inequality (101), and the bounded-
ness of all the derivatives of the functions bj on the interval (−τ∗, τ∗),∣∣D1(ω, τ )

∣∣ ≤ K
(
1 + |x|q−5)

and∣∣D2(ω, τ )
∣∣ ≤ K

(
1 + |x|(q−6)+ + ε−(6−q)+)

}
(104)

for all (ω, τ ) ∈ �ε × (−τ∗, τ∗);
here and in the rest of this proof, K denotes various positive real constants which
do not depend on ω, τ , or ε. So, by (103),∣∣(∂2f )(ω, τ)

∣∣ ≤ gε(ω) := K
(
1 + |x|q−5 + ε−(6−q)+)

(105)
for all (ω, τ ) ∈ �ε × (−τ∗, τ∗).

By (88), (81), (87), (56), and (14),
∫
�ε

|dμ|gε < ∞, where μ is still as in (91).
Next, by (104) and dominated convergence,

sup
τ∈(−τ∗,τ∗)

∫
�\�ε

∣∣μ(dω)D1(ω, τ )
∣∣−→

ε↓0
0.(106)

Further, |D2(ω, τ )| ≤ K|x + sbj (τ ) + tbk(τ )|q−6 for all (ω, τ ) ∈ �0 × (−τ∗, τ∗),
whence, by (102), with ν(dx) := P(X + YH ∈ dx),∫

�\�ε

∣∣μ(dω)D2(ω, τ )
∣∣

≤ K

∫ 1

0
dt

∫
R

ν(dx)

∫ 1

0
ds

∣∣x + sbj (τ ) + tbk(τ )
∣∣q−6

× I
{∣∣x + sbj (τ ) + tbk(τ )

∣∣ ≤ 2ε
}

≤ K

∫ 1

0
dt

∫
R

ν(dx)
1

bj (τ )

∫
R

dv|v|q−6I
{|v| ≤ 2ε

} = 2K(2ε)q−5

bj (τ )(q − 5)
−→
ε↓0

0

uniformly in τ ∈ (−τ∗, τ∗), since the functions bj are bounded away from 0 on
(−τ∗, τ∗). Combining this with (103) and (106), one has

sup
τ∈(−τ∗,τ∗)

∫
�\�ε

∣∣μ(dω)(∂2f )(ω, τ)
∣∣−→

ε↓0
0.

Therefore and by (105), one may use Lemma 2.3 together with (98) and (99)
to conclude that D ′′

j,k(0) = ∫
� μ(dω) ∂2

∂τ 2 h(x + sbj (τ ) + tbk(τ ))|τ=0 and hence,
by (96), (97) and (92),

D ′′(0) =
∫
�

μ(dω)F ′′
ω(0);(107)
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that is, we have shown that the second integral expression of D(τ ) in (90) can
be twice differentiated (at least at τ = 0) under the integral sign to obtain the
corresponding integral expression of D ′′(0). Note here that F ′′

ω(0) is defined only
for ω ∈ ⋂4

j,k=1 �j,k;0, where �j,k;0 is understood according to (100). However,

this causes no problem, since μ(� \ ⋂4
j,k=1 �j,k;0) = 0.

In view of (92), (93), (94), (95), and (84), it is straightforward but tedious to
check that

Fω(0) = 0,(108)

F ′
ω(0) = 0,(109)

F ′′
ω(0) = 2st

{
h′′(x − (s + t)c2

)
c̃′

2(0)2 + h′′(x + (s + t)c1
)
c̃′

1(0)2

(110)
− [

h′′(x + sc1 − tc2) + h′′(x − sc2 + tc1)
]
c̃′

1(0)c̃′
2(0)

}
for all ω ∈ ⋂4

j,k=1 �j,k;0. The equality in (109) in fact holds for all ω ∈ � and any
continuously differentiable function h, not necessarily the one defined by (93),
whereas the equality in (108) holds for any function h :R→R whatsoever.

By (93), h′′(z) > 0 for all real z �= 0. So, by (110) and (86), F ′′
ω(0) > 0

for all ω ∈ ⋂4
j,k=1 �j,k;0. It follows by (90), (108), (109), and Lemma 2.4 that

D(0) = D ′(0) = 0, whereas, by (107), D ′′(0) > 0 and hence D(τ ) > 0 for some
τ ∈ (−τ∗, τ∗) (in fact for all nonzero τ close enough to 0). Take any such τ . Then,
by (90),

∂2gt,τ (0)

∂t2

∣∣∣∣
t=0

= D(τ ) > 0,

which implies that g0,τ (0) < g−t,τ (0) ∨ gt,τ (0) if |t | is small enough. In view
of (88) and (89), this means that for all t ∈ (−w,w) with small enough |t |,

E|X + YH |p = E|X + YH0,τ
|p < E|X + YH−t,τ |p ∨ E|X + YHt,τ |p,

which is a contradiction, in view of the conditions H ∈ H∗,p,q;A,B;X;M and
Ht,τ ∈ Hp;A,B;M for all (τ, t) ∈ (−τ∗, τ∗) × (−w,w), and the definition (54) of
H∗,p,q;A,B;X;M . �

PROOF OF PROPOSITION 2.12. Since |c2| → ∞, w.l.o.g. c2 �= 0. So, the def-
inition λ2 := w2/c

2
2 makes sense, and λ2 ∈ [0,∞). If λ2 = 0, let �̃λ2 := 0. So,

YH
D= Yw1δc1

+ c2�̃λ2 and hence

eλ2E|X + YH |q =
∞∑

j=0

Tj ,(111)

where

Tj := λ
j
2

j ! E
∣∣X + Yw1δc1

+ c2(j − λ2)
∣∣q,
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letting λ0
2 := 1 even if λ2 = 0. So, in view of the conditions |c2| → ∞,

|c2|q−2w2 → a, w1 + w2 = B , and c1 → b, one has w2 → 0, w1 → B , λ2 → 0,

Yw1δc1

D−→ YBδb
, c2λ2 → 0, |c2|qλ2 → a, |c2|qλ2

2 → 0, whence, by dominated
convergence,

T0 → E|X + YBδb
|q,

(112)
T1 = E

∣∣λ1/q
2 (X + Yw1δc1

) + (|c2|qλ2
)1/q sign c2 (1 − λ2)

∣∣q → a.

Also, eventually λ2 ∈ [0,1] and hence

21−q
∞∑

j=2

|Tj | ≤ λ2
2

∞∑
j=2

1

j !E|X + Yw1δc1
|q + |c2|qλ2

2

∞∑
j=2

jq

j ! −→ 0.(113)

Combining (111), (112), (113) and recalling that λ2 → 0, one completes the proof.
�

2.6. Conclusion of the proof of Theorem 1.3. Consider first the case when X

is bounded and

5 < q < p.(114)

Recall definition (54) of H∗,p,q;A,B;X;M . By Propositions 2.11 and 2.10, for
each real M as in (50), either H∗,p,q;A,B;X;M ⊆ {Bδc,Bδ−c} or there is some
H∗,M ∈ H∗,p,q;A,B;X;M such that suppH∗,M = {−c2,M, c1,M} for some real c1,M

and c2,M such that 0 < c1,M ∧ c2,M ≤ c1,M ∨ c2,M = M . So, w.l.o.g. one of the
following two cases holds:

Case 1. H∗,p,q;A,B;X;M ⊆ {Bδc,Bδ−c} for all real M ≥ c.
Case 2. There exist sequences (Mk) in [c,∞), (bk) in [0, c], (w1,k) in [0,B],

and (w2,k) in [0,B] such that Mk ↑ ∞, and for all k one has Hk := w1,kδMk
+

w2,kδ−bk
∈ H∗,p,q;A,B;X;Mk

, w1,k + w2,k = B , and b
p−2
k w1,k + M

p−2
k w2,k = A.

In case 1, by (54),

Sp,q;A,B;X;M = max
(
E|X + YBδc |q,E|X + YBδ−c |q

)
(115)

for all real M ≥ c.

Let us show that (115) holds in case 2 as well. W.l.o.g., bk → b for some b ∈
[0, c]. Also, 0 ≤ M

q−2
k w2,k ≤ M

q−2
k

A

M
p−2
k

→ 0, by the condition q < p in (114).

So, by Proposition 2.12,

E|X + YHk
|q → E|X + YBδ−b

|q .(116)
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Since Hk ∈ H∗,p,q;A,B;X;Mk
and Sp,q;A,B;X;M is obviously nondecreasing in

M > 0, it now follows that

sup
M>0

Sp,q;A,B;X;M = E|X + YBδ−b
|q

(117)
≤ Sp,q;Bbp−2,B;X;c ≤ Sp,q;A,B;X;c.

The last inequality follows by Proposition 2.8, because b ∈ [0, c] and hence
Bbp−2 ≤ Bcp−2 = A. Moreover, if b ∈ [0, c) then, again by Proposition 2.8, the
last inequality in (117) is strict, which is a contradiction. Thus, necessarily b = c,
and so, by the equality in (117), (115) holds in case 2 as well, because obviously
Sp,q;A,B;X;M ≥ E|X + YBδc |q for all real M ≥ c.

Take now any real M ≥ c and any H ∈ Hp;≤A,≤B;M . Then, by (115), (53),
and (52),

E|X + YH |q ≤ max
(
E|X + YBδc |q,E|X + YBδ−c |q

)
(118)

—provided that q ∈ (5,p). Since E|X + YH |q is continuous in q ∈ (0,∞) [cf. the
second equality in (57)], inequality (118) holds for all q ∈ [5,p]—provided that
p > 5.

Let us show that (118) holds when p = 5 (and then q = 5 as well). Take any
H ∈ H5,≤A,≤B;M and any sequence (pn) in (5,∞) such that pn ↓ 5 as n → ∞.
Then |x|pn−2 → |x|5−2 uniformly in x ∈ [−M,M] and hence

An := A ∨
∫
R

|x|pn−2H(dx) −→ A ∨
∫
R

|x|5−2H(dx) = A.

So, recalling (11) and letting bn := cpn(An,B), one has bn → c. Also, clearly
H ∈ Hpn;≤An,≤B;M for all n. Therefore, by (118) with q = 5,

E|X + YH |5 ≤ max
(
E|X + YBδbn

|5,E|X + YBδ−bn
|5)

(119)
→ max

(
E|X + YBδc |5,E|X + YBδ−c |5

)
.

Thus, indeed (118) holds when p = q = 5.
Take now any X = (X1, . . . ,Xn) ∈ Xp;X;≤A,≤B and abandon the assumption

that the r.v. X is bounded. Let X0 := X. By Proposition 2.2, for each i ∈ {0, . . . , n}
and each real M > 0 there is a truncated version Xi,M of Xi such that:

(i) EXi,M = 0;
(ii) |Xi,M | ≤ M ∧ |Xi |;

(iii) Ef (Xi,M) ≤ Ef (Xi) for all convex functions f :R→R;
(iv) Xi,M → Xi a.s. as M → ∞;
(v) X0,M, . . . ,Xn,M are independent.

Then obviously

(X1,M, . . . ,Xn,M) ∈ Xp;X;≤A,≤B.(120)
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Letting now SM := X1,M + · · · + Xn,M , one also has |X0,M + SM |q ≤ (n +
1)q−1(|X0,M |q + ∑n

1 |Xi,M |q) ≤ (n + 1)q−1(|X|q + ∑n
1 |Xi |q). So, by dominated

convergence,

E|X0,M + SM |q −→
M→∞ E|X + SX|q.(121)

On the other hand, by Theorem A (with E|X0,M + · |p and Xi,M in place of f

and Xi) and (33),

E|X0,M + SM |q ≤ E|X0,M + YH∗,M
|q,(122)

where

H∗,M(E) :=
∫
E

x2
n∑
1

P(Xi,M ∈ dx)

for all Borel sets E ⊆ R. It follows from (120) that the measure H∗,M is in
Hp;≤A,≤B;M . By (122), (118) (proved for bounded X and H ∈ Hp;≤A,≤B;M ) and
item (iii) on page 2539,

E|X0,M + SM |q ≤ E|X0,M + YH∗,M
|q

≤ max
(
E|X0,M + YBδc |q,E|X0,M + YBδ−c |q

)
≤ max

(
E|X + YBδc |q,E|X + YBδ−c |q

)
= max

(
E|X + c�̃λ|q,E|X − c�̃λ|q)

,

where again λ and c are as in (11).
Now (121) yields

E|X + SX|q ≤ max
(
E|X + c�̃λ|q,E|X − c�̃λ|q)

.(123)

Thus, the first supremum in (16) is no greater than the right-hand side of (123).
To complete the proof of Theorem 1.3, it remains to note that the second supre-

mum in (16) is no less than the right-hand side of (123). Indeed, by Lemma 2.1

with G = λδc, one has a sequence (Zn) in Xp;A,B such that SZn

D−→ c�̃λ. Now,
by the Fatou lemma for the convergence in distribution (Theorem 5.3 in [2]),
lim infn E|X + SZn

|q ≥ E|X + c�̃λ|q , so that the second supremum in (16) is no
less than E|X+c�̃λ|q . Quite similarly, that supremum is no less than E|X−c�̃λ|q ,
and thus it is indeed no less than the right-hand side of (123).

3. Other proofs.

PROOF OF PROPOSITION 1.1. That ∅ �= Xp;A,B is part of Lemma 2.1, and
the inclusion Xp;A,B ⊆ Xp;≤A,≤B is trivial. The homogeneity property holds be-
cause for any X ∈ Xp;A,B and any real κ > 0, one has κX ∈ Xp;κpA,κ2B .
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Now it follows easily by Jensen’s inequality that Ep;A,B is nondecreasing in A

and in B . Indeed, let us first take any Ã ∈ (0,A) and B̃ ∈ (0,B). Take then any in-
dependent finite sequences X = (X1, . . . ,Xn) ∈ X

p;Ã,B̃
and Y = (Y1, . . . , Ym) ∈

X
p;A−Ã,B−B̃

; by the already verified first sentence of Proposition 1.1, such
X and Y exist. Then Z := (X1, . . . ,Xn,Y1, . . . , Ym) ∈ Xp;A,B . Moreover, by
Jensen’s inequality, E|SX|p ≤ E|SX + SY|p = E|SZ|p . Thus, E

p;Ã,B̃
≤ Ep;A,B , for

any Ã ∈ (0,A) and B̃ ∈ (0,B).
This and the homogeneity property in turn imply that E

p;A,B̃
≤ Ep;κpA,κ2B =

κpEp;A,B for any B̃ ∈ (0,B] and any real κ > 1. Letting now κ ↓ 1 and recalling
that, by (7), Ep;A,B < ∞, one concludes that E

p;A,B̃
≤ Ep;A,B for any B̃ ∈ (0,B].

Similarly, E
p;Ã,B

≤ Ep;A,B for any Ã ∈ (0,A]. Thus, indeed Ep;A,B is nondecreas-
ing in A and in B . Now (8) immediately follows. �

PROOF OF PROPOSITION 1.2. For brevity, let KA,B := max(γA,Bp/2)1/p .
Then A/K

p
A,B ≤ 1/γ , B/K2

A,B ≤ 1, and, in view of (9) and the homogeneity and
monotonicity properties of Ep;A,B presented in Proposition 1.1,

Cp;γ = sup
A,B>0

K
−p
A,BEp;A,B = sup

A,B>0
Ep;A/K

p
A,B,B/K2

A,B
≤ Ep;1/γ,1.

On the other hand, by (9), Ep;1/γ,1 ≤ Cp;γ . Thus, the first equality in Proposi-
tion 1.2 is verified.

The second equality there easily follows from (and in fact is equivalent to) the
first one. Indeed, choosing γ = Bp/2/A and using again the homogeneity property,
one has Ep;A,B = Bp/2Ep;1/γ,1 = Bp/2Cp;γ = Bp/2Cp;Bp/2/A. �

PROOF OF THEOREM 1.5. Take any X ∈ Xp;X;≤A,≤B . Let σ := √
VarSX, so

that σ ∈ [0,
√

B]. If σ = 0 then, by Jensen’s inequality, E|X + SX|p = E|X|p ≤
E|X + B1/2Z|p ≤ A + E|X + B1/2Z|p , whence

E|X + SX|p ≤ A + E
∣∣X + B1/2Z

∣∣p.(124)

Suppose now that σ �= 0. Define the function f by the formula f (x) := E|X/σ+x|p
p(p−1)

for all x ∈ R. Using Lemma 2.4, it is easy to see that f ′′(x) = E|X/σ + x|p−2 for
all x ∈ R, and hence the function f is in the class Fp defined on page 515 from
[31]. It follows by Theorem 2 in [31], and Jensen’s inequality that E|X + SX|p ≤
E|X+σZ|p +A ≤ E|X+σZ +√

B − σ 2Z1|p +A = E|X+B1/2Z|p +A, where
Z1 ∼ N(0,1). So, inequality (124) holds as well in the case σ �= 0. Thus, the first
supremum in (18) is no greater than A + E|X + B1/2Z|p .

It remains to show that the second supremum in (18) is no less than A +
E|X + B1/2Z|p . Recall (20) and take any quadruple (c1, c2, λ1, λ2) ∈ Qp;A,B .
By Lemma 2.1 with G = λ1δc1 + λ2δc2 , one has a sequence (Zn) in Xp;A,B
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such that SZn

D−→ c1�̃λ1 + c2�̃λ2 . By the Fatou lemma (Theorem 5.3 in [2]),
lim infn E|X + SZn

|p ≥ E|X + c1�̃λ1 + c2�̃λ2 |p , so that the second supremum in
(18) is no less than E|X + c1�̃λ1 + c2�̃λ2 |p , for any (c1, c2, λ1, λ2) ∈ Qp;A,B . So,
by Proposition 1.6 (whose proof does not rely on Theorem 1.5), this supremum is
indeed no less than A + E|X + B1/2Z|p . �

PROOF OF PROPOSITION 1.6. Let the quadruple (c1, c2, λ1, λ2) ∈ Qp;A,B

vary as in (19), so that c1 → 0 and |c2| → ∞. For j ∈ {1,2}, let wj := c2
jλj ,

so that w1 + w2 = B , |c1|p−2w1 + |c2|p−2w2 = A and c1�̃λ1 + c2�̃λ2
D= YH

with H := w1δc1 + w2δc2 . It follows that |c1|p−2w1 ≤ |c1|p−2B → 0 and hence
|c2|p−2w2 → A. It remains to refer to Proposition 2.12 (with q = p), since

YBδ0
D= B1/2Z. �

PROOF OF COROLLARY 1.7. The first equality in (21) follows immediately
by Theorems 1.3 and 1.5. Also, by Lemma 2.1 with G = λ1δc1 + λ2δc2 and the
Fatou lemma (Theorem 5.3 in [2]), E|X + c1�̃λ1 + c2�̃λ2 |p is no greater than the
second supremum in (21), for each (c1, c2, λ1, λ2) ∈ Qp;A,B . So, the last supre-
mum in (21) is no greater than the first two ones there.

On the other hand, the last supremum in (21) is obviously no less than
the maximum in (16), and, by Proposition 1.6, this supremum is no less than
A + E|X + B1/2Z|p . So, by Theorems 1.3 and 1.5, the last supremum in (21)
is no less than the first two ones there. �

PROOF OF THEOREM 1.8. This proof is analogous to that of Theorem 1.3 and
even significantly simpler overall, since analogues of Propositions 2.11 and 2.12
are not needed here. In the proofs of the analogues of Propositions 2.8, 2.9,
and 2.10, one should use the symmetrized real-valued measure �(du) + �(−du)

in place of �(du). �
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