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ZERO-TEMPERATURE LIMIT OF THE KAWASAKI DYNAMICS
FOR THE ISING LATTICE GAS IN A LARGE

TWO-DIMENSIONAL TORUS

BY B. GOIS AND C. LANDIM

IMPA, and IMPA and Université de Rouen

We consider the Kawasaki dynamics at inverse temperature β for the
Ising lattice gas on a two-dimensional square of length 2L + 1 with periodic
boundary conditions. We assume that initially the particles form a square
of length n, which may increase, as well as L, with β. We show that in a
proper time scale the particles form almost always a square and that the center
of mass of the square evolves as a Brownian motion when the temperature
vanishes.

1. Introduction and main results. We introduced in [1, 4] a general method
to describe the asymptotic evolution of one-parameter families of continuous-time
Markov chains among the ground states or from high energy sets to lower energy
sets. This method has been successfully applied in two situations. For zero-range
dynamics on a finite set which exhibit condensation [3, 19], and for random walks
evolving among random traps [17, 18]. In the first model, the chain admits a finite
number of ground sets and one can prove that in an appropriate time scale the
process evolves as a finite state Markov chain, each state corresponding to a ground
set of the original chain. In the second model, there is a countable number of
ground states and one can prove that in a certain time scale the process evolves as
a continuous-time Markov chain in a countable state space, each point representing
one of the ground states. In this paper, which follows [2, 5], we investigate a third
case, where the limit dynamics is a continuous process.

We consider the Ising lattice gas on a torus subjected to a Kawasaki dynamics at
inverse temperature β . Let TL = {−L, . . . ,L}2, L ≥ 1, be a square with periodic
boundary conditions. Denote by T

∗
L the set of bonds of TL. This is the set of

unordered pairs {x, y} of TL such that ‖x − y‖ = 1, where ‖ · ‖ stands for the
Euclidean distance. The configurations are denoted by η = {η(x) :x ∈ TL}, where
η(x) = 1 if site x is occupied and η(x) = 0 if site x is vacant. The Hamiltonian H,
defined on the state space �L = {0,1}TL , is given by

−H(η) = ∑
{x,y}∈T∗

L

η(x)η(y).
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The Gibbs measure at inverse temperature β associated to the Hamiltonian H,
denoted by μβ , is given by

μβ(η) = 1

Zβ

e−βH(η),

where Zβ is the normalizing partition function.

We consider the continuous-time Markov chain {ηβ
t : t ≥ 0} on �L whose gen-

erator Lβ acts on functions f :�L →R as

(Lβf )(η) = ∑
{x,y}∈T∗

L

cx,y(η)
[
f
(
σx,yη

)− f (η)
]
,

where σx,yη is the configuration obtained from η by exchanging the occupation
variables η(x) and η(y):

(
σx,yη

)
(z) =

⎧⎪⎨⎪⎩
η(z), if z �= x, y,

η(y), if z = x,

η(x), if z = y.

The rates cx,y are given by

cx,y(η) = exp
{−β

[
H
(
σx,yη

)−H(η)
]
+
}
,

and [a]+, a ∈ R, stands for the positive part of a: [a]+ = max{a,0}. We sometimes
represent η

β
t by ηβ(t) and we frequently omit the index β of η

β
t .

A simple computation shows that the Markov process {ηt : t ≥ 0} is reversible
with respect to the Gibbs measures μβ , β > 0, and ergodic on each irreducible
component formed by the configurations with a fixed total number of particles. Let
�L,K = {η ∈ �L :

∑
x∈TL

η(x) = K}, 0 ≤ K ≤ |TL|, and denote by μK = μβ,K

the Gibbs measure μβ conditioned on �L,K :

μK(η) = 1

Zβ,K

e−βH(η), η ∈ �L,K,

where ZK = Zβ,K is the normalizing constant ZK =∑η∈�L,K
exp{−βH(η)}.

Let D(R+,�L,K) be the space of right-continuous with left limits trajecto-
ries e :R+ → �L,K endowed with the Skorohod topology. For each configuration
η ∈ �L,K , denote by Pβ

η the probability measure on D(R+,�L,K) induced by the
Markov process {ηt : t ≥ 0} starting from η. Expectation with respect to Pβ

η is rep-
resented by Eβ

η . Sometimes we omit the index β in the notation. The reader should
be warned that we consider in this article two types of asymptotics involving the
probability measure Pβ

η . In Section 3, for example, we examine the limit of certain
events in the case where the set TL and the number of particles K are fixed while
β ↑ ∞. In contrast, in all theorem stated in this section L and K depend on β .
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Assume from now on that K = n2 for some n ≥ 1. Denote by Q the square
{0, . . . , n − 1} × {0, . . . , n − 1}. For x ∈ TL, let Qx = x + Q and let ηx be the
configuration in which all sites of the square Qx are occupied. Denote by � the set
of square configurations

� = {ηx : x ∈ TL

}
.

A simple computation [5] shows that if L > 2n the ground states of the energy H

in �L,K are the square configurations

Hmin := min
η∈�L,K

H(η) = H
(
ηx)= −2n(n − 1),

and H(η) > −2n(n − 1) for all η ∈ �L,K \ �.
We examine in this article the asymptotic evolution of the Markov process

{ηt : t ≥ 0} among the |TL| ground states {ηx : x ∈ TL} as the temperature vanishes,
while the volume and the number of particles increase not too fast.

The trace process on �. Denote by ξ(t) the trace of the process η(t) on � and
by rβ(x,y) = Rξ(η

x, ηy) the jump rates of the trace process ξ(t). By symmetry, it
is clear that rβ(x,y) = rβ(0,y − x) =: rβ(y − x).

Let X(ηx) = x, x ∈ TL, so that X(t) = X(ξ(t)) is a random walk on TL which
jumps from x to y at rate rβ(y − x) and which starts from the origin. Denote by
X1(t), X2(t) the components of X(t) and by Nx

t the number of jumps of size x
performed by the random walk X(s) in the time interval [0, t]. Since, by symmetry,
rβ(−x) = rβ(x),

X(t) − X(0) = ∑
x∈TL

xNx
t = ∑

x∈TL

x
{
Nx

t − rβ(x)t
}= ∑

x∈TL

xMx
t ,

where Mx
t , x ∈ TL, are orthogonal martingales with quadratic variation 〈Mx〉t

equal to rβ(x)t . Hence, if we represent by 〈X1〉t , 〈X2〉t the predictable quadratic
variations of the components of the random walk X(t),

〈X1〉t + 〈X2〉t = ∑
x∈TL

‖x‖2rβ(x)t.(1.1)

Let

1

θβ

:= 1

t
Eη0
[∥∥X(t)

∥∥2]= 1

t
Eη0
[〈X1〉t + 〈X2〉t ]= ∑

x∈TL

‖x‖2rβ(x).(1.2)

Hence, θ−1
β is the diffusion constant of the centre of the square, that is, the mean-

square displacement per unit of time. We prove in Section 9 that under the assump-
tion that

lim
β→∞n4L2e−β = 0,(1.3)
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there exist constants 0 < c0 < C0 < ∞, independent of β , such that

c0
n

L2 e2β ≤ θβ ≤ C0n
2e2β.(1.4)

We adopt this convention throughout the paper, 0 < c0 < C0 < ∞ are constants
independent of β whose value may change from line to line. Let

e(β) = Le−β/2 +
√

n7
[
n4e−β + nLe−β/2

]
,(1.5)

which is the order of the error which appears in Proposition 5.2. Under the stronger
assumption that

lim sup
β→∞

L2

n2 e(β) < ∞,(1.6)

we have that

c0
1

n2 e2β ≤ θβ ≤ C0n
2e2β.(1.7)

We comment below in Remark 1.4 on the exact order of θβ . Entropy effects, ev-
idenced by the presence of many paths of the same cost connecting two ground
states, turn the estimation of θβ into hard problem.

THEOREM 1.1. Assume that η0 = η0 and that L = L(β), n = n(β) depend on
the temperature. Consider a sequence 	 = 	(β) such that 1 
 	 ≤ L, and assume
that

lim
β→∞	Lθβe−2βe(β) = 0,(1.8)

and that for all δ > 0,

lim
β→∞	(	 + n)θβe−2βe−δ	/n = 0.(1.9)

Let Zβ(t) = X(t	2θβ)/	. Then, as β → ∞, Zβ(t) converges in the Skorohod
topology to a Brownian motion.

If 	 = L, the limiting Brownian motion evolves on the two-dimensional torus
[−1,1)2, while if 	 
 L, the limiting Brownian motion evolves on R

2. We discuss
in Remark 1.5 the assumptions (1.8) and (1.9).

Energy landscape. Denote by Hj , j ≥ 0, the set of configurations with energy
equal to Hmin + j = −2n(n − 1) + j :

Hj = {η ∈ �L,K :H(η) = Hmin + j
}
,

and let

�j = {η ∈ �L,K :H(η) >Hmin + j
}
,(1.10)
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FIG. 1. The energy landscape of the Kawasaki dynamics at low temperature. � represents the set of
ground states, �j , 1 ≤ j ≤ 4, disjoint subsets of H1, �i,i+1, 0 ≤ i ≤ 3, disjoint subsets of H2, and
�c = H1 \ [⋃1≤j≤4 �j ], �c = H2 \ [⋃0≤i≤3 �i,i+1]. At low temperatures, during an excursion
between two ground states, with probability very close to 1, the process does not visit the set �2 and
all the analysis is reduced to the lower-left portion of the picture.

so that H0 = � and {H0j ,�j } forms a partition of the set �L,K , where Hij =⋃
i≤k≤j Hk .
We have shown in [5] that the energy landscape of the Kawasaki dynamics at

low temperature starting from a ground state configuration has the form illustrated
by Figure 1. There are subsets �j , 1 ≤ j ≤ 4, of H1 and subsets �j,j+1, 0 ≤
j ≤ 3, of H2, defined in Section 2, satisfying the following properties. Let �c =
H1 \ [⋃j �j ], �c = H2 \ [⋃j �j,j+1]. Denote by 
, 
′ generic sets appearing in
Figure 1. The process ηt may jump from a configuration in 
 to a configuration
in 
 or to a configuration in 
′ if 
 and 
′ are joined by an edge in Figure 1.
In particular, starting from �, the process ηt may only reach �c by crossing the
set �2.

Let �� be the set of configurations which can be reached from η0 without cross-
ing the set �2, �� = �

⋃
1≤i≤4 �i⋃

0≤j≤3 �j,j+1 in the notation of Figure 1. This
set is described in the next section and in Section 7.

THEOREM 1.2. Assume that

lim
β→∞	2θβe−2β(n8 + L2)e−β = 0.(1.11)

Then, for every t > 0,

lim
β→∞ Pη0

[
η(s) /∈ �� for some 0 ≤ s ≤ t	2θβ

]= 0.(1.12)

The set �� is small. In the next sections, we show that this set has less than
C0L

2(n8 +L2) elements and that it is constituted of configurations whose particles
form n × n squares, (n + 1) × (n − 1) and (n + 2) × (n − 2) rectangles.

Configurations whose particles form a (n + k) × (n − k) rectangle, 4 < k2 <

n + k, and whose remaining k2 particles form a 1 × k2 rectangle attached to one
side of the large rectangle belong to H1 ∩ �c

�. It follows from this observation
and from the definition of the set ��, presented in the next section, that even the
cardinality of �� ∩H1 is small compared to the cardinality of H1.



2156 B. GOIS AND C. LANDIM

The previous two remarks show that in the time scale 	2θβ the Kawasaki dynam-
ics is confined to a tiny portion of the state space. It is this rather simple energy
landscape which permits the analysis of the evolution of the center of mass. In
dimension 3, for example, the energy landscape is much more complicated inso-
much that, though we believe that a similar result holds, the proof requires a much
more intricated argument.

Evolution of the center of mass. Due to the periodic boundary conditions, the
center of mass of a configuration may not be well defined. However, the particles
of a configuration η ∈ �� \ (�0,1 ∪�2,3) form a connected set and have, therefore,
a well defined center of mass. On the other hand, the particles of a configuration η

in �0,1 form a square in which a particle at a corner of the square has been moved
to a site whose neighbors are vacant or became vacant after the displacement of
the particle at the corner. The detached particle may create an ambiguity in the
definition of the center of mass of η. To avoid this problem we define the center of
mass of a configuration η ∈ �0,1 as the center of mass of the large connected com-
ponent. Of course, if n is large and L is not too large compared to n2 the detached
particle does not affect the center of mass. This analysis extends to configurations
in �2,3. With the previous convention and since by Theorem 1.2 the process is
confined to �� in the time scale 	2θβ , we may examine the evolution of the center
of mass without ambiguity.

Denote by M(η) the center of mass of a configuration η ∈ �� and set, say, M(ξ) =
0 for configurations ξ /∈ ��. Denote by [a] the integer part of a > 0.

THEOREM 1.3. Assume that η(0) = η−n, where n = ([n/2], [n/2]), and that
the hypotheses of Theorems 1.1 and 1.2 are in force. Suppose also that (n7 +
L)e−β → 0. Let Mβ(t) = M(η(t	2θβ))/	. There exists c0 > 0 such that if n ≥ c0 for
all β large enough, then, as β ↑ ∞, Mβ(t) converges in the Skorohod topology to
a Brownian motion.

As in Theorem 1.1, the limiting Brownian motion evolves on the torus [−1,1)2

if 	 = L and on R
2 if 	 
 L.

Dynamics of the trace process ξ(t). To examine the evolution of the trace of
ηt on the set � of ground states, we consider the trace of ηt on the larger space
�1 = � ∪ �1 ∪ �3. The set �1, defined in Section 2, is formed by configurations
whose particles form a n × n square in which one particle at the corner of the
square has been displaced and attached to one of the sides of the square. Figure 3
shows configurations in �1. The set �3 contains all configurations whose particles
form a (n±1)×(n∓1) rectangle with an extra particle attached to one of the sides.
Figure 5 shows configurations in �3.

Figure 2 illustrates the dynamics of the trace of ηt on �1 in the case n = 6,
denoted by ζ1(t). A 1 × 1 square has been placed at each vertex occupied by a
particle and the gray square indicates the origin. The n × n squares represent the
set of configurations formed by a ground state, say ηx, as well as the 4(4n − 2)
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FIG. 2. The dynamics of the trace of ηt on � ∪ �1 ∪ �3.

configurations in �1 obtained from ηx by displacing a particle at the corner of the
square to one of the sides. There are 16 different types of such configurations, as
we may choose a particle from 4 corners and move it to 4 sides. Each rectangle
represents the set of 4n configurations whose particles form a (n + 1) × (n − 1)

rectangle with an extra particle attached to one of the sides.
Figure 2 presents a piece of a periodic horizontal band of the graph which de-

scribes the dynamics of ζ1(t). To form the complete graph, one has first to replicate
this periodic horizontal band in the vertical direction to obtain a graph also peri-
odic in the vertical direction. Denote by G the graph obtained. To complete the
construction, one has to superpose G with the graph G rotated by 90◦. In this ro-
tated graph, the (n + 1) × (n − 1) rectangles become (n − 1) × (n + 1) rectangles.

Recall that each square or rectangle in Figure 2 represents a set of configura-
tions. Two sets 
1, 
2 are joined by a line if the process ζ1(t) may jump from
one configuration of 
1 to a configuration in 
2. For example, ζ1(t) jumps from
a square to the rectangle on the right and above the square by sliding the small
squares at the bottom of the square to its right side. In fact, all jumps occur from
such displacements of particle along the sides.

Figure 2 also illustrates why the trace process ξ(t) may have long jumps. For
this to happen, it is enough that the process ζ1(t) jumps from a square configuration
to an upper rectangle and then move from rectangle to rectangle in the horizontal
direction. The figure indicates that the probability that ξ(t) performs a jump of
length x should decay exponentially in x at a rate independent of β .

The diagrams in Figures 1, 2 have been used extensively in the literature. We
refer to [6, 7, 9, 16] in the conservative case.

REMARK 1.4 (The asymptotic behavior of θβ ). We believe that the order of
magnitude of θβ is given by

1

μζ (η0)
capζ

(
η0,


)∼ 1

μβ(η0)
cap
(
η0,


)
.

In this formula, ζ(t) is the trace process introduced in Section 3, μζ its stationary
state, capζ the associated capacity and 
 the union of all sets joined by a line
to η0 in the graph partially drawn in Figure 2. If this insight is correct, by the
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computation presented at the end of Section 6 the order of magnitude of θβ lies
between ne2β and n2e2β .

By definition (1.2) and by formula (9.1),

θ−1
β = λζ

(
η0) ∑

x∈TL

‖x‖2Pη0
[
H+

� = Hηx
]
,(1.13)

where λζ (η
0) represents the holding rate at η0 of the trace process ζ(t), and H
,

H+

 the hitting time of 
 and the return time to 
, respectively. All these no-

tions are defined in Section 3. It follows from the previous equation and from the
definition of the capacity that

θ−1
β ≥ λζ

(
η0)Pη0

[
H+

� < H+
η0

]= 1

μζ (η0)
capζ

(
η0,� \ η0).

By Lemma 9.1, this expression is bounded below by c0e
−2βn−2, which is the

upper bound presented in (1.4). On the other hand, capζ (η
0,� \ η0) should be of

the order of capζ (η
0,
) which explains the first half of our claim.

To obtain an upper bound for θ−1
β , note that by (1.13),

θ−1
β ≤ λζ

(
η0)Pη0

[
H
 < H+

η0

] ∑
x∈TL

‖x‖2 max
η∈


Pη[H� = Hηx].

We have argued right before this remark that Pζ
η[H+

� = Hηx] decreases exponen-
tially fast in ‖x‖, at a rate independent of β . In particular, the previous sum should
be bounded by a finite constant independent of β . On the other hand, by the defi-
nition of the capacity

λζ

(
η0)Pη0

[
H
 < H+

η0

]= 1

μζ (η0)
capζ

(
η0,


)·
By the proof of Lemma 9.1, this expression is bounded above by C0n

−1e−2β .
The exact asymptotic behavior of θβ requires sharp estimates of the jump rates

of the process described in Figure 2. By symmetry, there are only few different
rates. To estimate these rates, one has to examine the dynamics in which particles
slide along the sides of the square. This process, denoted by ζ(t) in Section 3, is
a reversible, symmetric Markov process on a seven-dimensional graph in which
each vertex has degree less than or equal to eight. Such estimates are certainly not
easy, but are conceivable. In possession of these estimates, one still has to compute
the probability that the process described in Figure 2 starting from η0 return to �

at ηx.

REMARK 1.5 (The hypotheses and the strategy). Condition (1.8) has to be
understood as follows. 	2θβ is the time scale. Each time the process visits a square
(a configuration in �) it remains there an exponential time whose mean is of or-
der e2β . Therefore, 	2θβe−2β represents the number of excursions between two
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consecutive visits to �. In condition (1.8), one 	 has been replaced by L in the
argument due to our incapacity to estimate sharply the hitting probabilities (1.13).

The main idea of the article consists in taking a temperature low enough, with
respect to n and L, to be allowed to discard all jumps of lower order in β . For
example, a square configuration has 8 jumps whose rates are e−2β and 4(n − 2)

jumps whose rates are e−3β . Hence, if 	2θβe−2βne−β vanishes as β ↑ ∞, a particle
which is not at the corner of a square jumps in a time interval [0, t	2θβ], t > 0, with
a probability converging to 0.

If we discard such jumps, from a square the process η(t) can only reach a con-
figuration in which a particle at the corner of the square has detached itself from
the square. At this point, the detached particle performs a rate one symmetric ran-
dom walk on TL until it reaches a side of this square. While this particle moves,
other particles may also jump. There are a few rate e−β and rate e−2β jumps and
O(n) rate e−3β jumps. In order to apply the approach presented here, we need
to guarantee that the detached particle returns to the square before any another
particle moves. We have seen that a particle in the square jumps at rate at most
e−β while the detached particle returns to the square in a time of order L2. Hence,
the probability that a lower order jump occurs before the detached particle returns
should be of order L2e−β . We are only able to estimate this probability, in Proposi-
tion 4.2, by Le−β/2. Thus, as in the previous paragraph, to guarantee that no lower
order jump occurs in the time scale in which the center of mass evolves we need to
impose that 	2θβe−2βLe−β/2 vanishes. This explains the factor Le−β/2 appearing
in the error term e(β) introduced in (1.5).

Proceeding in this way, we face many cases presented in Sections 2, 3 and 4. The
error term e(β) summarizes all the constraints, it represents the bound obtained
in Proposition 5.2 for the probability that a lower order jump occurs before the
process returns to a square configuration when it starts from a square configuration.
This estimate is not sharp and the conditions on the growth of L and n can certainly
be improved.

Condition (1.9) is spurious and comes from the fact that we are not able to
estimate correctly the hitting probabilities appearing in (1.13). It can certainly be
suppressed, but its removal depends on the estimation of hitting probabilities of a
seven dimensional random walk.

Finally, note that in Theorems 1.1 and 1.3, n has to be large, but does not need
to increase with β .

REMARK 1.6. The approach presented in this article can be applied to the case
in which the total number of particles is n(n + k), for some integer k independent
of β , and the particles of the initial configuration form a n× (n+ k) rectangle. The
energy landscape becomes more complex for k large and computations harder. For
example, for k = 2, a (n + 1) × (n + 1) square without a particle at a corner is a
ground state.
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Since its origins, the Ising model has been known to properly represent the
condensation phenomena in two-dimensional systems formed by the adsorption of
gases on the surfaces of crystals [24, 25]. There is a huge literature on this subject.
In this perspective, the present work can be seen as an investigation of the evolution
of the condensate.

The metastable behavior of the Ising lattice gas evolving under the nonconserv-
ative Glauber dynamics at very low temperature has been examined 20 years ago
and is well understood [23]. In contrast, there are not many results on the asymp-
totic behavior of the Ising lattice gas under the conservative Kawasaki dynamics
at very low temperature.

This problem has been examined in two situations. Den Hollander et al. [9] and
Gaudillière et al. [16] described the critical droplet, the nucleation time and the typ-
ical trajectory followed by the process during the transition from a metastable set
to the stable set in a two-dimensional Ising lattice gas evolving under the Kawasaki
dynamics at very low temperature and very low density in a finite square in which
particles are created and destroyed at the boundary. This result has been extended
to the anisotropic case by Nardi et al. [22] and to three dimensions by den Hollan-
der et al. [8]. Bovier et al. [6] presented the detailed geometry of the set of critical
droplets and provided sharp estimates for the expectation of the nucleation time
for this model in dimension two and three.

More recently, Gaudillière et al. [15] proved that the dynamics of particles
evolving according to the Kawasaki dynamics at very low temperature and very
low density in a two-dimensional torus, whose length increases as the temperature
decreases, can be approximated by the evolution of independent particles. Bovier
et al. [7] obtain sharp estimates for the expectation of the nucleation time for this
model where the length of the square increases as the temperature vanishes.

Finally, Funaki [12, 13] examined, in the zero-temperature limit, the motion of
a rigid body formed by a system of interacting Brownian particles with a pairwise
potential in R

d , and the nucleation in the one-dimensional case.
The article is divided as follows. In the next section, we introduce a subset � of

�L,K . In Sections 3 and 4, we obtain sharp estimates for the jump rates of ζ(t), the
trace of η(t) on �, and we introduce a process ζ̂ (t) whose rate jumps are close to
the ones of ζ(t). In Section 5, we couple ζ(t) and ζ̂ (t) and we obtain an estimate
on the time these processes remain coupled. In Section 6, we prove Theorem 1.1,
in Section 7, Theorem 1.2, and in Section 8, Theorem 1.3. We conclude the article
in Section 9 with estimates on the time-scale θβ .

2. The subset of configurations �. We introduce in this section a subset �

of H01, and we estimate, in the next section, the jump rates of the trace of η(t)

on �.
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2.1. The configurations η
i,j
x . For a subset B of TL, denote by ∂−B , ∂+B the

inner, outer boundary of B , respectively. These are the set of sites which are at
distance one from Bc, B , respectively,

∂−B = {x ∈ B :∃y ∈ Bc, |y − x| = 1
}
,

∂+B = {x ∈ TL \ B :∃y ∈ B, |y − x| = 1},
where | · | stands for the sum norm, x = (x1, x2), |x| = |x1| + |x2|.

Let Qi = Q \ {wi}, 0 ≤ i ≤ 3, where

w0 = w = (0,0), w1 = (n − 1,0),

w2 = (n − 1, n − 1), w3 = (0, n − 1)

are the corners of the square Q. For x ∈ TL, 0 ≤ i ≤ 3, let xi = x + wi , Qi
x =

x + Qi . We refer to the sets Qi
x as quasi-squares, a square with a corner missing.

Let e1 = (1,0), e2 = (0,1) be the canonical basis of R2, and denote by ∂jQ
i
x,

0 ≤ j ≤ 3, the j th outer boundary of Qi
x:

∂jQ
i
x = {z ∈ ∂+Qi

x :∃y ∈ Qi
x;y − z = (1 − j)e2

}
, j = 0,2,

∂jQ
i
x = {z ∈ ∂+Qi

x :∃y ∈ Qi
x;y − z = (j − 2)e1

}
, j = 1,3.

Let Q
i,j
x = ∂jQ

i
x \ Qx, 0 ≤ i, j ≤ 3, x ∈ TL, let E i,j

x be the set of configurations in
which all sites of the set Qi

x are occupied with an extra particle at some location
of Q

i,j
x and let �1 = �1

L,K be the set of all such configurations

E i,j
x = {σ xi ,zηx : z ∈ Qi,j

x
}
, �1 = ⋃

x∈TL

3⋃
i,j=0

E i,j
x .

We proved in [5] that for any configuration ξ ∈ E i,j
x , the triple (E i,j

x ,E i,j
x ∪

�1, ξ) is a valley of depth eβ in the sense of [1], Definition 2.1. To select a repre-
sentative configuration of the well E i,j

x , denote by ŵj , 0 ≤ j ≤ 3, the point in the
inner boundary of Q whose distance to wj and to wj+1 is equal to (n − 1)/2 if n

is odd, and whose distance to wj , wj+1 is equal to (n/2) − 1, n/2, respectively,
if n is even. Let w∗

j the site on the outer boundary of Q at distance one from ŵj ,

and let η
i,j
x , x ∈ TL, be the configuration σ

x+wi ,x+w∗
j ηx. Denote by �̂1 the space

of such configurations

�̂1
x = {ηi,j

x : 0 ≤ i, j ≤ 3
}
, �̂1 = ⋃

x∈TL

�̂1
x.
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FIG. 3. The configurations η
0,0
x , η

0,1
x , η

0,2
x and η

0,3
x for n = 6. The gray dot indicates the site x.

We placed a square [−1/2,1/2)2 around each particle.

2.2. The configurations η
a,(k,�)
x . Let Rl, Rs be the rectangles Rl = {1, . . . , n−

1} × {1, . . . , n − 2}, Rs = {1, . . . , n − 2} × {1, . . . , n − 1}, where l stands for lying
and s for standing. Let ns0 = ns2 = n − 2, ns1 = ns3 = n − 1 be the length of the
sides of the standing rectangle Rs. Similarly, denote by nli , 0 ≤ i ≤ 3, the length
of the sides of the lying rectangle Rl: nli = nsi+1, where the sum over the index i is
performed modulo 4.

Denote by Ia, a ∈ {s, l}, the set of pairs (k,�) = (k0, 	0;k1, 	1;k2, 	2;k3, 	3)

such that:

• 0 ≤ ki ≤ 	i ≤ nai ,
• if kj = 0, then 	j−1 = naj−1.

For (k,�) ∈ Ia, a ∈ {s, l}, let Rl(k,�), Rs(k,�) be the sets

Rl(k,�) = Rl ∪ {(a,0) :k0 ≤ a ≤ 	0
}∪ {(n, b) :k1 ≤ b ≤ 	1

}
∪ {(n − a,n − 1) :k2 ≤ a ≤ 	2

}∪ {(0, n − 1 − b) :k3 ≤ b ≤ 	3
}
,

Rs(k,�) = Rs ∪ {(a,0) :k0 ≤ a ≤ 	0
}∪ {(n − 1, b) :k1 ≤ b ≤ 	1

}
∪ {(n − 1 − a,n) :k2 ≤ a ≤ 	2

}∪ {(0, n − b) :k3 ≤ b ≤ 	3
}
.

Note that a hole between particles on a side of a rectangle is not allowed in the sets
Ra(k,�), Rs(k,�).

Denote by Ia, a ∈ {s, l}, the set of pairs (k,�) ∈ Ia such that |Ra(k,�)| = n2.
For (k,�) ∈ Ia, denote by Mi(k,�) the number of particles attached to the side i

of the rectangle Ra(k,�):

Mi(k,�) =
{

	i − ki + 1, if ki+1 ≥ 1,

	i − ki + 2, if ki+1 = 0.

Clearly, for (k,�) ∈ Ia,
∑

0≤i≤3 Mi(k,�) = 3n − 2 + A, where A is the number of
occupied corners, which are counted twice since they are attached to two sides.

Denote by I ∗
a ⊂ Ia, the set of pairs (k,�) ∈ Ia whose rectangles Ra(k,�) have

at least two particles on each side: Mi(k,�) ≥ 2, 0 ≤ i ≤ 3. Note that if (k,�)
belongs to I ∗

a , for all x ∈ Ra(k,�), there exist y, z ∈ Ra(k,�), y �= z, with the
property |x − y| = |x − z| = 1.

For (k,�) ∈ Ia, a ∈ {s, l}, x ∈ TL, let Ra
x(k,�) = x + Ra(k,�), and let η

a,(k,�)
x

represent the configurations defined by

η
a,(k,�)
x (y) = 1 if and only if y ∈ Ra

x(k,�).
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FIG. 4. Some configurations η
l,(k,�)
x for n = 6. The first one corresponds to the vector

(k,�) = ((1,5); (1,4); (1,6); (0,1)) and the last one to the vector (k,�) = ((0,1); (1,5); (0,5);
(1,5)). The inner gray rectangle represents the set x + Rl and the black dot the site x.

Figure 4 presents examples of configurations η
l,(k,�)
x . The configurations η

a,(k,�)
x ,

(k,�) ∈ Ia, belong to H1. Moreover, the configurations η
a,(k,�)
x , (k,�) ∈ Ia \ I ∗

a ,
belong to �1 or form a (n − 1) × (n + 1) rectangle of particles with one extra par-
ticle attached to a side of length n+1. Let �2 = �2

L,K , be the set of configurations
associated to the pairs (k,�) in I ∗

a :

�2
x = {ηa,(k,�)

x :a ∈ {s, l}, (k,�) ∈ I ∗
a

}
, �2 = ⋃

x∈TL

�2
x.

2.3. The configurations ζ
a,j
x . Let T l, T s be the rectangles T l = {0, . . . , n} ×

{0, . . . , n − 2}, T s = {0, . . . , n − 2} × {0, . . . , n}, where l stands for lying and s

for standing. Denote by T a
x , a ∈ {s, l}, x ∈ TL, the rectangle T a translated by x:

T a
x = x + T a, and by ηx

a the configuration in which all sites of T a
x are occupied.

Note that ηx
a belongs to �L,K−1 and not to �L,K .

For a ∈ {s, l}, x ∈ TL, z ∈ ∂+T a
x , denote by η

x,z
a the configuration in which all

sites of the rectangle T a
x and the site z are occupied: η

x,z
a = ηx

a + dz, where dy ,
y ∈ TL, represents the configuration with a unique particle at y and summation of
configurations is performed componentwise.

Denote by ∂jT
a
x , 0 ≤ j ≤ 3, the j th outer boundary of T a

x :

∂jT
a
x = {z ∈ ∂+T a

x :∃y ∈ T a
x ;y − z = (1 − j)e2

}
, j = 0,2,

∂jT
a
x = {z ∈ ∂+T a

x :∃y ∈ T a
x ;y − z = (j − 2)e1

}
, j = 1,3.

Let Ea,j
x be the set of configurations in which all sites of the set T a

x are occupied
with an extra particle at some location of ∂jT

a
x and let �3 = �3

L,K be the set of all
such configurations:

Ea,j
x = {ηx,z

a : z ∈ ∂jT
a
x
}
, �3 = ⋃

x∈TL

⋃
a=s,l

3⋃
j=0

Ea,j
x .

We proved in [5] that for any configuration ξ ∈ Ea,j
x , the triple (Ea,j

x ,Ea,j
x ∪

�1, ξ) is a valley of depth eβ . We select a representative of the well Ea,j
x .

Fix a = s, l, and denote by w∗
a,j , 0 ≤ j ≤ 3, the mid-points of the outer

boundary of T a. Hence, if n is even w∗
l,0 = (n/2,−1), w∗

l,1 = (n + 1, (n − 2)/2),
w∗
l,2 = (n/2, n−1), w∗

l,3 = (−1, (n−2)/2), and if n is odd w∗
l,0 = ((n−1)/2,−1),

w∗
l,1 = (n + 1, (n − 3)/2), w∗

l,2 = ((n + 1)/2, n − 1), w∗
l,3 = (−1, (n − 1)/2), with
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FIG. 5. The configurations ζ
l,i
x , 0 ≤ i ≤ 3, for n = 6. The gray dot represents the site x.

a similar definition when s replaces l. Let ζ
a,j
x , x ∈ TL, a ∈ {s, l}, 0 ≤ j ≤ 3, be

the configuration ηx
a + dx+w∗

a,j
and denote by �̂3 the space of such configurations:

�̂3
x = {ζ a,j

x :a ∈ {s, l},0 ≤ j ≤ 3
}
, �̂3 = ⋃

x∈TL

�̂3
x.

2.4. The configurations ζ
a,(k,�)
x . Let R2,l, R2,s be the rectangles R2,l =

{1, . . . , n} × {1, . . . , n − 3}, R2,s = {1, . . . , n − 3} × {1, . . . , n}. Let n
2,s
0 = n

2,s
2 =

n − 3, n
2,s
1 = n

2,s
3 = n be the length of the sides of the standing rectangle R2,s.

Similarly, denote by n
2,l
i , 0 ≤ i ≤ 3, the length of the sides of the lying rectangle

R2,l: n
2,l
i = n

2,s
i+1, where the sum over the index i is performed modulo 4.

Denote by I2,a, a ∈ {s, l}, the set of pairs (k,�) such that:

• 0 ≤ ki ≤ 	i ≤ n
2,a
i ,

• if kj = 0, then 	j−1 = n
2,a
j−1.

For (k,�) ∈ I2,a, a ∈ {s, l}, let R2,l(k,�), R2,s(k,�) be the sets

R2,l(k,�) = R2,l ∪ {(a,0) :k0 ≤ a ≤ 	0
}∪ {(n + 1, b) :k1 ≤ b ≤ 	1

}
∪ {(n + 1 − a,n − 2) :k2 ≤ a ≤ 	2

}∪ {(0, n − 2 − b) :k3 ≤ b ≤ 	3
}
,

R2,s(k,�) = R2,s ∪ {(a,0) :k0 ≤ a ≤ 	0
}∪ {(n − 2, b) :k1 ≤ b ≤ 	1

}
∪ {(n − 2 − a,n + 1) :k2 ≤ a ≤ 	2

}∪ {(0, n + 1 − b) :k3 ≤ b ≤ 	3
}
.

Denote by I2,a, a ∈ {s, l}, the set of pairs (k,�) ∈ I2,a such that |R2,a(k,�)| =
n2. For (k,�) ∈ I2,a, denote by M

2,a
i (k,�) the number of particles attached to the

side i of the rectangle R2,a(k,�):

M
2,a
i (k,�) =

{
	i − ki + 1, if ki+1 ≥ 1,

	i − ki + 2, if ki+1 = 0.

Clearly, for (k,�) ∈ I2,a,
∑

0≤i≤3 M
2,a
i (k,�) = 3n + A, where A is the num-

ber of occupied corners, which are counted twice since they are attached to two
sides.

Denote by I ∗
2,a ⊂ I2,a, the set of pairs (k,�) ∈ I2,a whose rectangles R2,a(k,�)

have at least two particles on each side: M
2,a
i (k,�) ≥ 2, 0 ≤ i ≤ 3. Note that if
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FIG. 6. Examples of configurations in �4
x for n = 6. In general, 3n particles (or n − 2 holes)

have to be placed around the rectangle, respecting the constraints introduced above. The black dot
represents the site x.

(k,�) belongs to I ∗
2,a, for all x ∈ R2,a(k,�), there exist y, z ∈ R2,a(k,�), y �= z,

with the property |x − y| = |x − z| = 1.
For (k,�) ∈ I2,a, a ∈ {s, l}, x ∈ TL, let R2,a

x (k,�) = x + R2,a(k,�), and let
ζ
a,(k,�)
x represent the configurations defined by

ζ
a,(k,�)
x (y) = 1 if and only if y ∈ R2,a

x (k,�).

Figure 6 presents examples of configurations ζ
l,(k,�)
x . The configurations ζ

a,(k,�)
x ,

(k,�) ∈ I2,a, have at least four particles attached to the longer side, and the con-
figurations ζ

a,(k,�)
x , (k,�) ∈ I2,a \ I ∗

2,a, belong to �3, forming a (n − 1) × (n + 1)

rectangle of particles with one extra particle attached to a side of length n − 1. Let
�4 = �4

L,K , be the set of configurations associated to the pairs (k,�) in I ∗
2,a:

�4
x = {ζ a,(k,�)

x :a ∈ {s, l}, (k,�) ∈ I ∗
2,a

}
, �4 = ⋃

x∈TL

�4
x.

Let � = �(L,n) be the set of configurations

� = � ∪ �̂1 ∪ �2 ∪ �̂3 ∪ �4.

The set � has less than C0L
2n7 configurations, the main contributions coming

from �2 and �4:

|�| ≤ C0L
2n7.(2.1)

3. The trace of η(t) on �. We define in this section the trace of η(t) on �,
denoted by ζ(t), and we introduce a process ζ̂ (t) which approximates well the
trace process. The parameters n and L are fixed and β ↑ ∞.

Denote by ζ(t) the trace of the process η(t) on �. By Propositions 6.1 and 6.3
in [1], ζ(t) is a irreducible, reversible process on �, whose stationary measure,
denoted by μζ , is the measure μK conditioned to �: μζ (ξ) = μK(ξ)/μK(�) =
μβ(ξ)/μβ(�), ξ ∈ �.

For a subset 
 of �, denote by H
 (resp., H+

 ) the hitting time of 
 (resp., the

return time to 
):

H
 := inf
{
t > 0 : ζ(t) ∈ 


}
,

(3.1)
H+


 = inf
{
t > 0 : ζ(t) ∈ 
,ζ(s) �= ζ(0) for some 0 < s < t

}
.
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Denote by Rζ (η, ξ) the jump rates of the trace process ζ(t), and by Lζ its gen-
erator:

(Lζf )(η) = ∑
ξ∈�

Rζ (η, ξ)
[
f (ξ) − f (η)

]
.

Let Pζ
ξ , ξ ∈ �, be the probability measure on the path space D(R+,�) induced

by the Markov process ζ(t) starting from ξ . Expectation with respect to Pζ
ξ is

represented by Eζ
ξ . For two disjoint subsets A, B of �, denote by capζ (A,B) the

capacity between A and B for the ζ(t) process

capζ (A,B) =∑
η∈A

μζ (η)λζ (η)Pζ
η

[
HB < H+

A

]
,

where λζ (η) stands for the holding rates of the process ζ(t), λζ (η) =∑
ξ∈� Rζ (η, ξ).
We will introduce below several Markov processes obtained from the trace pro-

cess ζ(t), either by reflecting it on a subset of � or by modifying its jump rates.
All processes will be denoted by some Greek letter with, sometimes, an accent. If
the process is represented by χ , the jump rates, the invariant measure, the holding
rates, and the capacities are denoted by Rχ , μχ , λχ and capχ , respectively.

The rates R(η, ξ). The trace process ζ(t) may jump from any configuration
of � to any other configuration. Most of these jumps, however, have very small
rates when β is large. The main results of the next section assert that in the zero-
temperature limit the process ζ(t) is very well approximated by a simple Markov
process denoted by ζ̂ (t). We define in this subsection the jump rates R(·, ·) of ζ̂ (t)

and derive in the next subsection some properties of R.
Let {xt : t ≥ 0} be the nearest-neighbor, symmetric random walk on TL which

jumps from a site x to x ± ei at rate 1. Denote by P
x
y, y ∈ TL, the probability

measure on D(R+,TL) induced by xt starting from y. Denote by p(x,y,G), x ∈
TL, y ∈ G, G ⊂ TL, the probability that the random walk starting from x reaches
G at y:

p(y, z,G) := P
x
y[xHG

= z].(3.2)

By extension, for a subset A of TL, let p(x,A,G) =∑y∈A p(x,y,G). Moreover,
when G = ∂+Q, we omit the set G in the notation

p(x,A) := p(x,A, ∂+Q).

Let yt = (y1
t ,y2

t ) be the continuous-time Markov chain on Dn = {(j, k) : 0 ≤
j < k ≤ n − 1} ∪ {(0,0)} which jumps from a site y to any of its nearest neighbor
sites z, |y − z| = 1, at rate 1. Let Do

n = {(0,0)} ∪ {(j, n − 1) : 0 ≤ j < n − 1} and
let

qn = P
y
(0,1)[HDo

n
< H(0,0)],(3.3)
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where P
y
(0,1) stands for the distribution of yt starting from (0,1).

Let zt = (z1
t , z2

t ) be the continuous-time Markov chain on En = {0, . . . , n −
1}2 ∪{d} which jumps from a site z to any of its nearest neighbor sites z′, |z′ −z| =
1, at rate 1, and which jumps from (1,1) (resp., from d) to d [resp., to (1,1)]
at rate 1. Let E+

n = {(j, n − 1) : 0 ≤ j ≤ n − 1}, E−
n = {(j,0) : 1 ≤ j ≤ n − 1},

∂En = E+
n ∪ E−

n ∪ {(0,0)} and for 0 ≤ k ≤ n − 1, let

r+n = P
z
(0,1)[H∂En = HE+

n
], r−n = P

z
(0,1)[H∂En = HE−

n
],

(3.4)
r0
n(k) = P

z
(k,1)[H∂En = H(0,0)], rn = r+n + r−n ,

where P
z
(k,1) stands for the distribution of zt starting from (k,1).

We are finally in a position to define R(ηx, ξ). Let

R
(
η0, η

0,0
0
)= 1 +A0,3 + r−n + qn

4 + qn + rn −A
, R

(
η0, η

0,1
0
)= A1,2 + r+n

4 + qn + rn −A
,(3.5)

where

A = p
(
w0 − 2e2, {w0 − e2,w0 − e1})+ p

(
w0 − e1 − e2, {w0 − e2,w0 − e1}),

A0,3 = p
(
w0 − 2e2,Q

0,0
0 ∪ Q

0,3
0
)+ p

(
w0 − e1 − e2,Q

0,0
0 ∪ Q

0,3
0
)
,

A1,2 = p
(
w0 − 2e2,Q

0,1
0 ∪ Q

0,2
0
)+ p

(
w0 − e1 − e2,Q

0,1
0 ∪ Q

0,2
0
)
.

For x ∈ TL, let

V
(
ηx)= {ηi,j

x : 0 ≤ i, j ≤ 3
}
, Gx = {ηx}∪ V

(
ηx).(3.6)

We extend R(η0, ·) to V(η0) by symmetry, and we set

R
(
ηx, ηi,j

x
)= R

(
η0, η

i,j
0
)
, R

(
ηx, ξ

)= 0, 0 ≤ i, j ≤ 3, ξ /∈ V
(
ηx).

The rates R(η, ξ) on � \ �. Denote by N (E i,j
x ), N for neighborhood, 0 ≤

i, j ≤ 3, x ∈ TL, the configurations in H2 which can be reached from a con-
figuration in E i,j

x by a rate e−β jump. The set N (E2,2
w ), for instance, has the

following 3n elements. There are n + 1 configurations obtained when the top
particle detaches itself from the others: σw2,zηw, where z = (−1, n), (a, n + 1),
0 ≤ a ≤ n − 2, (n − 1, n). There are n − 1 configurations obtained when the par-
ticle at w2 − e2 moves upward: σw2−e2,zηw, z = (a, n), 0 ≤ a ≤ n − 2. There
are n − 2 configurations obtained when the particle at w2 − e1 moves to the
right: σw2−e1,zηw, z = (a, n), 0 ≤ a ≤ n − 3. To complete the description of
the set N (E2,2

w ), we have to add the configurations σw3,w3+e2σw2,w3+e1+e2ηw and
σw2−e1,w2−e1+e2σw2,w2−2e1+e2ηw.

Recall that L and K = n2 are fixed in this section. We proved in [5] that for
each ζ ∈ N (E i,j

x ), there exists a probability measure M(ζ, ·) concentrated on � ∪
�1 ∪ �2 such that

lim
β→∞ Pζ [HH01 = Hξ ] = M(ζ, ξ).
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Define the rates R(η
i,j
x , ·) by

R
(
ηi,j

x , ξ
) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
ζ∈N (E i,j

x )

M
(
ζ,Ek,l

y
)
, if ξ ∈ �̂1, ξ = ηk,l

y ,

∑
ζ∈N (E i,j

x )

M(ζ, ξ), if ξ ∈ � ∪ �2,

0, if ξ ∈ �̂3 ∪ �4.

Note that the rates R(η
i,j
x , ·) depend on n and L, but not on β . In the next sections,

however, n and L will be taken as functions of β and R(η
i,j
x , ·) will depend on β

through n, L. This remark holds for all rates R(η, ξ) defined below in this section.
For each η ∈ �2 ∪�4, denote by N (η) the set of configurations in H2 which can

be reached from η by a rate e−β jump. Each set N (η) has at most 8 configurations.
Fix η ∈ �2 (resp., η ∈ �4). We proved in [5] that for each ζ ∈ N (η), there exists
a probability measure, denoted by M(ζ, ·), concentrated on �1 ∪ �2 ∪ �3 (resp.,
�3 ∪ �4) such that

lim
β→∞ Pζ [HH01 = Hξ ] =M(ζ, ξ).

For η ∈ �2, let

R(η, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
ζ∈N (η)

M(ζ, ξ), if ξ ∈ �2,

∑
ζ∈N (η)

M
(
ζ,Ek,l

y
)
, if ξ ∈ �̂1, ξ = ηk,l

y ,

∑
ζ∈N (η)

M
(
ζ,Ea,k

y
)
, if ξ ∈ �̂3, ξ = ζ a,k

y ,

0, if ξ ∈ � ∪ �4,

and for η ∈ �4, let

R(η, ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
ζ∈N (η)

M(ζ, ξ), if ξ ∈ �4,

∑
ζ∈N (η)

M
(
ζ,Ea,k

y
)
, if ξ ∈ �̂3, ξ = ζ a,k

y ,

0, if ξ ∈ � ∪ �̂1 ∪ �2.

For each x ∈ TL, a ∈ {l, s}, 0 ≤ j ≤ 3, denote by N (Ea,j
x ) the set of configura-

tions in H2 which can be reached from a configuration in Ea,j
x by a rate e−β jump.

We proved in [5] that for each ζ ∈ N (Ea,j
x ), there exists a probability measure

M(ζ, ·) concentrated on �2 ∪ �3 ∪ �4 such that

lim
β→∞ Pζ [HH01 = Hξ ] =M(ζ, ξ).
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Define the rates R(ζ
a,j
x , ξ) by

R
(
ζ a,j

x , ξ
)=
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
ζ∈N (Ea,j

x )

M(ζ, ξ), if ξ ∈ �2 ∪ �4,

∑
ζ∈N (Ea,j

x )

M
(
ζ,Ea,k

y
)
, if ξ ∈ �̂3, ξ = ζ a,k

y ,

0, if ξ ∈ � ∪ �̂1.

In [5], we expressed the probability measures M introduced above in terms of
hitting probabilities of simple finite-state Markov processes. We recall below some
of these explicit expressions.

The process ζ̂ (t). Denote by ζ̂ (t) the continuous-time Markov chain on �

whose jump rates, denoted by Rζ̂ (η, ξ), are given by

Rζ̂ (η, ξ) =
{

e−βR(η, ξ), η ∈ � \ �, ξ ∈ �,

e−2βR(η, ξ), η ∈ �, ξ ∈ �.

In contrast to the jump rates of the trace process, the jump rates R(η, ξ) vanish
for a great number of pair of configurations. In the next section, we show that the
trace process ζ(t) is well approximated by the Markov process ζ̂ (t). In contrast to
ζ(t), the process ζ̂ (t) may not be reversible with respect to μζ since the detailed
balance conditions between configurations in � and configurations in � \ � may
fail. The reflection of ζ̂ (t) on subsets of �∩H1 is however reversible with respect
to the uniform measure in view of (3.7) below.

Denote by Pζ̂
ξ , ξ ∈ �, the probability measure on the path space D(R+,�)

induced by the Markov process ζ̂ (t) starting from ξ . Expectation with respect to

Pζ̂
ξ is represented by Eζ̂

ξ .

Properties of the rates R(η, ξ). We claim that for each fixed n and L,

R(η, ξ) = R(ξ, η), η, ξ ∈ � \ �.(3.7)

These identities can be checked directly from the definition of the rates R(ξ, η)

or can be deduced from the results of the previous section. Indeed, since the trace
process ζ(t) is reversible, μK(η)Rζ (η, ξ) = μK(ξ)Rζ (ξ, η). For η, ξ ∈ � \ �,
μK(η) = μK(ξ) so that Rζ (η, ξ) = Rζ (ξ, η). The results of the previous sec-
tion are in force if we fix n and L and let β ↑ ∞. Therefore, by Proposition 4.6,
e−βR(η, ξ) = e−βR(ξ, η) + o(e−β), from which the claim follows.

Let ξ�
1 = σw0,w0−e2η0, ξ�

2 = σw0,w0−e1η0 and for j = 1, 2, let

Mj (ξ) = lim
β→∞ Pξ�

j
[HH01 = Hξ ].(3.8)
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We have computed Mj in [5], with the difference that the sets E i,j
x in [5] have

been replaced here by the configurations η
i,j
x so that Mj (E i,j

x ) in [5] corresponds

to Mj (η
i,j
x ) here. We have that

M1
(
η

0,0
0
)= 1

2

{
1 + r−n +A0,3

4 + qn + rn −A
+ 1 + r−n +A0 −A3

4 + qn + rn +A(e1) −A(e2)

}
,

M2
(
η

0,0
0
)= 1

2

{
1 + r−n +A0,3

4 + qn + rn −A
− 1 + r−n +A0 −A3

4 + qn + rn +A(e1) −A(e2)

}
,

where

Aj = p
(
w0 − 2e2,Q

0,j
0
)+ p

(
w0 − e1 − e2,Q

0,j
0
)
,

A(ei) = p(w0 − 2e2,w0 − ei) + p(w0 − e1 − e2,w0 − ei).

LEMMA 3.1. For all 0 ≤ i, j ≤ 3, x ∈ TL,

R
(
ηi,j

x , ηi,j±1
x

) ≥ (1/4)3, R
(
ηi,i−1

x , ηx)= R
(
ηi,i

x , ηx)≥ 1/4,
(3.9)

R
(
ηi,i

x , ηi−1,i
x

)= R
(
ηi−1,i

x , ηi,i
x
)≥ 1.

Moreover,

R
(
ηi,i

x ,�2)= 1

n
, R

(
ηi,i+1

x ,�2)= 1

n
+ 1

n − 1
·(3.10)

PROOF. To fix ideas consider the case i = j = 0, x = w. Recall the ex-
plicit form of M given in [5]. As we have seen in Section 2, the set N (E0,0

w )

has 3n elements which can be divided into five classes. Consider first the set
A1 = {σw+e2,zηw : z ∈ Q0,0} which has n − 1 configurations. By [5], Lemma 4.2,

∑
ζ∈A1

M(ζ, ξ) = 1
{
ξ = η3,0

w
}+ n−1∑

k=1

r0
n(k)M1(ξ),(3.11)

where r0
n(k) has been defined in (3.4) and M1(ξ) in (3.8).

The second class consists of the set of configurations A2 = {σw+e1,zηw : z =
(k,−1),2 ≤ k ≤ n − 1} which has n − 2 elements. By [5], Lemma 4.2,

M
(
ζ, η0,0

w
)= 1, ζ ∈ A2.

In particular, this subset of N (E0,0
w ) does not contribute to the rate R(η0,0

x , ·).
Two special configurations form each class:

M
(
σw,w1−e1−e2σw1,w1−e2η0, ξ

)
(3.12)

= 1

n
1
{
ξ = σw,w1−e1−e2σw2,w1−e2η0}+ (1 − 1

n

)
1
{
ξ = η0,0

w
}



KAWASAKI DYNAMICS AT LOW TEMPERATURE 2171

and

M
(
σw,w+e1−e2σw+e1,w+2e1−e2η0, η0,0

w
)= 1.

This latter configuration also does not contribute to the rate R(η
0,0
0 , ·).

The last set is A5 = {σw,zη0 : z ∈ �0,0}, where �0,0 stands for the set of sites
z ∈ TL which do not belong to Q and are at distance 1 from Q0,0. This set has
n + 1 elements and∑

ζ∈A5

M(ζ, ξ) = ∑
z∈�0,0

3∑
j=0

p
(
z,Q0,j )1{ξ = η

0,j
0
}

(3.13)
+ ∑

z∈�0,0

{
p(z,w − e2)M1(ξ) + p(z,w − e1)M2(ξ)

}
,

where M1(ξ) and M2(ξ) have been defined in (3.8).
Now that we have explicit formulas for the rates R(η

0,0
0 , ·), we may prove the

bounds claim in the lemma. By (3.11) R(η
0,0
0 , η

3,0
0 ) ≥ 1, and by (3.13),

R
(
η

0,0
0 , η

0,1
0
)≥ p(w1 + e1 − e2,w1 + e1) = 1

4 ,

where p represents the jump probabilities of a nearest-neighbor, symmetric,
discrete-time random walk on TL. By similar reasons, R(η

0,0
0 , η0) ≥ 1/4 and

R(η
0,0
0 , η

0,3
0 ) ≥ (1/4)3. By symmetry, R(η

0,3
0 , η0) = R(η

0,0
0 , η0). This proves (3.9)

in view of (3.7).
To prove (3.10), note that M(ζ,�2) vanishes for all configurations but for ζ =

σw,w1−e1−e2σw1,w1−e2η0 in which case it is equal to 1/n, as observed in (3.12).
A similar assertion holds for M(ζ,�2), ζ ∈N (E0,1

w ), but in this case there are two
configurations which contribute to R(η

0,1
0 ,�2). We leave the details to the reader.

�

LEMMA 3.2. For n ≥ 9, we have that

max
η∈V(ηx)

Pζ̂
η[HGc

x
< Hηx] ≤ 23

n
·

PROOF. Fix x = 0 and let χ(t) be the Markov process χ(t) = ζ̂ (t ∧ HB),
where B = V(η0)c. We identify all configurations in Gc

0 , turning χ(t) a Markov
process on Gd = G0 ∪ {d}, where d replaces Gc

0 .
There are two types of configurations in V(η0), configurations in which the

attached particle is on the same side of the empty corner and configurations in
which this is not the case. We denote by C1 = {ηi,i

0 , η
i+1,i
0 : 0 ≤ i ≤ 3} the first set,

and by C2 = {ηi+2,i
0 , η

i+3,i
0 : 0 ≤ i ≤ 3} the second one. Define F :Gd → {0,1,2,3}

by

F
(
η0)= 0, F (d) = 3, F (η) = i, η ∈ Ci , i = 1,2.
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By symmetry χ̂ (t) = F(χ(t)) is a four state Markov process and by construction

Pζ̂
η[HGc

0
< Hη0] = Pχ̂

i [H3 < H0]

if η ∈ Ci , where Pχ̂
i represents the distribution of the process χ̂ (t) starting from i.

Denote by Rχ̂ the jump rates of the process χ̂ (t). Since R(η, ξ) = R(ξ, η)

for η ∈ C1, ξ ∈ C2, and since |C1| = |C2|, Rχ̂(1,2) = Rχ̂(2,1). By Lemma 3.1,
Rχ̂(1,0) = R(η

0,0
0 , η0) ≥ 1/4, Rχ̂(1,2) ≥ R(η

0,0
0 , η

3,0
0 ) ≥ 1, and Rχ̂(i,3) ≤ n−1+

(n − 1)−1 for i = 1, 2.
Consider the Markov process Yt on {0,1,2,3} with jump rates r given by a :=

r(1,2) = r(2,1) = Rχ̂(1,2) ≥ 1, r(1,0) = 1/4 and r(1,3) = r(2,3) = 2/(n − 1).
A coupling shows that for i = 1, 2,

Pχ̂
i [H3 < H0] ≤ PY

i [H3 < H0] ≤ 4ε[2a + (1/4) + ε]
a + 4ε[2a + (1/4) + ε] ,

where ε = 2/(n−1) and PY
i represents the distribution of the process χ̂ (t) starting

from i. At last inequality is an identity if i = 2. The right-hand side of the previous
displayed equation is uniformly bounded in a ≥ 1 by (9 + 4ε)ε ≤ 10ε provided
ε ≤ 1/4. This proves the lemma. �

The next result states that the chain ζ̂ (t) jumps with a probability bounded be-
low by a positive constant independent of β from a configuration ζ l,3

x to the con-
figuration ζ l,2

x .

LEMMA 3.3. Denote by V(ζ l,3
x ) the set of configurations ξ in � such that

R(ζ l,3
x , ξ) > 0, V(ζ l,3

x ) = {ξ ∈ � : R(ζ l,3
x , ξ) > 0}. There exists c0 > 0 such that

Pζ̂

ζ
l,3
x

[H
ζ
l,2
x

= HV(ζ
l,3
x )

] ≥ c0.

PROOF. By definition of the chain ζ̂ (t),

Pζ̂

ζ
l,3
x

[H
ζ
l,2
x

= HV(ζ
l,3
x )

] = R(ζ l,3
x , ζ l,2

x )∑
ξ∈� R(ζ

l,3
x , ξ)

·

By definition of the rates R(η, ξ), R(ζ l,3
x , ζ l,2

x ) = R(ζ l,3
x , ζ l,0

x ) ≥ c0, while
R(ζ l,3

x ,�2) = 0 and R(ζ l,3
x ,�4) ≤ C0/n. By [20], Proposition 2.4.5, R(ζ l,3

x , ζ l,1
x ),

whose value involves the sum of n terms, is bounded above by C0. This proves the
lemma. �

The bounds (3.14) and (3.15) below are needed to estimate the capacity between
the configurations η0 and ηei for the trace process ζ(t).
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FIG. 7. The first 12 configurations of the path from η0 to ηe1 when n = 6. Observe the subpath
starting from the sixth configuration and ending at the ninth, as well as the one starting from the
ninth configuration and ending at the twelfth.

Consider the path ξ0 = η0, ξ1, . . . , ξM = ηe1 , M = 3n − 2, from η0 to ηe1 in
� obtained by sliding particles around three sides of the square Q: ξ0 = η0, ξ1 =
η

2,1
0 , ξ2 = η

3,1
0 , ξ3 = η

0,1
0 , ξ4 = η

l,((1,n−1),(n−2,n−1),(0,n−1),(1,n−2))
0 ,

ξ5 = η
l,((1,n−1),(n−2,n−1),(0,n),(0,n−3))
0 , . . . , ξM−4 = η

l,((1,n−1),(1,n−2),(1,n−1),(0,1))
0 ,

ξM−3 = η
1,3
0 , ξM−2 = η2,3

e1
, ξM−1 = η3,3

e1
, ξM = ηe1 . Figure 7 presents the first con-

figurations of this sequence in the case n = 6.
We claim that

R(ξ0, ξ1) ≥ 1
6 , R(ξ1, ξ2) ≥ 1,

(3.14)

R(ξ2, ξ3) ≥ 1, R(ξ3, ξ4) ≥ 1

n
·

The first inequality follows from the definition (3.5) of R(η0, ·) and from the fact
that qn ≤ 1, rn ≤ 1. The other three estimates have been proven in Lemma 3.1.
Similar estimates hold for the last jumps of the sequence (ξi). On the other hand,
in view of the definition of the jump rates R, it is clear that

R(ξi, ξi+1) ≥ 1

n
(3.15)

for the middle terms. The expression n−1 comes from the probability of a sym-
metric nearest-neighbor random walk on {0,1, . . . , n} starting from 1 to reach n

before 0.

4. The jump rates of ζ(t) and ̂ζ (t). The main results of this section, Propo-
sitions 4.2 and 4.6, provide estimates on the difference between the jump rates
Rζ (η, ξ) and R(η, ξ). The dependence of the errors on the parameters n and L are
explicit to allow them depend on β .

The first lemma presents an explicit formula for the jump rates Rζ of the trace
process. Denote by capK(A,B) the capacity between two disjoint subsets A and
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B of �L,K for the η(t) process

capK(A,B) =∑
η∈A

μK(η)λ(η)Pβ
η

[
HB < H+

A

]
,

where λ(η) stands for the holding rates of the process η(t) and R(η, ξ) = Rβ(η, ξ)

for the jump rates,

R(η, ξ) =
{

cx,y(η), if ξ = σx,yη for some x, y ∈ TL, |y − x| = 1,
0, otherwise,

λ(η) =∑ξ∈�L,K
R(η, ξ). Denote by DK the Dirichlet form associated to the pro-

cess η(t) on the ergodic component �L,K : For any function f :�L,K →R,

DK(f ) = 1

2

∑
η,ξ∈�L,K

μK(η)R(η, ξ)
[
f (ξ) − f (η)

]2
.

LEMMA 4.1. For η, ξ ∈ �, ξ �= η,

Rζ (η, ξ) = capK(η,�1)

μK(η)

∑
ζ∈�1

Pη[H�1 = Hζ ]Pζ [H� = Hξ ].(4.1)

PROOF. The proof of this lemma relies on the fact that the process η(t) has to
cross the set �1 when going from a configuration η ∈ � to a configuration ξ ∈ �,
ξ �= η, Pη[H�1 < Hξ ] = 1 if ξ �= η, η, ξ ∈ �. In contrast, there are configura-
tions η ∈ � which can be hit from η without crossing the set �1, for example, the
configuration η

0,0
0 . With a positive probability which does not vanish in the zero-

temperature limit, the attached particle may jump to the right and then return to its
original position while all the other particles remain still. In this event, H+

η < H�1 .
Fix η, ξ ∈ �, ξ �= η. By [1], Proposition 6.1,

Rζ (η, ξ) = λ(η)Pη

[
H+

� = Hξ

]
.(4.2)

The process η(t) has to cross �1 when going from a configuration η in � to a
configuration ξ �= η in �. Therefore, on the event {H+

� = Hξ } we have that H�1 <

H+
� , and by the strong Markov property

Pη

[
H+

� = Hξ

]= ∑
ζ∈�1

Pζ [H� = Hξ ]Pη

[
Hζ = H�1 < H+

�

]
.

We have seen that H�1 < H�\{η} almost surely with respect to Pη. Hence, the event
{H�1 < H+

� } can be rewritten as {H�1 < H+
η } and the previous sum becomes∑

ζ∈�1

Pζ [H� = Hξ ]Pη

[
Hζ = H+

�1∪{η}
]
.

On the other hand, since

Pη[Hζ = H�1] = Pη

[
H+

η < H�1,Hζ = H�1

]+ Pη

[
H+

η > H�1,Hζ = H�1

]
,
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observing that the event on the second term of the right-hand side is Hζ = H+
�1∪{η},

and applying the strong Markov property to the first term, we obtain that

Pη

[
Hζ = H+

�1∪{η}
]= Pη[Hζ = H�1]Pη

[
H�1 < H+

η

]
.

Therefore, in view of (4.2) and the previous identities,

Rζ (η, ξ) = λ(η)Pη

[
H�1 < H+

η

] ∑
ζ∈�1

Pζ [H� = Hξ ]Pη[Hζ = H�1].

To conclude the proof of the lemma, it remains to recall the definition of the ca-
pacity. �

The jump rates of ζ(t) on �. We examine in this subsection the jump rates of
order e−2β of the trace process ζ(t). The main result reads as follows.

PROPOSITION 4.2. There exists a finite constant C0 independent of β such
that

max
ξ∈Gx

∣∣Rζ

(
ηx, ξ

)− e−2βR
(
ηx, ξ

)∣∣≤ e−2βκ1,

where κ1 is a remainder absolutely bounded by C0Le−β/2. Moreover, for all
x ∈ TL,

Rζ

(
ηx,� \ Gx

)≤ e−2βκ1.

It follows from this proposition that

1

Rζ (ηx, ξ)
≤ e2β

R(ηx, ξ)

{
1 + κ1

R(ηx, ξ) − κ1

}
.(4.3)

The proof of Proposition 4.2 relies on the next two lemmas. Recall the definition
of Mj (ξ) given in (3.8).

LEMMA 4.3. Let ξ�
1 = σw0,w0−e2η0, ξ�

2 = σw0,w0−e1η0 and let

Pj (ξ) = Pξ�
j
[H� = Hξ ], j = 1,2.

Then, there exists a finite constant C0 such that for all ξ ∈ �∣∣Pj (ξ) −Mj (ξ)
∣∣≤ C0Le−β/2.

This bound, as well as the next ones, hold for all β , L and K = n2. While Mj (ξ)

depends only on L and n, Pj (ξ) also depends on β . This estimate will be used to
replace a two step limit in which we first send β ↑ ∞, and then n, L ↑ ∞, by a
diagonal procedure in which all parameters diverge simultaneously.
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FIG. 8. The six configurations which can be reached from ξ�
1 by a rate 1 jump. The first two belong

to H01.

PROOF OF LEMMA 4.3. We prove this lemma for ξ = η
0,0
0 and leave the other

cases to the reader. Set Pj = Pj (η
0,0
0 ), j = 1, 2, and recall the definition of qn, r±n

introduced in (3.3), (3.4). We claim that

(4 + qn + rn −A)(P1 + P2) = 1 +A0,3 + r−n + Lε(β/2),(4.4)

where ε(β) represents here and below an error term absolutely bounded by C0e
−β .

To prove (4.4), observe that the configuration ξ�
1 may jump at rate 1 to 6 con-

figurations, at rate e−β to 1 configuration, at rate e−2β to 7 configurations, and at
rate e−3β to O(n) configurations. Figure 8 shows the six configurations which can
be attained from ξ�

1 with a jump of rate 1. Among the configurations which can be
reached at rate 1, two belong to � ∪ H1, one of them being η0. Hence, if we de-
note by N2(ξ

�
1 ) the set of the remaining four configurations which can be reached

from ξ�
1 by a rate 1 jump, and by η�

1 = σw0,w0−e2+e1η0 the configuration in � ∪H1

which is not η0, decomposing Pξ�
1
[H� = Hξ ] according to the first jump we obtain

that

6Pξ�
1
[H� = Hξ ] = Pη�

1
[H� = Hξ ] + ∑

η′∈N2(ξ
�
1 )

Pη′ [H� = Hξ ] + ε(β).(4.5)

The particle at position −e2 + e1 of the configuration η�
1 = σw0,w0−e2+e1η0, is

attached to the side Q
0,0
0 of the quasi-square Q0

0. This particle moves along the
side of the square at rate 1, while all the other jumps occur at rate at most e−β .
Let Hhit be the first time the attached particle reaches the center of the side, and
let Hmv be the first time a jump of rate e−β or less occurs. The random time Hmv
is bounded below by a mean C0e

β exponential random time eβ independent of the
lateral displacement of the attached particle. Therefore,

Pη�
1
[Hmv ≤ Hhit] ≤ Pη�

1
[eβ ≤ Hhit] =

∫ ∞
0

Pη�
1
[Hhit ≥ t]αe−αt dt,

where α−1 = C0e
β . It is not difficult to bound this integral by 2{αEη�

1
[Hhit]}1/2.

We shall use repeatedly this estimate. Since Eη�
1
[Hhit] ≤ C0n

2, the last integral is

bounded by C0ne−β/2.
On the event {Hhit ≤ Hmv}, H� = Hξ , where ξ = η

0,0
0 is the configuration ob-

tained from η�
1 by moving the particle attached to the side of the square to the

middle position. Therefore,

Pη�
1
[H� = Hξ ] = 1 + nε(β/2),
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and (4.5) becomes

6Pξ�
1
[H� = Hξ ] = 1 + ∑

η′∈N2(ξ
�
1 )

Pη′ [H� = Hξ ] + nε(β/2).(4.6)

We examine the four configurations of N2(ξ
�
1 ) separately. In two configurations,

σw0,w0−2e2η0 and σw0,w0−e2−e1η0, a particle is detached from the quasi-square
Q0

0. The detached particle performs a rate 1 symmetric random walk on TL until it
reaches the boundary of the square Q0. Among the remaining particles, two jumps
have rate e−β and all the other ones have rate at most e−2β . Denote by Hhit the
time the detached particle hits the outer boundary of the square Q0 and by Hmv
the first time a particle on the quasi-square moves.

As above, Hmv can be bounded below by a mean C0e
β exponential random

variable eβ independent of the displacement of the detached particle. Therefore,
for η′ = σw0,w0−2e2η0, σw0,w0−e2−e1η0,

Pη′ [Hmv ≤ Hhit] ≤ Pη′ [eβ ≤ Hhit] =
∫ ∞

0
Pη′ [Hhit ≥ t]αe−αt dt,

where α−1 = C0e
β . Since, by [21], Proposition 10.13, Eη′ [Hhit] ≤ C0L

2, this last
integral is bounded by C0Le−β/2. Hence,

Pη′ [H� = Hξ ] = Pη′ [H� = Hξ,Hhit ≤ Hmv] + Lε(β/2).(4.7)

On the event Hhit ≤ Hmv the configuration η(Hhit) is either ξ�
1 , ξ�

2 or it belongs
to H1. Therefore, by the strong Markov property, the previous expression is equal
to

2∑
i=1

Pη′
[
η(Hhit) = ξ�

i

]
Pξ�

i
[H� = Hξ ]

+
3∑

j=0

Eη′
[
1
{
η(Hhit) ∈ E0,j

0
}
Pη(Hhit)[H� = Hξ ]]+ Lε(β/2).

Once the detached particle hits the side of the quasi-square, as we have seen
above, it attains the middle position of the side before anything else happens with
a probability close to 1. Since ξ = η

0,0
0 , the previous sum over j is equal to

Pη′
[
η(Hhit) ∈ E0,0

0
]+ nε(β/2).

By definition (3.2) of p, the contribution of the terms η′ = σw0,w0−2e2η0 and η′ =
σw0,w0−e2−e1η0 to the sum appearing on the right-hand side of (4.6) is{

p(w0 − 2e2,w0 − e2) + p(w0 − e1 − e2,w0 − e2)
}
Pξ�

1
[H� = Hξ ]

+ {p(w0 − 2e2,w0 − e1) + p(w0 − e1 − e2,w0 − e1)
}
Pξ�

2
[H� = Hξ ](4.8)

+ p
(
w0 − 2e2,Q

0,0
0
)+ p

(
w0 − e1 − e2,Q

0,0
0
)+ Lε(β/2).
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In this equation, we have replaced nε(β/2) by Lε(β/2) because n ≤ 2L.
It remains to analyze the two configurations of N2(η), η′ = σw0+e2,w0−e2η0 and

η′ = σw0+e1,w0−e2η0. In the first one, if we denote by z1
t the horizontal position of

the particle attached to the side Q0 of the square Q and by z2
t the vertical position

of the hole on the side Q3, it is not difficult to check that (z1
t , z2

t ) evolves as the
Markov chain described just before (3.4) with initial condition (z1

0, z2
0) = (0,1).

Denote by Hhit the time the hole hits 0 or n−1 and by Hmv the first time a jump
of rate e−β or less occurs. The arguments presented above in this proof show that
the probability Pη′ [Hmv ≤ Hhit] is bounded by nε(β/2). Hence, (4.7) holds with
this new meaning for Hmv, Hhit, and with n in place of L. On the event Hhit ≤ Hmv
three situations can occur. If the process (z1

t , z2
t ) reached (0,0) (resp., E+

n , E−
n ),

the process η(t) returned to the configuration ξ�
1 (resp., hit a configuration in E3,0

0 ,

E0,0
0 ). At this point, we may repeat the previous arguments to replace the set E3,0

0 ,

E0,0
0 by the configurations η

3,0
0 , η

0,0
0 , respectively. Hence, by definition of r±n ,

Pη′ [H� = Hξ ] = r−n + (1 − rn)Pξ�
1
[H� = Hξ ] + nε(β/2)

for η′ = σw0+e2,w0−e2η0, ξ = η
0,0
0 .

Assume now that η′ = σw0+e1,w0−e2η0. In this case, if we denote by y1 the
horizontal position of the particle attached to the side of the quasi-square and by y2

the horizontal position of the hole, the pair (y1
t ,y2

t ) evolve according to the Markov
process introduced just before (3.3) with initial condition (y1

0,y2
0) = (0,1). Denote

by Hhit the time the hole hits 0 or n − 1 and by Hmv the first time a jump of rate
e−β or less occurs. The arguments presented above in this proof show that the
probability Pη′ [Hmv ≤ Hhit] is bounded by nε(β/2). Hence, (4.7) holds with this
new meaning for Hmv, Hhit, and with n in place of L. On the event Hhit ≤ Hmv, if
y2
Hhit

= 0, at time Hhit the process η(t) has returned to the configuration ξ�
1 , while

if y2
Hhit

= n − 1, at time Hhit the process η(t) has reached a configuration in E1,0
0 .

At this point, we may repeat the previous arguments to replace the set E1,0
0 by the

configurations η
1,0
0 . Since the random walk reaches n−1 before 0 with probability

qn, by the strong Markov property

Pη′ [H� = Hξ ] = (1 − qn)Pξ�
1
[H� = Hξ ] + nε(β/2)

for η′ = σw0+e1,w0−e2η0, ξ = η
0,0
0 .

Therefore, the contribution of the last two configurations of N2(ξ
�
1 ) to the sum

on the right-hand side of (4.6) is

r−n + (2 − rn − qn)Pξ�
1
[H� = Hξ ] + nε(β/2).(4.9)

Equations (4.6), (4.8) and (4.9) yield a linear equation for P1 = Pξ�
1
[H� = Hξ ]

in terms of P1 and P2 = Pξ�
2
[H� = Hξ ]. Analogous arguments provide a similar

equation for P2 in terms of P1 and P2. Adding these two equations, we obtain (4.4),
while subtracting them gives an expression for the difference P1 − P2. The asser-
tion of the lemma follows from these equations for P1 + P2 and P1 − P2. �
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LEMMA 4.4. We have that

8(4 + qn + rn −A)Pη0
[
H+

� = H
η

0,0
0

]= 1 +A0,3 + r−n + qn + κ1,

8(4 + qn + rn −A)Pη0
[
H+

� = H
η

0,1
0

]= A1,2 + r+n + κ1,

(4 + qn + rn −A)Pη0
[
H+

� = Hη0
]= 1 + κ1,

where κ1 is a remainder absolutely bounded by C0Le−β/2.

Note that using the symmetry of the model we can deduce from this result the
values of Pη0[H+

� = H
η

i,j
0

] for all 0 ≤ i, j ≤ 3. For example,

Pη0
[
H+

� = H
η

0,3
0

]= Pη0
[
H+

� = H
η

0,0
0

]
,

Pη0
[
H+

� = H
η

0,2
0

]= Pη0
[
H+

� = H
η

0,1
0

]
.

Moreover, summing over all configurations in G0, we get that

Pη0
[
H+

� �= HG0

]= κ1.

PROOF OF LEMMA 4.4. We prove the lemma for ξ = η
0,0
0 . Decomposing the

event {H+
� = Hξ } according to the first jump of the process η(t) we obtain that

Pη0
[
H+

� = Hξ

]= 1

8

∑
η∈N (η0)

Pη[H� = Hξ ] + nε(β),

where N (η0) is the set of 8 configurations which can be obtained from η0 by a
jump of rate e−2β . Lemma 4.3 provides a formula Pη[H� = Hξ ] for each η in
N (η0), which concludes the proof of the lemma. �

COROLLARY 4.5. There exists a finite constant C0 such that

pζ

(
η0, η

0,0
0
)= 1

8

1 +A0,3 + r−n + qn

1 +A0,3 +A1,2 + rn + qn

+ κ1,

pζ

(
η0, η

0,1
0
)= 1

8

A1,2 + r+n
1 +A0,3 +A1,2 + rn + qn

+ κ1,

where κ1 is a remainder absolutely bounded by C0Le−β/2.

Here again, using the symmetry of the model, we can deduce from this result
the values of pζ (η

x, η
i,j
x ) for all 0 ≤ i, j ≤ 3, x ∈ TL. Moreover, it follows from

this result that ∑
ξ /∈V(ηx)

pζ

(
ηx, ξ

)≤ κ1.(4.10)
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PROOF OF COROLLARY 4.5. By the displayed equation after (6.9) in [1],

pζ

(
η0, ξ

)= Pη0[H�\{η0} = Hξ ].
Intersecting the previous event with the partition {H+

� = H+
{η0}}, {H+

� < H+
{η0}}, we

obtain by the strong Markov property that

Pη0[H�\{η0} = Hξ ] = Pη0[H+
� = Hξ ]

Pη0[H+
� �= H+

η0]
·

It remains to recall the statement of Lemma 4.4 to conclude the proof of the corol-
lary. �

PROOF OF PROPOSITION 4.2. Since Rζ (η
0, ξ) = λ(η0)Pη0[H+

� = Hξ ] and
since λ(η0) = 8e−2β(1 + ne−β), the assertion follows from Lemma 4.4. �

The jump rates of ζ(t) on � \�. We examine in this subsection the jump rates
of order e−β of the trace process ζ(t). Let

κ2 = n4e−β + nLe−(1/2)β .

PROPOSITION 4.6. For η ∈ � \ �, let V(η) = {ξ ∈ � : R(η, ξ) > 0}. There
exists a finite constant C0 such that for all η ∈ � \ �,

max
ξ∈V(η)

∣∣Rζ (η, ξ) − e−βR(η, ξ)
∣∣≤ C0e

−βκ2,

max
η∈�\� Rζ

(
η,V(η)c

)≤ C0e
−βκ2.

It follows from this result and some simple algebra that there exists a finite
constant C0 such that for all η ∈ � \ �, ξ ∈ �,

1

Rζ (η, ξ)
≤ eβ

R(η, ξ)

{
1 + C0κ2

R(η, ξ) − C0κ2

}
.(4.11)

The proof of Proposition 4.6 is divided in several lemmas.

LEMMA 4.7. There exists a finite constant C0 such that for all x ∈ TL, 0 ≤
i, j ≤ 3,

max
ξ∈V(η

i,j
x )

∣∣∣∣Rζ

(
ηi,j

x , ξ
)− e−β

∑
ζ∈N (E i,j

x )

M(ζ, ξ)

∣∣∣∣≤ C0e
−βκ2,

Rζ

(
ηi,j

x ,V
(
ηi,j

x
)c)≤ C0e

−βκ2.
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PROOF. Let η = η
i,j
x and fix a configuration ξ ∈ �, ξ �= η. Recall the formula

for the jump rate Rζ (η, ξ) provided by Lemma 4.1. We first claim that∣∣μK(η)−1 capK(η,�1) − ∣∣N (E i,j
x
)∣∣e−β

∣∣≤ C0n
3e−2β(4.12)

for some finite constant C0. Indeed, let W be the equilibrium potential: W(ζ) =
Pζ [Hη < H�1], ζ ∈ E i,j

x . Note that ζ in the previous formula is a subscript and
not a superscript. The probability refers to the process η(t) and not to the trace
process ζ(t). By the Dirichlet principle [10], capK(η,�1) = DK(W). To fix ideas,
assume that i = j = 2, x = w. Denote by ζj , 1 ≤ j ≤ n − 1, the configuration of
E2,2

w which has a particle at site uj = (j − 1, n). By the strong Markov property,{
1 + 4e−β + δ1

}
W(ζ1) = W(ζ2),

where δ1 ∈ (0,C0e
−2β) represents the rate at which the process jumps from ζ1

to configurations in �2. We may write similar identities for W(ζj ), 1 ≤ j ≤ n −
1. Since 0 ≤ W ≤ 1 and since W(η) = 1, we deduce from these identities that
|W(ζj+1) − W(ζj )| ≤ 5ne−β and that |W(ζj ) − 1| ≤ 5n2e−β . To conclude the
proof of (4.12), it remains to recall the explicit expression for the Dirichlet form
DK(W).

We turn to the second term in (4.1). We claim that

max
ζ∈�1

∣∣∣∣Pη[Hζ = H�1] − 1

|N (E i,j
x )|1

{
ζ ∈ N

(
E i,j

x
)}∣∣∣∣≤ C0n

2e−β(4.13)

for some finite constant C0. To fix ideas, assume again that i = j = 2, x = w, and
observe that |N (E2,2

w )| = 3n. It is clear that Pη[Hζ = H�1] is bounded by C0e
−β

if ζ does not belong to N (E2,2
w ). Fix ζ ∈ N (E2,2

w ) and let V (ζj ) = Pζj
[Hζ = H�1],

1 ≤ j ≤ n − 1. By the strong Markov property,{
1 + 4e−β + δ1

}
V (ζ1) = V (ζ2) + e−β1(ζ, ζ1),(4.14)

where 0 < δ1 < C0e
−2β represents the rate at which the process jumps from ζ1 to

configurations in �2, and 1(ζ, ζ1) is equal to 1 if ζ can be obtained from ζ1 by
moving one particle, and is equal to 0 otherwise. Similar identities can be obtained
for ζj , 2 ≤ j ≤ n − 1. For some configurations, the factor 4 is replaced by 3.
Summing all these identities and dividing by e−β , we obtain that

3
n−1∑
j=1

V (ζj ) + V (ζ1) + V (ζ2) + V (ζn−2) + eβ
n−1∑
j=1

δjV (ζj ) = 1.

It also follows from the identities (4.14) and from the bound 0 ≤ V ≤ 1 that
|V (ζ2) − V (ζ1)| ≤ 6e−β , |V (ζj+2) − V (ζj+1)| ≤ |V (ζj+1) − V (ζj )| + 6e−β

for 1 ≤ j ≤ n − 3 and for β large. Iterating these inequalities, we obtain that
|V (ζk) − V (ζj )| ≤ 6n2e−β , 1 ≤ j ≤ k ≤ n − 1. Hence, summing and subtracting
V (η) in the last displayed formula we get that∣∣∣∣V (η) − 1

3n

∣∣∣∣≤ C0n
2e−β,
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which proves (4.13) in the case i = j = 2.
It remains to evaluate the third term in the sum (4.1). We claim that

max
ζ∈N (E i,j

x )

max
ξ∈�

∣∣Pζ [H� = Hξ ] −M(ζ, ξ)
∣∣≤ C0Le−β/2.(4.15)

We prove (4.15) in the case i = j = 2, x = w, ζ = σ w2,zηw for some site z at
distance 1 from Q2,2

w . The other cases, which are simpler, are left to the reader.
For ζ = σw2,zηw, the probability measure M(ζ, ·) gives positive weight only to
the configurations η0, η

2,j
w , 0 ≤ j ≤ 3, η1,2

w , η3,2
w , η1,1

w and η3,1
w . We examine the

case ξ = η2,2
w and leave the others to the reader.

Until the particle at site z hits the outer boundary of the square Q, it evolves
as a rate 1, symmetric, nearest-neighbor random walk, while all the other particles
move at rate at most e−β . Denote by Hhit the time the particle initially at site z
hits ∂+Q and by Hmv the time of the first jump of a particle sitting in the quasi-
square Q

2,2
0 .

The random time Hmv is bounded below by a mean C0e
β random time eβ

independent of the motion of the detached particle. Hence, as in the proof of
Lemma 4.4,

Pζ [Hmv < Hhit] ≤ Pζ [Hhit > eβ] =
∫ ∞

0
Pζ [Hhit > t]αe−αt dt,(4.16)

where α−1 = C0e
β . Since, by [21], Proposition 10.13, Eζ [Hhit] ≤ C0L

2, this last
integral is bounded by C0Le−β/2. Therefore,

Pζ [H� = Hξ ] = Pζ [H� = Hξ,Hhit < Hmv] + Lε(β/2).(4.17)

On the set Hhit < Hmv, η(Hhit) belongs to the sets E2,j
0 , 0 ≤ j ≤ 3, or is equal

to the configurations η�
1 = σw2,w2+e2ηw, η�

2 = σw2,w2+e1ηw. Hence, by the strong
Markov property, the previous expression is equal to

3∑
j=0

Eζ

[
1{Hhit < Hmv}1{η(Hhit) ∈ E2,j

0
}
Pη(Hhit)[H� = Hξ ]]

+
2∑

i=1

Pζ

[
Hhit < Hmv, η(Hhit) = η�

i

]
Pη�

i
[H� = Hξ ] + Lε(β/2).

Proceeding as in the proof of Lemma 4.4, we may replace the sets E2,j
0 by the

configurations η
2,j
0 with an error bounded by C0ne−β/2 ≤ C0Le−β/2. Since ξ =

η
2,2
0 , only the term j = 2 gives a positive contribution. By symmetry, Pη�

i
[H� =

Hξ ] = Pi(ξ
0,0
w ), i = 1, 2, where Pi has been introduced in Lemma 4.3. Hence, by

the definition (3.2) of p, the previous sum is equal to

p
(
z,Q2,2

0
)+ p(z,w2 + e2)P1

(
ξ0,0

w
)+ p(z,w2 + e1)P2

(
ξ0,0

w
)+ Lε(β/2).
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At this point, (4.15) follows from Lemma 4.3.
The assertion of the lemma is a consequence of Lemma 4.1 and of esti-

mates (4.12), (4.13) and (4.15). We first use estimate (4.12) and the fact that
Pη[H�1 = Hζ ] is a probability measure in ζ to replace μK(η)−1 capK(η,�1) by

|N (E i,j
x )|e−β with an error bounded by C0n

3e−2β . Then we consider separately
the sum over ζ ∈ N (E i,j

x ) and the sum over ζ ∈ �1 \N (E i,j
x ). For the first one, we

use (4.13) to replace Pη[H�1 = Hζ ] by |N (E i,j
x )|−11{ζ ∈ N (E i,j

x )} with an error

bounded by C0n
4e−2β because |N (E i,j

x )| is less than or equal to C0n. To estimate
the sum over ζ ∈ �1 \N (E i,j

x ), we proceed as follows. Since |N (E i,j
x )| ≤ C0n, we

have that ∣∣N (E i,j
x
)∣∣e−β

∑
ζ∈�1\N (E i,j

x )

Pη[H�1 = Hζ ]Pζ [H� = Hξ ]

≤ C0ne−β
∑

ζ∈�1\N (E i,j
x )

Pη[H�1 = Hζ ].

This last sum can be written as

1 − ∑
ζ∈N (E i,j

x )

Pη[H�1 = Hζ ] = ∑
ζ∈N (E i,j

x )

{
1

|N (E i,j
x )| − Pη[H�1 = Hζ ]

}
.

By (4.13), this expression is bounded by C0n
3e−β . Finally, we use (4.15) to re-

place Pζ [H� = Hξ ] by M(ζ, ξ) with an error bounded by C0nLe−(3/2)β because

|N (E i,j
x )| is less than or equal to C0n. This concludes the proof of the first assertion

of the lemma. The proof of the second assertion is analogous. �

LEMMA 4.8. There exists a finite constant C0 such that for all x ∈ TL, a ∈
{s, l}, (k,�) ∈ I ∗

a

max
ξ∈�

∣∣∣∣Rζ

(
ηa,(k,�)

x , ξ
)− e−β

∑
ζ∈N (η

a,(k,�)
x )

M(ζ, ξ)

∣∣∣∣≤ C0n
1/2e−(3/2)β .

PROOF. Fix x ∈ TL, a ∈ {s, l}, (k,�) ∈ I ∗
a and let η = η

a,(k,�)
x . In view of (4.1),

we need to compute three expressions.
We first claim that∣∣μK(η)−1 capK(η,�1) − ∣∣N (η)

∣∣e−β
∣∣≤ C0e

−2β

for some finite constant C0. Indeed, let W be the equilibrium potential: W(ξ) =
Pξ [Hη < H�1]. By the Dirichlet principle, capK(η,�1) = DK(W). From η, the
process jumps at rate e−β (resp., e−2β , e−3β ) to |N (η)| (resp., at most C0, 4n)
configurations in �1. Hence, since ne−β 
 1, μK(η)−1DK(W) = |N (η)|e−β ±
C0e

−2β , proving the claim.
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By similar reasons,

max
ζ∈�1

∣∣∣∣Pη[Hζ = H�1] − 1

|N (η)|1
{
ζ ∈ N (η)

}∣∣∣∣≤ C0e
−β

for some finite constant C0. Finally, we claim that

max
ζ∈N (η)

max
ξ∈�

∣∣Pζ [H� = Hξ ] −M(ζ, ξ)
∣∣≤ C0

√
ne−β.

There are two different cases. Assume that ζ is obtained from η by moving a
particle on a side which has 3 ≤ m ≤ n particles. In this case, the configuration
ζ has a hole in one of the sides of the square which moves according to a rate 1
nearest-neighbor, symmetric random walk until it reaches the boundary of the set
of m particles. Let Hhit be the time the hole attains the boundary and let Hmv
be the first time a jump of rate e−β or less occurs. Hmv is bounded below by
a mean C0e

β exponential random variable eβ , independent of the displacement
of the hole. Since Eζ [Hhit] = (m − 1)/2, by an argument repeatedly used in the
previous proofs, Pζ [Hmv < Hhit] ≤ C0(ne−β)1/2. Hence,

Pζ [H� = Hξ ] = Pζ [H� = Hξ,Hhit < Hmv] + √
nε(β/2).

On the set {Hhit < Hmv}, Hhit = H� and either η(Hhit) is the original configura-
tion or it is the one in which a row or a column of particles in a side of the rectangle
has been translated by one unit. The first case has probability (m − 1)/m and the
second one 1/m.

This argument can be extended to the case where ζ is obtained from η by mov-
ing a particle on a side which has 2 particles.

To conclude the proof, it remains to put together the previous three estimates,
as in the previous lemma. �

The proof of the next lemma is similar to that of Lemma 4.7 and the proof of
the following one is identical to that of Lemma 4.8.

LEMMA 4.9. There exists a finite constant C0 such that for all x ∈ TL, a ∈
{s, l}, 0 ≤ j ≤ 3,

max
ξ∈�

∣∣∣∣Rζ

(
ζ a,j

x , ξ
)− e−β

∑
ζ∈N (Ea,j

x )

M(ζ, ξ)

∣∣∣∣≤ C0e
−2β.

LEMMA 4.10. There exists a finite constant C0 such that for all x ∈ TL, a ∈
{s, l}, (k,�) ∈ I ∗

2,a,

max
ξ∈�

∣∣∣∣Rζ

(
ζ a,(k,�)

x , ξ
)− e−β

∑
ζ∈N (ζ

a,(k,�)
x )

M(ζ, ξ)

∣∣∣∣≤ C0ne−(3/2)β .
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5. Coupling ζ(t) and ̂ζ (t). In the previous section, we estimate the differ-
ence between the jump rates of the trace process ζ(t) and of the asymptotic pro-
cess ζ̂ (t). We use these estimates here to compare the hitting times of these pro-
cesses. The first result of this section shows that we may couple the processes ζ(t)

and ζ̂ (t) in such a way that they stay together for a long amount of time. Con-
sider two continuous-time Markov processes X1, X2 taking values on the same
countable state space E. Denote by R1, R2 the respective jump rates.

LEMMA 5.1. Assume that

sup
η∈E

∑
ξ∈E

∣∣R1(η, ξ) − R2(η, ξ)
∣∣≤ α

for some α < ∞. Then, for every η ∈ E, there exists a coupling P of the two pro-
cesses such that X1(0) = X2(0) = η P-a.s., and such that for all t > 0

P[Tcp ≤ t] ≤ P [eα ≤ t],
where Tcp is the first time the processes separate, Tcp = inf{t > 0 :X1

t �= X2
t }, and

where eα is a mean α−1 exponential random variable.

The proof of this result is elementary and left to the reader. By this lemma and
by Propositions 4.6 and 4.2, for each configuration η ∈ �, there exists a coupling of

the processes ζ(t) and ζ̂ (t), denoted by Pζ,̂ζ
η , such that Pζ,̂ζ

η [ζ(0) = ζ̂ (0) = η] = 1
and such that for all t > 0

Pζ,̂ζ
η [Tcp ≤ t] ≤ P [eβ ≤ t],(5.1)

where eβ is a mean eβκ−1
2 exponential random variable.

PROPOSITION 5.2. Recall from (1.5) the definition of the error e(β). For a
subset A of �L, let �A = {ηx ∈ �L,K : x ∈ A}. Assume that limβ κ1 = 0. Then

max
A⊂�L

∣∣Pζ

η0

[
H+

� = H+
�A

]− Pζ̂

η0

[
H+

� = H+
�A

]∣∣≤ e(β).

PROOF. Fix a subset A of �L and let τ1 be the time of the first jump so that

Pζ

η0

[
H+

� = H+
�A

]= ∑
η∈�

Pζ

η0

[
ζ(τ1) = η

]
Pζ

ξ [H� = H�A
].

By Proposition 4.2, this expression is equal to∑
η∈V(η0)

Pζ̂

η0

[̂
ζ (τ1) = η

]
Pζ

η[H� = H�A
] + R(β),
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where R(β) is a remainder absolutely bounded by e−2βκ1[λζ (η
0)−1 + λζ̂ (η

0)−1],
and λζ (η

0), λζ̂ (η
0) are the holding rates at η0 of the processes ζ(t), ζ̂ (t), re-

spectively. By (3.5) and by Proposition 4.2, λζ̂ (η
0) ≥ (1/4)e−2β and λζ (η

0) ≥
e−2β{(1/4) − κ1}. This proves that |R(β)| ≤ κ1.

We estimate Pζ
η[H� = H�A

] for a fixed η ∈ V(η0). Recall the definition of the

coupling Pζ,̂ζ
η introduced after Lemma 5.1. Under this coupling, on the set {H� ≤

Tcp} the processes ζ(t) and ζ̂ (t) reach the set � at the same time and at the same
configuration. Hence,

Pζ
η[H� = H�A

] = Pζ,̂ζ
η

[
H

ζ
� = H

ζ
�A

]≤ Pζ̂
η[H� = H�A

] + Pζ,̂ζ
η

[
H

ζ
� ≥ Tcp

]
.

In this formula, Hζ represents the hitting time for the process ζ(t). A similar
inequality holds interchanging the roles of ζ and ζ̂ . Therefore,∣∣Pζ

η[H� = H�A
] − Pζ̂

η[H� = H�A
]∣∣≤ Pζ,̂ζ

η

[
H

ζ
� ≥ Tcp

]+ Pζ,̂ζ
η

[
H

ζ̂
� ≥ Tcp

]
.

We estimate the first probability on the right-hand side, the arguments needed for
the second one being similar.

Consider a sequence Tβ to be chosen later. By Lemma 5.1 and by (5.1),

Pζ,̂ζ
η

[
H

ζ
� ≥ Tcp

]≤ Pζ
η

[
H

ζ
� ≥ Tβ

]+ P [eβ ≤ Tβ],
where eβ is a mean eβκ−1

2 exponential random variable. Since 1 − e−x ≤ x, x >

0, the second term is bounded by e−βTβκ2. On the other hand, by Chebyshev’s
inequality and by Lemma 5.3 below,

Pζ,̂ζ
η

[
H

ζ
� ≥ Tβ

]≤ 1

Tβ

Eζ
η[H�] ≤ C0|�|eβ

L2Tβ

·

Choosing Tβ = eβ(|�|/κ2)
1/2 we obtain that∣∣Pζ

η[H� = H�A
] − Pζ̂

η[H� = H�A
]∣∣≤√|�|κ2/L2.

Estimating Pζ,̂ζ
η [Hζ̂

� ≥ Tcp] in a similar way, we complete the proof of the propo-
sition. �

The trace process on equivalent classes. Denote by {τx :x ∈ Z
2} the group

of translations in Z
2: For any configuration η ∈ �L,K , τxη is the configuration

defined by (τxη)(y) = η(x + y), where the summation is performed modulo L.
Two configurations η, ξ , are said to be equivalent, η ∼ ξ , if η = τxξ for some
x ∈ Z

2. Denote by �̃ the equivalence classes of �, and by η, ξ the equivalent
classes, that is, the elements of �̃.

Let �̃ :� → �̃ be the function which associates to a configuration its equiva-
lence class. Since the dynamics is translation invariant, for all ξ ∈ �̃

Rζ

(
η, �̃−1(ξ)

)= Rζ

(
η′, �̃−1(ξ)

)
if �̃(η) = �̃

(
η′).
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In particular,

ζ (t) = �̃
(
ζ(t)
)

is a Markov chain which jumps from a class η to a class ξ at rate Rζ (η, ξ) :=
Rζ (η, ξ) =∑ξ∈ξ Rζ (η, ξ) if η belongs to the equivalent class η. Moreover, the
probability measure μζ on �̃ defined by μζ (η) = μζ (�

−1(η)) is reversible for
the Markov chain ζ (t).

An auxiliary dynamics. Denote by η0 the equivalence class of the configura-
tions in �. We introduce in this subsection a process ζ̃ (t) which behaves as ζ (t)

until ζ (t) hits the class η0. Let ζ̃ (t) be the Markov process on �̃ whose jump rates,
denoted by Rζ̃ (η, ξ), are defined as follows:

Rζ̃ (η, ξ) = Rζ (η, ξ), η ∈ �̃ \ {η0}, ξ ∈ �̃.

It is clear that we may couple ζ (t) and ζ̃ (t) in such a way that starting from a
configuration η ∈ �̃ \ {η0}, both processes evolve together until they reach simul-
taneously η0. Let μζ̃ be the uniform measure on �̃. Since μζ (η) = μζ (ξ) for
η, ξ ∈ �̃ \ {η0}, and since the process ζ (t) is reversible, the measure μζ̃ satisfies
the detailed balance conditions on �̃ \ {η0} for the rates Rζ̃ . We define Rζ̃ (η0, ξ)

ξ ∈ �̃ \ {η0} to fulfill the detailed balance conditions with respect to the uniform
measure μζ̃ :

Rζ̃

(
η0, ξ

)= Rζ̃

(
ξ ,η0), ξ ∈ �̃ \ {η0}.

LEMMA 5.3. There exists a finite constant C0 such that

max
η∈V(η0)

Eζ
η[H�] ≤ C0

(|�|/L2)eβ.

PROOF. Fix a configuration η in V(η0) and denote by η the equivalence class
of η. Recall the definition of the processes ζ (t), ζ̃ (t) introduced above. Let Pζ

η ,

Pζ̃
η be the distributions of the processes ζ (t), ζ̃ (t), respectively, starting from η.

Expectations with respect to Pζ
η , Pζ̃

η are represented by Eζ
η , Eζ̃

η , respectively.
Denote by Hη0 the time the processes ζ (t), ζ̃ (t) hit the equivalence class η0.

Since Hη0 = H� and since the processes ζ (t), ζ̃ (t) evolve together until the hitting
time of η0,

Eζ
η[H�] = Eζ

η[Hη0] = Eζ̃
η[Hη0].

Since the chain ζ̃ (t) is reversible, by [1], Proposition 6.10,

Eζ̃
η[Hη0] ≤ 1

capζ̃ (η,η0)
,
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where capζ̃ stands for the capacity associated to the process ζ̃ . To fix ideas, assume

that η = η
0,2
0 and consider the unitary flow � from η to η0 given by �(η0,2

0 ,η0,1
0 ) =

�(η0,1
0 ,η0,0

0 ) = �(η0,0
0 ,η0) = 1, where η

i,j
0 represents the equivalence class of

η
i,j
0 . By Thomson’s principle [14], since Rζ̃ (η, ξ) = Rζ (η, ξ) ≥ Rζ (η, ξ), η ∈ � \

�, and since μζ̃ is the uniform measure on �̃,

1

capζ̃ (η,η0)
≤ 1

μζ̃ (η)

{
1

Rζ (η0,2
0 ,η0,1

0 )
+ 1

Rζ (η0,1
0 ,η0,0

0 )
+ 1

Rζ (η0,0
0 ,η0)

}

≤ |�̃|
{

1

Rζ (η
0,2
0 , η

0,1
0 )

+ 1

Rζ (η
0,1
0 , η

0,0
0 )

+ 1

Rζ (η
0,0
0 , η0)

}
·

By (4.11) and (3.9), the previous sum is bounded by C0|�̃|eβ for some finite con-
stant C0, which proves the lemma since |�̃| = |�|/L2. �

6. Proof of Theorem 1.1. We prove in this section Theorem 1.1. Instead of
working in the torus TL we will consider the process X(t) as a random walk
on Z

2. Let X̄(t) the random walk on Z
2 which jumps from x ∈ Z

2 to y ∈ Z
2 at rate

rβ(y−x) and let Z̄β(t) = X̄(tθβ	2)/	. To prove Theorem 1.1, it is enough to show
that Z̄β(t) converges in the Skorohod topology to a two-dimensional Brownian
motion as β → ∞.

In view of the representation of the process X̄(t) in terms of the orthogonal
martingales Mx

t , Z̄β(t) = (Z̄
β
1 (t), Z̄

β
2 (t)) is a two-dimensional martingale. Since

rβ(x1, x2) = rβ(±x1,±x2), the predictable quadratic covariation of Z̄
β
i (t), Z̄

β
j (t),

1 ≤ i, j ≤ 2, denoted by 〈Z̄β
i , Z̄

β
j 〉t , is given by〈

Z̄
β
i , Z̄

β
j

〉
t = tθβ

∑
x=(x1,x2)∈�L

xixj rβ(x) = tθβδi,j

∑
x=(x1,x2)∈�L

x2
i rβ(x),

where �L = {−L, . . . ,L}2. Hence, by the definition of θβ ,〈
Z̄

β
i , Z̄

β
j

〉
t = (1/2)tδi,j .(6.1)

Let �Z̄β(t) = Z̄β(t) − Z̄β(t−), t ≥ 0. Since Z̄β(0) = 0, by the martingale
central limit theorem, [11], Theorem VII.1.4, in view of (6.1), to prove that Z̄β(t)

converges to a two-dimensional Brownian motion with diffusion matrix equal to
(1/2)tI, we have to show that

lim
β→∞ E

[
sup
s≤t

∥∥�Z̄β(s)
∥∥]= 0(6.2)

for all t > 0.
In the remaining of this section, we prove (6.2). Fix δ > 0. By definition of

Z̄β(s), sups≤t ‖�Z̄β(s)‖ = sups≤t	2θβ
‖�X̄(s)‖/	. Since the Poisson processes
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Nx
t have no common jumps, for all s ≥ 0∥∥�X̄(s)

∥∥=
∥∥∥∥ ∑

x∈�L

x
[
Nx

s − Nx
s−
]∥∥∥∥= ∑

x∈�L

‖x‖[Nx
s − Nx

s−
]

and ∑
x∈�δ	

‖x‖[Nx
s − Nx

s−
]≤ 2δ	

∑
x∈�δ	

[
Nx

s − Nx
s−
]≤ 2δ	,

where �k = {−k, . . . , k}2. The expectation appearing in (6.2) is thus bounded by

2δ + ∑
x/∈�δ	

‖x‖
	

E
[

sup
s≤t	2θβ

[
Nx

s − Nx
s−
]]= 2δ + ∑

x/∈�δ	

‖x‖
	

P
[
Nx

t	2θβ
≥ 1
]
.

Since P[Nx
t	2θβ

≥ 1] ≤ E[Nx
t	2θβ

] = t	2θβrβ(x), to prove (6.2) it is enough to show

that for all δ > 0

lim
β→∞	θβ

∑
‖x‖>δ	

‖x‖rβ(x) = 0.(6.3)

Replacing the Euclidean norm ‖ · ‖ by the sum norm | · | and recalling for-
mula (9.1) for rβ(x), we bound the sum appearing in (6.3) by

	θβ

∑
|x|>δ	

|x|Rξ

(
η0, ηx)= 	θβλζ

(
η0) ∑

|x|>δ	

|x|Pζ

η0

[
H+

� = Hηx
]
.(6.4)

By equation (6.9) in [1], λζ (η
0) ≤ λ(η0) = 8e−2β(1+O(n)e−β). The sum appear-

ing in (6.3) is thus bounded by

C0	θβe−2β
∑

|x|>δ	

|x|Pζ

η0

[
H+

� = Hηx
]= C0	θβe−2β

2L∑
k=[δ	]+1

kPζ

η0

[
H+

� = H♦k

]
,

where ♦k = {ηx ∈ �L,K : |x| = k} and [a] stands for the integer part of a > 0. Let
�k = {ηx ∈ �L,K : |x| ≥ k}. With this notation we may rewrite the previous sum as

2L∑
k=[δ	]+1

k
{
Pζ

η0

[
H+

� = H�k

]− Pζ

η0

[
H+

� = H�k+1

]}

≤ C0	Pζ

η0

[
H+

� = H�[δ	]
]+ 2L∑

k=[δ	]+1

Pζ

η0

[
H+

� = H�k

]
,

where we performed a summation by parts in the last step. By Proposition 5.2 and
Lemma 6.1, the previous expression is bounded by

Lκ3 + C0γ
([δ	]−4)/3

{
	 + γ 1/3

1 − γ 1/3

}
,



2190 B. GOIS AND C. LANDIM

where κ3 = κ1 +
√

κ2|�|/L2 and γ is given by (6.6) below. By (6.12), γ ≤ e−c0/2n.

The previous expression is thus bounded by Lκ3 + (	 + n)e−c0δ	/n.
Up to this point, we have shown that the sum appearing in (6.3) is bounded by

	θβe−2β{Lκ3 + (	 + n)e−c0δ	/n}.
In view of the assumptions of the theorem and of (6.2), this proves (6.3) and con-
cludes the argument. �

We conclude this section with two results used in the proof of Theorem 1.1.
Recall the definition of Gx given in (3.6). Let Ex, x ∈ TL, be the event that the
process ζ̂ (t) leaves the set Gx without visiting the configuration ηx,

Ex = {Hζ̂
Gc

x
< H

ζ̂
ηx
}
,

where H
ζ̂
C , C ⊂ �, stands for the hitting time of C by ζ̂ :

H
ζ̂
C = inf

{
t > 0 : ζ̂ (t) ∈ C

}
.

Let

� := max
η∈V(η0)

Pζ̂
η[E0].(6.5)

For x ∈ TL, let Lx = {ζ l,j
x ,0 ≤ j ≤ 3}, Sx = {ζ s,j

x ,0 ≤ j ≤ 3}, and

G = ⋃
x∈TL

Gx, L = ⋃
x∈TL

Lx, S = ⋃
x∈TL

Sx.

Define

γ := � + (1 − �) max
ξ∈L0

Pζ̂
ξ [HL\L0 < HG].(6.6)

LEMMA 6.1. For every k ≥ 5,

Pζ̂

η0

[
H+

� = H�k

]≤ γ (k−4)/3.

PROOF. As the chain ζ̂ (t) jumps from η0 only to V(η0), it is enough to show
that

max
η∈V(η0)

Pζ̂
η[H� = H�k

] ≤ γ (k−4)/3.

Fix η ∈ V(η0). To prove the lemma, we deplete � of its inner configurations, and
we keep only the extremal ones. Let

�e = ⋃
x∈TL

{Gx ∪Lx ∪ Sx}.
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Denote by χ̂ (t) the trace of ζ̂ (t) on �e. An inspection shows that the process
χ̂ (t) may only jump from a configuration in Gx to a configuration in Gx ∪ Gx±ei

∪
Lx ∪ Lx+e2 ∪ Lx−e1 ∪ Lx−e1+e2 ∪ Sx ∪ Sx+e1 ∪ Sx−e2 ∪ Sx+e1−e2 . Similarly, the
process χ̂ (t) may only jump from a configuration in Lx to a configuration in Lx ∪
Lx±e1 ∪ Lx±e2 ∪ Gx ∪ Gx+e1 ∪ Gx−e2 ∪ Gx+e1−e2 . Finally, the process χ̂ (t) may
only jump from a configuration in Sx to a configuration in Sx ∪ Sx±e1 ∪ Sx±e2 ∪
Gx ∪ Gx−e1 ∪ Gx+e2 ∪ Gx−e1+e2 . In all cases, the distance from the index x of the
starting set to the index y of the ending set is at most 2. The neighborhood of a
configuration in Lx is illustrated in Figure 9.

Recall that ζ̂ (0) = η0. Let 
j =⋃x;|x|≥j {Gx ∪ Lx ∪ Sx}, j ≥ 1, and denote by
τj the hitting time of the set 
j by the process ζ̂ (t):

τj = inf
{
t > 0 : ζ̂ (t) ∈ 
j

}
, j ≥ 0.

It follows from the conclusions of the previous paragraph that χ̂ (t) ∈ �e \
j+2 if
χ̂ (t−) ∈ �e \ 
j . In particular, τj < τj+2 for j ≥ 1.

Let Y :�e → TL be given by

Y(η) = ∑
x∈TL

x1{η ∈ Gx ∪Lx ∪ Sx},

and let Yj = Y(ζ̂ (τj )). In the formulas below, A = L if a = l and A = S if a = s.
Consider the events

E1
j = {ζ̂ (τj ) ∈ G

}∩EYj
,

FIG. 9. The neighborhood of a configuration ζ
l,·
0 for n = 6. We omitted the extra square of the

configurations ζ
l,·
x . The gray dot represents the site 0.
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E
2,a
j = {ζ̂ (τj ) ∈ A

}∩ {HA\AYj
◦ θτj

< HG ◦ θτj
},

E
3,a
j = {ζ̂ (τj ) ∈ A

}∩ {HA\AYj
◦ θτj

> HG ◦ θτj
} ∩EY(ζ̂ (HG◦θτj

)),

Ej = E1
j ∪ ⋃

a=l,s

{
E

2,a
j ∪E

3,a
j

}
.

Note that Ej is measurable with respect to the σ -algebra induced by the stop-
ping time τj+3 of the Markov process ζ̂ (t), which we denote by Fτj+3 . Moreover,
{H+

� = H�k
} ⊂⋂1≤j≤k−4 Ej . Hence,

Pζ̂
η[H� = H�k

] ≤ Pζ̂
η

[
k−4⋂
j=1

Ej

]
.

Fix a positive integer m ≥ 1. Since E3j belongs to Fτ3m
for j < m, taking con-

ditional expectation with respect to Fτ3m
, by the strong Markov property we obtain

that

Pζ̂
η

[
m⋂

j=1

E3j

]
= Eζ̂

η

[
1

{
m−1⋂
j=1

E3j

}
γ0
(
ζ̂ (τ3m)

)]
,

where

γ0(ξ) = 1{ξ ∈ G}Pζ̂
ξ [EY(ξ)] + ∑

A=L,S
1{ξ ∈A}Pζ̂

ξ [HA\AY(ξ)
< HG]

(6.7)
+ ∑

A=L,S
1{ξ ∈ A}Pζ̂

ξ [HG < HA\AY(ξ)
,EY(ζ̂ (HG))].

By symmetry, the first probability is bounded by �, defined in (6.5), while by the
strong Markov property, the third one is bounded by

�
∑

A=L,S
1{ξ ∈ A}Pζ̂

ξ [HG < HA\AY(ξ)
]

= �
∑

A=L,S
1{ξ ∈ A}{1 − Pζ̂

ξ [HA\AY(ξ)
< HG]}.

Summing this expression with the second one on the right-hand side of (6.7), we
obtain by symmetry that

max
ξ∈�

γ0(ξ) ≤ � + (1 − �) max
ξ∈L0

Pζ̂
ξ [HL\L0 < HG] = γ.

Iterating this argument (k − 4)/3 times, we get that

Pζ̂
η[H� = H�k

] ≤ γ (k−4)/3,

which proves the lemma. �
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LEMMA 6.2. There exists a positive constant c0 > 0 such that

max
η∈L Pζ̂

η[HL\LY(η)
< HG] ≤ 1 − c0

n
·

PROOF. By definition of the set L0,

max
η∈L0

Pζ̂
η[HL\L0 < HG] = max

0≤j≤3
Pζ̂

ζ
l,j
0

[HL\L0 < HG].

Consider the case j = 2 which, by symmetry, is equivalent to the case j = 0. The
cases j = 1,3 are examined after. Let η = ζ

l,2
0 , Lc

0 = L \ L0. Intersect the event
{HLc

0
< HG} with the partition {H+

η < HLc
0∪G}, {HLc

0∪G < H+
η }, and apply the

strong Markov property to obtain that

Pζ̂
η[HLc

0
< HG] = Pζ̂

η[HLc
0
< H+

G∪{η}]
Pζ̂

η[HLc
0∪G < H+

η ]
·

Since Pζ̂
η[HLc

0∪G < H+
η ] = Pζ̂

η[HLc
0
< H+

G∪{η}]+Pζ̂
η[HG < H+

Lc
0∪{η}], we obtain that

Pζ̂
η[HLc

0
< HG] = α

1 + α
where α = Pζ̂

η[HLc
0
< H+

G∪{η}]
Pζ̂

η[HG < H+
Lc

0∪{η}]
·(6.8)

It remains to bound α.
For this purpose, we introduce a new process which corresponds to reflect the

process ζ̂ (t) at some configurations. Let N be the set of neighbors in �e of L0. As
illustrated in Figure 9,

N = L±ei
∪ G0 ∪ Ge1 ∪ G−e2 ∪ Ge1−e2 .

Let W be the set of configuration which can be reached by ζ̂ (t) before hitting N :

W =
{
ξ ∈ � : max

ζ∈L0
Pζ̂

ζ [Hξ ≤ HN ] > 0
}
.

Note that only the four configuration η
i,1
0 , 0 ≤ i ≤ 3, of G0 belong to N . Denote by

ζ̌ (t) the process ζ̂ (t) reflected at W . The jump rates of ζ̌ (t), denoted by R
ζ̌
(ξ, ζ ),

are given by

R
ζ̌
(ξ, ζ ) =

{
e−βR(ξ, ζ ), if ξ, ζ ∈ W ,
0, otherwise.

For ξ, ζ ∈ W , R
ζ̌
(ξ, ζ ) = e−βR(ξ, ζ ) = e−βR(ζ, ξ) = e−βR

ζ̌
(ζ, ξ). Therefore,

the process ζ̌ (t) is reversible with respect to the uniform measure on W , denoted
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by μ
ζ̌
. Moreover, since the rates coincide on W , we may couple ζ̂ (t) and ζ̌ (t) in

such a way that they evolve together until they reach N . In particular,

α = Pζ̂
η[HLc

0
< H+

G∪{η}]
Pζ̂

η[HG < H+
Lc

0∪{η}]
= Pζ̌

η[HLc
0
< H+

G∪{η}]
Pζ̌

η[HG < H+
Lc

0∪{η}]
,

where Pζ̌
η stands for the distribution of the process ζ̌ (t) starting from η.

Recall that η = ζ
l,2
0 . By definition of the capacity,

μ
ζ̌
(η)λ

ζ̌
(η)Pζ̌

η

[
HLc

0
< H+

G∪{η}
]≤ cap

ζ̌

(
Lc

0,G ∪ {η}).(6.9)

Let G+ = Gx ∪Gx+e1 and G− = Gx−e2 ∪Gx+e1−e2 . For the denominator, we claim
that

2μ
ζ̌
(η)λ

ζ̌
(η)Pζ̌

η

[
HG < H+

Lc
0∪{η}

]≥ cap
ζ̌

(
G+,

{
ζ l,0
e2

, η
})

.(6.10)

Indeed, from η the process may only jump to a configuration in L0 or to a config-
uration in �2. If it jumps to a configuration in L0, since the process is reflected
at W , to reach G+ the process ζ̌ (t) necessarily passes by η. Therefore,

Pζ̌
η

[
HG < H+

Lc
0∪{η}

]≥ Pζ̌
η

[
HG+ < H+

{ζ l,0e2 ,η}
]
.

By symmetry, Pζ̌
η[HG+ < H+

{ζ l,0e2 ,η}] = Pζ̌

ζ
l,0
e2

[HG+ < H+
{ζ l,0e2 ,η}]. Since μ

ζ̌
is the uni-

form measure and since λ
ζ̌
(η) ≥ e−βR(η,�2) = e−βR(ζ l,0

e2
,�2) = λ

ζ̌
(ζ l,0

e2
), we

obtain (6.10).
By (6.8), (6.9), (6.10) and Lemma 6.3 below,

Pζ̂

ζ
l,2
0

[HL\L0 < HG] ≤ 1 − c0

n
·(6.11)

It remains to consider the case j = 3 which is equal to the case j = 1.
Let a be the probability that the chain ζ̂ (t) jumps from ζ

l,3
0 to ζ

l,2
0 . With the

notation introduced in Lemma 3.3,

a = Pζ̂

ζ
l,3
0

[H
ζ
l,2
0

= HV(ζ
l,3
0 )

].

By the strong Markov property and by symmetry,

Pζ̂

ζ
l,3
0

[HL\L0 < HG] ≤ (1 − 2a) + 2aPζ̂

ζ
l,2
0

[HL\L0 < HG].

By (6.11) and by Lemma 3.3, the previous expression is less than or equal to
1 − 2ac0/n = 1 − c′

0/n. This completes the proof of the lemma. �



KAWASAKI DYNAMICS AT LOW TEMPERATURE 2195

We are now in a position to obtain a bound for γ introduced in (6.6). By
Lemma 3.2, � ≤ 1/2 for n ≥ 46. Hence, by Lemma 6.2,

γ ≤ 1 − c0

2n
≤ e−c0/2n(6.12)

for some positive constant c0.
The proof of Lemma 9.1 below provides bounds for the capacity associated

to the process ζ̌ (t). Let U = {ζ l,j
0 : 0 ≤ j ≤ 3} ∪ G0 ∪ G−e1 ∪ Ge2 ∪ Ge2−e1 ∪

{ζ l,0
e2

, ζ
l,1
−e1

, ζ
l,2
−e2

, ζ l,3
e1

}.
LEMMA 6.3. There exist constants 0 < c0 < C0 < ∞, independent of β , such

that for any disjoint subsets A, B of U ,

c0

n2

e−β

|W| ≤ cap
ζ̌
(A,B) ≤ C0

n

e−β

|W| ·

In this lemma, by a subset A of U , we understand the union of the sets form-
ing U . This means that either all configurations of Gx belongs to A or none.

7. Proof of Theorem 1.2. Recall that we denote by �� be the set of configura-
tions which can be reached from η0 without crossing �2, the set of configurations
with energy greater than Hmin + 2, defined in (1.10). We first claim that

lim
β→∞ Eη0

[∫ t

0
1
{
η
(
s	2θβ

)
/∈ ��

}
ds

]
= 0.(7.1)

Recall the definition of the set N (η0) introduced in the proof of Lemma 4.4
and define N (ηx), x ∈ TL, as the set of configurations in N (η0) translated by x.
Denote by Nx(t) the number of jumps from the configuration ηx to the set of
configurations �2 in the time interval [0, t]. This corresponds to the number of
jumps from ηx to �L,K \ N (ηx) in the time interval [0, t]. It is clear that Nx(t),
x ∈ TL, are independent Poisson processes of intensity 4(n − 2)e−3β1{η = ηx}. In
particular, if N0(t) =∑x∈TL

Nx(t),

Pη0
[
N0(t) ≥ 1

]≤ Eη0
[
N0(t)

]= 4(n − 2)e−3βEη0

[∫ t

0
1
{
η(s) ∈ �

}
ds

]
.

By symmetry,

Eη0

[∫ 	2θβ

0
1
{
η(s) ∈ �

}
ds

]

= 1

|TL|
∑

y∈TL

Eηy

[∫ 	2θβ

0
1
{
η(s) ∈ �

}
ds

]
(7.2)

= 1

|TL|μK(ηw)

∑
y∈TL

μK

(
ηy)Eηy

[∫ 	2θβ

0
1
{
η(s) ∈ �

}
ds

]
.
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Clearly, the sum is bounded above by

EμK

[∫ 	2θβ

0
1
{
η(s) ∈ �

}
ds

]
= 	2θβμK(�),

while the numerator is equal to μK(�) so that

Pη0
[
N0
(
	2θβ

)≥ 1
]≤ C0n	2θβe−3β.

By assumption (1.11), this expression vanishes as β ↑ ∞. Hence, with a probabil-
ity converging to 1, the process η(t) does not hit �2 in the time interval [0, 	2θβ]
from a configuration in �. Moreover, on the event N0(	

2θβ) = 0, in the time in-
terval [0, 	2θβ] the process η(t) may only jump from a configuration in � to a
configuration in

⋃
x∈TL

N (ηx).
Denote by P1(x), P for plateau, the set of configurations in H2 which can be

reached from configurations in N (ηx) by rate one jumps. These are the config-
urations in H2 which appeared in the proof of Lemma 4.4 and which have been
denoted by �0,1 in Figure 1.

For each configuration η ∈ P1(x), denote by N1(η, t) the number of jumps from
η to a configuration in �2 in the time interval [0, t]. It is clear that N1(η, t), η ∈
P1(x), are orthogonal Poisson processes of intensity bounded by C0e

−β1{η(t) =
η}. Hence, N1(t) =∑η∈P1

N1(η, t), P1 = ⋃x∈TL
P1(x), is a Poisson process of

intensity bounded by C0e
−β1{η(t) ∈ P1} and

Pη0
[
N1(t) ≥ 1

]≤ Eη0
[
N1(t)

]≤ C0e
−βEη0

[∫ t

0
1
{
η(s) ∈ P1

}
ds

]
.

Repeating the arguments presented in (7.2), we show that

Pη0
[
N1
(
	2θβ

)≥ 1
]≤ C0	

2θβe−βμK(P1)

μK(�)
≤ C0(	/L)2θβe−3β |P1|.

Since |P1| is bounded by C0L
2(n2 + L2), since n ≤ L, the previous expression is

less than or equal to C0	
2L2θβe−3β , which vanishes as β ↑ ∞ in view of (1.11).

Therefore, with a probability converging to 1, the process η(t) does not hit �2

in the time interval [0, 	2θβ] from a configuration in P1. Moreover, on the event
N1(	

2θβ) = 0, in the time interval [0, 	2θβ] the process η(t) may only leave the

set P1 to a configuration in � or to a configuration in E i,j
x , x ∈ TL, 0 ≤ i, j ≤ 3.

At this point, we repeat the reasoning developed above for the configurations in
� to the configurations in E i,j

x . Proceeding in this manner, we complete the proof
of (7.1). The main contribution, which explains the need of assumption (1.11),
comes from the subsets of configurations which are crossed in a transition from a
configuration in �2 (resp., �4) to another configuration in �2 (resp., �4). There
are C0L

2n8 such configurations. The details are left to the reader.
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We conclude this section with a similar estimate needed in the proof of
Theorem 1.3. Under the assumptions of Theorem 1.2 and the hypothesis that
n7e−β + L2e−2β → 0, we claim that

lim
β→∞ Eη0

[∫ t

0
1
{
η
(
s	2θβ

)
/∈ �
}
ds

]
= 0.(7.3)

In view of Theorem 1.2, we may replace �c by �� ∩H12 in the previous formula.
Repeating the arguments which led to (7.2), we obtain that the previous expectation
is bounded by

tμK(�� ∩H12)

μK(�)
= te−2β |�� ∩H2|

L2 + te−β |�� ∩H1|
L2 ·

The main components of �� ∩H1 are the subsets �2 and �4 whose cardinality are
bounded by C0L

2n7. To estimate the first term in the previous formula, one has
to go through the proofs of Section 4 and recollect all configurations of �� ∩H2.
An inspection shows that |�� ∩ H2| ≤ C0L

2(L2 + n8). This completes the proof
of (7.3).

8. Proof of Theorem 1.3. Recall that we denote by ζ(t) the trace of η(t) on
� and that the center of mass, M(η) of a configuration η in � is well defined.

We first claim that the process M̂β(t) = M(ζ(t	2θβ))/	 converges to a Brownian
motion in the Skorohod topology. The proof of this assertion is divided in two
steps. We first prove the tightness of the sequence and then we characterize the
limit points.

Assume that ζ(0) = η0. Let S1 = 0 and let T1 be the time of the first jump of
ζ(t). Define inductively Sj+1 = H� ◦ϑTj

+Tj , Tj+1 = T1 ◦ϑSj
+Sj , j ≥ 1. Thus,

[Sj , Tj ) represent the successive sojourn times at �. Fix t > 0 and let n= min{k ≥
1 :Tk ≥ tθβ	2}.

Recall that ξ(t) is the trace of ζ(t) on �, and fix δ > 0, ε > 0. By the observation
of the previous paragraph, if

sup
0≤s≤tθβ	2

0≤r≤δθβ	2

∥∥M(ξ(s + r)
)− M

(
ξ(r)

)∥∥≤ ε	 and

sup
Tj≤s≤Sj+1

∥∥M(ζ(s)
)− M

(
ζ(Tj )

)∥∥≤ ε	 for all j ≤ n,

then, the inequality written in the first line of the above formula holds with ξ , ε

replaces by ζ , 3ε, respectively. In particular, since we have shown in the proof
of Theorem 1.1 that the chain M̃β(t) = M(ξ(t	2θβ))/	 is tight with respect to the
uniform modulus of continuity, to prove the tightness of M̂β(t) it remains to show
that

lim
δ→0

lim sup
β→∞

Pζ

η0

[
n⋃

j=1

sup
Tj≤s≤Sj+1

∥∥M(ζ(s)
)− M

(
ζ(Tj )

)∥∥≥ ε	

]
= 0.
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Let ej = Tj − Sj , j ≥ 1, so that {λζ (η
0)ej : j ≥ 1} is a sequence of mean 1

i.i.d. exponential random variables. Clearly,
∑

1≤i≤j ei ≤ tθβ	2 if n > j . Since by
equation (6.9) in [1], λζ (η

0) ≤ λ(η0) = 8e−2β(1 + O(n)e−β) ≤ 9e−2β ,

Pζ

η0[n> j ] ≤ Pζ

η0

[ j∑
i=1

λζ

(
η0)ei ≤ 9e−2βtθβ	2

]

≤ 9e−2βtθβ	2

j
·

Therefore, to prove tightness of the chain M̂β(t) with respect to the uniform mod-
ulus of continuity it remains to show that

lim
δ→0

lim sup
β→∞

e−2βθβ	2Pζ

η0

[
sup

0≤s≤H�

∥∥M(ζ(s)
)∥∥≥ ε	

]
= 0.

This follows from the proof of Theorem 1.1.
Let M̃β(t) = M(ξ(t	2θβ))/	, which converges to a Brownian motion by Theo-

rem 1.1. We claim that for every t > 0, ε > 0,

lim
β→∞ Pζ

η0

[
sup

0≤s≤t

∥∥M̂β(s) − M̃β(s)
∥∥> ε

]
= 0.(8.1)

By definition of M̂β(t), M̃β(t), it is enough to show that

lim
β→∞ Pζ

η0

[
sup

0≤s≤t	2θβ

∥∥M(ζ(s)
)− M

(
ξ(s)

)∥∥> ε	
]
= 0.(8.2)

Recall that ξ(s) is the trace of ζ(s) on �. Hence, if we define the additive func-
tional T (s) by

T (s) =
∫ s

0
1
{
ζ(r) ∈ �

}
dr, s ≥ 0,

and if S(s) is the generalized inverse of T , S(s) = sup{r ≥ 0|T (r) ≤ s}, ξ(s) =
ζ(S(s)). We may therefore replace M(ζ(s)) − M(ξ(s)) by M(ζ(s)) − M(ζ(S(s))) in
the previous formula.

We claim that for every t > 0, δ > 0,

lim
β→∞ Pζ

η0

[
S
(
tθβ	2)− t	2θβ ≥ δ	2θβ

]= 0.(8.3)

By definition of S, for every δ′ > 0 t ′ > 0, S(t ′) < t ′ + δ′ if T (t ′ + δ′) > t ′. Hence,
taking δ′ = δ	2θβ and t ′ = t	2θβ , since t ′ − T (t ′) = ∫[0,t ′] 1{ζ(s) /∈ �}ds, we con-
clude that the previous probability is less than or equal to

Pζ

η0

[∫ (t+δ)θβ	2

0
1
{
ζ(s) /∈ �

}
ds ≥ δ	2θβ

]
.
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By Chebyshev’s inequality and by translation invariance and by the arguments
used in (7.2), this probability is bounded by

1

δ	2θβ

Eζ

η0

[∫ (t+δ)θβ	2

0
1
{
ζ(s) /∈ �

}
ds

]

≤ 1

δ	2θβμζ (�)
Eζ

μζ

[∫ (t+δ)θβ	2

0
1
{
ζ(s) /∈ �

}
ds

]
= (t + δ)μζ (�

c)

δμζ (�)
·

Since μζ (�
c)/μζ (�) is bounded by C0n

7e−β , the previous expression vanishes as
β → ∞, proving (8.3).

Recall that we replaced M(ξ(s)) by M(ζ(S(s))) in (8.2). Since S(r) − r is a
nonnegative increasing function, in view of (8.3), to prove (8.1) it is enough to
show that for every ε > 0,

lim
δ→0

lim sup
β→∞

Pζ

η0

[
sup

0≤s≤t	2θβ

0≤r≤δ	2θβ

∥∥M(ζ(s)
)− M

(
ζ(s + r)

)∥∥> ε	
]
= 0.

This follows from the tightness of the process M(ζ(s)).
To complete the proof of the theorem, we need to replace M(ζ(s)) by M(η(s)).

This is simpler and follows the same strategy of the first part of the proof. Denote
by A the event {η(s) /∈ �� for some 0 ≤ s ≤ t	2θβ}. By Theorem 1.2, this event
has a vanishing asymptotic probability. In view of our convention for the center of
mass of configurations in �0,1 ∪ �2,3, on A the center of mass M(η(s)) does not
change appreciably during excursions in H2: on A for all 0 ≤ s ≤ t	2θβ ,

sup
Ss≤s≤Ts

max
{∥∥M(η(s)

)− M
(
η(Ss)

)∥∥,∥∥M(η(s)
)− M

(
η(Ts)

)∥∥}≤ C0

n	
,

where Ss (resp., Ts ) is the last (resp., first) time before (resp., after) s in which η(s)

belongs to H01. Therefore,

sup
0≤s≤t	2θβ

0≤r≤δ	2θβ

∥∥M(η(s)
)− M

(
η(s + r)

)∥∥≤ C0

n	
+ sup

0≤s≤t	2θβ

0≤r≤δ	2θβ

∥∥M(ζ(s)
)− M

(
ζ(s + r)

)∥∥.
This proves that the sequence of Markovs chains Mβ(t) is tight.

To characterize the limit points, we compare Mβ(t) to M̂β(t) and we use the
fact that ζ(t) is the trace of η(t) on �. We need to prove (8.1) with the obvious
modifications. The main point in the proof of (8.1) is assertion (8.3) whose proof
reduces to the estimate

lim
β→∞ Eη0

[∫ t+δ

0
1
{
η
(
sθβ	2) /∈ �

}
ds

]
= 0.

This estimate has been derived in (7.3), which completes the proof of the theorem.
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9. The time-scale θβ . We prove in this section the bounds (1.4) on θβ . The
proof relies on the next lemma.

LEMMA 9.1. Assume that (1.3) holds. Then there exist constants 0 < c0 <

C0 < ∞, independent of β , such that

c0

n2

e−2βμβ(η0)

μβ(�)
≤ capζ

(
η0,� \ {η0})≤ C0

n

e−2βμβ(η0)

μβ(�)
·

PROOF. On the one hand, by the Dirichlet principle

capζ

(
η0,� \ {η0})≤ 〈(−Lζf ), f

〉
μζ

for any function f :� → [0,1] which vanishes on � \ {η0} and which is equal to
1 at η0. Taking f = 1{G0}, we obtain that

capζ

(
η0,� \ {η0})≤ ∑

η∈G0

μζ (η)Rζ

(
η,Gc

0
)
.

By Propositions 4.2 and 4.6, Lemma 3.1 and since μζ (η) = μK(η)/μK(�) =
μβ(η)/μβ(�), the previous sum is bounded by

e−βμβ(η0)

μβ(�)

∑
η∈V(η0)

{
e−βR

(
η,Gc

0
)+ C0κ2e

−β}+ μβ(η0)

μβ(�)
e−2βκ1

≤ C0e
−2βμβ(η0)

nμβ(�)
{1 + nκ2 + nκ1},

for some finite constant C0 whose value change from line to line. By (1.3), n(κ1 +
κ2) vanishes as β ↑ ∞. This proves the upper bound.

On the other hand, by Thomson’s principle [14], Proposition 3.2.2,
1

capζ (η
0,� \ {η0}) ≤ 1

2

∑
η,ξ∈�

1

μζ (η)Rζ (η, ξ)
�(η, ξ)2,

for any unitary flow � from η0 to � \ {η0}.
To construct such a flow, recall from (3.14) the path ξ0 = η0, ξ1, . . . , ξM = ηe1 ,

M = 3n − 2, from η0 to ηe1 obtained by sliding particles around the square Q.
Let � be the unitary flow from η0 to ηe1 defined by �(ξi, ξi+1) = 1, 0 ≤ i < M .
By (4.3) and (4.11),

1

2

∑
η,ξ∈�

1

μζ (η)Rζ (η, ξ)
�(η, ξ)2

≤ μβ(�)

μβ(η0)

e2β

R(ξ0, ξ1)

{
1 + κ1

R(ξ0, ξ1) − κ1

}

+ μβ(�)eβ

μβ(η0)

M−1∑
i=1

eβ

R(ξi, ξi+1)

{
1 + C0κ2

R(ξi, ξi+1) − C0κ2

}
.
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By (3.14) and (3.15), R(ξi, ξi+1) ≥ n−1. The previous expression is thus less than
or equal to

C0μβ(�)n2e2β

μβ(η0)

{
1 + nκ2

1 − nκ2
+ nκ1

1 − nκ1

}
.

By (1.3), nκ1 and nκ2 vanishes as β ↑ ∞. This proves the lower bound. �

We are now in a position to prove the bounds (1.4). Recall that we denote by
Rξ(η

x, ηy), x �= y ∈ TL, the jump rates of the trace process ξ(t). Since ζ(t), ξ(t)

are the traces of the process η(t) on �, �, respectively, and since � ⊃ �, ξ(t) is
also the trace of ζ(t) on �. In particular, by [1], Proposition 6.1,

Rξ

(
η0, ηx)= λζ

(
η0)Pζ

η0

[
H+

� = Hηx
]
.(9.1)

Hence, by the definition (1.2) of θβ ,

θ−1
β = ∑

x∈TL

‖x‖2rβ(x) = λζ

(
η0) ∑

x∈TL

‖x‖2Pζ

η0

[
H+

� = Hηx
]
,(9.2)

so that

λζ

(
η0)Pζ

η0

[
H�\{η0} < H+

η0

]≤ θ−1
β ≤ 2L2λζ

(
η0)Pζ

η0

[
H�\{η0} < H+

η0

]
.

Since

capζ

(
η0,� \ {η0})= μζ

(
η0)λζ

(
η0)Pζ

η0

[
H�\{η0} < H+

η0

]
,

we conclude that

1

μζ (η0)
capζ

(
η0,� \ {η0})≤ θ−1

β ≤ 2L2

μζ (η0)
capζ

(
η0,� \ {η0}).

Assertion (1.4) follows now from Lemma 9.1.
We may improve the upper bound above using the arguments presented in the

proof of Theorem 1.1. Assume that (1.6) is in force and recall the definition of the
sets ♦k , �k introduced right after (6.4). By (9.2) and since λζ (η

0) ≤ C0e
−2β ,

θ−1
β ≤ C0e

−2β
2L∑
k=1

k2Pζ

η0

[
H+

� = H♦k

]≤ C0e
−2β

2L∑
k=1

kPζ

η0

[
H+

� = H�k

]
,

where we performed a summation by parts in the last step. By Proposition 5.2, the
previous sum is bounded by

C0e
−2βL2κ3 + C0e

−2β
2L∑
k=1

kPζ̂

η0

[
H+

� = H�k

]
,

where κ3 = κ1 +
√

κ2|�|/L2. By Lemma 6.1 and (6.12), the second term is less

than or equal to C0e
−2βn2. By assumption (1.6), the first one is bounded above by

C0e
−2βn2. This proves (1.7).
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