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Predictive or treatment selection biomarkers are usually evaluated in
a subgroup or regression analysis with focus on the treatment-by-marker in-
teraction. Under a potential outcome framework (Huang, Gilbert and Janes
[Biometrics 68 (2012) 687–696]), a predictive biomarker is considered a
predictor for a desirable treatment benefit (defined by comparing potential
outcomes for different treatments) and evaluated using familiar concepts in
prediction and classification. However, the desired treatment benefit is un-
observable because each patient can receive only one treatment in a typi-
cal study. Huang et al. overcome this problem by assuming monotonicity
of potential outcomes, with one treatment dominating the other in all pa-
tients. Motivated by an HIV example that appears to violate the monotonicity
assumption, we propose a different approach based on covariates and ran-
dom effects for evaluating predictive biomarkers under the potential outcome
framework. Under the proposed approach, the parameters of interest can be
identified by assuming conditional independence of potential outcomes given
observed covariates, and a sensitivity analysis can be performed by incor-
porating an unobserved random effect that accounts for any residual depen-
dence. Application of this approach to the motivating example shows that
baseline viral load and CD4 cell count are both useful as predictive biomark-
ers for choosing antiretroviral drugs for treatment-naive patients.

1. Introduction. Much of contemporary medical research is focused on treat-
ment effect heterogeneity, that is, the fact that the same treatment can have different
effects on different patients. The increasing awareness of treatment effect hetero-
geneity has motivated the development of predictive biomarkers for identifying
the subpopulation of patients who would actually benefit from a new treatment
[e.g., Simon (2008, 2010)]. Classical examples of predictive biomarkers include
genetic markers for cancer treatment, such as the OncoType Dx multi-gene score
for breast cancer [Paik et al. (2004)] and the K-RAS gene expression level for
colorectal cancer [Karapetis et al. (2008)]. This article is motivated by a new
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and growing interest in the possibility of using baseline viral load or CD4 cell
count as a predictive biomarker for treating human immunodeficiency virus type 1
(HIV-1).

Evaluation of a predictive biomarker is usually based on a subgroup or re-
gression analysis comparing treatment effects on different subpopulations defined
by the biomarker [e.g., Gail and Simon (1985), Pocock et al. (2002), Russek-
Cohen and Simon (1998)]. Under this approach, the performance of a predictive
biomarker is measured by the interaction between marker value and treatment as-
signment in a regression model for the clinical outcome of interest, which will
be referred to as an outcome model. For example, consider the THRIVE study,
a phase 3, randomized, noninferiority trial comparing rilpivirine, a newly devel-
oped nonnucleoside reverse transcriptase inhibitor, with efavirenz in treatment-
naive adults infected with HIV-1 [Cohen et al. (2011)]. The outcome of primary
interest is a binary indicator of virologic response at week 48 of treatment (see
Section 4 for details). Our consideration of baseline viral load and CD4 cell count
as predictive biomarkers (for choosing between efavirenz and rilpivirine) is mo-
tivated by Figure 1, which shows nonparametric estimates of treatment-specific
response rates as functions of marker value, separately for each biomarker. Fig-
ure 1 suggests a qualitative interaction between treatment and each biomarker, with
rilpivirine favored over efavirenz for higher values of baseline CD4 cell count and
lower values of baseline viral load. Because the statistical significance in Figure 1
is not straightforward to assess, a simple logistic regression analysis that includes
treatment, marker and their interaction is performed (separately for each marker),
and the resulting p-value for the treatment-by-marker interaction is 0.059 for viral
load and 0.031 for CD4 cell count.

FIG. 1. Nonparametric regression analysis of the THRIVE data: smoothed estimates (thicker lines)
and pointwise 95% confidence intervals (thinner lines) for treatment-specific response rates as func-
tions of baseline viral load (left) and CD4 cell count (right).
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While informative about possible interactions, Figure 1 is less transparent about
the predictive performance of these biomarkers and their comparison. Huang,
Gilbert and Janes (2012) point out that a strong interaction is not sufficient for
adequate performance of a predictive biomarker, that the scale of the interaction
coefficient depends on the functional form of the outcome model, and that the
interaction-based approach is ill-suited for developing combination markers. These
authors also propose a potential outcome framework where a predictive biomarker
is—as the term suggests—treated as a predictor for a desirable treatment benefit.
Note that a treatment benefit is necessarily the result of comparing potential out-
comes for different treatments applied to the same patient. Under this perspective,
predictive biomarkers should be evaluated using familiar measures in prediction
and classification [e.g., Pepe (2003), Zhou, Obuchowski and McClish (2002), Zou
et al. (2011)]. Specifically, one should consider the true and false positive rates of
a binary marker and the receiver operating characteristic (ROC) curve for a contin-
uous marker. This approach allows different markers to be compared on the same
scale and facilitates the development of combination markers.

The objective of this article is to evaluate and compare baseline viral load and
CD4 cell count as predictive biomarkers under the potential outcome framework.
It is important to distinguish this objective from the related problems of identify-
ing potential markers, combining several markers into a hybrid marker, choosing
the cutoff point for a given marker and, more generally, developing an individual-
ized treatment strategy. Variable selection techniques such as lasso-based methods
have been used to select and combine genetic markers [e.g., Tian et al. (2012)].
Nonparametric multivariate methods [e.g., Foster, Taylor and Ruberg (2011), Qian
and Murphy (2011), Su et al. (2008)] and semiparametric methods [e.g., Zhang
et al. (2012)] have been used to develop a treatment rule (i.e., a set of criteria
for selecting patients), which can be considered a binary hybrid marker obtained
by combining multiple markers. A natural question that arises from the THRIVE
study is whether or how to combine baseline viral load and CD4 cell count into a
hybrid marker with improved predictive accuracy. While that question is beyond
the scope of this article, we note that the potential outcome framework and the
proposed methods are applicable to any given marker. Once a hybrid marker is
developed, it can be evaluated and compared to the individual markers in the same
framework using the same methods.

An analytical challenge for the potential outcome framework is that the desired
treatment benefit, which involves potential outcomes under different treatments,
is usually unobservable because each patient can receive only one treatment in a
typical study. A possible exception to this limitation is a cross-over study, which
has its own issues [e.g., Poulson, Gadbury and Allison (2012)] and will not be
discussed in this article. In a typical clinical study such as the THRIVE study, the
standard methodology in prediction and classification is not directly applicable to
a predictive biomarker. To address this issue and the resulting identification prob-
lem, Huang, Gilbert and Janes (2012) make a monotonicity assumption, namely,
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that one treatment dominates the other in all individual patients, and suggest a sen-
sitivity analysis for possible departures from the monotonicity assumption. While
the monotonicity assumption may be plausible in some situations such as vac-
cine trials, it may be less appealing as a starting point in other situations. In the
THRIVE study, for example, the presence of a qualitative interaction (in the sense
that neither treatment has a higher response rate for all realistic marker values) im-
plies that neither treatment is dominant in all patients. Additionally, the approach
of Huang, Gilbert and Janes (2012) is developed for a binary outcome and not
readily extensible to other types of outcomes.

In this article, we propose alternative methods that do not require monotonic-
ity or assume a binary outcome. Our first step is to account for the dependence
between potential outcomes (for different treatments applied to the same patient)
by adjusting for relevant covariates, such as demographic variables and baseline
characteristics. If the set of measured covariates is sufficient for explaining the de-
pendence between potential outcomes, the aforementioned performance measures
can then be identified by assuming conditional independence of potential outcomes
given covariates. Possible violations of this assumption can be addressed by intro-
ducing a random effect to account for residual dependence. In the next section
we formulate the problem in terms of potential outcomes and provide a general
rationale for the proposed approach. The proposed methods are then described in
Section 3 and applied to the THRIVE study in Section 4. The article ends with
a discussion in Section 5. Some technical details are provided in a supplemental
article [Zhang et al. (2014)].

2. Notation and rationale. Suppose a randomized clinical trial is conducted
to compare an experimental treatment with a control treatment, which may be a
placebo or a standard treatment, with respect to a clinical outcome of interest,
which may be discrete or continuous. Because there is only one outcome of pri-
mary interest in the THRIVE study, we will work with a scalar outcome unless
otherwise noted. However, most of our methodology is readily applicable to a
vector-valued outcome, with the exception of the sensitivity analysis in Section 3.2
(described fully in Web Appendix B). For a generic patient in the target popula-
tion, let Y(t) denote the potential outcome that will result if the patient receives
treatment t (0 for control; 1 for experimental). Note that the Y(t), t = 0,1, cannot
both be observed at a given time. Let T denote the treatment assigned randomly
to a study subject, thus T is a Bernoulli variable independent of all baseline vari-
ables. Without considering noncompliance, which is negligible in the THRIVE
study, we assume that T is also the actual treatment given to the subject, and write
Y = Y(T ) for the actual outcome. Should noncompliance become a major issue,
we could take an intent-to-treat perspective and compare treatment assignments or
use analytical techniques to recover the actual treatment effect [e.g., van der Laan
and Robins (2003)]. We assume that large values of Y are desirable. Where nec-
essary, the subscript i = 1, . . . , n will be attached to random variables to denote
individual patients in the trial.
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Our interest is in evaluating a predictive biomarker Z, a baseline variable which
may be binary or continuous, with higher marker values supporting the use of
the new treatment. The biomarker Z is intended to identify the subpopulation
of patients who would benefit from the new treatment relative to the control. It
can be a continuous variable as in our motivating example or a binary one such
as a treatment rule developed using nonparametric multivariate methods. Let the
desired treatment benefit be indicated by B = I {(Y (0), Y (1)) ∈ B}, where I {·}
is the indicator function and B is the set of desirable outcomes. Note that B is
by definition a comparison of the two potential outcomes. For a binary outcome,
B might be an indicator for Y(0) < Y(1) or Y(0) ≤ Y(1), depending on which
treatment is preferable with identical (efficacy) outcomes. In our example, we set
B = I {Y(0) ≤ Y(1)} because rilpivirine is thought to have a better safety profile
and will likely be preferred over efavirenz when their efficacy outcomes are identi-
cal. For a continuous outcome, we might take B = {(y0, y1) :y1 −y0 > δ}, where δ

reflects considerations of cost, clinical significance and possibly the safety profiles
of the two treatments (if not incorporated into a vector-valued outcome). For an or-
dered categorical outcome, the definition of B may be more complicated. We shall
take the definition of B as given and focus on the evaluation of Z for predicting B .
The target B is an intrinsic characteristic of an individual patient, which suggests
that Z can be evaluated using well-known quantities in prediction and classifica-
tion [e.g., Pepe (2003), Zhou, Obuchowski and McClish (2002), Zou et al. (2011)].
For a binary marker, it makes sense to consider the true and false positive rates,
defined as TPR = P(Z = 1|B = 1) and FPR = P(Z = 1|B = 0), respectively. For
a continuous marker, it is customary to consider the ROC curve defined as

ROC(s) = 1 − FZ|B=1
{
F−1

Z|B=0(1 − s)
}
.

Here and in the sequel, we use F to denote a generic (conditional) distribution
function, with the subscript indicating the random variable(s) concerned. The ROC
curve is simply a plot of TPR versus FPR for classifiers of the form I (Z > z), with
the threshold z ranging over all possible values.

Because B is never observed, the existing methodology for evaluating predic-
tors, which generally assumes that B can be observed, cannot be used directly to
evaluate a predictive biomarker. Nonetheless, we note that TPR, FPR and ROC
are all determined by FZ|B , which can be recovered using Bayes’ rule from the
marginal distribution of Z and the conditional probability πZ(z) = P(B = 1|Z =
z). For a binary marker, 1 − πZ(0) and πZ(1) are negative and positive predictive
values, respectively,

TPR = τπZ(1)

τπZ(1) + (1 − τ)πZ(0)
,

(1)

FPR = τ {1 − πZ(1)}
τ {1 − πZ(1)} + (1 − τ){1 − πZ(0)} ,
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where τ = P(Z = 1). For a continuous marker, we have

FZ|B=1(z0) =
∫ z0

−∞
πZ(z) dFZ(z)

/∫ ∞
−∞

πZ(z) dFZ(z),

(2)
FZ|B=0(z0) =

∫ z0

−∞
{
1 − πZ(z)

}
dFZ(z)

/∫ ∞
−∞

{
1 − πZ(z)

}
dFZ(z).

Since Z is fully observed, the identifiability of FZ|B would follow from that of
πZ(z). Once an estimate of πZ(z) is available, it can be substituted into the above
displays together with an empirical estimate of τ or FZ , depending on the nature
of Z.

Despite its simple appearance, πZ(z) is not straightforward to estimate. In fact,
for any conceivable form of B, the quantity πZ(z) = P{(Y (0), Y (1)) ∈ B|Z = z} is
not empirically identifiable because it involves the joint distribution of Y(0) and
Y(1) given Z = z. Owing to randomization, it is straightforward to identify

Ft |Z(y|z) = P
{
Y(t) ≤ y|Z = z

} = P(Y ≤ y|T = t,Z = z)

for each t ∈ {0,1}, and to estimate it from a regression analysis for Y given
T and Z. However, the dependence structure of Y(0) and Y(1) given Z = z is
not identifiable from the data [e.g., Gadbury and Iyer (2000)], which is also known
as the fundamental problem of causal inference [Holland (1986)]. Because πZ(z)

is not determined by the “marginals” Ft |Z (t = 0,1), its identification and estima-
tion require additional information or assumptions about the dependence between
Y(0) and Y(1) given Z = z. For a binary outcome, this can be achieved by as-
suming monotonicity [i.e., Y(0) ≤ Y(1) with probability 1] as in Huang, Gilbert
and Janes (2012). The monotonicity assumption corresponds to maximal positive
dependence of Y(0) and Y(1).

For a general outcome and without assuming monotonicity, we develop alterna-
tive methods by adapting the techniques of Dodd and Pepe (2003) and Zhang et al.
(2013). To account for the dependence of Y(0) and Y(1), we start by condition-
ing on relevant covariates that are associated with both outcomes. Let X denote
a vector of such covariates measured at baseline, which may include prognostic
factors and effect modifiers. In the THRIVE study, X may include gender, race,
and baseline age and body mass index. We include Z as a component of X and
write X = (Z,W), where W consists of the additional baseline covariates. Writing
πX(x) = P{(Y (0), Y (1)) ∈ B|X = x}, a conditioning argument yields

πZ(z) = E
{
πX(X)|Z = z

} =
∫

πX(z,w)FW |Z(dw|z).(3)

Because FW |Z is empirically identifiable and estimable, the challenge now is to
identify and estimate πX(x).

If X is sufficient for explaining the dependence between Y(0) and Y(1), then
we can expect that

Y(0) ⊥ Y(1)|X,(4)
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that is, that Y(0) and Y(1) are conditionally independent given X. This assumption
cannot be verified with the observed data and must be based on external informa-
tion. Under assumption (4), the joint distribution of Y(0) and Y(1) given X is
determined by the “marginals”

Ft |X(y|x) = P
{
Y(t) ≤ y|X = x

} = P(Y ≤ y|T = t,X = x) (t = 0,1),

which are straightforward to identify and estimate. In reality, assumption (4) can
be violated because X may not explain all the dependence between Y(0) and Y(1).
Such violations can be examined in a sensitivity analysis based on a latent variable
that accounts for any residual dependence between Y(0) and Y(1). Under this
approach, assumption (4) is relaxed as follows:

Y(0) ⊥ Y(1)|(X,U),(5)

where U is a subject-specific latent variable that is independent of X. In other
words, U represents what is missing from X that makes assumption (4) break
down. Assumption (5) alone is not sufficient to identify πX(x) because U is unob-
served. However, by specifying certain quantities related to U , we can perform a
sensitivity analysis based on assumption (5), as we demonstrate in the next section.

3. Methodology. We now describe methods for estimating the aforemen-
tioned performance measures (TPR, FPR and ROC). As indicated earlier, we will
start by estimating πX(x) under assumptions (4) and (5). This can be done using a
direct approach and an indirect approach, to be described in Sections 3.1 and 3.2,
respectively. The direct and indirect approaches are based on models for πX(x)

and FY |T ,X(y|t,x), respectively, which we refer to as benefit and outcome models.
A benefit model is directly informative about πX(x) and thus more interpretable in
the present context, while an outcome model is more familiar to practitioners and
easier to estimate and validate using standard techniques. Further comments com-
paring the two approaches are given at the end of Section 3.2 after the approaches
are described and in Section 5. In Section 3.3 we show how to convert an estimate
of πX(x) into one of πZ(z). Estimates of the performance measures of interest are
given in Section 3.4.

3.1. Direct estimation of πX(x) based on a Benefit model. A benefit model is a
parametric model for P(B = 1|X) = P{(Y (0), Y (1)) ∈ B|X}, such as the following
generalized linear model (GLM):

πX(X;α) = ψ
(
α1 + α′

XX
)
,(6)

where α = (α1,α
′
X)′ is the regression parameter and ψ is an inverse link function.

Since B is binary, the probit and logit links are natural choices.
Suppose the conditional independence assumption (4) holds. To gain some in-

tuition, consider a discrete X taking values in {x1, . . . ,xK}. Within each stratum
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defined by X = xk , assumption (4) implies that Y(0) and Y(1) are independent
of each other, as if they arise from different subjects, which we assume are in-
dependent. In other words, given that Xi = Xj , the natural pair (Yi(0), Yi(1)) is
identically distributed as the artificial pair (Yi(0), Yj (1)). If Ti = 0 and Tj = 1,
then (Yi(0), Yj (1)) is observable as (Yi, Yj ), so that πX(xk) = E(B|X = xk) can
be estimated by

1

n0kn1k

∑
i∈S0k

∑
j∈S1k

Bij ,(7)

where Bij = I {(Yi, Yj ) ∈ B}, Stk = {i :Ti = t,Xi = xk}, and ntk denotes the size
of Stk (t = 0,1; k = 1, . . . ,K).

The question is how to generalize this idea to a nondiscrete X. To follow the
logic of (7), one would need to find subjects from different treatment groups with
the same value of X, which becomes difficult when X has continuous components
(4 in our example). To overcome that problem, we borrow ideas from Dodd and
Pepe (2003), who consider semiparametric regression for the area under the ROC
curve, and work with an expanded model given by

P(Bij = 1|Xi ,Xj ;β) = ψ
{
β1 + β ′

X(Xi + Xj )/2 + β ′
dX(Xj − Xi )

}
,(8)

where β = (β1,β
′
X,β ′

dX)′, i ∈ S0k and j ∈ S1k . The new features of model (8)
relative to model (6) are introduced for the sole purpose of estimating α. Our
research question does not pertain to the left-hand side of (8) or the regression
coefficient βdX . However, assumption (4) implies that P(Bij = 1|Xi = Xj = x) =
P(B = 1|X = x). Thus, when Xi = Xj , model (8) reduces to model (6) with

α = (
β1,β

′
X

)′
.(9)

In that sense, model (8) is a helper model that allows us to estimate model (6) with
the observed data. Let St = {i :Ti = t} and let nt denote the size of St (t = 0,1).
Then the regression parameter β in model (8) can be estimated by solving the
equation

0 = ∑
i∈S0

∑
j∈S1

∂πij

∂β

Bij − πij

πij (1 − πij )
,(10)

where

πij = ψ
{
β1 + β ′

X(Xi + Xj )/2 + β ′
dX(Xj − Xi )

}
.

As suggested by Dodd and Pepe (2003), equation (10) need not include all possible
pairs (i, j); it could be based on a subset of pairs such that ‖Xi − Xj‖ < ε, where
‖ · ‖ denotes Euclidean norm, for some ε > 0. The choice of ε represents a bias-
variance trade-off, where a larger ε leads to better efficiency and stability and also
more sensitivity to the last component of model (8).
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The approach just described relies heavily on the conditional independence as-
sumption (4), which relates model (8) to model (6) through equation (9). Equa-
tion (9) does not hold when assumption (4) is violated. However, under alternative
assumptions, we have

α = γ
(
β1,β

′
X

)′(11)

for a scalar γ . The key assumptions for (11) include assumption (5) and a
GLM-like structure analogous to model (6):

P
(
B = 1|X,U ;α∗) = ψ

(
α∗

1 + β∗′
XX + α∗

UU
)
,(12)

where α∗ = (α∗
1 ,α∗′

X,α∗
U)′. In Section A of the supplemental article [Zhang et al.

(2014)], we state additional assumptions that lead to (11) and give an expression
for γ . Since β is identifiable and estimable using the techniques described ear-
lier, α can be estimated as soon as γ is known or estimated. Unfortunately, γ is
unidentifiable from the observed data. For the probit and logit links, we show in
Section A of the supplemental article [Zhang et al. (2014)] that γ can take any
value greater than 2−1/2 ≈ 0.71. Thus, when assumption (4) is in doubt, we can
perform a sensitivity analysis based on specified values of γ ∈ (2−1/2,∞), with
γ = 1 corresponding to conditional independence.

3.2. Indirect estimation of πX(x) based on an outcome model. An outcome
model is a parametric model, say, FY |T ,X(y|t,x; θ), for the conditional distribu-
tion of Y given T and X, specified up to a finite-dimensional parameter θ . Let
fY |T ,X(y|t,x; θ) denote the associated probability density or mass function. A typ-
ical outcome model would be a GLM with the following mean structure:

E(Y |T ,X; θ) = ψ
{
θ1 + θT T + θ ′

XX + θ ′
T X(T X)

}
,(13)

where θ = (θ1, θT , θ ′
X, θ ′

T X)′ and ψ is an inverse link function. The parameter θ
can be estimated by maximizing the likelihood

∏n
i=1 fY |T ,X(Yi |Ti,Xi; θ), and the

resulting maximum likelihood estimate (MLE) will be denoted by θ̂ . Because of
randomization, the outcome model FY |T ,X(y|t,x; θ) implies that

Ft |X(y|x) = P
{
Y(t) ≤ y|X = x

} = FY |T ,X(y|t,x; θ) (t = 0,1),

which can be estimated by substituting θ̂ for θ .
Under the conditional independence assumption (4), the joint distribution

F·|X(y0, y1|x) = P
{
Y(0) ≤ y0, Y (1) ≤ y1|X = x

}
is identified as

F0|X(y0|x)F1|X(y1|x) = FY |T ,X(y0|0,x; θ)FY |T ,X(y1|1,x; θ)

and estimated by replacing θ with θ̂ . Write

F̂ CI·|X(y0, y1|x) = FY |T ,X(y0|0,x; θ̂)FY |T ,X(y1|1,x; θ̂),
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where the superscript CI stands for conditional independence. The corresponding
estimate of πX(x) is then given by∫

I
{
(y0, y1) ∈ B

}
F̂ CI·|X(dy0, dy1|x) =: F̂ CI·|X(B|x).

When assumption (4) is in doubt, we can perform a sensitivity analysis based
on assumption (5), which implies that

F·|X(y0, y1|x) =
∫

F·|X,U(y0, y1|x, u)FU(du)

(14)
=

∫
F0|X,U (y0|x, u)F1|X,U (y1|x, u)FU(du),

where we generalize the previous notation in an obvious way (with U as an
additional conditioning variable). This suggests that we specify a model, say,
FY |T ,X,U (y|t,x, u; θ∗), for the conditional distribution of Y given (T ,X,U), with
a finite-dimensional parameter θ∗. Analogous to the GLM (13), we work with a
generalized linear mixed model (GLMM) with

E
(
Y |T ,X,U ; θ∗) = ψ

{
θ∗

1 + θ∗
T T + θ∗′

XX + θ∗′
T X(T X) + θ∗

UU
}
,(15)

where θ∗ = (θ∗
1 , θ∗

T , θ∗′
X, θ∗′

T X, θ∗
U)′. The GLMM is not completely identified with-

out additional information, and we propose a sensitivity analysis based on specified
values of θ∗

U (or, rather, |θ∗
U |), which is described in Section B of the supplemental

article [Zhang et al. (2014)].
It is worth mentioning that the random effect U has a different interpretation

here than in Section 3.1. In model (15), U represents an unobserved prognostic
factor which affects both potential outcomes in the same direction; a change in
U may or may not have much effect on the treatment benefit B , depending on
the precise definition of B and model (15). Although one could incorporate a ran-
dom treatment effect into model (15), the resulting method will likely become very
complicated. In model (12), U acts like an effect modifier in that a change in U

leads directly to a change in the probability of a desirable treatment benefit. (Here
we use the term effect modifier in a heuristic sense which may or may not agree
with an interaction-based definition.) Thus, aside from modeling assumptions, the
direct and indirect approaches also differ in how they deal with departures from as-
sumption (4). The indirect approach is designed to address violations of assump-
tion (4) due to an unmeasured prognostic factor, whereas the direct approach is
more appropriate for violations of assumption (4) due to an unmeasured effect
modifier.

3.3. Estimation of πZ(z). Equations (1) and (2) suggest that evaluation of
a predictive biomarker Z can be based on πZ(z) = P(B = 1|Z = z) and the
marginal distribution of Z. Because the latter is straightforward to estimate, this
section is focused on estimation of πZ(z) with a given estimate of πX(x), say,
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π̂X(x), which may be obtained using any one of the proposed methods. For a bi-
nary marker, equation (3) suggests that πZ(z) can be estimated by

∑n
i=1 I {Zi =

z}π̂X(z,Wi)/
∑n

i=1 I {Zi = z}. We therefore assume that Z is continuous in the
rest of this section.

We propose to estimate πZ(z) by substituting an estimate of FW |Z into equa-
tion (3). One could specify a parametric model for FW |Z , however, this can be
difficult because the dimension of W can be rather large (5 in our example). We
therefore exploit the fact that Z is only one-dimensional and employ nonpara-
metric regression techniques in estimating FW |Z . Let ξ :R → [0,∞) be a kernel
function and λ > 0 a bandwidth parameter. Then we can estimate FW |Z(w|z) by∑n

i=1 ξ{(Zi − z)/λ}I (Wi ≤ w)∑n
i=1 ξ{(Zi − z)/λ} .

This, together with π̂X(x), can be substituted into equation (3) to estimate πZ(z)

as

π̂Z(z) =
∑n

i=1 ξ{(Zi − z)/λ}π̂X(z,Wi)∑n
i=1 ξ{(Zi − z)/λ} .

An important question here is how to choose the bandwidth λ, for which we
propose a cross-validation approach. The estimate π̂Z(z) can be regarded as a
nonparametric regression of π̂X(Z,W) on Z, and its predictive accuracy can be as-
sessed by comparing the “response” B̃i = π̂X(Xi) with the estimate B̂i = π̂Z(Zi).
We propose to partition the sample into a training set and a validation set and
choose a value of λ that minimizes the average of (B̃i − B̂i)

2 in the validation set
with π̂Z(z) estimated from the training set using bandwith λ.

3.4. Estimation of TPR, FPR and ROC. Given π̂Z(z) from Section 3.3, the
parameters of interest can be estimated using equations (1) and (2). For a binary
marker, this leads to

T̂PR = τ̂ π̂Z(1)

τ̂ π̂Z(1) + (1 − τ̂ )π̂Z(0)
,

F̂PR = τ̂ {1 − π̂Z(1)}
τ̂ {1 − π̂Z(1)} + (1 − τ̂ ){1 − π̂Z(0)} ,

where τ̂ = n−1 ∑n
i=1 Zi . For a continuous marker, we have

R̂OC(s) = 1 − F̂Z|B=1
{
F̂−1

Z|B=0(1 − s)
}
,

where

F̂Z|B=1(z0) =
n∑

i=1

I (Zi ≤ z0)π̂Z(Zi)
/ n∑

i=1

π̂Z(Zi),

F̂Z|B=0(z0) =
n∑

i=1

I (Zi ≤ z0)
{
1 − π̂Z(Zi)

}/ n∑
i=1

{
1 − π̂Z(Zi)

}
.
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An asymptotic analysis of these estimates can be rather tedious, especially be-
cause π̂Z(z) involves smoothing and cross-validation. For inference, we recom-
mend the use of bootstrap confidence intervals. To account for all variability in the
estimates, the entire estimation procedure, including bandwidth selection based on
cross-validation, should be repeated for each bootstrap sample.

4. Application to the THRIVE study. We now apply the methods of Sec-
tion 3 to the THRIVE study introduced in Section 1, a randomized, double-blind,
double-dummy, noninferiority trial at 98 hospitals or medical centers in 21 coun-
tries [Cohen et al. (2011)]. The THRIVE study compared rilpivirine with efavirenz
for treating HIV-1 in treatment-naive adults, in the presence of common back-
ground nucleoside or nucleotide reverse transcriptase inhibitors (N[t]RTIs). The
study enrolled 680 adult patients who were naive to antiretroviral therapy, with a
screening viral load of at least 5000 copies per ml and viral sensitivity to N(t)RTIs.
The patients were randomized in a 1 : 1 ratio to receive oral rilpivirine 25 mg once
daily or efavirenz 600 mg once daily, in addition to an investigator-selected regi-
men of background N(t)RTIs.

The outcome of interest to us is virologic response (viral load below
50 copies/ml) at week 48 of treatment, with patient discontinuation (about 5%)
counted as failure. The observed virologic response rates are 86% and 82% in the
rilpivirine and efavirenz groups, respectively, and the difference between the two
groups (3.5%; 95% CI: −1.7–8.8%) meets a prespecified noninferiority criterion
based on a 12% margin (p < 0.0001). Thus, rilpivirine appears comparable to, if
not better than, efavirenz in terms of population-level efficacy. However, Figure 1
suggests that individual patients respond differently to the two therapies and that
baseline viral load and CD4 cell count could be used as predictive biomarkers.
As indicated earlier, we will for safety reasons define individual-level treatment
benefit as B = I {Y(0) ≤ Y(1)}, where Y(0) and Y(1) denote potential outcomes
for efavirenz and rilpivirine, respectively.

Baseline viral load and CD4 cell count are both log-transformed before entering
the benefit and outcome models as covariates. In addition to these biomarkers, the
covariate vector X also includes gender, race (black, white or other), age and body
mass index at baseline. For the direct approach of Section 3.1, the benefit model
is a logistic regression model given by (6), with the aforementioned covariates
as linear terms (and no interactions), and the helper model is given by (8) with
the same link. For the indirect approach of Section 3.2, the outcome model is
a logistic regression model similar to (13) except that interactions of X with T

are limited to the two biomarkers. The selection of covariates and interactions in
these models is based on subject matter knowledge and not on statistical tests.
Estimation of model (8) is based on the 1% of pairs (of control and experimental
patients) that are most similar in terms of ‖Xi − Xj‖, as suggested by Dodd and
Pepe (2003). (Other proportions, from 0.001 to 1, have been attempted without
yielding a material difference.) Under the indirect approach, the simplified method
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in Web Appendix B is used to estimate θ∗ for a given θ∗
U . In any case, estimates of

πX(x) are converted into estimates of πZ(z) using the kernel smoothing method
of Section 3.3, with a Gaussian kernel and a cross-validated bandwidth. The cross-
validation is based on a 1 : 1 random partition of the sample into a training set
and a validation set, and the bandwidth is chosen among {2l sd(Z) : l = −5, . . . ,5}
using the minimum mean squared error criterion. The formulas of Section 3.4 are
used to obtain estimates of ROC curves, and the trapezoidal rule is then employed
in calculating the associated AUCs. The above procedure is performed for both
biomarkers on the original sample as well as 200 bootstrap samples. Pointwise
90% confidence intervals for ROC curves are obtained using a simple bootstrap
percentile method, and bootstrap standard errors are used for inference on AUCs
(and AUC differences between the two biomarkers).

Figure 2 gives a side-by-side comparison of ROC curves for the two biomark-
ers, estimated using the direct approach of Section 3.1 with γ = 0.71,1,2,4. The
value γ = 1 corresponds to assumption (4) of conditional independence, while
the value 0.71 is a theoretical lower bound. The associated AUC estimates and
standard errors are shown in the upper half of Table 1. Both Figure 2 and the rel-
evant portion of Table 1 show that the two biomarkers are useful as predictive
biomarkers, with ROC curves above the diagonal and AUCs greater than 0.5 after
accounting for sampling variability. The performance of each biomarker does ap-
pear to depend heavily on the value of γ ; the AUC estimate increases dramatically
with increasing γ . This pattern is confirmed by additional analyses based on other
values of γ (results not shown). Given the remarks at the end of Section 3.2, these
results suggest that evaluation of a predictive biomarker can be rather sensitive to
an unmeasured effect modifier. On the other hand, for each value of γ , the AUC
estimate for baseline viral load is higher than that for baseline CD4 cell count,
although the difference is not statistically significant. These results suggest that
comparison of predictive biomarkers may be less sensitive to the choice of γ , even
though this particular data set does not provide strong evidence that baseline vi-
ral load is better than baseline CD4 cell count as a predictive biomarker. Whether
we are evaluating a single marker or comparing two markers, there is an obvious
relationship between increasing γ and greater variability in the estimates, as indi-
cated by widening confidence intervals in Figure 2 and increasing standard errors
in Table 1.

Figure 3 gives another comparison of the two biomarkers based on ROC curves
estimated using the indirect approach of Section 3.2 with θ∗

U = 0,1.8,4,8. Here,
the value θ∗

U = 0 corresponds to conditional independence, and the value 1.8 is
a lower confidence bound (to be discussed later). The associated AUC estimates
and standard errors are shown in the lower half of Table 1. These results are con-
sistent with those from the direct approach in suggesting that both biomarkers
are useful as predictive biomarkers. In particular, the results for conditional inde-
pendence (θ∗

U = 0) are fairly consistent with their counterparts under the direct
approach (with γ = 1). Like Figure 2, Figure 3 also shows an increasing trend for
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FIG. 2. ROC analysis of the THRIVE data using the direct approach: estimated ROC curves (solid
lines) and 90% pointwise confidence intervals (dashed lines) for baseline viral load (RNA, left) and
CD4 cell count (right), with different values of γ .

the predictive performance of each biomarker as a function of the sensitivity pa-
rameter θ∗

U . The trend is confirmed for additional values of θ∗
U , although the results

are not shown. Thus, considering the remarks at the end of Section 3.2, it appears
that evaluation of a predictive biomarker can also be sensitive to an unmeasured
prognostic factor. The results from the indirect approach reinforce the previous
observation that baseline viral load appears to perform better than baseline CD4
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TABLE 1
AUC analysis of the THRIVE data: point estimates and bootstrap standard errors for the AUCs of

baseline viral load (RNA) and CD4 cell count as well as their difference (RNA–CD4), obtained
using the direct approach of Section 3.1 and the indirect approach of Section 3.2 with sensitivity

parameters γ and θ∗
U , respectively

Sensitivity
parameter

Point estimate Standard error

RNA CD4 Diff. RNA CD4 Diff.

γ Direct approach
0.71 0.61 0.58 0.03 0.04 0.03 0.03
1 0.65 0.63 0.03 0.05 0.04 0.05
2 0.77 0.75 0.02 0.06 0.08 0.08
4 0.88 0.80 0.08 0.07 0.10 0.13

θ∗
U Indirect approach

0 0.64 0.59 0.05 0.04 0.04 0.05
1.8 0.65 0.60 0.06 0.05 0.05 0.05
4 0.68 0.64 0.04 0.07 0.07 0.08
8 0.72 0.70 0.02 0.09 0.09 0.11

cell count, although the differences here also fail to reach statistical significance.
As is the case with the direct approach, increasing θ∗

U tends to produce greater
variability in the estimates.

Although the uncertainty in comparing the two biomarkers could potentially be
reduced by an increased sample size, some uncertainty will likely remain in evalu-
ating each individual marker, given the apparent dependence on sensitivity param-
eters. Nonetheless, the increasing trend observed under both approaches suggests
that a lower bound for predictive performance may be available under each ap-
proach. For the direct approach, the lower bound is given by γ = 0.71, as noted
in Section 3.1. For the indirect approach, a lower bound for θ∗

U (and hence for
the performance of each biomarker) may be available from longitudinal data (see
Web Appendix B). For the THRIVE study, the lower bound for θ∗

U is estimated as
2.5 (95% CI: 1.8–3.7, based on 1000 bootstrap samples) from a GLMM analysis
of repeated measurements at 24, 32, 40 and 48 weeks. Although earlier measure-
ments (baseline through 20 weeks) are also available, we restrict our analysis to
the later measurements in order to reduce misspecification bias; see Zhang et al.
[(2013), Section 4] for a detailed explanation of this strategy. This GLMM analy-
sis suggests that, under the additional assumptions given in Web Appendix B, the
value θ∗

U = 1.8 represents the worst case scenario for the indirect approach. The
corresponding ROC and AUC estimates are better than those for γ = 0.71 under
the direct approach and thus more informative as lower bounds.

Our ROC analyses under both (direct and indirect) approaches also illustrate
that measures of predictive accuracy need not correlate with interactions. Although
baseline CD4 cell count exhibits a more dramatic interaction in Figure 1, there is
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FIG. 3. ROC analysis of the THRIVE data using the indirect approach: estimated ROC curves
(solid lines) and 90% pointwise confidence intervals (dashed lines) for baseline viral load (RNA,
left) and CD4 cell count (right), with different values of θ∗

U .

no indication (in the same data set) that it outperforms baseline viral load as a
predictive biomarker.

5. Discussion. In this article we have proposed new methods for evaluating
predictive biomarkers in the potential outcome framework of Huang, Gilbert and
Janes (2012). Instead of monotonicity, our starting point is conditional indepen-
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dence of potential outcomes given observed covariates. Possible departures from
the latter assumption can be addressed by incorporating a random effect that ac-
counts for any residual dependence between potential outcomes. Because the ran-
dom effect models are not completely identifiable, we propose a sensitivity analy-
sis approach based on quantities related to the random effect. Our analysis of the
THRIVE data reveals a great deal of sensitivity for the performance of each indi-
vidual biomarker and much less sensitivity for the comparison of the two markers.
Despite the uncertainty about individual biomarkers, the lower bounds on their pre-
dictive performance, available under both (direct and indirect) approaches, show
that they are both useful as predictive biomarkers. For comparing the two markers,
our analysis does not show much sensitivity and does not indicate a significant
difference in the predictive performance of the two markers.

There does appear to be a lot of sensitivity (particularly in the upper portion) in
quantifying the performance of an individual marker. Such sensitivity introduces
additional uncertainty into the overall conclusion of the analysis, which is certainly
undesirable. We see this as a reminder of the inherent limitation of the observed
data for answering certain questions. As in many other statistical problems (e.g.,
missing data, censoring, confounding), the parameters of interest to us are not
identifiable from the observed data without making untestable assumptions. When
such assumptions are in doubt, the parameters are partially identified and the asso-
ciated inference cannot be as sharp as that for point-identified parameters [Manski
(2003)]. It may be disappointing to see that different assumptions (about the sen-
sitivity parameter) can lead to a wide range for the parameter of interest. On the
other hand, one could argue that the sensitivity analysis serves its purpose well by
revealing the limitation of the available data and information.

In theory, point identification is achieved under the conditional independence
assumption (6), which requires that the observed covariates be sufficient for ex-
plaining the dependence between the potential outcomes. Although we may never
be certain that assumption (6) holds, it seems reasonable to believe that the as-
sumption will get close to being true with a growing set of relevant covariates
obtained from increasing knowledge of the disease. The more we know about the
disease, the more information we have about relevant covariates, the more confi-
dence we should be able to place in assumption (6). In practice, it may be difficult
to determine when we have sufficient information to rely on assumption (6) and
when we have to perform a sensitivity analysis. One possible solution would be
a Bayesian approach with an informative prior on the sensitivity parameter which
quantifies our uncertainty about assumption (6). As we become more confident
about assumption (6), the prior will become more concentrated at or near that as-
sumption.

Each of the direct and indirect approaches has unique advantages. The direct
approach is able to accommodate complex definitions of treatment benefit involv-
ing several outcome variables of arbitrary types, as long as they are all observed.
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The indirect approach is best suited for a single outcome of primary interest. Al-
though the outcome model can include multiple outcomes in principle, their depen-
dence structure can be difficult to specify and estimate. Even for a single outcome,
the indirect approach requires a greater amount of modeling (in the sense that
an outcome model implies a benefit model) and is therefore more prone to mis-
specification bias. On the other hand, the indirect approach is able to use all the
information in the observed outcome data and therefore may have an efficiency
advantage. Finally, for sensitivity analysis, the direct approach is more appropriate
for an unmeasured effect modifier, and the indirect approach for an unmeasured
prognostic factor. In practice, we recommend that both approaches be used in a
complementary fashion, as in our analysis of the THRIVE data.

A reviewer has pointed out that some elements of personal judgment may be
involved in choosing among different treatments. While this is not a major issue in
the THRIVE data, where the definition of a treatment benefit is quite objective, it
can certainly become a major issue in other therapeutic areas such as weight loss.
For example, some patients may be willing to accept the extra risks of a surgical
procedure (relative to a nonsurgical one) for an additional loss of 20 pounds, while
others may not. To incorporate such personal judgment into the proposed approach,
we could allow δ to vary across patients, and we would need to be able to measure
δ for individual patients or at least be able to predict δ using measurable individual
characteristics. In the latter case, the methodology will need to be modified to
incorporate a prediction model for δ and the associated variability. It will be of
interest to explore that possibility in the context of a suitable application.

Because of the complexity of the proposed methodology, a sample size for-
mula is not yet available; however, for a given application, one could perform a
simulation study to gauge the adequacy (in terms of power and precision) of a
proposed sample size. Such an assessment should obviously consider the objective
of the analysis (e.g., evaluating a single biomarker versus comparing two or more
biomarkers). In addition, the nonparametric regression in Section 3.3 may imply
a higher requirement on the sample size than do the other parts of the method-
ology, which are based on parametric regression techniques. A sample size that
is inadequate for one-dimensional nonparametric regression may compromise the
performance of the methods.
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SUPPLEMENTARY MATERIAL

Supplement: Technical details (DOI: 10.1214/14-AOAS773SUPP; .pdf). We
provide technical details concerning the sensitivity analyses in Sections 3.1
and 3.2.

http://dx.doi.org/10.1214/14-AOAS773SUPP
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