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The accurate quantification of gene expression levels is crucial for tran-
scriptome study. Microarray platforms are commonly used for simultane-
ously interrogating thousands of genes in the past decade, and recently
RNA-Seq has emerged as a promising alternative. The gene expression mea-
surements obtained by microarray and RNA-Seq are, however, subject to var-
ious measurement errors. A third platform called qRT-PCR is acknowledged
to provide more accurate quantification of gene expression levels than mi-
croarray and RNA-Seq, but it has limited throughput capacity. In this article,
we propose to use a system of functional measurement error models to model
gene expression measurements and calibrate the microarray and RNA-Seq
platforms with qRT-PCR. Based on the system, a two-step approach was de-
veloped to estimate the biases and error variance components of the three
platforms and calculate calibrated estimates of gene expression levels. The
estimated biases and variance components shed light on the relative strengths
and weaknesses of the three platforms and the calibrated estimates provide a
more accurate and consistent quantification of gene expression levels. The-
oretical and simulation studies were conducted to establish the properties of
those estimates. The system was applied to analyze two gene expression data
sets from the Microarray Quality Control (MAQC) and Sequencing Quality
Control (SEQC) projects.

1. Introduction. The transcriptome of a cell is the entire set of mRNA
molecules or transcripts produced by DNA transcription under certain biological
or environmental conditions. Systematic profiling of the transcriptome cannot only
provide a dynamic characterization of the cell’s molecular constitution, but also
shed light on gene functional annotation, regulatory mechanisms and transcrip-
tional networks underlying various biological processes of the cell.

Since the mid-1990s, DNA microarray has served as the leading experimental
platform for transcriptome study [Schena et al. (1995), Lockhart et al. (1996)].
Despite its huge success, microarray is known to suffer from some limitations such
as reliance on existing knowledge of transcript sequences, high level background
noise and limited dynamic range of detection.
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A second platform called the quantitative real-time Reverse Transcription Poly-
merase Chain Reaction (QRT-PCR) can also be used in gene expression studies.
Although well acknowledged as the most reliable gene expression measurement
technology, the throughput of qRT-PCR is low, that is, the number of genes or
transcripts that can be measured in a single qRT-PCR experiment is limited. In
addition, qRT-PCR is also subject to variations caused by various biological, tech-
nical and experimental factors involved in qRT-PCR experiments [Bustin (2002),
Bustin and Nolan (2004)]. Currently, gRT-PCR is used either for detecting and
quantifying a small number of specific transcript targets or as a gold standard for
validating hits or findings from other high-throughput platforms such as microar-
ray [Applied Biosystems (2006)].

Recently, RNA-Seq has emerged as a new experimental platform for transcrip-
tome profiling, and it is believed to overcome the major limitations of microarray
[Wang, Gerstein and Snyder (2009)]. Although promising, data generated from
RNA-Seq experiments still demonstrate excessive variability [Schwartz, Oren and
Ast (2011)]. Therefore, RNA-Seq data need to be normalized before used in down-
stream transcriptome analysis. A number of methods have been proposed in the lit-
erature for normalizing RNA-Seq data, including RPKM [Mortazavi et al. (2008)],
quantile-based procedures [Bullard et al. (2010)], TMM [Robinson and Oshlack
(2010)], mseq [Li, Jiang and Wong (2010)], GPseq [Srivastava and Chen (2010)],
POME [Hu et al. (2012)] and DESeq [Anders and Huber (2010)]. Nonetheless,
the problem of how to statistically characterize and normalize RNA-Seq data has
not been fully settled with satisfaction and demands further investigation [Mak
(2011)].

The strengths and weaknesses of qRT-PCR, RNA-Seq and microarray can be
summarized as follows. In terms of throughput capacity, RNA-Seq is the highest,
microarray is the second, and qRT-PCR is the lowest, whereas, in terms of accu-
racy, the order from the highest to the lowest is qRT-PCR, RNA-Seq and microar-
ray. An ideal platform for transcriptome profiling should combine the accuracy of
gRT-PCR with the high-throughput capacity of RNA-Seq. Unfortunately, such a
platform is not currently available yet. A natural question is whether it is possible
to use statistical methods to combine the strengths of the three platforms and gen-
erate gene expression measurements of a higher quality at the genome-wide scale.
The answer turns out to be positive, and the methodology that can be applied is
statistical calibration.

Statistical calibration is typically used for the scenario where p instruments are
available for measuring the same quantity. Among the instruments, one is more
accurate but at the same time more expensive than the others. In order to make
a less accurate instrument generate more reliable measurement results for general
use, it needs to be calibrated by the most accurate instrument through statistical
analysis. There are two different types of calibration, which are absolute calibra-
tion and comparative calibration. Absolute calibration assumes the most accurate
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instrument gives the true value of the targeted quantity, whereas comparative cal-
ibrate assumes the most accurate instrument is also subject to measurement error.
The literature on statistical calibration is primarily focused on absolute calibra-
tion, and a variety of statistical methods have been developed; see Osborne (1991)
for a comprehensive review. On the other hand, comparative calibration is more
challenging than absolute calibration and is mainly discussed in the literature on
measurement error models; see Fuller (1987) and Cheng and Van Ness (1999) for
more thorough discussions.

The platforms for measuring gene expression levels using qRT-PCR, microar-
ray and RNA-Seq represent three different instruments, with the gRT-PCR plat-
form being the most accurate and the most expensive. In this article, we propose to
use a system of measurement error (ME) models to model gene expression mea-
surements obtained by the qRT-PCR, microarray and RNA-Seq platforms, and to
further use the system to calibrate RNA-Seq and microarray measurements with
gRT-PCR measurements. A two-step approach is used to estimate the parameters
of the system of ME models, and the statistical properties of the resulting estimates
are discussed. Through both theoretical and simulation studies, we show that the
calibrated gene expression measurements are more consistent and accurate than
those by any of the individual platforms. Furthermore, we apply the system of ME
models to calibrate gene expression data generated by qRT-PCR, RNA-Seq and
microarray from both the Microarray Quality Control (MAQC) and Sequencing
Quality Control (SEQC) projects (detailed information about the data is given in
Section 4.1), and show that the resulting calibrated measurements provide more
accurate quantification of gene expression levels and lead to more discoveries in
gene differential expression analysis.

In Section 2 we define the system of measurement error (ME) models and
describe the two-step approach for estimating the parameters in the system. In
Section 3 we present some simulation results. In Section 4 we describe the gene
expression data from the MAQC and SEQC projects and discuss the results from
applying the system of ME models to analyze the data. Section 5 concludes the
article with further discussion and possible future research.

2. Measurement error models and calibration. Let 7 denote the collection
of all the genes or transcripts in the transcriptome under study. As discussed in
the Introduction, RNA-Seq has the capacity to measure the expression levels of
all genes in 7, microarray can target thousands of genes, and qRT-PCR generally
will measure at most hundreds of genes in a single experiment. Let A, B and C be
the collections of genes measured by qRT-PCR, microarray and RNA-Seq, respec-
tively. We assume that A C B C C C T, and the cardinalities of A, B and C are n,
m and [, respectively. By the assumption, n genes (i.e., those in .4) are measured
by all three platforms, m — n genes (i.e., those in B — A) are measured by both
microarray and RNA-Seq, and / — m genes (i.e., those in C — 13) are measured only
by RNA-Seq. We further assume that commonly used platform-specific methods
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are used to process and normalize raw data generated by each platform to pro-
duce gene expression measurement data. Some examples are the PLIER method
[Affymetrix Inc. (2005)] for microarray, the RPKM method for RNA-Seq and the
delta—delta C; method for qRT-PCR. Following the convention in transcriptome
studies, the log-2 transformation is further applied to the normalized gene expres-
sion measurements of the three platforms, and we refer to the resulting normalized
transformed values as the qRT-PCR, microarray and RNA-Seq gene expression
measurements, respectively, in the rest of this article.

Each type of gene expression measurement data can be generated by one lab
or multiple labs. Based on the number of labs involved in generating one type
of gene expression measurement data, we distinguish two scenarios, which are
the single-lab scenario and the multi-lab scenario. In the single-lab scenario, each
type of gene expression measurement data (e.g., RNA-Seq data) is generated by
a single lab. However, the expression measurement data of different types are not
necessarily generated from the same lab. In the multi-lab scenario at least one type
of gene expression data is generated by more than one lab. Due to limited space,
we treat only the single-lab scenario in this section, and the multi-lab scenario will
be discussed in Section S.7 of the supplementary material [Sun, Kuczek and Zhu
(2014)].

2.1. Single-lab scenario. Suppose that the genes in A, B — A and C — B are
labeled by integers from 1 to n, n + 1 to m, and m + 1 to [, respectively. We
assume each platform generates one expression measurement for each gene. When
technical replicates are available, their average value is used as the expression
measurement of a gene. For 1 < j <n, let X; denote the expression measurement
of gene j by qRT-PCR. Similarly, let ¥; denote the expression measurement of
gene j by microarray for 1 < j <m, and Z; the expression measurement of gene
J by RNA-Seq for 1 < j </. Note that X ;, Y; and Z; are all in log-2 scales.

As discussed in the Introduction, gene expression measurements produced by
the three platforms are all subject to measurement errors. We propose to use the
following measurement error models to characterize X ;, Y; and Z;, respectively,

(2.1a) Xj=pj+ei; (1<j=n,
(2.1b) Y=o+ B+ &2 (I<j=m),
(2.1¢) Zi=a3+ B3+ &3 (I=<j=D.

The above models are not simple linear models because none of the terms on the
right-hand sides of the equations is observed, and terms By ; and B3 are cross
terms of unknown quantities. Note that n < m < [, that is, the three platforms
measure different subsets of genes. Next, we will discuss the terms in these three
models in detail and then propose the estimation method.

In model (2.1a), p; is the true expression level of gene j and &;; is the ran-
dom error due to the qRT-PCR platform. Depending on the normalization method,
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gRT-PCR can lead to either absolute quantitation or relative quantitation of a
gene’s expression level [Pfaffl (2004), Chapter 3]. Therefore, the interpretation
of u; depends on whether absolute or relative quantitation is used in an experi-
ment. For simplicity, in this article, we do not further distinguish these two quan-
titation methods and simply refer to w; as the true expression value of gene j. We
assume that for 1 < j <n, &1;’s are i.i.d. N(0, 012). The variance of X ; is 012, rep-
resenting the reproducibility of the qRT-PCR platform. According to the model,
the qRT-PCR measurement X ; is unbiased with respect to i ;.

In model (2.1b), &;; is the random error due to the microarray platform. For
I < j <m, we assume &;;’s are i..d. N(0, 022). The other two terms gives the
mean measurement, that is, E(Y;) = az + B2 . In other words, the expectation

of the microarray measurement of gene j is assumed to be a linear function of u ;,

where a and B, are the intercept and slope, respectively. The variance of Y is 022.

Note that due to the differences in technologies and platform specific normalization
methods, gene expression measurements from different platforms are in different
scales and may have shifts. Therefore, oy and B, represent the shift and scale of
the microarray measurements relative to the qRT-PCR measurements. When com-
paring the reproducibilities of the gRT-PCR and microarray platforms, ¥; needs to
be transformed to Y = (¥; — a2)/B2, which is of the same scale as X ;. The vari-
ance of Y] , which is o5 2/ ,32, is referred to as the reproducibility of the microarray
platform.

In model (2.1¢), the mean of the RNA-Seq measurement is also assumed to be a
linear function of w ;, thatis, E(Z;) = a3 + B3, and £3; is the random error due
to the RNA-Seq platform. We assume that for 1 < j </, 3;’s are i.i.d. N (0, 032).
The intercept a3 and the slope B3 represent the shift and scale of RNA-Seq mea-
surements relative to the QRT-PCR measurements. The variance of Z; is 032. Sim-
ilar to the microarray platform, we refer to 032 / ,332 as the reproducibility of the
RNA-Seq platform.

Different measurement platforms generally have different dynamic ranges of
detection. This is also the case for the qRT-PCR, microarray and RNA-Seq plat-
forms. The models proposed above may hold for only a range that fits all three
platforms. Therefore, when applying the models in practice, a proper range of
expression levels needs to be used, and genes with extremely low or high expres-
sion levels need to be excluded. Random measurement errors are typically het-
eroscedastic, that is, the variance of a random measurement error depends on the
magnitude of the targeted quantity. Notice that the errors in the models above are
assumed to homoscedastic. The justification for assuming homoscedastic errors
is twofold. First, the gene expression measurements X ;, ¥; and Z; are the log-2
values of the original measurements produced by the three platforms respectively,
and the log-2 transformation is known to mitigate heteroscedasticity. Second, as
previously discussed, the proposed models will be applied to genes with expres-
sion levels within a certain proper range, which further alleviates the concern of
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heteroscedasticity. Nonetheless, when applying the models, diagnostic analysis al-
ways needs to be performed.

When p;’s in models (2.1a)—(2.1c) are assumed to be unknown fixed quanti-
ties, the measurement error models are said to be functional; and when p ;’s are
assumed to be i.i.d. random variables, the models are said to be structural. In this
article, u ;’s are gene expression values and considered fixed. Therefore, the mod-
els defined above are functional. Following the convention in the literature, we call
the w;’s incidental parameters k and the other parameters (o;, f; for 2 <i <3,
and al.z for 1 <i < 3) structural parameters.

In general, when p measurement platforms or instruments are used to measure
the same quantity, it requires p measurement error models to characterize the mea-
surement results. For ease of discussion, the p measurement error models are said
to form a system of ME models of order p. When the measurement error models
are structural, the system is said to be structural; and when the models are func-
tional, the system is said to be functional. Hence, models (2.1a)—(2.1c) defined
above form a functional system of order 3, and any two of them form a functional
system of order 2.

2.2. Parameter estimation. The statistical literature on measurement error
models is focused primarily on systems of order 2. Reiersgl (1950) showed that
structural systems of order 2 are not identifiable under the normality assumption,
unless additional information such as the ratio between the variances of the two
measurement instruments is available. For structural systems of order higher than 2
(e.g., p = 3), Barnett (1969) showed they become identifiable with no further in-
formation needed, and the maximum likelihood estimates (MLEs) of the structural
parameters can be obtained.

Parameter estimation for functional systems of ME models is more difficult than
that for structural systems due to the presence of the incidental parameters, ;’s.
First, under the normality assumption on the involved measurement errors, the
likelihood function of a functional system becomes unbounded [Kendall and Stuart
(1973)]. Solari (1969) showed that the likelihood function of a functional system
of order 2 does not have a local maximum. We have found that this is also generally
true for functional systems of order 3. Therefore, the maximum likelihood method
fails to produce proper estimates for both structural and incidental parameters of a
functional system of ME models.

The relationship between structural and functional systems was discussed in
the early literature on measurement error models. Much attention has been given
to the connection between the identifiability of structural systems and the exis-
tence of proper estimates of the structural parameters in functional systems. Gleser
(1983) showed that when a structural system is identifiable, consistent estimates of
the structural parameters in the corresponding functional model exist. Further, he
suggested that in most cases, a good way to find a consistent estimator for the func-
tional model is to directly verify whether the consistent estimator in the structural
model is also consistent in the corresponding functional model.
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Based on the discussion above, a two-step approach can be used to estimate the
parameters of the functional system of order 3 defined above for the qRT-PCR,
microarray and RNA-Seq measurements. In the first step, the genes with measure-
ments from all three platforms (i.e., genes in .4) are used to obtain the MLEs of
the structural parameters under the assumption that these u ;’s are i.i.d. N (u, a?).
In the second step, the estimates obtained in the first step are used in place of
their corresponding structural parameters in the functional ME system, and then
the generalized least squares method is used to obtain estimates of the incidental
parameters (or gene expression levels).

Structural parameters. 'We use the expression measurements of the genes in .4
to estimate the structural parameters. Let X , Y. and Z_ be the averages of X, Y;
and Z; over all genes in 4. The sample variances and covariances for {X j}1<j<x,
{Yj}i<j<n and {Z}1<j<p are denoted as Sy, Syy, S;z, Sxy, Sx; and S, respec-
tively. Following the first step of the two-step approach discussed previously, the
estimates of the structural parameters are given as follows:

S, s L
ﬂ_ﬁv ﬂ:ﬂ’ OZZZY—,BZX,
Sxz Sy
(2.2a) R
A SxyS . SxyS
SyZ SXZ
(2.2b)
5= (50— 55)
4 Sxy

Note that when deriving the above estimates, the nonnegativity constraints on the
variance estimates were not enforced due to two considerations. First, we can en-
force the constraints by using more complicated estimates such as the ones given
in Carter and Fuller (1980). However, in practice, the constraints are usually satis-
fied automatically and, thus, the benefit of using the more complicated estimates is
minimal. Second, gene expression data are often noisy, and the true values of the
variance components are unlikely to be close to 0. The violation of the constraints
by the variance components estimates indicates either the estimates are not reliable
due to insufficient sample size or the model assumptions are invalid and need to
be reconsidered. The enforcement of the constraints may miss the opportunity of
identifying these potential pitfalls.

For convenience, let 0 = (a, a3, B2, B3, 012, 022, 032)T be the vector of the struc-
tural parameters and 9 the estimate of 6. The following proposition establishes the
asymptotic distribution of @ under the functional system of ME models as n goes
to oo.
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PROPOSITION 1. Assume the functional system of ME models is true and the
following limits exist,

I . 1 -

(2.3) 'U‘ZHIHEO;Z“J and A:nli)ngO;Z(uj—u) > 0.
j=1 j=1

Then, as n goes to 0o, ﬁ(é —0) i) N(0,Tg), where i) means converge in

distribution and T'g is the variance—covariance matrix with its explicit expression

given in the supplementary material [Sun, Kuczek and Zhu (2014)], Section S.1.2.

The proof of Proposition 1 is outlined in Section S.1.1 of the supplementary
material [Sun, Kuczek and Zhu (2014)]. The assumptions on the mean and vari-
ance of 1 ;’s in Proposition 1 appear to be reasonable, because ( ;’s are the true
expression levels of genes in a given cell line or tissue sample. Note that A appears
in the denominator of the variances of a», a3, ,32 and 33. Therefore, the estimates
of the structural parameters will attain higher accuracy when p;’s in A are more
spread out. The asymptotic property of 0 is stated as n goes to oo. In practice, this
property will hold approximately when »n is sufficiently large. In our simulation
study, we found that when n > 150, the Mean Square Errors (MSE) of 0 are close
to zero (see Figure S1 and Figure S2 in the supplementary material [Sun, Kuczek
and Zhu (2014)], Section S.4) and the standard errors of 6 are within 10% of the
true parameter values.

Incidental parameters. How to best estimate the incidental parameter w; de-
pends on whether gene j is in A, B — A or C — B. We consider these three cases
separately. For each case, we follow the second step of the two-step approach dis-
cussed previously. First, we replace the structural parameters by their estimates,
and then we apply the generalized least squares method to obtain the estimate
of Mmj.

Depending on whether gene j is in A, B — A or C — B, given the structural pa-
rameters, the measurement error models involving . ; can be rewritten as a linear
model of u; (see the supplementary material [Sun, Kuczek and Zhu (2014)], Sec-

tion S.2). Replacing the structural parameters @ by their estimates 6 and applying
the generalized least squares method, the estimates of u; for j in A, B — A and
C — B are given as follows:

~xve _ Xj/07 + Pa(Y; — @2)/63 + B3(Z; — &3)/63

(24a) p7t = — —— —— for j € A;
g 1/67 + B3/55 + B3 /63
) Y. — & ~2 A 7. —4 A2
(24b) Y= elSd) a%l/?;rﬁfz( 28 BOS  forjeB-A:
By/05 + B3/ 03

24c)  p5=(Z; - @3)/Bs  forjeC—B.
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We call [Lj-y ‘ ﬂ?z and /15 the calibrated estimates of 4 for j in A, B — A and
C — B, respectively. The quality of the calibrated estimates of 1 ; depends on how
accurate the estimates of the structural parameters are, which further depends on n,
the number of genes in .A. The properties of ,&);y ° [L?Z and ,&i as n goes to 0o are
given in the following proposition.

PROPOSITION 2. Assume the functional system of the ME models is true and
the limits in (2.3) exist.

Z

(i) As n goes to oo, ,ll);y asymptotically follows the normal distribution

N(uj,ya) for j e A, ;l?z asymptotically follows the normal distribution
N(uj,ys-n) for j € B—A, and /lj asymptotically follows the normal distri-
bution N(uj,yc—p) for j € C— B, where y4 = (1/012 + ,3%/022 + ,332/032)_1,
vB-A=(B5/0F + B3 /o) and ye_p = (B3 /o) ™",

(ii) The variances of /l);y ‘ ﬁ;z and ,&i admit the following first order expan-
sions:

(2.5a) Var(ﬁf;.yz) ~ys+nlwa, ) for j €A,
(2.5b) Var(;lE.yZ)) Nyg_a+nlop-a@,n)  forjeB— A,
(2.5¢) Var(,&j) ~ye_p+n"lwe_p@, i) for j €C — B,

where the explicit expressions of w (0, 1), wg— A0, ;) and wc_5(0, ;) are
given in the supplementary material [Sun, Kuczek and Zhu (2014)], Section S.3.

From Proposition 2, as n goes to oo, the calibrated estimates /l);y ‘. ,&?Z and
[Lj are asymptotically unbiased estimates of w; for j in A, B — Aand C — B,
respectively. The variances of the calibrated estimates do not converge to zero
asymptotically, instead, they converge to y 4, ys—.4 and y¢_p, respectively. When
n is sufficiently large, the second terms in (2.5a), (2.5b) and (2.5¢) are negligible,
and the variances of the calibrated estimates of 1 ; for j in A, B—.Aand C — B
can be approximated by y4, ys—4 and yc_p, respectively. When n is small or
moderate, the second terms in the above expansions may not be negligible.

Itis clear that y_ 4 is larger than y 4, and y¢_p is larger than yg_ 4 and y 4. The
order implies that when 7 is sufficiently large, the calibrated estimate of 1« ; based
on only the measurements of RNA-Seq is less accurate than the calibrated estimate
of 1 j based on the RNA-Seq and microarray measurements, which, further, is less
accurate than those calibrated estimates based on all three platforms.

We further compare the three types of calibrated estimates with the qRT-PCR
measurement X j, microarray measurement ¥; and the RNA-Seq measurement Z ;.
Note that X ;, which is presumably the most accurate measurement among X ;, ¥
and Z;, is an unbiased estimate of x ;, and its reproducibility is 012. Because y 4 is
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less than 012, ,&;yl is more accurate than X ; when n is sufficiently large. Therefore,
by combining the measurements from all three platforms, we can obtain a more ac-
curate estimate of the expression level of gene j. Because y3_ 4 is less than either
of 022 / ﬁ% and 032 / ,332, which are the reproducibilities of Y; and Z;, respectively,

,&;Z is more accurate than Y; and Z; when n is large. yc_p is equal to 032 / ,832,

which is the reproducibility of Z ;. Therefore, ,&i has the same reproducibility as
the RNA-Seq measurement Z;. The advantage for using ,&j: instead of Z; is that

,lli is in the same scale as /1”° and ’° so that the calibrated estimates in C — B
are scale compatible with those in A and B — A.

The calibrated estimates {;l);yz 1je A}, {/TL?Z :jeB—A}and {;lj- :jelC— B}
can also be considered gene expression measurements normalized by the qRT-PCR
platform. As discussed above, the standard errors of these three types of calibrated
estimates are different. Let ¢; 4, ¢ 5-4 and ¢; ¢ denote the first order expan-
sions of the variances of ,&;y ° ,lliz and ,llj in (2.5a), (2.5b) and (2.5¢), respec-
tively. By replacing the structural parameters with their corresponding estimates,
we obtain the estimated variances and standard errors of the three types of cal-

ibrated estimates, which are ¢; 4 and \/¢; 4, ¢j B—4 and \/@j 54, and @jc_5B
and ,/¢; c—p, respectively. When used for gene expression analysis such as detect-

ing differentially expressed genes, both the calibrated estimates and their standard
errors need to be used.

3. Simulation. An extensive simulation study was conducted to evaluate the
performance of the proposed calibration method. In this section we present the
simulation results under the single-lab scenario. We first report the simulation re-
sults on the accuracy of the calibrated estimates or calibrated expression levels,
and then we present the performance of the calibrated estimates when used in
gene differential expression (DE) analysis.

3.1. Accuracy of estimates. In this section we report the simulation results for
three settings of the system of ME models under the single-lab scenario. The struc-
tural parameters of the three settings are listed in Table 1. Setting 1 is set to resem-
ble the results from real data analysis in Section 4. In setting 2 the reproducibilities

TABLE 1
The settings of model parameters in simulation study

Intercept Slope Reproducibility
o o3 B2 B3 o} o} o}
Setting 1 9 5 0.75 1 0.8 1.2 1
Setting 2 0.02 0.2 0.9 0.95 0.5 1 0.75

Setting 3 =5 5 1.3 1.2 0.2 1 1.2
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of microarray and RNA-Seq are mildly worse than that of qRT-PCR technology;
and in setting 3 the reproducibilities of microarray and RNA-Seq are much worse
that that of gRT-PCR. The incidental parameters (i.e., i ;’s) for each model setting
were randomly drawn from N (0, 25). For each model setting, we independently
generated a training data set of 300 genes and a testing data set of 1000 genes. Both
data sets contain the measurements of the genes by all three platforms. The mea-
surements of the first n genes in the training set were used to estimate the structural
parameters (n was varied from 20 to 300), and then the three types of calibrated
estimates of the expression levels of the genes in the testing set were obtained. For
each combination of model setting and n, this procedure was repeated 200 times
to calculate the MSEs of the estimates for the purpose of performance evaluation
and comparison.

We first examine and compare the variances of the calibrated expression lev-
els ,&)}yz, ,&?Z and ,&i Recall that Var(;l);yz) =yai+n"wa®, wj). When n is
large, y 4 is the dominant term and the other higher order terms are negligible;
but when n is moderate (e.g., n € [20, 50]), the second term nwa, M ;) is not
negligible. Further notice that y 4 depends on the structural parameters only, but
nlwa@, 1 ;) also depends on the incidental parameters, particularly (u; — i)? as
shown in the supplementary material [Sun, Kuczek and Zhu (2014)], Section S.3.
This implies that the variance of ,&;y *increases as i j deviates away from the mean
[t when n is moderate. The variances of ,&;Z and ,&j behave in the same way as the
variance of [Lj-y ‘.

Figure 1 from bottom to top shows the scatter plots of the sample variances of
[/}y ‘ ,&fz and /lj versus the incidental parameters w; for the first model setting
and three different sizes of training data subsets (black for n = 20, blue for n = 50,
and red for 300). For convenience, we refer to the curve generated by plotting the
variance of a type of estimate against the incidental parameter as the variance
curve of the type of estimate. The bottom three curves are the variance curves of
ﬂ;y * for n = 20, 50 and 300, respectively, the middle three curves are those of ;l?z,
and the top three curves are those of ﬁj

For each type of estimate, the variance curve for n = 20 is above that for n =
50, which is above that for n = 300, indicating that as n increases, the variance
of the respective estimate decreases. Furthermore, all three variance curves for
n = 20 demonstrate a stronger quadratic pattern than those for n = 50 and n = 300,
indicating their dependence on (u; — f)%. The variance curves for n = 50 show a
much mitigated quadratic pattern, and the variance curves for n = 300 become flat.
Comparing the variance curves, it is clear that under the same n, the variance curve
of ﬁf;y * is lower than that of ﬁ;z, which is lower than that of /lj, indicating that,
in terms of accuracy, the order of the three types of estimates, from the best to the
worst, is /l);y ° ,&52 and ,&§ These results confirm the properties of the variances
of the three types of estimates discussed in Section 2.
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FI1G. 1. Variances of calibrated estimates of gene expression levels. The bottom three curves (plot-
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and the top three curves (plotted in triangles) are for {Var(,&i.)}, with n = 20, 50, 300, respectively.

We further examine the average MSEs of the three types of calibrated estimates
over all of the genes in the testing data set. For convenience in discussion, we refer
to the scatter plot of the average MSE of a type of estimate over all of the genes
in the testing data set versus the training data size n as the aMSE curve of the type
of estimate. Note that X ; is also an unbiased estimate of u ;, and we also compare
the average MSEs of X ; with the three types of estimates. Figure 2 demonstrates
the aMSE curves of the three types of estimates {,&);y A ,&52} and {;lj-} as well as
that of the original gRT-PCR measurements {X ;}. Plots (a), (b) and (c) in Figure 2
from the left panel to the right panel correspond to the three model settings given
in Table 1, respectively.

The aMSE curves of {X;} are flat because they do not depend on n. Overall,
the aMSE curves of {,&);-y 1 {,&?Z} and {ﬁ,j-} decrease as n increases, and they
become flat after n is greater than 100, indicating that the structural parameters are
accurately estimated and the benefit of further increasing » in the training data set
becomes negligible.

In all of the plots, the aMSE curves of { ,&)/C-y °} are always the lowest, indicating

that { [Lj.y “} give the most accurate quantification of the gene expression levels. The
aMSE curves of {,&;Z} are always below the aMSE curves of {,&j}, indicating that

{ ﬂj “} is more accurate than { ,&j.}. However, the aMSE curve of { ,&?Z} is not always

below that of {X;}. Plots (a), (b) and (c) demonstrate three different cases where
when n is sufficiently large (e.g., >100), the aMSE curves of {[L?Z} are below,



1034 Z.SUN, T. KUCZEK AND Y. ZHU

1.0

08
1

Average MSE
0;8
Average MSE
0.6
i

T T T T T T T T T T T T T T T
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
n n n

(@) (b) ()

FIG. 2. Average MSEs of original measurements and calibrated estimates. Plots (a), (b) and (c)
are for model settings 1, 2 and 3, respectively.

close to and above that of {X;}. In general, the performance of {/,AL;Z} relative to

{X} depends on the model settings. In all of the plots, the aMSE curves of { ,&j:}
are always above that of {X;}, indicating that the calibrated estimate based on
RNA-Seq measurement alone cannot outperform the qRT-PCR measurement.

As discussed in Section 2, the structural parameters are fundamentally different
from the incidental parameters. As n increases, the estimates of the structural pa-
rameters will converge to their respective targets as shown in Proposition 1. The
simulation results about the structural parameters can be found in the supplemen-
tary material [Sun, Kuczek and Zhu (2014)], Section S.4.

3.2. Differential expression. In this section we report the simulation study on
the performance of calibrated estimates when used in DE analysis. In order to
make the simulation study convincing, we simulated the RNA-Seq data from a
popularly used simulator called the Flux Simulator [Griebel et al. (2012)]. The
Flux Simulator mimics the pipeline of RNA-Seq experiments and generates RNA-
Seq short reads. It allows researchers to investigate the properties of RNA-Seq
data and the analysis tools in silico. In this study, we considered two biological
conditions, which are referred to as conditions 1 and 2. Totally, 5000 genes were
considered, and among them 500 genes were set to be differentially expressed. Let
w1 and po; denote the log-2 values of the true expression levels of gene j under
the two conditions, respectively, and d; = 1 — 1 j2 the difference between
and p7;. Under condition 1, u1;’s were randomly assigned by the Flux Simula-
tor using its default setting. When gene j is not differentially expressed between
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the two conditions, we set d; to be 0; otherwise, d; is randomly generated from
the uniform distribution on [—2, —0.5] U [0.5, 2]. Then under condition 2, uz;’s
were set to be 11 + d;. For each biological sample, 5 million reads were gener-
ated and mapped back to the reference genome. Finally, the log-2 RPKM values
were calculated and used as the RNA-Seq expression measurements. qRT-PCR
and microarray data were generated from the system of ME models, with the true
expression levels on the two conditions set the same as those used for the RNA-Seq
data. The structural parameters related to qRT-PCR and microarray (i.e., o2, 82, 01
and o7 ) were set the same as setting 1 in Table 1. We generated qRT-PCR data for
500 genes and microarray data for 3000 genes. Therefore, in this simulation study,
there are 500 genes in set .A, 3000 genes in set B, and 5000 gene in set C.

After generating the expression measurements, we applied the system of ME
models for each biological condition. The calibrated expression levels and their
variances are [L);.yz and @; 4, [L?Z and @ 5—4, and ;lj and @jc_p, for j € A,
B — A and C — B, respectively. In what follows, for convenience, we do not fur-
ther distinguish the notation for these three types of calibrated estimates. Instead,
we use /L ;1 and /i ;> to denote the calibrated expression levels of gene j under con-
dition 1 and condition 2, respectively, and use ¢;1 and ¢ ;> to denote the estimated
variances of (i ;1 and /i j2, respectively.

We performed DE analysis for the two conditions using the z-test based on the
RNA-Seq measurements (Z;’s) and the calibrated measurements (/1 ;’s) separately,
and compared the results. When performing the z-test based on the calibrated mea-
surements for gene j, the p-value for testing Hy: uj1 = u j2 was

3.1) pj=2P<Z>M>,

Vi1 + @)
where Z follows the standard normal distribution. Based on the calculated
p-values, the standard Benjamini—Hochberg procedure [Benjamini and Hochberg
(1995)] was used to identify differentially expressed genes at a given false dis-
covery rate (FDR). The z-test based on the RNA-Seq measurements was similarly
conducted.

Figure 3 depicts the Receiver Operator Characteristic (ROC) curves compar-
ing the performances of the calibrated expression measurements and the RNA-Seq
expression measurements in DE analysis. The ROC curve of the calibrated expres-
sion levels (black line) is above that of the RNA-Seq expression measurements (red
line), indicating the DE results based on the calibrated expression measurements
have higher true positive rate than those based on the uncalibrated RNA-Seq ex-
pression measurements at any level of false positive rate. For example, at the false
positive rate level of 0.05, the true positive rate of the uncalibrated RNA-Seq mea-
surements was 0.565, while that of the calibrated expression measurements was
0.641. Therefore, the calibrated expression measurements outperform the uncali-
brated RNA-Seq measurements in this example.
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4. Application and results.

4.1. Data sets. We applied the system of ME models to analyze the qRT-PCR,
RNA-Seq and microarray gene expression data of two RNA samples, namely, the
human brain reference RNA sample (or, in short, the Brain sample) and the human
universal reference RNA sample (or the UHR sample), generated by the Microar-
ray Quality Control (MAQC) and Sequencing Quality Control (SEQC) projects.

The qRT-PCR data were generated by one single lab using TagMan® Gene
Expression Assays and can be downloaded from Gene Expression Omnibus
(GEO) with the series number GSES5350 (ftp://ftp.ncbi.nih.gov/pub/geo/DATA/
supplementary/series/GSE5350/). The qRT-PCR data were normalized by the
delta—delta Ct method and originally contain the qRT-PCR measurements of 1001
genes; see the supplementary material Section S1.2 of Bullard et al. (2010) for
detailed information. Among the 1001 genes, 7 genes have multiple entries with
distinct expression values but under the same RefSeq ID. To avoid ambiguity, these
genes were removed. Each gene has 4 technical replicates for each of the UHR and
Brain samples.

The RNA-Seq data include measurements generated from two RNA-Seq exper-
iments conducted in two different labs using the Illumina Genome Analyzer. The
data from the first lab [Bullard et al. (2010)] can be downloaded from the NCBI
Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra/) under the ac-
cession number SRA010153, and the data from the second lab can be downloaded
from the same website under the accession number SRA008403. For convenience,
we will use the accession numbers to refer to these two data in the rest of the ar-
ticle. The RPKM value is calculated lane-by-lane for each gene. For each of the
Brain and UHR samples, those genes that received no reads in at least one lane
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of the two RNA-Seq experiments were excluded. See the supplementary material
[Sun, Kuczek and Zhu (2014)], Section S.7, for more information about the two
RNA-Seq data sets.

The microarray data were generated by five different microarray experiments
conducted in five different labs using Affymetrix U133 Plus2.0. For conve-
nience, we label the labs as MA1 to MAS in the rest of the article. The original
probe-level data can be downloaded from Gene Expression Omnibus (GEO) with
the series number GSE5350 (ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/
series/GSE5350/). Data from each lab have 5 replicates for both UHR and Brain
samples, and was normalized using the PLIER [Affymetrix Inc. (2005)] method.
Detailed information about these data sets can be found in the website of the
MAQC projects (http://www.fda.gov/). For each replicate in each lab, the aver-
age probe-level measurement of a gene is considered the gene’s expression level
intensity.

We integrated the three different types of gene expression data as follows. First,
the log-2 transformation was applied to all three types of gene expression data.
Then for each gene and each lab, the mean measurement across technical repli-
cates is used as the gene’s expression value. Furthermore, we exclude genes with
extremely low or extremely high expression levels (i.e., those with qRT-PCR ex-
pression measurements below —6 or above 4 in log-2 scale) in .A; the remaining
genes in A are used to estimate the structural parameters. For the Brain sample,
there are 409 genes with expression data from all three platforms (A), 6419 genes
with only RNA-Seq and microarray measurements (8 — A), and 5949 genes with
only RNA-Seq measurements (C — B); and for the UHR sample, there are 477
genes with measurements by all three platforms (A), 7187 genes with measure-
ments only by RNA-Seq and microarray (B — A), and 6892 genes with only mea-
surements by RNA-Seq (C — B).

Two schemes were used to analyze the integrated data. First, we considered the
single-lab scenario, in which each platform has data from one lab. In total, there are
ten possible combinations, and we applied the system of ME models (2.1a)—(2.1c¢)
to each combination. The analysis results of individual combinations were similar,
and we report only the results for the combination that includes the RNA-Seq data
from SRAQ010153 and the microarray data from MAI1. Second, we applied the
system of ME models for the multi-lab scenario to analyze the entire data set for
each RNA sample. Due to limited space, the results from the multi-lab scenario are
presented and briefly discussed in the supplementary material [Sun, Kuczek and
Zhu (2014)], Section S.8.

4.2. Diagnostics of model assumptions. The system of ME models
(2.1a)—~(2.1c) imposes the normality and homoscedasticity assumptions on the
measurement errors. We checked these assumptions using genes in A. After the
system of ME models was fitted, we calculated the residuals by ej; = X; — /1,

ej=Y;j —ar— Bzﬁj and e3; = Z; — a3 — ,33;2j corresponding to the mea-
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surement errors due to the qRT-PCR, microarray and RNA-Seq platforms, re-
spectively. To check the normality assumption, we generated the Q Q plots for
the residuals and did not detect significant violation of the assumption. To check
the homoscedasticity assumption, we generated residual plots and constructed ap-
proximate 95% confidence intervals of the Box—Cox transformation. Because the
diagnostic results are similar for the two RNA samples, we present only those
from the UHR sample as an example. The residual plots corresponding to the
gRT- PCR, microarray and RNA-Seq platforms are presented in Figure S3 in the
supplementary material [Sun, Kuczek and Zhu (2014)], Section S.8. The plots do
not demonstrate strong heteroscedastic patterns. The 95% confidence intervals of
Box—Cox transformation for the residuals from the three platforms are presented
in Figure S4 in the supplementary material [Sun, Kuczek and Zhu (2014)], Sec-
tion S.8. The confidence intervals corresponding to the qRT-PCR and RNA-Seq
platforms both contain 1, and 1 is on the boundary of the confidence interval cor-
responding to the microarray platform. These results together indicate that there
does not exist significant violation of the homoscedasticity assumption imposed
on the platform measurement errors.

4.3. Structural parameters. The estimates of the structural parameters for the
Brain and UHR samples are given in Table 2. The standard errors of the estimates
are also reported in parentheses in the table. The estimates of the structural pa-
rameters can be used to compare the three platforms in terms of the quality of
measurements they provide.

From models (2.1a)—(2.1c), the qRT-PCR measurements are unbiased with re-
spect to u;’s, and the intercepts o and a3 represent the shifts of microarray and
RNA-Seq measurements relative to the qRT-PCR measurements. Larger absolute
values of o, and &3 indicate larger shifts. From Table 2, &; are 8.8401 and 9.1033
in the Brain and UHR samples, respectively; and &3 are 4.9405 and 5.4249 in the
Brain and UHR samples, respectively. In both samples, &, > &3, indicating that
microarray measurements have larger shifts than the RNA-Seq measurements. The

TABLE 2
Estimates of structural parameters using the gRT-PCR data, RNA-Seq data from SRA010153 and
microarray data from MA1

Intercept Slope Variance
a a3 B2 B3 &7 &3 63
Brain 8.8401 4.9405 0.7754 1.0254 0.7945 1.2407 1.0679
(0.0921) (0.1115) (0.0411) (0.0514) (0.1156) (0.0955) (0.1641)
UHR 9.1033 5.4249 0.7695 1.0009 0.6685 1.0444 0.9452

(0.0745) (0.0875) (0.0292) (0.0347) (0.0882) (0.0768) (0.1233)
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slopes B> and B3 represent the scales of microarray and RNA-Seq measurements
relative to qRT-PCR measurements. From Table 2, ,32 are 0.7754 and 0.7695 in the
Brain and UHR samples, respectively, both of which are significantly less than 1,
indicating that the microarray measurements are in a smaller scale compared to
the qRT-PCR measurements. On the other hand, ,33 are 1.0254 and 1.0009 in the
Brain and UHR samples, respectively, both of which are not significantly different
from 1, indicating that the RNA-Seq measurements are in a similar scale as the
gRT-PCR measurements. The variances 01 , / ,32 and 032 / ,33 reflect the repro-
ducibilities of the three platforms. Smaller Value indicates higher reproducibility.
From Table 2, in the Brain sample, the three values are 0.7945, 2.0635 and 1.0157;
and in the UHR sample the three values are 0.6685, 1.7638 and 0.9435. In both
samples, 51 < 03 2/ ,83 < &22 / /32, indicating that qRT-PCR has the best reproducibil-
ity, microarray has the worst reproducibility, and RNA-Seq is slightly worse than
gRT-PCR but much better than microarray.

4.4. Incidental parameters. After the estimates of the structural parameters
were obtained, we used the formulas obtained in Section 2 to estimate the gene
expression levels, and the standard errors of the calibrated gene expression val-
ues were also calculated. These calibrated gene expression values together with
their standard errors are expected to have a higher quality than the original mea-
surements by the three platforms and lead to better results in downstream gene
expression analysis.

We compare the calibrated gene expression levels with their original qRT-PCR,
microarray and RNA-Seq measurements, and use the genes in the Brain and UHR
samples that have measurements by all three platforms as an illustrative example.
Because these genes have measurements by all three platforms, all three types
of calibrated estimates {415}, {1 {Ay “} and {Axy “} could be calculated. Based on the
theoretical and simulation results in Sectlons 2 and 3, {;ny “} are the most accurate
measurements. We plotted the original measurements {X }, {Y;} and {Z;} as well
as the calibrated measurements {[L?Z} against {/l);.y ‘1, and presented the plots in
Figures 4 and 5 for the Brain and UHR sample, respectively. Because {,&j} are
the linear transformation of the original RNA-Seq measurements {Z}, the plot of
{{ 5 Y versus { ,uxy “} had the same appearance as the plot of {Z;} versus { ,&;y “} and
thus was not presented. In each plot, the correlation coefficient between the two
plotted measurements was calculated and reported.

From Figure 4, in the Brain sample, in terms of the linear correlation coefficient
with the best measurements { /l);y “}, microarray is the worst (0.8112) and gRT-PCR
is the best (0.9403) among the three platforms. This is consistent with the findings
reported in the literature that in terms of the quality of the gene expression data
produced by the three platforms, qRT-PCR is most accurate and microarray is least
accurate. The calibrated expression levels { ﬁ;z} have a higher correlation coeffi-

cient with {1} Z} (0.9551) than the gqRT-PCR, microarray and RNA-Seq measure-
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FI1G. 4. Scatter plots of the measurements by microarray, RNA-Seq, gRT-PCR and (’* versus (i*V*
on A in the Brain sample.

ments. In the UHR sample, in terms of the linear correlation coefficient with the
best measurements {,&;y “}, again microarray is the worst (0.8553) and qRT-PCR
is the best (0.9583) among the three platforms. The calibrated expression levels
{/l?z} have a higher correlation coefficient with {,&);y °} (0.9645) than qRT-PCR,
microarray and RNA-Seq measurements.

4.5. Gene differential expression. To demonstrate that calibrated expression
levels can lead to better gene differential expression results, we used the RNA-Seq
measurements (Z;’s) and the calibrated measurements (/i ;’s), separately, to per-
form gene DE analysis for the Brain and UHR samples.

We carried out the DE analysis using the same z-test procedure as described
in Section 3.2. Controlling the FDR at 0.01, the numbers of identified genes by
the two types of measurements are reported in Table 3. In total, 331 genes were
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FIG. 5. Scatter plots of the measurements by microarray, RNA-Seq, qRT-PCR and i°* versus i*>*
on A in the UHR sample.

detected to be differentially expressed in the UHR and Brain samples using the
calibrated expression measurements, whereas only 158 genes were detected using
the original RNA-Seq measurements. These two groups of genes share 153 genes.
Therefore, the calibrated expression measurements led to the detection of almost
all the genes (153 out of 158 genes) detected by the original RNA-Seq measure-
ments. In addition, the former detected 173 more genes than the latter. The total
number of genes detected by each type of measurements was further broken down
according to whether a gene belongs to A, B — A or C — B, and the results are
also reported in Table 3. From the table, 27, 132 and 14 more genes were detected
by the calibrated expression measurements in A, B — A and C — B, respectively,
than by the original RNA-Seq measurements. In this case, there does not exist
a gold standard to further verify the selected genes by the calibrated expression
measurements and the RNA-Seq expression measurements. However, based on
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TABLE 3
Numbers of differentially expressed genes detected by
calibrated estimates and RNA-Seq measurements

Gene set Calibration RNA-Seq Overlap

A 36 9 9
B-A 192 60 60
C-B 103 89 84
Total 331 158 153

the simulation study in Section 3.2, we believe that the DE analysis based on the
calibrated measurements has higher true positive rate and can lead to more discov-
eries than the uncalibrated RNA-Seq measurements. A list of the identified genes
by the calibrated expression measurements is given in the supplementary material
[Sun, Kuczek and Zhu (2014)], Section S.9.

5. Discussion. A system of functional measurement error (ME) models was
proposed to calibrate the microarray and RNA-Seq measurements of gene expres-
sion levels by qRT-PCR. Due to limited space, the design issue of the proposed
approach was not discussed in this article. The success of the proposed approach
hinges on the genes that are measured by all three platforms, and the major bottle-
neck is the relative low throughput of the qRT-PCR platform. Therefore, the design
issue is centered on the qRT-PCR platform with respect to two questions. The first
question is how many genes should to be measured by gqRT-PCR, and the second
question is which genes should be measured. For the first question, based on the
theoretical, simulation and real data application results in this article, it seems that
at least 150 genes are needed to ensure that the bias and variances (i.e., the struc-
tural parameters) can be accurately estimated and the calibrated gene expression
levels (i.e., the incidental parameters) can reach their best possible accuracy. Ven-
dors of the qRT-PCR platform such as Life Technologies now offer assays and ser-
vices to measure a sufficiently large number of genes simultaneously. This makes
our proposed approach feasible in practice. For the second question, based on our
theoretical results (e.g., Proposition 1), the true expression levels of the genes se-
lected to be measured by gqRT-PCR should be as spread out as possible. These two
questions and the design issue in general will be addressed in a future publication.

As discussed in the Introduction, RNA-Seq data are also found to be subject
to excessive variability and various methods have been proposed to normalize
RNA-Seq data. In this article, only the RPKM method and the resulting RPKM
measurements were used as the RNA-Seq measurements. Clearly, other normal-
ization methods and their resulting measurements can also be considered. The
variance component due to the RNA-Seq platform estimated under the multi-lab
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scenario (i.e., g22) in this article corresponds to the RPKM method. If another nor-
malization method (e.g., the “mseq” method) is used, then g22 will correspond to
that normalization method. Therefore, the system of ME models can be used to
compare different normalization methods.

The functional system of ME models of order 3 can be extended to that of order
p > 3, and the two-step approach to parameter estimation can also be extended in
a straightforward manner. In this article, the bias of the measurement of a platform
is assumed be a linear function of the true expression level. In general, nonlinear
models or even nonparametric models can be considered. Furthermore, covariates
can also be incorporated into the system of functional ME models. These possible
extensions of the proposed approach will be investigated in the near future.
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical calibration of qRT-PCR, microarray and RNA-
Seq gene expression data with measurement error models” (DOI: 10.1214/14-
AOAS721SUPP; .pdf). We provide additional supporting materials on the proof
and derivation of Propositions 1 and 2, simulation results on the single-lab sce-
nario, description of the multi-lab scenario, results from the multi-lab scenario and
a list of differentially expressed genes by the calibrated measurements.

REFERENCES

AFFYMETRIX INC. (2005). Technical note: Guide to Probe Logarithmic Intensity Error (PLIER)
Estimation Affymetrix White Paper.

ANDERS, S. and HUBER, W. (2010). Differential expression analysis for sequence count data.
Genome Biol. 11 R106.

APPLIED BIOSYSTEMS (2006). TaqMan® Gene Expression Assays for Validating Hits From Fluo-
rescent Microarrays White Paper.

BARNETT, V. D. (1969). Simultaneous pairwise linear structural relationships. Biometrics 25 129—
142.

BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300. MR1325392

BULLARD, J. H., PURDOM, E., HANSEN, K. D. and DuDOIT, S. (2010). Evaluation of statistical
methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioin-
Sformatics 11 94.

BUSTIN, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-
PCR): Trends and problems. J. Mol. Endocrinol. 29 23-39.

BUSTIN, S. A. and NOLAN, T. (2004). Pitfalls of quantitative real-time reverse-transcription poly-
merase chain reaction. J. Biomol. Tech. 15 155-166.

CARTER, R. L. and FULLER, W. A. (1980). Instrumental variable estimation of the simple errors-
in-variables model. J. Amer. Statist. Assoc. 75 687-692.

CHENG, C.-L. and VAN NESS, J. W. (1999). Statistical Regression with Measurement Error.
Kendall’s Library of Statistics 6. Arnold, London. MR1719513


http://dx.doi.org/10.1214/14-AOAS721SUPP
http://www.ams.org/mathscinet-getitem?mr=1325392
http://www.ams.org/mathscinet-getitem?mr=1719513
http://dx.doi.org/10.1214/14-AOAS721SUPP

1044 Z.SUN, T. KUCZEK AND Y. ZHU

FULLER, W. A. (1987). Measurement Error Models. Wiley, New York. MR0898653

GLESER, L. J. (1983). Functional, structural and ultrastructural errors-in-variables models. In Pro-
ceedings of the Business and Economic Statistics Section 57-66. Amer. Statist. Assoc., Alexan-
dria, VA.

GRIEBEL, T., ZACHER, B., RIBECA, P., RAINERI, E., LACROIX, V., GUIGO, R. and SAM-
METH, M. (2012). Modelling and simulating generic RNA-Seq experiments with the flux simu-
lator. Nucleic Acids Res. 40 10073-10083.

Hu, M., ZHU, Y., TAYLOR, J. M. G., L1U, J. S. and QIN, Z. S. (2012). Using Poisson mixed-effects
model to quantify transcript-level gene expression in RNA-Seq. Bioinformatics 28 63—68.

KENDALL, M. G. and STUART, A. (1973). The Advanced Theory of Statistics: Inference and Rela-
tionship, Vol. 2, 4th ed. Griffin, London.

L1, J., JIANG, H. and WONG, W. (2010). Modeling nonuniformity in short-read rates in RNA-Seq
data. Genome Biol. 11 R50.

LOCKHART, D. J., DONG, H., BYRNE, M. C., FOLLETTIE, M. T., GALLO, M. V., CHEE, M. S.,
MITTMANN, M., WANG, C., KOBAYASHI, M., HORTON, H. and BROWN, E. L. (1996). Ex-
pression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14
1675-1680.

MAK, H. C. (2011). John Storey provides his take on the importance of new statistical methods for
high-throughput sequencing. Nat. Biotechnol. 29 331-333.

MORTAZAVI, A., WILLIAMS, B. A., MCCUE, K., SCHAEFFER, L. and WOLD, B. (2008). Mapping
and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5 621-628.

OSBORNE, C. (1991). Statistical calibration: A review. International Statistical Review/Revue Inter-
nationale de Statistique 59 309-336.

PFAFFL, M. W. (2004). Quantification strategies in real-time PCR. In A-Z of Quantitative PCR (S. A.
Bustin, ed.). International University Line (IUL), La Jolla, CA.

REIERS@L, O. (1950). Identifiability of a linear relation between variables which are subject to error.
Econometrica 18 375-389. MR0038054

ROBINSON, M. D. and OSHLACK, A. (2010). A scaling normalization method for differential ex-
pression analysis of RNA-seq data. Genome Biol. 11 R25.

SCHENA, M., SHALON, D., DAvIs, R. W. and BROWN, P. O. (1995). Quantitative monitoring of
gene expression patterns with a complementary DNA microarray. Science 270 467-470.

SCHWARTZ, S., OREN, R. and AST, G. (2011). Detection and removal of biases in the analysis of
next-generation sequencing reads. PLoS ONE 6 e16685.

SOLARI, M. E. (1969). The “Maximum Likelihood Solution” of the problem of estimating a linear
functional relationship. J. R. Stat. Soc. Ser. B Stat. Methodol. 31 372-375.

SRIVASTAVA, S. and CHEN, L. (2010). A two-parameter generalized Poisson model to improve the
analysis of RNA-seq data. Nucleic Acids Res. 38 e170.

SUN, Z., KUCZEK, T. and ZHU, Y. (2014). Supplement to “Statistical calibration of qRT-PCR, mi-
croarray and RNA-Seq gene expression data with measurement error models.” DOI:10.1214/14-
AOAS721.

WANG, Z., GERSTEIN, M. and SNYDER, M. (2009). RNA-Seq: A revolutionary tool for transcrip-
tomics. Nat. Rev. Genet. 10 57-63.

DEPARTMENT OF STATISTICS

PURDUE UNIVERSITY

250N UNIVERSITY STREET

WEST LAFAYETTE, INDIANA 47907-2066

USA

E-MAIL: sunz@purdue.edu
kuczek @purdue.edu
yuzhu@purdue.edu


http://www.ams.org/mathscinet-getitem?mr=0898653
http://www.ams.org/mathscinet-getitem?mr=0038054
http://dx.doi.org/10.1214/14-AOAS721
mailto:sunz@purdue.edu
mailto:kuczek@purdue.edu
mailto:yuzhu@purdue.edu
http://dx.doi.org/10.1214/14-AOAS721

	Introduction
	Measurement error models and calibration
	Single-lab scenario
	Parameter estimation
	Structural parameters
	Incidental parameters


	Simulation
	Accuracy of estimates
	Differential expression

	Application and results
	Data sets
	Diagnostics of model assumptions
	Structural parameters
	Incidental parameters
	Gene differential expression

	Discussion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

