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THE DENSEST SUBGRAPH PROBLEM IN SPARSE
RANDOM GRAPHS1

BY VENKAT ANANTHARAM AND JUSTIN SALEZ

University of California, Berkeley and Université Paris Diderot (LPMA)

We determine the asymptotic behavior of the maximum subgraph density
of large random graphs with a prescribed degree sequence. The result applies
in particular to the Erdős–Rényi model, where it settles a conjecture of Hajek
[IEEE Trans. Inform. Theory 36 (1990) 1398–1414]. Our proof consists in
extending the notion of balanced loads from finite graphs to their local weak
limits, using unimodularity. This is a new illustration of the objective method
described by Aldous and Steele [In Probability on Discrete Structures (2004)
1–72 Springer].

1. Introduction. Let G= (V ,E) be a finite, simple, undirected graph. Write
�E for the set of oriented edges, formed by replacing each edge {i, j} ∈E with the
two oriented edges (i, j) and (j, i). An allocation on G is a map θ : �E→ [0,1]
satisfying θ(i, j) + θ(j, i) = 1 for every {i, j} ∈ E. The load induced by θ at a
vertex o ∈ V is

∂θ(o) :=∑
i∼o

θ(i, o),

where ∼ denotes adjacency in G. θ is balanced if for every (i, j) ∈ �E,

∂θ(i) < ∂θ(j) �⇒ θ(i, j)= 0.(1.1)

Intuitively, one may think of each edge as carrying a unit amount of load, which
has to be distributed over its end-points in such a way that the total load is as
balanced as possible across the graph. In that respect, (1.1) is a local optimality
criterion: modifying the allocation along a single edge cannot further reduce the
load imbalance between its end-points. This condition happens to guarantee global
optimality in a very strong sense. Specifically, the following conditions are equiv-
alent (see [16]):

(i) θ is balanced.
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(ii) θ minimizes
∑

o∈V f (∂θ(o)), for some strictly convex f : [0,∞)→R.
(iii) θ minimizes

∑
o∈V f (∂θ(o)), for every convex f : [0,∞)→R.

In particular, balanced allocations exist on G and they all induce the same loads
∂θ :V → [0,∞). The balanced load ∂θ(o) induced at a vertex o ∈ V has a re-
markable graph-theoretical interpretation: it measures the local density of G at o.
Specifically, it was shown in [16] that the vertices receiving the highest load solve
the classical densest subgraph problem on G: the value max ∂θ coincides with the
maximum subgraph density of G,

�(G) := max
∅�H⊆V

|E[H ]|
|H | ,

and the set H = argmax ∂θ is precisely the largest set achieving this maximum.
Here, E[H ] ⊆E naturally denotes the set of edges with both end-points in H . This
surprising connection with a well-known and important graph parameter justifies a
deeper study of balanced loads in large graphs. It is convenient to encode the loads
induced by a balanced allocation on G into a probability measure on R, called the
empirical load distribution of G:

LG = 1

|V |
∑
o∈V

δ∂θ(o).

Motivated by the above connection, Hajek [16] studied the asymptotic behav-
ior of LG on the classical Erdős–Rényi model, where the graph G=Gn is chosen
uniformly at random among all graphs with m= 
αn� edges on V = {1, . . . , n}. In
the regime where the density parameter α ≥ 0 is kept fixed while n→∞, he con-
jectured that LGn should concentrate around a deterministic probability measure
L ∈P(R) and that

�(Gn)
P−→

n→∞� := sup
{
t ∈R :L

([t,+∞)
)
> 0

}
.

Using a nonrigorous analogy with the case of finite trees, Hajek even proposed
a description of L and � in terms of the solutions to a distributional fixed-point
equation which will be given later. In this paper, we establish this conjecture to-
gether with its analogue for various other sparse random graphs, using the unifying
framework of local weak convergence.

2. Local weak convergence. This section gives a brief account of the theory
of local weak convergence. For more details, we refer to the seminal paper [6] and
to the surveys [2, 3].

Rooted graphs. A rooted graph (G,o) is a graph G = (V ,E) together with
a distinguished vertex o ∈ V , called the root. We let G� denote the set of all lo-
cally finite connected rooted graphs considered up to rooted isomorphism, that
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is, (G,o) ≡ (G′, o′) if there exists a bijection γ :V → V ′ that preserves roots
(γ (o) = o′) and adjacency ({i, j} ∈ E⇐⇒ {γ (i), γ (j)} ∈ E′). We write [G,o]h
for the (finite) rooted subgraph induced by the vertices lying at graph-distance at
most h ∈N from o. The distance

DIST
(
(G,o),

(
G′, o′

)) := 1

1+ r
where r = sup

{
h ∈N : [G,o]h ≡ [

G′, o′
]
h

}
,

turns G� into a complete separable metric space; see [2].

Local weak limit. Let P(G�) denote the set of Borel probability measures
on G�, equipped with the topology of weak convergence [7]. Given a finite graph
G= (V ,E), let U(G) denote the law induced on G� by rooting G at a uniformly
chosen vertex o ∈ V and restricting G to the connected component of o. If {Gn}n≥1
is a sequence of finite graphs such that {U(Gn)}n≥1 admits a limit μ ∈ P(G�), we
call μ the local weak limit of {Gn}n≥1 and write

Gn
LWC−→
n→∞μ.

Edge-rooted graphs. Let G�� denote the set of locally finite connected graphs
with a distinguished oriented edge, taken up to the natural isomorphism relation
and equipped with the natural distance. With any function f :G��→R is naturally
associated a function ∂f :G�→R, defined by

∂f (G,o)=∑
i∼o

f (G, i, o).

Dually, with any μ ∈ P(G�) is naturally associated a nonnegative measure �μ on
G��, defined by the following relation: for any Borel f :G��→[0,∞),∫

G��

f d �μ=
∫
G�

(∂f ) dμ.

Note that �μ(G��)= deg(μ), where deg(μ) is the average degree of the root:

deg(μ) :=
∫
G�

deg(G,o) dμ(G,o).

Unimodularity. Given f :G��→R, we define its reversal f ∗ :G��→R by

f ∗(G, i, o)= f (G,o, i).

It was shown in [2] that any μ ∈ P(G�) arising as the local weak limit of some
sequence of finite graphs satisfies the symmetry∫

G��

f d �μ=
∫
G��

f ∗ d �μ,(2.1)
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for any Borel f :G��→ [0,∞). A measure μ ∈ P(G�) satisfying (2.1) is called
unimodular, and the set of such measures is denoted by U . The property (2.1) may
be viewed as an infinite analogue of the trivial identity∑

o∈V

∑
i∼o

f (i, o)=∑
o∈V

∑
i∼o

f (o, i),

valid for any finite graph G= (V ,E) and any f : �E→R.

Marks on oriented edges. It will sometimes be convenient to work with net-
works, that is, graphs equipped with a map from �E to some fixed complete sepa-
rable metric space 	. The above definitions extend naturally; see [2].

Unimodular Galton–Watson trees. Let π = {πk}k≥0 be a probability distribu-
tion on N with finite, nonzero mean. A unimodular Galton–Watson tree with de-
gree distribution π is a random rooted tree obtained by a Galton–Watson branching
process where the root has offspring distribution π and all descendants have the
size-biased offspring distribution π̂ = {π̂k}k≥0, where

π̂k = (k + 1)πk+1∑
i iπi

.(2.2)

The resulting law is unimodular and is denoted by UGWT(π). Such trees play a
distinguished role in the local weak convergence theory, as they are the limits of
many natural sequences of random graphs, including the Erdős–Rényi model and
more generally, random graphs with prescribed degrees.

The pairing model. Given a sequence d = {d(i)}1≤i≤n of nonnegative inte-
gers whose sum is even, the pairing model [8, 18] generates a random graph G[d]
on V = {1, . . . , n} as follows: d(i) half-edges are attached to each i ∈ V , and
the 2m = d(1) + · · · + d(n) half-edges are paired uniformly at random to form
m edges. Loops and multiple edges are then removed (a few variants exist—see
[28]—but they are equivalent for our purpose). Now, consider a degree sequence
dn = {dn(i)}1≤i≤n for each n≥ 1 and assume that

∀k ∈N,
1

n

n∑
i=1

1{dn(i)=k} −→
n→∞πk,(2.3)

for some probability distribution π = {πk}k≥0 on N with finite, nonzero mean.
Under the additional assumption that

sup
n≥1

{
1

n

n∑
i=1

d2
n(i)

}
<∞,

the local weak limit of {G[dn]}n≥1 is μ :=UGWT(π) almost surely; see [9].
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3. Results. Our first main result is that the notion of balanced allocations can
be extended from finite graphs to their local weak limits, in such a way that the
induced loads behave continuously with respect to local weak convergence. Let
us define a Borel allocation as a measurable function � :G��→ [0,1] such that
�+�∗ = 1, and call it balanced on a given μ ∈ U if for �μ-almost-every (G, i, o) ∈
G��,

∂�(G, i) < ∂�(G,o) �⇒ �(G, i, o)= 0.

This definition is the natural analogue of (1.1) when finite graphs are replaced by
unimodular measures. We then have the following result.

THEOREM 1. Let μ ∈ U be such that deg(μ) <∞. Then,

Existence and optimality. There is a Borel allocation �0 that is balanced on μ,
and for any Borel allocation � the following are equivalent:

(i) � is balanced on μ.
(ii) � minimizes

∫
f ◦ ∂�dμ for some strictly convex f : [0,∞)→R.

(iii) � minimizes
∫

f ◦ ∂�dμ for every convex f : [0,∞)→R.
(iv) ∂�= ∂�0, μ-almost-everywhere.

Continuity. For any sequence {Gn}n≥1 of finite graphs,(
Gn

LWC−→
n→∞μ

) �⇒ (
LGn

P(R)−→
n→∞Lμ

)
,

where Lμ is the law of the random variable ∂�0 ∈ L1(G�,μ).
Variational characterization. The stop-loss transform of Lμ is given by

�Lμ(t)= max
f : G�→[0,1]

Borel

{
1

2

∫
G��

f̂ d �μ− t

∫
G�

f dμ

}
, t ≥ 0,

where f̂ (G, i, o) := f (G,o)∧ f (G, i).

Recall that the stop-loss transform of a nonnegative integrable random variable
X (in fact, of its law L) is the function �X =�L defined by

�X(t)= E
[
(X− t)+

]= ∫
R
(x − t)+ dL(x), t ≥ 0.

This function plays a central role in the theory of convex ordering, due to the
classical equivalence between the following conditions (see, e.g., [26]):

(i) E[f (X)] ≤ E[f (Y )] for every convex function f : [0,∞)→R.
(ii) �X ≤�Y and �X(0)=�Y (0).
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In particular, if �X = �Y then X and Y have the same Laplace transforms. This
shows that �L characterizes L. Consequently, the above variational problem com-
pletely determines the limiting empirical load distribution.

Our second main result is an explicit resolution of this variational problem in
the important case where μ=UGWT(π), for an arbitrary degree distribution π =
{πk}k≥0 on N with finite, nonzero mean. Throughout the paper, we let [x]10 denote
the closest point to x ∈R in the interval [0,1], that is,

[x]10 :=
⎧⎨⎩

0, if x ≤ 0,
x, if x ∈ [0,1],
1, if x ≥ 1.

Given t ∈R and Q ∈ P([0,1]), we let Fπ,t (Q) ∈ P([0,1]) denote the law of

[1− t + ξ1 + · · · + ξD̂]10,
where D̂ follows the size-biased distribution π̂ defined at (2.2), and where {ξk}k≥1
are i.i.d. with law Q, independent of D̂. As conjectured by Hajek [16], the value of
�Lμ(t) turns out to be controlled by the solutions to the distributional fixed point
equation Q= Fπ,t (Q). The latter can be solved numerically; see [16] for detailed
tables in the case where π is Poisson.

THEOREM 2. When μ=UGWT(π), we have for every t ∈R:

�Lμ(t)= max
Q=Fπ,t (Q)

{
E[D]

2
P(ξ1 + ξ2 > 1)− tP(ξ1 + · · · + ξD > t)

}
,

where D ∼ π and where {ξk}k≥1 are i.i.d. with law Q, independent of D. The
maximum is over all choices of Q ∈ P([0,1]) subject to Q= Fπ,t (Q).

By analogy with the case of finite graphs, we define the maximum subgraph
density of a measure μ ∈ U with deg(μ) <∞ as the essential supremum of the
random variable ∂�0 constructed in Theorem 1. In other words,

�(μ) := sup
{
t ∈R :�Lμ(t) > 0

}
.

In light of Theorem 1, it is natural to seek a continuity principle of the form(
Gn

LWC−→
n→∞μ

) �⇒ (
�(Gn) −→

n→∞�(μ)
)
.(3.1)

However, a moment of thought shows that the graph parameter �(G) is too sen-
sitive to be captured by local weak convergence. Indeed, if |V (Gn)| →∞, then
adding a large but fixed clique to Gn will arbitrarily boost the value of �(Gn)

without affecting the local weak limit of {Gn}n≥1. Similarly, for random graphs
with a prescribed asymptotic degree distribution π ∈ P(N), we expect (3.1) to fail
when π has heavy tail, due to the presence of extremely dense subgraphs with neg-
ligible size. Understanding the maximum subgraph density in that regime remains
an interesting open question. Our third main result establishes (3.1) in the light-tail
regime.
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THEOREM 3. Consider a sequence {dn}n≥1 of degree sequences that ap-
proach some distribution π = {πk}k≥0 in the sense of (2.3). Assume that π0 +
π1 < 1 and that π has light tail, that is, for some θ > 0,

sup
n≥1

{
1

n

n∑
i=1

eθdn(i)

}
<∞.(3.2)

Then �(G[dn]) P−→
n→∞�(μ), where μ=UGWT(π).

In particular, the result applies to the Erdős–Rényi random graph Gn with n

vertices and m = 
αn� edges. Indeed, the conditional law of Gn given its (ran-
dom) degree sequence dn is precisely that of G[dn], and {dn}n≥1 satisfies a.s. the
conditions (2.3) and (3.2) with π = Poisson(2α). Therefore, Theorems 1, 2 and 3
settle the conjectures of [17] and validate the numerical tables for � given therein.
We note that the quantity � depends monotonically and continuously on the con-
nectivity parameter α. More precisely, it is not hard to show that for any positive
α < β ,

1≤ �(β)

�(α)
≤ β

α
.

Also, since a graph G is k-orientable (k ∈N) if and only if �(G) < k, Theorem 3
extends recent results on the k-orientability of the Erdős–Rényi random graph [11,
12]. See [13, 15, 20, 21] for various generalizations.

4. Proof ingredients and related work.

The objective method. This work is a new illustration of the general princi-
ples exposed in the objective method by Aldous and Steele [3]. The latter pro-
vides a powerful framework for the unified study of sparse random graphs and
has already led to several remarkable results. Two prototypical examples are the
celebrated ζ(2) limit in the random assignment problem due to Aldous [4], and
the asymptotic enumeration of spanning trees in large graphs by Lyons [23]. Since
then, the method has been successfully applied to various other combinatorial enu-
meration/optimization problems on graphs, including (but not limited to) [10, 14,
19–21, 24, 25, 27].

Lack of correlation decay. In the problem considered here, there is a major
obstacle to a direct application of the objective method: the balanced load at a
vertex is not determined by the local environment around that vertex. For example,
every vertex of a d-regular graph with girth h has the same h-neighborhood as the
root of a d-regular tree with height h. However, the induced load is d

2 in the first
case and 1 − 1

(d−1)h−1d
in the second. This long-range dependence gives rise to

nonuniqueness issues when trying to extend the notion of balanced loads to infinite
graphs. We refer to [17] for a detailed study of this phenomenon—therein called
load percolation—as well as several fascinating questions.
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Relaxation. To overcome the lack of correlation decay, we introduce a suit-
able relaxation of the balancing condition (1.1), which we call ε-balancing. Re-
markably enough, any positive value of the perturbative parameter ε suffices to
annihilate the long-range dependences described above. This allows us to define
a unique ε-balanced Borel allocation �ε :G��→ [0,1] and to establish the con-
tinuity of the induced load ∂�ε :G�→ [0,∞) with respect to local convergence
(Section 5). We then use unimodularity to prove that, as the perturbative parameter
ε tends to 0, �ε converges in a certain sense to a balanced Borel allocation �0
(Section 6). This quickly leads to a proof of Theorem 1 (Section 7). In spirit, the
role of the perturbative parameter ε > 0 is comparable to that of the temperature
in [10], although no Gibbs–Boltzmann measure is involved in the present work.

Recursion on trees. As many other graph-theoretical problems, load balanc-
ing has a simple recursive structure when considered on trees. Indeed, once the
value of the allocation along a given edge {i, j} has been fixed, the problem nat-
urally decomposes into two independent sub-problems, corresponding to the two
disjoint subtrees formed by removing {i, j}. Note, however, that in the resulting
sub-problems the loads of i and j must be shifted by a suitable amount to take
into account the contribution of the removed edge. The precise effect of this shift
on the loads induced at i and j defines what we call the response functions of the
two subtrees (Section 8). Those response functions satisfy a recursion (Section 9).
Recursions on trees automatically give rise to distributional fixed-point equations
when specialized to Galton–Watson trees. Such equations are a common ingredient
in the objective method; see [5]. This leads to the proof of Theorem 2 (Section 10).

Dense subgraphs in the pairing model. Finally, the proof of Theorem 3 (Sec-
tion 11) relies on a property of random graphs with a prescribed degree sequence
that might be of independent interest: under the exponential moment assump-
tion (3.2), we show that dense subgraphs must be extensively large with high prob-
ability. Our argument is based on the first-moment method. See Proposition 11.1
for the precise statement, and [22], Lemma 6, for a result in the same direction.

5. ε-balancing. Throughout this section, G= (V ,E) is a locally finite graph
and ε > 0 is a fixed parameter. An allocation θ on G is called ε-balanced if for
every (i, j) ∈ �E,

θ(i, j)=
[

1

2
+ ∂θ(i)− ∂θ(j)

2ε

]1

0
.(5.1)

This condition can be viewed as a relaxation of (1.1). Its interest lies in the fact
that it fixes the nonuniqueness issue on infinite graphs.

PROPOSITION 5.1 (Existence, uniqueness and monotony). If G has bounded
degrees, then there is a unique ε-balanced allocation θ on G. If moreover E′ ⊆E,
then the ε-balanced allocation θ ′ on G′ = (V ,E′) satisfies ∂θ ′ ≤ ∂θ .
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PROOF. The set K of all allocations on G is clearly a compact convex subset
of the locally convex space R

�E equipped with the topology of coordinate-wise
convergence. Moreover, the mapping K � θ �→ θ ′ ∈K defined by

θ ′(i, j)=
[

1

2
+ ∂θ(i)− ∂θ(j)

2ε

]1

0

is continuous. It must therefore admit a fixed point, by the Schauder–Tychonoff
fixed-point theorem (see, e.g., [1], Theorem 8.2). This proves existence. Now, con-
sider E′ ⊆ E and let θ, θ ′ be ε-balanced allocations on G,G′, respectively. Fix
o ∈ V and set

I := {
i ∈ V : {i, o} ∈E′, θ ′(i, o) > θ(i, o)

}
.

Clearly,

∂θ ′(o)− ∂θ(o)≤∑
i∈I

(
θ ′(i, o)− θ(i, o)

)
.

On the other hand, since the map x �→ [12+ x
2ε
]10 is nondecreasing and 1

2ε
-Lipschitz,

our assumption on θ, θ ′ implies that for every i ∈ I ,

θ ′(i, o)− θ(i, o)≤ 1

2ε

(
∂θ ′(i)− ∂θ(i)− ∂θ ′(o)+ ∂θ(o)

)
.

Injecting this into the above inequality and rearranging, we obtain

∂θ ′(o)− ∂θ(o)≤ 1

|I | + 2ε

∑
i∈I

(
∂θ ′(i)− ∂θ(i)

)
(5.2)

≤ �

�+ 2ε
max
i∈I

(
∂θ ′(i)− ∂θ(i)

)
,

where � denotes the maximum degree in G. Now, observe that ∂θ, ∂θ ′ are [0,�]-
valued, so that M := supV (∂θ ′ − ∂θ) is finite. Property (5.2) forces M ≤ 0, which
proves the monotony E′ ⊆ E �⇒ ∂θ ′ ≤ ∂θ . In particular, E′ = E implies ∂θ ′ =
∂θ , which in turns forces θ ′ = θ , thanks to (5.2). �

We now remove the bounded-degree assumption as follows. Fix � ∈ N, and
consider the truncated graph G� = (V ,E�) obtained from G by isolating all
nodes having degree more than �, that is,

E� = {{i, j} ∈E : deg(G, i)∨ deg(G, j)≤�
}
.

By construction, G� has degree at most �, and we let ��
ε (G, i, j) denote the

mass sent along (i, j) ∈ �E in the unique ε-balanced allocation on G�, with the
understanding that ��

ε (G, i, j) = 0 if {i, j} /∈ E�. By uniqueness, this quantity
depends only on the isomorphism class of the edge-rooted graph (G, i, j), so that
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we have a well-defined map ��
ε :G�� → [0,1]. By an immediate induction on

r ∈N, the local contraction (5.2) yields

[G,o]r ≡ [
G′, o′

]
r �⇒ ∣∣∂��

ε (G,o)− ∂��
ε

(
G′, o′

)∣∣≤�

(
1+ 2ε

�

)−r

.

Since the map x �→ [12 + x
2ε
]10 is 1

2ε
-Lipschitz, it follows that

[G, i, j ]r ≡ [
G′, i ′, j ′

]
r �⇒ ∣∣��

ε (G, i, j)−��
ε

(
G′, i ′, j ′

)∣∣≤ �

2ε

(
1+ 2ε

�

)−r

.

Thus, the map ��
ε is equicontinuous. Now, the sequence of sets {E�}�≥1 increases

to E, so the monotony in Proposition 5.1 guarantees that {∂��
ε }�≥1 converges

pointwise on G�. Moreover, any given {i, j} ∈ E belongs to E� for large enough
�, and the definition of ε-balancing yields

��
ε (G, i, j)=

[
1

2
+ ∂��

ε (G, i)− ∂��
ε (G, j)

2ε

]1

0
.

Consequently, the pointwise limit �ε := lim�→∞��
ε exists in [0,1]G�� . It clearly

satisfies �ε +�∗ε = 1 and it is Borel as the pointwise limit of continuous maps.
Thus, it is a Borel allocation. Letting �→∞ above yields

�ε(G, i, j)=
[

1

2
+ ∂�ε(G, i)− ∂�ε(G, j)

2ε

]1

0
.(5.3)

6. The ε → 0 limit. We now send the perturbative parameter ε to 0, and show
that �ε converges in a certain sense to a balanced Borel allocation �0. Fix μ ∈ U
with deg(μ) <∞. We write ‖f ‖p for the norm in both Lp(μ) and Lp( �μ): which
is meant should be clear from the context. Note that by unimodularity, we have for
any Borel allocation �,

‖�‖1 =
∫
G��

�d �μ=
∫
G��

�+�∗

2
d �μ= deg(μ)

2
.(6.1)

PROPOSITION 6.1 (Existence of a balanced Borel allocation). The limit �0 :=
limε→0 �ε exists in L2( �μ) and is a balanced Borel allocation on μ.

PROOF. We will establish the following property: for 0 < ε ≤ ε′,

‖�ε′ −�ε‖2
2 ≤ ‖�ε‖2

2 − ‖�ε′‖2
2.(6.2)

In particular, ‖�ε‖2
2 ≥ ‖�ε′‖2

2 so limε→0 ↑ ‖�ε‖2
2 exists. Consequently, the right-

hand side tends to 0 as ε, ε′ → 0, hence so does the left-hand side. This provides a
Cauchy criterion in L2( �μ) for {�ε}ε>0, ensuring the existence of �0 = limε→0 �ε .
The rest of the claim follows, since Borel allocations are closed in L2( �μ) and



DENSEST SUBGRAPHS IN SPARSE GRAPHS 315

letting ε→ 0 in (5.3) shows that �0 is balanced on μ. In order to prove (6.2), let
us first assume that

μ
({

(G,o) : deg(G,o)≤�
})= 1,(6.3)

for some � ∈N. This ensures that f ∈ L2( �μ), where

f (G, i, o) := ∂�ε(G,o)+ ε�ε(G, i, o).

A straightforward manipulation of (5.3) shows that

f (G, i, o) > f (G,o, i) �⇒ �ε(G, i, o)= 0.

This implies �εf +�∗εf ∗ = f ∧ f ∗. On the other hand, f ∧ f ∗ ≤�ε′f +�∗ε′f ∗
since �ε′ +�∗ε′ = 1. Thus, �εf +�∗εf ∗ ≤�ε′f +�∗ε′f ∗. Integrating against �μ
and invoking unimodularity, we get 〈�ε −�ε′, f 〉L2( �μ) ≤ 0 or more explicitly,

〈∂�ε − ∂�ε′, ∂�ε〉L2(μ) + ε〈�ε −�ε′,�ε〉L2( �μ) ≤ 0.

But we have not yet used ε ≤ ε′, so we may exchange ε, ε′ to get

〈∂�ε′ − ∂�ε, ∂�ε′ 〉L2(μ) + ε′〈�ε′ −�ε,�ε′ 〉L2( �μ) ≤ 0.

Adding-up those inequalities and rearranging, we finally arrive at(
ε′ − ε

)〈�ε −�ε′,�ε′ 〉L2( �μ) ≥ ‖∂�ε − ∂�ε′‖2
2 + ε‖�ε −�ε′‖2

2.

In particular, 〈�ε,�ε′ 〉L2( �μ) ≥ ‖�ε′‖2
2 and (6.2) follows since

‖�ε′ −�ε′‖2
2 = ‖�ε′‖2

2 + ‖�ε‖2
2 − 2〈�ε,�ε′ 〉L2( �μ).

Finally, if our extra assumption (6.3) is dropped, we may apply (6.2) with �ε ,
�ε′ replaced by ��

ε , ��
ε′ and let then �→∞. By construction, ��

ε → �ε and
��

ε′ →�ε′ pointwise, and (6.2) follows by dominated convergence. �

PROPOSITION 6.2 (Continuity of balanced loads). Let {Gn}n≥1 be a sequence
of finite graphs with local weak limit μ. Then

LGn

P(R)−→
n→∞L,

where L= Lμ is the law of the random variable ∂�0 ∈L1(μ).

PROOF. For n≥ 1 we let Ĝn denote the network obtained by encoding a bal-
anced allocation θn as [0,1]-valued marks on the oriented edges of Gn. The se-
quence {U(Ĝn)}n≥1 is tight, because {U(Gn)}n≥1 converges weakly and the marks
are [0,1]-valued. Consider any subsequential weak limit (G, o, θ). By construc-
tion, (G, o) has law μ and θ is a.s. a balanced allocation on G. Our goal is to es-
tablish that ∂θ(o)= ∂�0(G, o) a.s. Set θ ′(i, j) :=�0(G, i, j). The random rooted
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network (G, o, θ, θ ′) is unimodular, since (G, o, θ) is a weak limit of finite net-
works and �0 is Borel. Now,

E
[(

∂θ(o)− ∂θ ′(o)
)+]= E

[∑
i∼o

(
θ(i, o)− θ ′(i, o)

)
1∂θ(o)>∂θ ′(o)

]

= E

[∑
i∼o

(
θ(o, i)− θ ′(o, i)

)
1∂θ(i)>∂θ ′(i)

]

= E

[∑
i∼o

(
θ ′(i, o)− θ(i, o)

)
1∂θ(i)>∂θ ′(i)

]
,

where the second equality follows from unimodularity and the third one from the
identities θ(o, i)= 1− θ(i, o) and θ ′(o, i)= 1− θ ′(i, o). Combining the first and
last lines, we see that E[(∂θ(o)− ∂θ ′(o))+] equals

1

2
E

[∑
i∼o

(
θ(i, o)− θ ′(i, o)

)
(1∂θ(o)>∂θ ′(o) − 1∂θ(i)>∂θ ′(i))

]
.

The fact that θ, θ ′ are balanced across {i, o} easily implies that θ(i, o) − θ ′(i, o)

and 1∂θ(o)>∂θ ′(o) − 1∂θ(i)>∂θ ′(i) can neither be simultaneously positive, nor simul-
taneously negative. Therefore, E[(∂θ(o)− ∂θ ′(o))+] ≤ 0. Exchanging the roles of
θ, θ ′ yields ∂θ(o)= ∂θ ′(o) a.s., as desired. �

7. Proof of Theorem 1. We now complete the proof of Theorem 1.

PROPOSITION 7.1. Let � be a Borel allocation. Then for all t ∈R,∫
G�

(∂�− t)+ dμ≥ sup
f : G�→[0,1]

Borel

{
1

2

∫
G��

f̂ d �μ− t

∫
G�

f dμ

}
,

with equality for all t ∈R if and only if � is balanced on μ.

PROOF. Fix a Borel f :G�→[0,1]. Since (∂�− t)+ ≥ (∂�− t)f , we have∫
G�

(∂�− t)+ dμ≥
∫
G�

f ∂�dμ− t

∫
G�

f dμ.(7.1)

Using the unimodularity of μ and the identity �+�∗ = 1, we also have∫
G�

f ∂�dμ= 1

2

∫
G��

(
f (G,o)�(G, i, o)+ f (G, i)�(G,o, i)

)
d �μ(G, i, o)

(7.2)

≥ 1

2

∫
G��

(
f (G,o)∧ f (G, i)

)
d �μ(G, i, o).
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Combining (7.1) and (7.2) yields the inequality. Let us examine the equality case.
First, equality holds in (7.1) if and only if for μ-a.e. (G,o) ∈ G�,

∂�(G,o) > t �⇒ f (G,o)= 1,

∂�(G,o) < t �⇒ f (G,o)= 0.

Second, equality holds in (7.2) if and only if for �μ-a.e. (G, i, o) ∈ G��,

f (G, i) < f (G,o) �⇒ �(G, i, o)= 0.

If � is balanced on μ, then the choice f = 1{∂�>t} clearly satisfies all those re-
quirements, so that equality holds for each t ∈ R in the proposition. This proves
the if part and shows that the supremum in Proposition 7.1 is attained, because at
least one balanced allocation exists by Proposition 6.1. Now, for the only if part,
suppose that equality is achieved in Proposition 7.1. Then the above requirements
imply that for �μ-a.e. (G, i, o) ∈ G��,

∂�(G, i) < t < ∂�(G,o) �⇒ �(G, i, o)= 0.

Since this must be true for all t ∈Q, it follows that � is balanced on μ. �

PROOF OF THEOREM 1. Existence, continuity and the variational character-
ization were established in Propositions 6.1, 6.2 and 7.1, respectively. Now, let
�,�′ be Borel allocations, and assume that � is balanced. Applying Proposi-
tion 7.1 to � and �′ shows that for all t ∈R,∫

G�

(∂�− t)+ dμ≤
∫
G�

(
∂�′ − t

)+
dμ.

Moreover, (6.1) guarantees that ∂�,∂�′ have the same mean. As already men-
tioned below the statement of Theorem 1, those two conditions imply∫

G�

(f ◦ ∂�)dμ≤
∫
G�

(
f ◦ ∂�′

)
dμ,

for any convex function f : [0,∞)→R. We have just proved (i) �⇒ (iii). On the
other hand, (iii) �⇒ (ii) is obvious. In particular, �0 satisfies (ii) and (iii). The
only if part of Proposition 7.1 shows that (iii) �⇒ (i). The implication (iv) �⇒
(iii) is obvious given that �0 satisfies (iii). Thus, it only remains to prove (ii) �⇒
(iv). Assume that � minimizes

∫
(f ◦ ∂�)dμ for some strictly convex function

f : [0,∞)→ R, and let m denote the value of this minimum. Since �0 satisfies
(ii), we also have

∫
(f ◦ ∂�0) dμ=m. But then �′ := (�0+�)/2 is an allocation

and by convexity,∫
G�

(
f ◦ ∂�′

)
dμ≤

∫
G�

(f ◦ ∂�)+ (f ◦ ∂�0)

2
dμ=m.

This inequality contradicts the definition of m, unless it is an equality. This forces
∂�= ∂�0 μ-a.e., since f is strictly convex. �
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8. Response functions. As many other graph-theoretical problems, load bal-
ancing has a simple recursive structure when specialized to trees. However, the
exact formulation of this recursion requires the possibility to condition the allo-
cation to take a certain value at a given edge, and we first need to give a proper
meaning to this operation. Let G= (V ,E) be a locally finite graph and b :V →R

a function called the baseload. An allocation θ is balanced with respect to b if

b(i)+ ∂θ(i) < b(j)+ ∂θ(j) �⇒ θ(i, j)= 0,

for all (i, j) ∈ �E. This is precisely the definition of balancing, except that the load
felt by each vertex i ∈ V is shifted by a certain amount b(i). Similarly, θ is ε-
balanced with respect to b if for all (i, j) ∈ �E,

θ(i, j)=
[

1

2
+ b(i)+ ∂θ(i)− b(j)− ∂θ(j)

2ε

]1

0
.(8.1)

The arguments used in Proposition 5.1 are easily extended to this situation.

PROPOSITION 8.1 (Existence, uniqueness and monotony). If G has bounded
degree and if b is bounded, then there is a unique ε-balanced allocation with
baseload b. Moreover, if b′ ≤ b is bounded and if E′ ⊆ E, then the ε-balanced
allocation θ ′ on G′ = (V ,E′) with baseload b′ satisfies b′ + ∂θ ′ ≤ b+ ∂θ .

As in Section 5, we then define an ε-balanced allocation in the general case by
considering the truncated graph G� with baseload the truncation of b to [−�,�],
and let then �→∞. Monotony guarantees the existence of a limiting ε-balanced
allocation. We shall need the following property.

PROPOSITION 8.2 (Nonexpansion). Let θ, θ ′ be the ε-balanced allocations
with baseloads b, b′ :V →R. Set f = ∂θ + b and f ′ = ∂θ ′ + b′. Then∥∥f ′ − f

∥∥
�1(V ) ≤

∥∥b′ − b
∥∥
�1(V ).

PROOF. By considering b′′ = b∧ b′ and using the triangle inequality, we may
assume that b ≤ b′. Note that this implies f ≤ f ′, thanks to Proposition 8.1. When
G is finite, the claim trivially follows from conservation of mass:∑

o∈V

(
f ′(o)− f (o)

)=∑
o∈V

(
b′(o)− b(o)

)
.

This then extends to the case where G has bounded degrees with b, b′ bounded
as follows: choose finite subsets V1 ⊆ V2 ⊆ · · · such that

⋃
n≥1 Vn = V . For each

n≥ 1, let θn, θ
′
n denote the ε-balanced allocations on the subgraph induced by Vn,

with baseloads the restrictions of b, b′ to Vn. Then θn→ θ and θ ′n→ θ ′ pointwise,
by compactness and uniqueness. Now, any finite K ⊆ V is contained in Vn for
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large enough n, and since Vn is finite we know that fn := ∂θn + b and f ′n :=
∂θ ′n + b′ satisfy ∑

i∈K

∣∣f ′n(i)− fn(i)
∣∣≤ ∑

i∈Vn

∣∣b′(i)− b(i)
∣∣.

Letting n→∞ yields the desired result, since K is arbitrary. Finally, for the gen-
eral case, we may apply the result to the truncated graph G� with baseloads the
truncation of b, b′ to [−�,�], and let then �→∞. �

Although the uniqueness in Proposition 8.1 does not extend to the ε = 0 case,
the following weaker result will be useful in the next section.

PROPOSITION 8.3 (Weak uniqueness). Assume that θ, θ ′ are balanced with
respect to b and that ‖∂θ − ∂θ ′‖�1(V ) <∞. Then, ∂θ = ∂θ ′.

PROOF. Fix δ > 0. Since ‖∂θ − ∂θ ′‖�1(V ) < ∞, the level set S := {j ∈
V : ∂θ ′(j)− ∂θ(j) > δ} must be finite. Therefore, it satisfies the conservation of
mass: ∑

j∈S
∂θ ′(j)− ∂θ(j)= ∑

(i,j)∈E(V−S,S)

θ ′(i, j)− θ(i, j).(8.2)

Now, if (i, j) ∈ E(V − S,S) then clearly, ∂θ ′(i)− ∂θ(i) < ∂θ ′(j)− ∂θ(j). Con-
sequently, at least one of the following inequalities must hold:

b(j)− b(i) < ∂θ(i)− ∂θ(j) or b(j)− b(i) > ∂θ ′(i)− ∂θ ′(j).

The first one implies θ(i, j) = 1 and the second θ ′(i, j) = 0, since θ, θ ′ are bal-
anced with respect to b. In either case, we have θ ′(i, j)≤ θ(i, j). Thus, the right-
hand side of (8.2) is nonpositive, hence so must the left-hand side be. This contra-
dicts the definition of S unless S = ∅, that is, ∂θ ′ ≤ ∂θ + δ. Since δ is arbitrary,
we conclude that ∂θ ′ ≤ ∂θ . Equality follows by symmetry. �

Given o ∈ V and x ∈R, we set fε(G,o)(x)= x+ ∂θ(o) where θ is the ε-balanced
allocation with baseload x at o and 0 elsewhere. We call fε(G,o) :R→ R the re-
sponse function of the rooted graph (G,o). Propositions 8.1 and 8.2 guarantee that
fε(G,o) is nondecreasing and nonexpansive, that is,

x ≤ y �⇒ 0≤ fε(G,o)(y)− fε(G,o)(x)≤ y − x.(8.3)

Note for future use that the definition of fε(G,o)(x) also implies

0≤ fε(G,o)(x)− x ≤ deg(G,o).(8.4)

When G is a tree, response functions turn out to satisfy a simple recursion.
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9. Recursion on trees. We are now ready to state the promised recursion. Fix
a tree T = (V ,E). Deleting {i, j} ∈ E creates two disjoint subtrees, viewed as
rooted at i and j and denoted Ti→j and Tj→i , respectively.

PROPOSITION 9.1. The response function fε(T ,o) is invertible and{
fε(T ,o)

}−1 = Id−∑
i∼o

[
1− {

fεTi→o
+ ε(2Id− 1)

}−1]1
0,(9.1)

where Id denotes the identity function on R.

PROOF. fεTi→o
+ ε(2Id−1) increases continuously from R onto R, so {fεTi→o

+
ε(2Id − 1)}−1 exists and increases continuously from R onto R. Consequently,
the function g :R→ R appearing in the right-hand side of (9.1) is continuously
increasing from R onto R, hence invertible. Given x ∈R, it now remains to prove
that t := fε(T ,o)(x) satisfies g(t)= x. By definition,

t = x + ∂θ(o),(9.2)

where θ denotes the ε-balanced allocation on T with baseload x at o and 0 else-
where. Now fix i ∼ o. The restriction of θ to Ti→o is clearly an ε-balanced allo-
cation on Ti→o with baseload θ(o, i) at i and 0 elsewhere. This is precisely the
allocation appearing in the definition of fεTi→o

(θ(o, i)), hence

fεTi→o

(
θ(o, i)

)= ∂θ(i).

Thus, the fact that θ is ε-balanced along (o, i) may now be rewritten as

θ(o, i)=
[

1

2
+ t − fεTi→o

(θ(o, i))

2ε

]1

0
.(9.3)

But by definition, xi := {fεTi→o
+ ε(2Id− 1)}−1(t) is the unique solution to

xi = 1

2
+ t − fεTi→o

(xi)

2ε
.(9.4)

Comparing (9.3) and (9.4), we see that θ(o, i)= [xi]10, that is, θ(i, o)= [1− xi]10.
Re-injecting this into (9.2), we arrive exactly at the desired x = g(t). �

In the remainder of this section, we fix a vanishing sequence {εn}n≥1 and
study the pointwise limit f = limn→∞ f

εn

(T ,o), when it exists. Note that f needs
not be invertible. However, (8.3) and (8.4) guarantee that f is nondecreasing with
f(±∞)=±∞, so that is admits a well-defined right-continuous inverse

f−1(t) := sup
{
x ∈R : f(x)≤ t

}
, t ∈R.
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PROPOSITION 9.2. Assume that �o := limn→∞ ∂�εn(T , o) exists for each
o ∈ V . Then fTi→j

:= limn→∞ f
εn

Ti→j
exists pointwise for each (i, j) ∈ �E, and

f
−1
Ti→j

(t)= t − ∑
k∼i,k �=j

[
1− f

−1
Tk→i

(t)
]1
0,(9.5)

for every t ∈R. Moreover, for every o ∈ V ,

�o > t ⇐⇒ ∑
i∼o

[
1− f

−1
Ti→o

(t)
]1
0 > t.(9.6)

PROOF. Fix (i, j) ∈ �E,x ∈ R, and let us show that {fεn

Ti→j
(x)}n≥1 converges.

By definition, fεTi→j
(x)= x+∂θε(i), where θε is the ε-balanced allocation on Ti→j

with baseload x at i and 0 elsewhere. Since the set of allocations on Ti→j is com-
pact, it is enough to consider two subsequential limits θ, θ ′ of {θεn}n≥1 and prove
that ∂θ = ∂θ ′. Passing to the limit in (8.1), we know that θ, θ ′ are balanced with
respect to the above baseload. Writing Vi→j for the vertex set of Ti→j , Proposi-
tion 8.3 reduces our task to proving∥∥∂θ − ∂θ ′

∥∥
�1(Vi→j ) <∞.(9.7)

Let θ�
ε be the restriction of �ε to Ti→j . Thus, θ�

ε is an allocation on Ti→j and it
is ε-balanced with baseload θ�

ε (j, i) at i and 0 elsewhere. Consequently, Proposi-
tion 8.2 guarantees that for any finite K ⊆ Vi→j \ {i},∥∥∂θε − ∂θ�

ε

∥∥
�1(K) ≤ |x| + 1.

Applying this to ε, ε′ > 0 and using the triangle inequality, we obtain

‖∂θε − ∂θε′‖�1(K) ≤ 2|x| + 2+ ∥∥∂θ�
ε − ∂θ�

ε′
∥∥
�1(K).

Since {∂θ�
εn
}n≥1 converges by assumption, we may pass to the limit to obtain

‖∂θ − ∂θ ′‖�1(K) ≤ 2|x| + 2. But K is arbitrary, so (9.7) follows. This shows that
fTi→j

:= limn→∞ f
εn

Ti→j
exists pointwise. We now recall two classical facts about

nondecreasing functions f :R→ R with f(±∞) = ±∞. First, f−1 is nondecreas-
ing, so that its discontinuity set D(f−1) is countable. Second, the pointwise con-
vergence fn→ f implies f−1

n (t)→ f−1(t) for every t ∈ R \D(f−1). Consequently,
letting ε→ 0 in (9.1) proves (9.5) for t /∈ D := D(f−1

Ti→j
) ∪⋃

k∼i D(f−1
Tk→i

). The
equality then extends to R since D is countable and both sides of (9.5) are right-
continuous in t . Replacing Ti→j with (T , o) in the above argument shows that
f(T ,o) := limn→∞ f

εn

(T ,o) exists and satisfies

f
−1
(T ,o)(t)= t −∑

i∼o

[
1− f

−1
Ti→o

(t)
]1
0, t ∈R.

Finally, recall that fεn

(T ,o)(0)= ∂�εn(T , o) for all n≥ 1, so that f(T ,o)(0)= �o. But

f(T ,o)(0) > t⇐⇒ f
−1
(T ,o)(t) < 0 by definition of f−1

(T ,o), so (9.6) follows. �
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10. Proof of Theorem 2. In all this section, t ∈ R is fixed. We manipu-
late networks rather than graphs, where each (i, j) ∈ �E is equipped with a mark
ξ(i, j) ∈ [0,1]. The marks are assumed to satisfy the local recursion

ξ(i, j)=
[
1− t + ∑

k∼i,k �=j

ξ(k, i)

]1

0
, (i, j) ∈ �E.(10.1)

We start with a simple lemma.

LEMMA 10.1. ∂ξ(i)∧ ∂ξ(j) > t⇐⇒ ξ(i, j)+ ξ(j, i) > 1.

PROOF. We check the equivalence separately in each case. By assumption,

ξ(i, j)= [
1− t + ∂ξ(i)− ξ(j, i)

]1
0,(10.2)

ξ(j, i)= [
1− t + ∂ξ(j)− ξ(i, j)

]1
0.(10.3)

• If 0 < ξ(i, j), ξ(j, i) < 1, then the equivalence trivially holds since we may
safely remove the truncation [·]10 from (10.2)–(10.3) to obtain

∂ξ(i)− t = ξ(i, j)+ ξ(j, i)− 1= ∂ξ(j)− t.

• If ξ(j, i)= 0, then we have 1 − t + ∂ξ(j) − ξ(i, j) ≤ 0 thanks to (10.3), and
hence ∂ξ(j)≤ t . Thus, both sides of the equivalence are false.

• If ξ(i, j)= 1, ξ(j, i) > 0, then using ξ(i, j) = 1 in (10.2) gives ∂ξ(i) − t ≥
ξ(j, i) and since ξ(j, i) > 0 we obtain ∂ξ(i) > t . Similarly, using ξ(j, i) > 0
in (10.3) gives ∂ξ(j) > t+ξ(i, j)−1 and since ξ(i, j)= 1 we obtain ∂ξ(j) > t .
Thus, both sides of the equivalence are true.

The other possible cases follow by exchanging ξ(i, j) and ξ(j, i). �

We are ready for the proof of Theorem 2, which we divide into two parts. The
notation are those of Theorem 2, that is, μ :=UGWT(π), where π is a fixed prob-
ability distribution on N with finite, nonzero mean.

PROPOSITION 10.1. If Q ∈ P([0,1]) satisfies Q= Fπ,t (Q), then

�Lμ(t)≥ E[D]
2

P(ξ1 + ξ2 > 1)− tP(ξ1 + · · · + ξD > t),

where D ∼ π and where {ξk}k≥1 are i.i.d. with law Q, independent of D.

PROOF. Kolmogorov’s extension theorem allows us to convert the consistency
equation Q = Fπ,t (Q) into a random rooted tree T ∼ UGWT(π) equipped with
marks satisfying (10.1) a.s., such that conditionally on the structure of [T, o]h,
the marks from generation h to h− 1 are i.i.d. with law Q. This random rooted
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network is easily checked to be unimodular. Thus, we may apply Proposition 7.1
with f = 1∂ξ>t . By Lemma 10.1, we have f̂ = 1ξ+ξ∗>1, and hence

�Lμ(t)≥ 1
2 �μ

(
ξ + ξ∗ > 1

)− tμ(∂ξ > t).

This is precisely the desired result, since we have by construction

μ(∂ξ > t)= P(ξ1 + · · · + ξD > t), �μ(
ξ + ξ∗ > 1

)= E[D]P(ξ1 + ξ2 > 1),

where D ∼ π and ξ1, ξ2, . . . are i.i.d. with law Q, independent of D. �

PROPOSITION 10.2. There exists Q ∈ P([0,1]) with Q= Fπ,t (Q) and

�Lμ(t)= E[D]
2

P(ξ1 + ξ2 > 1)− tP(ξ1 + · · · + ξD > t),

where D ∼ π and where {ξk}k≥1 are i.i.d. with law Q, independent of D.

PROOF. Let T∼UGWT(π). Thanks to Proposition 6.1, we have

∂�ε(T, o)
L2−→

ε→0
∂�0(T, o).

In particular, there is a deterministic vanishing sequence ε1, ε2, . . . along which the
convergence holds almost surely. This almost-sure convergence automatically ex-
tends from the root to all vertices, since under a unimodular measure μ, everything
shows at the root [2], Lemma 2.3. More precisely,

μ(A)= 1 �⇒ μ(Ã)= 1,

for any Borel set A⊆ G�, where Ã consists of those (G,o) ∈ G� such that (G, i) ∈
A for all vertices i of G. Here, we apply it to μ=UGWT(π) and

A= {
(G,o) ∈ G� : ∂�εn(G,o) −→

n→∞∂�0(G,o)
}
.

Thus, T satisfies almost surely the assumption of Proposition 9.2. Consequently,
the marks ξ(i, j) := [1− f

−1
Ti→j

(t)]10 satisfy (10.1) almost surely, and

∂�0(T, o) > t ⇐⇒ ∂ξ(o) > t.

This ensures that f = 1∂ξ>t satisfies the requirements for equality in Proposi-
tion 7.1, and we may then use Lemma 10.1 to rewrite the conclusion as

�Lμ(t)= 1
2 �μ

(
ξ + ξ∗ > 1

)− tμ(∂ξ > t).

Now, D = deg(T, o) has law π and conditionally on D, the subtrees {Ti→o}i∼o are
i.i.d. copies of a homogenous Galton–Watson tree T̂ with offspring distribution π̂ .
Since ξ(i, o) depends only on the subtree Ti→o, we obtain

μ(∂ξ > t)= P(ξ1 + · · · + ξD > t), �μ(
ξ + ξ∗ > 1

)= E[D]P(ξ1 + ξ2 > 1),

where ξ1, ξ2, . . . are i.i.d. copies of [1 − f
−1
T̂

(t)]10, independent of D. In turn, re-

moving the root of T̂ splits it into a π̂ -distributed number of i.i.d. copies of T̂, so
that the law Q of [1− f

−1
T̂

(t)]10 satisfies Q= Fπ,t (Q). �
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11. Proof of Theorem 3. In this final section, we prove Theorem 3. This main
ingredient is Proposition 11.1, which states that dense subgraphs must be large
under the pairing model. Fix a degree sequence d = {d(i)}1≤i≤n and set 2m =∑n

i=1 d(i). We need two preparatory lemmas.

LEMMA 11.1. Fix a subset of vertices S ⊆ {1, . . . , n}. Then the number of
edges of G[d] with both end-points in S is stochastically dominated by a binomial
random variable with mean 1

m
(
∑

i∈S di)
2.

PROOF. We assume that s :=∑
i∈S di < m, otherwise the claim is trivial. It is

classical that G[d] can be generated sequentially: at each step 1 ≤ t ≤ m, a half-
edge is selected and paired with a uniformly chosen other half-edge. The selection
rule is arbitrary, and we choose to give priority to half-edges whose end-point lies
in S. Let Xt be the number of edges with both end-points in S after t steps. Then
{Xt }0≤t≤m is a Markov chain with X0 = 0 and transitions

Xt+1 :=
⎧⎨⎩Xt + 1, with conditional probability

(s −Xt − t − 1)+

2m− 2t − 1
,

Xt, otherwise.

For every 0≤ t < m, the fact that Xt ≥ 0 ensures that

(s −Xt − t − 1)+

2m− 2t − 1
≤ s − t − 1

2m− 2t − 1
1(t<s) ≤ s

2m
1(t<s),

where the second inequality uses the condition s < m. This shows that Xm is in
fact stochastically dominated by a binomial (s, s

2m
), which is enough. �

LEMMA 11.2. Let Xk,r be the number of induced subgraphs with k vertices
and at least r edges in G[d]. Then, for any θ > 0,

E[Xk,r ] ≤
(

2r

θ2m

)r
(

e

k

n∑
i=1

eθdi

)k

.

PROOF. First observe that if Z ∼ Bin(n,p) then by a simple union-bound,

P(Z ≥ r)≤
(

n

r

)
pr ≤ nrpr

r! =
E[Z]r

r! .

Thus, Lemma 11.1 ensures that the number ZS of edges with both end-points in S

satisfies

P(ZS ≥ r)≤ 1

r!mr

(∑
i∈S

di

)2r

≤
(

2r

θ2m

)r ∏
i∈S

eθdi ,
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where we have used the crude bounds x2r ≤ (2r)!ex and (2r)!/r! ≤ (2r)r . The
result follows by summing over all S with |S| = k and observing that

∑
|S|=k

∏
i∈S

eθdi ≤ 1

k!
(

n∑
i=1

eθdi

)k

≤
(

k

e

n∑
i=1

eθdi

)k

.

The second inequality follows from the classical lower-bound k! ≥ (k
e
)k . �

We now fix {dn}n≥1 as in Theorem 3. Let Z
(n)
δ,t be the number of subsets ∅ �

S ⊆ {1, . . . , n} such that |S| ≤ δn and |E(S)| ≥ t |S| in Gn :=G[dn].

PROPOSITION 11.1. For each t > 1, there is δ > 0 and κ <∞ such that

E
[
Z

(n)
δ,t

]≤ κ

(
lnn

n

)t−1

,

uniformly in n≥ 1. In particular, Z
(n)
δ,t = 0 w.h.p. as n→∞.

PROOF. The assumptions of Theorem 3 guarantee that for some θ > 0,

α := inf
n≥1

{
1

n

n∑
i=1

dn(i)

}
> 0 and λ := sup

n≥1

{
1

n

∑
i∈V

eθdn(i)

}
<∞.

Now, fix t > 1 and choose δ > 0 small enough so that f (δ) < 1, where

f (δ) :=
(

1∨ 2(1+ t)

αθ2

)t+1

eλδt−1.

Using Lemma 11.2 and the trivial inequality kt ≤ �kt� ≤ k(t + 1), we have

E
[
X

(n)
k,�kt�

]≤ (
2�kt�
θ2kα

)�kt�
(eλ)k

(
k

n

)�kt�−k

≤ f k

(
k

n

)
.

Since f is increasing, we see that for any 1≤m≤ δn,

E
[
Z

(n)
δ,t

]= 
δn�∑
k=1

E
[
X

(n)
k,�kt�

]≤ m−1∑
k=1

f k

(
m

n

)
+

δn�∑
k=m

f k(δ)

≤ f (m/n)

1− f (m/n)
+ f (δ)m

1− f (δ)
.

Choose m∼ c lnn with c fixed. As n→∞, the first term is of order ( lnn
n

)t−1 while
the second is of order f (δ)c lnn ( lnn

n
)t−1, if c is large enough. �

PROOF OF THEOREM 3. The assumptions on {dn}n≥1 are more than suffi-
cient to guarantee that a.s., the local weak limit of {Gn}n≥1 is μ := UGWT(π)
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(see, e.g., [9]). Thus, the weak convergence LGn
→ Lμ holds a.s., by Theorem 1.

Now, if t < �(μ) then Lμ((t,∞)) > 0, so the Portmanteau theorem ensures that
lim infnLGn

((t,∞)) > 0 a.s. Consequently,

P
(
�(Gn)≤ t

)= P
(
LGn

(
(t,∞)

)= 0
) −→
n→∞0.

On the other-hand, if t > �(μ) then Lμ([t,∞))= 0, so the Portmanteau theorem
gives LGn

((t,∞))→ 0 a.s. Thus, with δ as in Proposition 11.1,

P
(
�(Gn) > t

)≤ P
(
LGn

([t,∞)
)
> δ

)+ P
(
Z

(n)
δ,t > 0

) −→
n→∞0.

Note that the requirement t > 1 is fulfilled, since �(μ)≥ 1. Indeed, every node in
a tree of size n has load 1− 1

n
, and the assumption π0+π1 < 1 guarantees that the

size of the random tree T∼UGWT(π) is unbounded. �

Acknowledgements. The work was initiated at the follow-up meeting of the
Newton Institute programme No86: Stochastic Processes in Communication Sci-
ences. The authors thank M. Lelarge, R. Sundaresan and an anonymous referee for
fruitful discussions.

REFERENCES

[1] AGARWAL, R. P., MEEHAN, M. and O’REGAN, D. (2001). Fixed Point Theory and Ap-
plications. Cambridge Tracts in Mathematics 141. Cambridge Univ. Press, Cambridge.
MR1825411

[2] ALDOUS, D. and LYONS, R. (2007). Processes on unimodular random networks. Electron.
J. Probab. 12 1454–1508. MR2354165

[3] ALDOUS, D. and STEELE, J. M. (2004). The objective method: Probabilistic combinatorial
optimization and local weak convergence. In Probability on Discrete Structures. Ency-
clopaedia Math. Sci. 110 1–72. Springer, Berlin. MR2023650

[4] ALDOUS, D. J. (2001). The ζ(2) limit in the random assignment problem. Random Structures
Algorithms 18 381–418. MR1839499

[5] ALDOUS, D. J. and BANDYOPADHYAY, A. (2005). A survey of max-type recursive distribu-
tional equations. Ann. Appl. Probab. 15 1047–1110. MR2134098

[6] BENJAMINI, I. and SCHRAMM, O. (2001). Recurrence of distributional limits of finite planar
graphs. Electron. J. Probab. 6 no. 23, 13 pp. (electronic). MR1873300

[7] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
MR1700749

[8] BOLLOBÁS, B. (1980). A probabilistic proof of an asymptotic formula for the number of la-
belled regular graphs. European J. Combin. 1 311–316. MR0595929

[9] BORDENAVE, C. (2012). Lecture notes on random graphs and probabilistic combinatorial op-
timization. Available at http://www.math.univ-toulouse.fr/~bordenave/coursRG.pdf.

[10] BORDENAVE, C., LELARGE, M. and SALEZ, J. (2013). Matchings on infinite graphs. Probab.
Theory Related Fields 157 183–208. MR3101844

[11] CAIN, J. A., SANDERS, P. and WORMALD, N. (2007). The random graph threshold for k-
orientability and a fast algorithm for optimal multiple-choice allocation. In Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms 469–476. ACM,
New York. MR2482873

http://www.ams.org/mathscinet-getitem?mr=1825411
http://www.ams.org/mathscinet-getitem?mr=2354165
http://www.ams.org/mathscinet-getitem?mr=2023650
http://www.ams.org/mathscinet-getitem?mr=1839499
http://www.ams.org/mathscinet-getitem?mr=2134098
http://www.ams.org/mathscinet-getitem?mr=1873300
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=0595929
http://www.math.univ-toulouse.fr/~bordenave/coursRG.pdf
http://www.ams.org/mathscinet-getitem?mr=3101844
http://www.ams.org/mathscinet-getitem?mr=2482873


DENSEST SUBGRAPHS IN SPARSE GRAPHS 327

[12] FERNHOLZ, D. and RAMACHANDRAN, V. (2007). The k-orientability thresholds for Gn,p .
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
459–468. ACM, New York. MR2482872

[13] FOUNTOULAKIS, N., KHOSLA, M. and PANAGIOTOU, K. (2011). The multiple-orientability
thresholds for random hypergraphs. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms 1222–1236. SIAM, Philadelphia, PA.
MR2858395

[14] GAMARNIK, D., NOWICKI, T. and SWIRSZCZ, G. (2006). Maximum weight independent sets
and matchings in sparse random graphs. Exact results using the local weak convergence
method. Random Structures Algorithms 28 76–106. MR2187483

[15] GAO, P. and WORMALD, N. C. (2010). Load balancing and orientability thresholds for ran-
dom hypergraphs [extended abstract]. In STOC’10—Proceedings of the 2010 ACM Inter-
national Symposium on Theory of Computing 97–103. ACM, New York. MR2743258

[16] HAJEK, B. (1990). Performance of global load balancing by local adjustment. IEEE Trans.
Inform. Theory 36 1398–1414. MR1080823

[17] HAJEK, B. (1996). Balanced loads in infinite networks. Ann. Appl. Probab. 6 48–75.
MR1389831

[18] JANSON, S. (2009). The probability that a random multigraph is simple. Combin. Probab.
Comput. 18 205–225. MR2497380

[19] KHANDWAWALA, M. and SUNDARESAN, R. (2014). Belief propagation for optimal edge
cover in the random complete graph. Ann. Appl. Probab. 24 2414–2454. MR3262507

[20] LECONTE, M., LELARGE, M. and MASSOULIÉ, L. (2012). Convergence of multivariate belief
propagation, with applications to cuckoo hashing and load balancing. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms 35–46. SIAM,
Philadelphia, PA. MR3185378

[21] LELARGE, M. (2012). A new approach to the orientation of random hypergraphs. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms 251–
264. ACM, New York. MR3205213

[22] ŁUCZAK, T. (1992). Sparse random graphs with a given degree sequence. In Random Graphs,
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