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A Prospect of Earthquake Prediction
Research
Yosihiko Ogata

Abstract. Earthquakes occur because of abrupt slips on faults due to accu-
mulated stress in the Earth’s crust. Because most of these faults and their
mechanisms are not readily apparent, deterministic earthquake prediction is
difficult. For effective prediction, complex conditions and uncertain elements
must be considered, which necessitates stochastic prediction. In particular,
a large amount of uncertainty lies in identifying whether abnormal phenom-
ena are precursors to large earthquakes, as well as in assigning urgency to the
earthquake. Any discovery of potentially useful information for earthquake
prediction is incomplete unless quantitative modeling of risk is considered.
Therefore, this manuscript describes the prospect of earthquake predictability
research to realize practical operational forecasting in the near future.
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changes.

1. INTRODUCTION

Through remarkable developments in solid Earth
science since the late 1960s, our understanding of
earthquakes has increased significantly. The avail-
ability of relevant data has steadily increased as the
study of earthquakes has progressed remarkably in
geophysics. After every major earthquake, researchers
have elucidated important seismic mechanisms asso-
ciated with it. However, even though detailed analysis
and discussions have been conducted, large uncertain-
ties remain because of diversity and complexity of the
earthquake phenomenon. This leads to unachievable
challenges in deterministic earthquake prediction be-
cause all diverse and complex scenarios must faithfully
reflect the processes of earthquakes to be considered
for effective earthquake prediction.

On the other hand, several techniques for predicting
earthquakes have been proposed on the basis of anoma-

Yosihiko Ogata is Professor Emeritus, Institute of Statistical
Mathematics, Information and System Research
Organization, 10-3 Midori-cho, Tachikawa, Tokyo
190-8562 and Institute of Industrial Science, University of
Tokyo, Visiting Professor, 4-6-1 Komaba, Megro-Ku, Tokyo
153-8505 (e-mail: ogata@ism.ac.jp).

lies of various types; however, the effectiveness of
these techniques is controversial (Jordan et al., 2011).
Therefore, objectivity is required for such evaluation;
otherwise, arguments presented may lack merit. New
prediction models that claim to incorporate potentially
useful information over those used in standard seismic-
ity models should be evaluated to determine whether
predictive power is improved. Earthquake forecasting
models should evolve in this manner.

Recently, there has been growing momentum for
seismologists to develop an organized research pro-
gram on earthquake predictability. An international
cooperative study known as Collaboratory for the
Study of Earthquake Predictability (CSEP; http://www.
cseptesting.org/) is currently under way among coun-
tries prone to major earthquakes for exploring possibil-
ities in earthquake prediction (e.g., Jordan, 2006). An
immediate objective of the project is to encourage the
development of statistical models of seismicity, such as
those subsequently discussed in Section 2, and to eval-
uate their predictive performances in terms of proba-
bility.

In addition, the CSEP study aims to develop a sci-
entific infrastructure to evaluate statistical significance
and probability gain (Aki, 1981) of various methods

521

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/13-STS439
http://www.imstat.org
mailto:ogata@ism.ac.jp
http://www.cseptesting.org/
http://www.cseptesting.org/


522 Y. OGATA

used to predict large earthquakes by using observed
abnormalities such as seismicity anomaly, transient
crustal movements and electromagnetic anomaly. Here
probability gain is defined as the ratio of probability of
a large earthquake estimated based on an anomaly to
the underlying probability without anomaly. Section 3
describes this important concept, and then discusses
statistical point-process models to examine the signifi-
cance of causality of anomalies and also to evaluate the
probability gains conditional on the anomalous events.

For prediction of large earthquakes with a higher
probability gain, comprehensive studies of anomalous
phenomena and observations of earthquake mecha-
nisms are essential. Several such studies are summa-
rized in Sections 4–6. Particularly, I have been inter-
ested in elucidating abnormal seismic activities and
geodetic anomalies to apply them for promoting fore-
casting abilities, as described in these sections.

2. PROBABILITY FORECASTING OF BASELINE
SEISMICITY

2.1 Log-Likelihood for the Evaluation Score of
Probability Forecast

Through repeated revisions, CSEP attempts to es-
tablish standard models to predict probability that
conform to various parts of the world. Here I mean
the prediction/estimation of probability as predict-
ing/estimating conditional probabilities given the past
history of earthquakes and other possible precursors.
The likelihood is used as a reasonable measure of pre-
diction performance (cf. Boltzmann, 1878; Akaike,
1985). The evaluation method for probabilistic fore-
casts of earthquakes by the log-likelihood function
has been proposed, discussed and implemented (e.g.,
Kagan and Jackson, 1995; Ogata, 1995; Ogata, Utsu
and Katsura, 1996; Vere-Jones, 1999; Harte and Vere-
Jones, 2005; Schorlemmer et al., 2007; Zechar, Ger-
stenberger and Rhoades, 2010; Nanjo et al., 2012;
Ogata et al., 2013). In some such studies, the evalu-
ation score has been referred to as (relative) entropy,
which is essentially similar to the log-likelihood.

2.2 Space–Time-Magnitude Forecasting of
Earthquakes

Baseline models should be set to compare with and
evaluate all predictability models. Based on empiri-
cal laws, we can predict standard reference probabil-
ity of earthquakes in a space–time-magnitude range
on the basis of the time series of present and past

earthquakes. The framework of CSEP, which has eval-
uated performances of submitted forecasts of respec-
tive regions (Jordan, 2006; Zechar, Gerstenberger and
Rhoades, 2010; Nanjo et al., 2011), is similar to that of
the California Regional Earthquake Likelihood Mod-
els (RELM) project for spatial forecast (Field, 2007;
Schorlemmer et al., 2010). Different space–time mod-
els were submitted to the CSEP Japan Testing Cen-
ter at the Earthquake Research Institute, University of
Tokyo, for the one-day forecast applied to the testing
region in Japan (Nanjo et al., 2012). This means that
the model forecasts the probability of an earthquake at
each space–time-magnitude bin. However, the CSEP
protocols have to be improved to those in terms of
point-processes on a continuous time axis for the evalu-
ation including a real-time forecast (Ogata et al., 2013).

Almost all models incorporated the Gutenberg–
Richter (G–R) law for forecasting the magnitude fac-
tor, and take different variants of the space–time
epidemic-type aftershock sequence (ETAS) model
(Nanjo et al., 2012, and Ogata et al., 2013). In the fol-
lowing sections, I will outline these models.

2.2.1 Magnitude frequency distribution. Gutenberg
and Richter (1944) determined that the number of
earthquakes increased (decreased) exponentially as
their magnitude decreased (increased). Describing this
theory in terms of point processes, the intensity of mag-
nitude M is

λ0(M) = lim
�→0

1

�
Prob(M < Magnitude ≤ M + �)

(1)
= 10a−bM = Ae−βM

for constants a and b. In other words, the magnitude
of each earthquake will obey an exponential distribu-
tion such that f (M) = β e−β(M−Mc),M ≥ Mc, where
β = b ln 10, and Mc is a cutoff magnitude value above
which all earthquakes are detected. Traditionally, the
b-value had been estimated graphically, however, more
efficient estimation is performed by the maximum like-
lihood method. Utsu (1965) derived it by the moment
method. Later, Aki (1965) demonstrated that this is a
maximum-likelihood estimate (MLE) and provided the
error estimate. It should be noted that the magnitudes
in most catalogs are given in the interval of 0.1 (dis-
crete magnitude values), hence, care should be taken
for avoiding the bias of the b estimate in likelihood-
based estimation procedures (Utsu, 1969).

Although the coefficient b in a wide region is
generally slightly smaller than 1.0, Gutenberg and
Richter (1944) further determined that the b-value
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varies according to location in smaller seismic re-
gions. The b-value varies even within Japan and
further varies with time. Temporal and spatial b-
value changes have attracted the attention of many re-
searchers ever since Suyehiro (1966) reported a differ-
ence between b-values of foreshocks and aftershocks
in a sequence.

Here, we consider that β can vary with time, space
and space–time according to a function such as β(t),
β(x, y, z) or β(t, x, y). Various nonparametric smooth-
ing algorithms such as kernel methods have been pro-
posed (Wiemer and Wyss, 1997). Alternatively, the β

value can be parameterized by smooth cubic splines
(Ogata, Imoto and Katsura, 1991; Ogata and Katsura,
1993) or piece-wise linear expansions on Delaunay
tessellated space (Ogata, 2011c; see also Figure 1,

e.g.). In such a case, a penalized log-likelihood (Good
and Gaskins, 1971) is used whereby the log-likelihood
function is associated with penalty functions in which
the coefficients are constrained for smoothness of the
β function. For the optimal estimation of the β func-
tion, the weights in the penalty function are objectively
adjusted in a Bayesian framework, as suggested by
Akaike (1980a).

2.2.2 Aftershock analysis and probabilistic forecast-
ing. Typical aftershock frequency decays according to
the reverse power function with time (Omori, 1894;
Utsu, 1961, 1969). First, let N(s, t) be the number of
aftershocks in an interval (s, t). Then, the occurrence
rate of aftershocks at the elapsed time t since the main

FIG. 1. Top panel shows Delaunay tessellation upon which the piecewise linear function is defined. The smoothness constraint is posed in
the sum of squares of integrated slopes. Bottom panel shows b-value estimates of the G–R formula in equation (1) estimated from the data for
earthquakes of M ≥ 5.4 from the Harvard University global CMT catalog (http://www.globalcmt.org/CMTsearch.html). One conspicuous
feature is that b-values are large in oceanic ridge zones, but small in plate subduction zones.

http://www.globalcmt.org/CMTsearch.html
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shock is

ν(t) = lim
�→0

1

�
P

{
N(t, t + d�) ≥ 1|
Mainshock at time 0

}
(2)

= K

(t + c)p

for constants K,c and p. This is known as the Omori–
Utsu (O–U) law.

Traditionally, estimates of the parameter p have been
obtained since the study of Utsu (1961) in the follow-
ing manner. The numbers of aftershocks in a unit time
interval n(t) are first plotted against elapsed time on
doubly logarithmic axes, and then are fit to an asymp-
totic straight line. The slope of this line is an estimate
for p. The values of c can be determined by measuring
the bending curve immediately after the main shock.
Such an analysis is based on the time series of counted
numbers of aftershocks. By such a plot, we can find
aftershock sequences for which the formula (2) lasts a
long period, more than 120 years, for example (Utsu,
1969; Ogata, 1989; Utsu, Ogata and Matsu’ura, 1995).

To efficiently estimate the three parameters directly
on the basis of occurrence time records of aftershocks,
assuming nonstationary Poisson process with intensity
function (2), Ogata (1983) suggested the maximum-
likelihood method, which enabled the practical after-
shock forecasting. Reasenberg and Jones (1989) pro-
posed a procedure based on the joint intensity rate of
time and magnitude of aftershocks (Utsu, 1970) ac-
cording to the G–R law (1),

λ(t,M) = λ0(M)ν(t)
(3)

= 10a+b(M0−M)

(t + c)p
(a, b, c,p; constant),

where M is the magnitude of an aftershock and t is
the time following a main shock of magnitude M0;
the parameters are independently estimated by the
maximum-likelihood method for respective empirical
laws.

After a large earthquake occurs, the Japan Meteoro-
logical Agency (JMA) and the United States Geologi-
cal Survey (USGS) have undertaken operational proba-
bility forecast of the aftershocks. However, the forecast
is announced after the elapse of 24 h or more. This is
due to the deficiency of aftershock data due to overlap-
ping of seismograms after the main shock. In partic-
ular, the parameter a is crucial for the early forecast,
but difficult to estimate in an early period, whereas the
other parameters can be default values for the early

forecast [Reasenberg and Jones, 1994; Earthquake Re-
search Committee (ERC), 1998]. The difficulty is be-
cause the parameter a can substantially differ even if
the magnitudes of the main shocks are almost the same:
for example, the numbers of the aftershocks of M ≥ 4.0
of two nearby main shocks of the same M6.8 differ by
6–7 times (JMA, 2009).

It is notable that the strongest aftershocks occurred
within 24 h in most sequences (JMA, 2008). There-
fore, despite adverse conditions during data collection,
probabilistic aftershock forecasts should be delivered
as soon as possible within 24 h after the main shock to
mitigate secondary disasters in affected areas.

For this purpose, it is necessary to estimate time-
dependent missing rates, or detection rates, of after-
shocks (Ogata and Katsura, 1993, 2006; Ogata, 2005c)
because they enable probabilistic forecasting immedi-
ately after the main shock (Ogata, 2005c; Ogata and
Katsura, 2006). The detection rate of earthquakes is
described by a probability function q(M) of magni-
tude M such that 0 ≤ q(M) ≤ 1. The intensity λ(M)

for actually observed magnitude frequency is described
by λ(M) = λ0(M)q(M), corresponding to thinning
or random deletion. An example of the detection rate
function is the cumulative of Gaussian distribution or
the so-called error function q(M) = erf{M|μ,σ }. The
parameter μ represents the magnitude at which earth-
quakes are detected at a rate of 50%, and σ rep-
resents a range of magnitudes in which earthquakes
are partially detected. Let a data set of magnitudes
{(ti,Mi); i = 1, . . . ,N} be given at a period immedi-
ately after the main shock. Assume that the parameters
are time-dependent during the period such that

λ(t,M) = 10a+b(M0−M)

(t + c)p
q
{
M|μ(t), σ

}
(4)

with an improving detection rate μ(t). An additional
parametric approach proposed by Omi et al. (2013)
uses the state–space representation method for real-
time forecasting within the 24 h period.

2.2.3 Epidemic-type aftershock sequence (ETAS)
model. The epidemic-type aftershock sequence
(ETAS) model describes earthquake activity as a point
process (Ogata, 1986, 1988) and includes the O–U law
for aftershocks as a descendant process. This model
assumes that the background seismicity is a station-
ary Poisson process with a constant occurrence rate or
number of earthquakes per day, μ. The conditional in-
tensity function of the process is described by

λθ (t |Ht) = μ + ∑
{i:ti<t}

K

(t − ti + c)p
eα(Mi−M0),(5)
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where Ht = {(ti,Mi); ti < t} is the history of the oc-
currence times and magnitudes of earthquakes before
time t , and M0 is a reference magnitude throughout
the data; it can be a threshold magnitude in case of
general seismic activity or a main shock magnitude
in case of a single aftershock sequence. The param-
eters K , α, c and p are constants, and their detailed
features are summarized and discussed in Utsu, Ogata
and Matsu’ura (1995), for example. Here, in simula-
tions and forecasting, magnitude sequence is usually
assumed to be independent and identically distributed
according to the G–R law (Section 2.2.1) unless other-
wise modeled like in Ogata (1989).

We estimate the ETAS parameters by using the
maximum-likelihood estimation where the log-
likelihood function, or rigorously partial log-likelihood
(Cox, 1975),

logL(θ;S,T ) = ∑
{i;S<ti<T }

logλθ(ti |Hti )

(6)

−
∫ T

S
λθ (t |Ht)dt

is maximized with respect to the parameters θ =
(μ,K, c,α,p). Here, {(ti ,Mi),Mi ≥ Mc; i = 1,2, . . .}
are data from the period [0, T ] consisting of occurrence
times and magnitudes of earthquakes above a theresh-
old Mc. Here, note that the magnitudes are exogenous
variables. The ETAS model is applied to data from the
target time interval [S,T ]. The occurrence history HS

during the precursor period [0, S] is used for sustaining
stationarity of the process after the time S.

Then, the model’s effectiveness in fitting an earth-
quake sequence can be evaluated by comparing the cu-
mulative number N(S, t) of earthquakes with the rate
predicted by the model

	(S, t) =
∫ t

S
λ(u|Hu)du(7)

in the time interval S < t < T . If earthquakes in the
catalog are described effectively by the ETAS model,
the transformed time τi defined as τi = 	(ti), which
include correction for the O–U law decay, will be
distributed according to the stationary Poisson pro-
cess, and the plot of the actual cumulative number of
events versus transformed time should be close to lin-
ear (Ogata, 1988). The transformed time τi is useful
for judging goodness of fit of the ETAS model because
it assigns a visual check of the fit to a stationary Pois-
son process. Anomalous seismicity, not explained by
the stationary ETAS model, will appear as systematic

deviations from this trend. An example of such an anal-
ysis will be presented in Section 4.3 and Figure 4.

To predict in real time, the probability of occurrence
of future earthquakes using the data of earthquakes in
the past, the ETAS model has been used. For exam-
ple, the ETAS model and its space–time extensions
(see Section 2.2.4) are reviewed in the next version on
operational earthquake forecast in California (Working
Group on California Earthquake Probabilities, WG-
CEP, 2012).

2.2.4 Space–time ETAS model. The space–time
ETAS model considers space–time occurrence rate at
the time t and location (x, y), conditional on the occur-
rence history up to time t , such that

λ(t, x, y|Ht)

= μ(x, y)

+
tj<t∑

j

K

(t − tj + c)p

(8)

×
[

(x − x̄j , y − ȳj )Sj

(x−x̄j

y−ȳj

)
eα(Mj−Mc)

+ d

]−q

,

where Sj is a normalized positive definite symmetric
matrix for anisotropic clusters such that

(x, y)S(x, y)t

(9)

= 1√
1 − ρ2

{(
σ2

σ1

)
x2 + 2ρxy +

(
σ1

σ2

)
y2

}
.

Here, (x̄j , ȳj ) is an average location of earthquakes
that are placed in the same cluster as (xj , yj ). Both
(x̄j , ȳj ) and coefficients of Sj for a selected set of
large earthquakes j are identified by fitting a bivariate
normal distribution to spatial coordinates of the clus-
ter occurring within a square of 3.33 × 100.5Mj−2 km
side-length and within 100.5Mj−1 days after the large
event of magnitude Mj , according to Utsu (1969); but
I use 1 h in prediction stage. The locations (x̄j , ȳj ) of
all other events, including cluster members, remain the
same as the epicenter coordinates of the original cat-
alog; and they are associated with the identity matrix
for Sj , namely, σ1 = σ2 = 1 and ρ = 0. See Figure 2
for an illustrative view of the conditional intensity (8).
Further details of the algorithm can be found in studies
of Ogata (1998, 2011a, 2011b).

Although several alternative versions to the spatial
factor given by the bracket of (8), as described by
Ogata (1998), are available, the form in (8) fits best
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FIG. 2. Iso-surface plot of the estimated conditional intensity
function (8) of the space–time ETAS model (Ogata, 1998) to the
JMA hypocenter data of shallow earthquakes (depth ≤ 100 km)
of magnitude 5.0 or larger from the period 1926–1995; in ad-
dition, Utsu’s earthquake catalog for the 40 years period before
1926 (1885–1925) was used as the preceding occurrence history of
the space–time ETAS model. Space means longitude and latitude,
whereas the depth data are neglected.

in terms of the Akaike information criterion (AIC;
Akaike, 1974) for Japanese earthquake data sets. All
extensions of the temporal ETAS model are referred to
as space–time ETAS models (e.g., Nanjo et al., 2012).

2.2.5 Hierarchical space–time ETAS model. When
a region becomes wide or the number of earthquakes
becomes sufficiently large, spatial heterogeneity of
seismicity becomes conspicuous. For example, many
studies have been conducted on regional variation of
seismicity-related parameters such as the b-value of the
G–R law and p-values of the O–U law (Utsu, 1961,
1969; Mogi, 1967).

Regarding space–time ETAS models, the aftershock
productivity K may differ significantly among loca-
tions, even if magnitudes of triggering earthquakes
are similar (see Section 2.2.2). Moreover, the main
shock–aftershock and swarm-type clusters exhibit sig-
nificantly different activity patterns. Therefore, we ap-
plied an extension to the above space–time model to
earthquakes in the entire region for developing a hierar-
chical space–time ETAS (HIST–ETAS) model, which
is a space–time ETAS model in which parameter val-
ues μ,K , α, p and q can vary depending on loca-
tion, such as μ(x, y),K(x̄j , ȳj ), α(x̄j , ȳj ),p(x̄j , ȳj )

and q(x̄j , ȳj ).

Thus, coefficients of parameter functions of the
space–time ETAS model in equation (8) must be eval-
uated. Coefficients of each parameter function are de-
fined by values at epicenter locations of earthquakes
and a number of points on the region boundary. Hence,
each function is uniquely defined by linear interpola-
tion of values at three nearest points (earthquakes) de-
termined by Delaunay tessellation that is constructed
by all the earthquake locations and additional points
on the boundary of the region (see Figure 1).

For a stable optimal estimation, the freedom of co-
efficients of parameter functions needs to be con-
strained to assign penalties against roughness of the
functions. The coefficients that maximize the penalized
log-likelihood are then sought, which is the equivalent
of attaining the maximum posterior distribution. Here,
we adjusted the optimal prior function for the param-
eter constraints in terms of the penalty function by an
empirical Bayesian method (Akaike, 1980a). Further
details can be found in the studies of Ogata, Katsura
and Tanemura (2003) and Ogata (2004a, 2011b). Fig-
ure 3 shows the optimal solution of background seis-
mic activities μ(x, y), which appear useful for long-
term prediction of large earthquakes in and near Japan.

FIG. 3. The optimal solution of the μ-values for background seis-
micity of the space time ETAS model (8) in terms of minimum ABIC
priors. The model is estimated from the JMA data with earthquakes
of M5.0 or larger for the target period 1926–1995. In addition,
Utsu’s earthquake catalog for the 40 years period before 1926
(1885–1925) was used as the precursory occurrence history of the
space–time ETAS model. Contours are equidistant in the logarith-
mic scale. Stars indicate locations of earthquakes of magnitude
6.7 or larger that occurred during 1996–2009, which mostly oc-
curred in high background rates. Note however that there are sev-
eral large earthquakes occurred at very low seismicity rates, the
issue of which lead to Section 2.3.
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Moreover, stochastic declustering using the space–time
ETAS model can make realizations of background seis-
micity (Zhuang, Ogata and Vere-Jones, 2002; Zhuang
et al., 2005b; Bansal and Ogata, 2013).

2.3 Long-Term Probability Forecasts of
Characteristic Earthquakes

A characteristic earthquake is a repeating large earth-
quake that is traditionally defined from paleoseismol-
ogy observations. The estimation is made by using re-
currence times of a large earthquake on an active fault
or a particular seismogenic region on a plate bound-
ary. The Earthquake Research Committee of Japan
(ERC, 2001) adopted the Brownian Passage Time
(BPT; Matthews, Ellsworth and Reasenberg, 2002) re-
newal process, in which the inter-event probability den-
sity function is given by

f (x|μ,α) =
√

μ

2πα2x3 exp
{
−(x − μ)2

2μα2x

}
.(10)

This equation considers the potential of further model
extensions by useful physical concepts in the elastic
rebound theory, such as stress interaction from neigh-
boring earthquake ruptures. This physical concept will
be subsequently described in Sections 4 and 5. BPT
renewal process is based on the following Brownian
perturbation process:

S(t) = λt + σW(t), t ≥ 0,(11)

which includes linearly increasing drift for stress ac-
cumulation and diffusion rate σ . An earthquake oc-
curs when the path S(t) attains the critical stress level
sf , and the accumulated stress is released down to
the ground state s0 based on elastic rebound theory of
earthquakes (Reid, 1910). Random fluctuations repre-
sent the transient stress changes due to the effect of
other earthquakes in close proximity (see Section 4).
This model includes four parameters: the stress accu-
mulation rate λ, perturbation rate σ , failure state sf ,
and ground state s0. If we assume that failure and
ground states sf and s0, respectively, are constant,
the interval of earthquakes is independent and identi-
cally distributed with the BPT distribution, in which
parameters are related by μ = (sf − s0)/λ and α =
σ/

√
λ(sf − s0).

Because of very small sample size available from
each fault, the mean parameter μ has been estimated
using methods other than the MLE. The ERC (2001)
uses a common α value of 0.24 throughout Japan.
This is because better fit of the same α value was

shown by the AIC comparison than the different α es-
timates for respective active faults, for a set of occur-
rence data with moderate sample sizes from four ac-
tive faults (ERC, 2001). Also, the ERC has estimated
μ in two ways: as the mean of past recurrence inter-
vals and as expected intervals estimated from the slip
data of the fault plane. The latter estimate is expressed
by T = U/V , where U is the slip size per earthquake
and V is the deformation rate per year, observed from
the escarpment of the fault. The ERC selects and ap-
plies one of these estimates for μ of each active fault
according to reliability of the data.

Alternatively, Nomura et al. (2011) propose follow-
ing Bayesian estimation procedure assuming a com-
mon prior distribution for fault segments through-
out Japan. Consider historical occurrence data Xj =
{Xj

i ; i = 1,2, . . . , n} in the j th segment of m fault seg-
ments. Consider a posterior density

posterior(μj ,αj |Tj ,φμ,φα)
(12)

= L(μj ,αj |Xj )π1(μj |Tj ,φμ)π2(αj |φα),

where likelihood L is based on the renewal process
taking account of the forward and backward recur-
rence times (Daley and Vere-Jones, 2003) and Tj is
the above-mentioned geologically estimated slip defor-
mation ratio from slip data. Furthermore, the values of
the hyperparameters φμ and φα characterizing the prior
densities of μ and α are common to all considered fault
segments. We obtain their estimates by maximizing the
integrated posterior distribution

	(φ) =
m∏

j=1

∫ ∞
0

∫ ∞
0

posterior(μj ,αj |
(13)

Tj ,φμ,φα) dμj dαj ,

where the subscript j represents the j th segment of
m fault segments. This maximizing procedure is called
the Type II maximum likelihood method (Good, 1965).
The selection of the best combination of the prior dis-
tribution factors and the optimal values of the hyper-
parameters in (12) are carried out to attain the small-
est value of the Akaike Bayesian information crite-
rion (ABIC; Akaike, 1980a) that is defined by ABIC =
−2 maxφ log	(φ) + 2 dim(φ), where dim{φ} denotes
the number of hyperparameters.

The most common forecast technique is a plug-in
method, which is a probability forecast that uses a dis-
tribution or conditional intensity function with a pa-
rameter set to its estimated value, such as MLE. This
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method works well if the estimation error is suffi-
ciently small. However, its predictive performance can
be inadequate when the sample size is small. Hence,
ERC adopts the plug-in method only for μ and uses
a common α value of 0.24 throughout Japan. Alter-
natively, Rhoades, Van Dissen and Dowrick (1994),
Ogata (1999b, 2002) and Nomura et al. (2011) propose
the Bayesian prediction (Akaike, 1985)

h̃(y|X) =
∫ ∞

0

∫ ∞
0

h(y|μ,α)
{
1 − F(y|μ,α)

}
(14)

×
n∏

i=1

f (Xi |μ,α)dμdα,

where F(y|μ,α) is the cumulative distribution of the
density f (y|μ,α) in (10), and h(y|μ,α) is the haz-
ard rate function. This prediction is shown to provide
a systematically better performance in the sense of ex-
pected entropy criterion (Akaike, 1985) than the plug-
in predictor in case of very small sample sizes of data
(Nomura et al., 2011).

Bayesian framework can also be used when the oc-
currence times are uncertain, especially when we are
dealing with geological data (Ogata, 1999b; Nomura
et al., 2011) in addition to the magnitude dependent
model (Ogata, 2002) based on the time-predictable
model (Shimazaki and Nakata, 1980).

3. PRACTICAL EARTHQUAKE FORECASTING

Probability gain refers to the ratio of predicted condi-
tional probability relative to baseline earthquake prob-
ability. As far as I know, most probability gains of
predictions are not very high, even relative to the sta-
tionary Poisson process model. Therefore, predictions
based on a single anomaly data set alone are not satis-
factory for disaster prevention because baseline proba-
bility of a large earthquake itself is very small accord-
ing to the G–R law. Also, the BPT renewal process
model has been applied to active fault segments to es-
timate time-dependent probability on the basis of the
last earthquake and stress accumulation rate. In Cal-
ifornian, probability gain showed an improvement of
approximately 1.7 times over Poisson process model
predictions (Jordan et al., 2011).

The key for research progress in practical probability
earthquake forecasting is to use a multiple prediction
formula (Utsu, 1979) such that total probability gain is
approximately equal to the product of individual prob-
ability gains (Aki, 1981). The rate of probability gain
that an individual anomaly was actually a precursor to
an earthquake may be calculated as its success rate of

the anomaly divided by precursor time (Utsu, 1979).
Success rate can only be determined from accumula-
tion of actual earthquake occurrences; and precursor
time can be studied experimentally and theoretically
(Aki, 1981). In this section I review important sugges-
tions by Utsu (1979) and Aki (1981) and provide some
examples of causality modeling toward improved ac-
curacy for probability gain.

3.1 Abnormal and Precursor Phenomena

The continuing pursuit of possible algorithms used
to predict large earthquakes should consider specific
developmental patterns listed in the seismic catalog.
So far, an alarm-type method of earthquake predic-
tion (Keilis-Borok et al., 1988; Keilis-Borok and Mali-
novskaya, 1964; Rundle et al., 2002; Shebalin et al.,
2006; Sobolev, 2001; Tiampo, et al., 2002) based
on seismicity patterns has been operationally imple-
mented, in which predictions are conveyed to seismol-
ogists through e-mail. Some predictions in each year
are published in an official document such as the Cen-
ter for Analysis and Prediction, State Seismological
Bureau, China (1990–2003). In addition, many pa-
pers have been published on earthquake predictions.
Some of these predictions may be statistically sig-
nificant against the stationary Poisson process that is
assumed for normal seismicity. Such alarm-type pre-
dictions have been further evaluated by Zechar and
Zhuang (2010), Jordan et al. (2011), Zhuang and Ogata
(2011) and Zhuang and Jiang (2012).

Comprehensive studies of anomalous phenomena
and observations of earthquake mechanisms are essen-
tial for predicting large earthquakes with high probabil-
ity gains. However, it is difficult to determine whether
detected abnormalities are precursors to large earth-
quakes. Nevertheless, we aspire to become able to say
that the probability of occurrence of a large earthquake,
in a certain period and a certain region, has increased
a certain extent as compared with the reference proba-
bility. Therefore, it is necessary to estimate uncertainty
of the nature and urgency of abnormal phenomena rel-
ative to their roles as precursors to major earthquakes.
For this purpose, it is necessary to study a large num-
ber of anomalous cases for potential precursory links to
large earthquakes. Thus, incorporation of this informa-
tion in the design of a prediction model for probability
that exceeds the underlying probability is important.

3.2 Conditional Probability of an Earthquake for
Multiple Independent Precursors

As previously described, although an individual pre-
cursory anomaly is insufficient for providing a fore-
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cast of an earthquake with a high probability, forecast-
ing probability can be enhanced if several anomalies
are simultaneously observed (Utsu, 1977, 1979, 1982;
Aki, 1981). The probability of an anomaly being a
precursor of a large earthquake should be estimated
through comprehensive observations. Then, it provides
medium- or short-term probability forecasts depending
on the time scale of enhanced earthquake probability
following the anomaly. For example, identification of
foreshocks (Section 3.4.2) and seismicity quiescence
(Section 5.1) belongs to short- and medium-term fore-
casting, respectively.

Let us find the probability P(EM |A,B,C, . . . , S) of
occurrence of an earthquake, with a magnitude greater
than M in a specified area, under the condition that
N anomalies A,B,C, . . . , S appeared simultaneously.
Assuming that anomalies are conditionally indepen-
dent on EM and the complement of EM , Aki (1981)
derived the following equation of Utsu (1977, 1979)
using Bayes’ theorem:

P(EM |A,B,C, . . . , S)

=
[
1 +

(
1

PA

− 1
)(

1

PB

− 1
)(

1

PC

− 1
)

· · ·(15)

·
(

1

PS

− 1
)/(

1

P0
− 1

)N−1]−1

,

where P0 = P(EM), PA = P(EM |A), PB =
P(EM |B), . . . ,PS = P(EM |S). Note that this formula
can be written as a linear relation of logit functions
of probabilities [see equation (23) in Section 3.4.2].
These probabilities for a short time interval become
very small so that (15) can be approximated by

P(EM |A,B,C, . . . , S) ≈ P0
PA

P0

PB

P0

PC

P0
· · · PS

P0
.(16)

The above relation shows that for multiple indepen-
dent precursors, the conditional rate of earthquake oc-
currence can be obtained by multiplying the uncondi-
tional rate P0 with ratios of conditional probability to
unconditional probability P0. Each ratio is defined as
the probability gain of a precursor. Utsu (1979) retro-
spectively reported a high probability forecast of the
1978 Izu–Oshima–Kinkai earthquake of M7.0 using
the multiple independent precursor formula. This is
based on each probability assessment of the anoma-
lous phenomena consisting of uplift in the Izu Penin-
sula, swarm, and a composite of a radon anomaly,
anomalous water table change and volumetric strain
anomaly. Each of such probabilities was not very high.
Aki (1981) summarized the Utsu report and further

explained similar possible calculations for successful
prediction of the 1975 Haicheng earthquake of M7.3
in China by considering long-term, intermediate-term,
short-term and imminent precursory phenomena.

3.3 Improving Probability Gains by Seeking
Statistically Significant Phenomenon

Here I would like to describe several point process
models which can enhance the probability gains. To
examine whether certain abnormal phenomena affect
changes in the baseline rate of earthquake occurrences,
Ogata and Akaike (1982), Ogata, Akaike and Katsura
(1982) and Ogata and Katsura (1986) analyzed causal
relationships between earthquake series from two dif-
ferent seismogenic regions, A and B . Let NA

t and NB
t

be the number of earthquakes above a certain magni-
tude thereshold in the time interval (0, t) in regions A

and B , respectively. Then, consider a model of the in-
tensity function of point process NA

t for earthquake oc-
currences in the region A, conditional on the history of
earthquake occurrences HA

t and HB
t in both regions:

λA

(
t |HA

t ,HB
t

) = μ +
J∑

j=1

aj t
j +

∫ t

0
g(t − s) dNA

s

(17)

+
∫ t

0
h(t − s) dNB

s ,

where the first two terms on the right-hand side of the
equation represent the Poisson process of a trend, the
third term represents the cluster component within re-
gion A including aftershocks and swarms, and the last
term represents the effect of earthquake occurrences in
region B .

Here, it must be noted that even if a significant cor-
relation is observed between the two series of events,
it is insufficient from the standpoint of prediction, and
it is necessary to identify causality. Thus, we must ex-
amine the opposite causality by interchanging A and
B in equation (17). If both direction models hold, this
process is mutually exciting (Hawkes, 1971). Further-
more, the correlation between A and B regions may be
indirect such that activities in both regions may be af-
fected by additional factors, for which the trend term
may be useful if the polynomial can efficiently cap-
ture such an effect. According to our analysis of seis-
micity in two seismogenic regions along the subduct-
ing Pacific plate interface beneath the central Honshu,
Japan, seismicity causality was found as a one-way ef-
fect from the deeper to the shallower. The maximum
probability gain of the causal effect was several times
the average occurrence rate.
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Similarly, we can examine the causal relationship
from some observed geophysical time series of ξs

(Ogata and Akaike, 1982; Ogata, Akaike and Katsura,
1982) as follows:

λA

(
t |HA

t ,H
ξ
t

) = μ +
J∑

j=1

aj t
j +

∫ t

0
g(t − s) dNA

s

(18)

+
∫ t

0
h(t − s)f (ξs) ds.

An example is the data of unusual intensities of
ground electric potential, which were observed in the
vicinity of Beijing, China, during a 16-year period be-
ginning in 1982. The issue was whether or not these
factors were useful as precursors to strong earthquakes
of M ≥ 4.0. Electricity anomalies could have been af-
tereffects of strong earthquakes. However, by compar-
ing the goodness of fit of models (17) by AIC, anoma-
lies were deemed statistically significant as precursors
to earthquakes (Zhuang et al., 2005a). Moreover, the
conditional intensity rate of declustered earthquakes
M ≥ 4.0 or larger within a radius of 300 km from the
Huailai ground-electricity station was given by

λ(t |Ht) = μ +
∫ t

S
h(t − s)ξ(s)a ds

(19)

= 0.00702 +
t∑

j=S

0.000117e−0.142(t−j)ξ0.69
j

(event/day) in the study of Ogata and Zhuang (2001),
in which successively occurring M ≥ 4 earthquakes
within five days and 30 km distance were removed
from the data to account for the self-exciting effect
in equation (18). According to this model, the rate of
M ≥ 4 earthquakes varies from a half to 10 times the
average occurrence of 0.0126 event/day.

Furthermore, the time series of electric anomaly
records were available from three other stations near
Beijing. If we assume that the four sets of the time se-
ries are approximately independent, we may consider
the following conditional intensity rate by extending
the multiple precursor in equation (16):

λA

(
t
∣∣∣ 4⋂
m=1

Hm
t

)
≈ λ̂A

4∏
m=1

λAm(t |Hm
t )

λ̂Am

(20)

for the common region A = ⋂4
m=1 Am among four cir-

cular regions Am of 300 km radii from the four stations.
Retrospective total probability gain varies in the range
1/10–100 times of the average occurrence rate λA in
the common region (Ogata and Zhuang, 2001).

Here, we considered declustered earthquakes near
Beijing, but if we can consider the original data and
model that take the triggered clustering effect into ac-
count (cf. Zhuang et al., 2005a, 2013), the correspond-
ing model would become

λ

(
t
∣∣∣ 4⋂
m=1

Hm
t

)
≈ λ0(t |Ht)

4∏
m=1

λ(t |Hm
t )

λ0(t |Ht)
.(21)

A similar but more general model is applied in fore-
shock forecasting discussed in the following section
(Section 3.4.2).

Moreover, we examined periodicity, or seasonality,
of earthquake occurrences (Ogata and Katsura, 1986;
Ma and Vere-Jones, 1997). Although such issues have
been frequently discussed in statistical seismology, it
was difficult to analyze correlations in the conventional
method because the clustering feature of earthquakes
frequently leads to incorrect results (Aki, 1956). On
the other hand, we found it effective to apply statistical
models of stochastic point processes that incorporate a
clustering component; further details can be found in
the study of Ogata (1999a), and the references therein.
These models can also be applied to examine whether
or not various geophysical anomalies are statistically
significant as precursors of an approaching large earth-
quake:

λθ (t |Ht) = μ +
J∑

j=1

aj t
j

+
K∑

k=1

{
c2k−1 cos

2πkt

T0
+ c2k sin

2πkt

T0

}
(22)

+
∫ t

0
g(t − s) dNs.

From estimated amplitudes of the one-year periodic
term with T0 = 365.24 days, it is evident that prob-
ability gains vary around the average occurrence rate
of corresponding M ≥ 4.0 and M ≥ 5.0 earthquakes.
More extensive studies were reported by Matsumura
(1986) by using the above model, in which the trend-
term (first two terms) was used for artificial nonstation-
arity due to an increasing number of observed earth-
quakes in the long-term global catalog. He detected
periodic effects for many mid-latitude seismic inland
regions, whereas the seasonality was rarely observed in
tropical seismic regions and ocean seismogenic zones.
Correlations with precipitation variations were com-
mon in these results and are most probably due to pore
fluid pressure changes in faults (see Section 4.1 for the
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physical mechanism). An extension of the above pe-
riodicity model, reported by Iwata and Katao (2006),
includes a combination of (lunar) synodic and semi-
synodic periods to examine whether or not and how
certain seismicity is affected by Earth tides. Statis-
tical models, applications to validate data from the
earthquake-induced phenomena and their references
were reviewed by Ogata (1999a).

3.4 Probabilistic Identification of Foreshocks

The study of foreshocks should lead to a short-term
forecasting. Although a considerable number of fore-
shocks are observed, most are recognized after occur-
rence of a large earthquake. Nevertheless, when earth-
quakes begin to occur in a local region, its residents
should determine whether or not such movement is
a precursor of a significantly larger earthquake. The
probability of foreshock type can be determined sta-
tistically from the data of ongoing earthquakes in a
particular region. Moreover, by using composite iden-
tification data of magnitude sequence and degree of
hypocenter concentration, the probability gain of pre-
diction is heightened.

3.4.1 Working definitions for foreshock discrimina-
tion. When an earthquake of M4.0 or larger occurs, it
must first be determined whether or not the movement
is a continuation of nearby earthquakes. Precisely, the
connection to past earthquakes is determined by the
single-link clustering (SLC) algorithm of Frohlich and
Davis (1990).

The largest earthquake in a cluster is designated as
the main shock. Pre-shocks refer to all earthquakes pre-
ceding the main shock of a cluster. All pre-shocks in
a cluster become foreshocks when the magnitude gap
or magnitude difference between the largest pre-shock
and main shock is 0.45 or greater. If the magnitude gap
is smaller than 0.45, the cluster with pre-shocks is de-
fined as a swarm. An additional type of cluster is the
main shock–aftershock type, in which the main shock
occurs first in the cluster. A magnitude gap of 0.45 or
larger between the main shock and largest pre-shock
occurs in less than approximately 20% of pre-shock
clusters in Japan. This 0.45 borderline of foreshock-
and the swarm-types has been determined by a trade-
off between achievement of a larger magnitude gap,
which results in better discrimination of the foreshock,
and a greater number of foreshock clusters, which re-
sults in better statistics. Here, to characterize these fea-
tures, we note that clusters of foreshock-type exclude
main shock and subsequent aftershocks, whereas other

cluster types include all events in each cluster. This
designation is made because real-time recognition of
the main shock, which is preceded by foreshocks, is
easy owing to the large magnitude gap, whereas main
shocks of other cluster types are difficult to recognize
until the end of the cluster.

3.4.2 Probability forecast by discrimination of fore-
shocks. Using the location (x, y) of the first earth-
quakes from clusters or isolated single earthquakes, by
the empirical Bayesian logit model, Ogata, Utsu and
Katsura (1996) obtained a map μ(x, y) of a probability
that the earthquake will be a foreshock of a forthcom-
ing main shock. Such probability varies from 1% to
10% with an average of 3.8% throughout Japan. Prob-
ability forecasts using this map have been conducted
from January 1994 to April 2011, and their perfor-
mances have been demonstrated by Ogata and Katsura
(2012).

Multiple earthquakes occurring in a cluster provide
more effective forecast updates, and certain statistics
within the cluster are useful for discriminating fore-
shocks. Ogata, Utsu and Katsura (1996) revealed that
distances between foreshocks in time and space are
statistically shorter than those between earthquakes in
clusters of other types. Moreover, increasing magni-
tudes enhance the probability of foreshocks. In the fol-
lowing model, we devise foreshock probability by us-
ing such statistics for prospective forecasting of main
shocks.

Suppose that multiple earthquakes occur in a clus-
ter c. Then, we consider time differences ti,j = tj − ti
(days), epicenter separations

ri,j =
√

(xj − xi)2 cos2 θi,j + (yj − yi)2 km,

where θij represents the mean latitude of earthquakes
i and j , and magnitude differences gij = Mj − Mi be-
tween earthquakes i and j (i < j). On the basis of a
comparative study of these statistics (Ogata, Utsu and
Katsura, 1995, 1996), we standardized them into a unit
interval. Specifically, time difference was transformed
by τ = log(100t)/ log(3000) for 0.1 ≤ t ≤ 30 days;
otherwise, 0 and 1 were set for t ≤ 0.1 and t ≤ 30,
respectively. Epicenter separation was transformed by
ρ = 1−exp{−min{(r,50)/20} km. Finally, magnitude
difference was transformed by γ = (2/3) exp{g/σ1}
and γ = 2/3+(1/3){1−exp(g/σ2)} for g ≤ 0 and g >

0, respectively, where σ1 = 0.6709 and σ2 = 0.4456
(km).

Suppose that, at the current time, c|n shows the
stage where the nth earthquake (n = 2,3,4, . . . ,#c)
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has occurred in a cluster c, where #c is the number of
all earthquakes in the cluster c. We propose the fore-
casting probability pc|n by using the following logis-
tic transformation: Set f = logitp = (1 − p)/p, or
p = 1/(1 + ef ); then,

logitpc|n = logitμ(x1, y1)

+ 1

#(i < j ≤ n)

(23)
× ∑

i<j≤n

(
μ0 +

3∑
k=1

bkγ
k
i,j

+
3∑

k=1

ckρ
k
i,j +

3∑
k=1

dkτ
k
i,j

)
.

Here, the first term μ(x1, y1) indicates the probabil-
ity that the first earthquake in the cluster is a fore-
shock, and the second term indicates the sample mean
of weighted polynomials of transformed variables de-
fined among all cluster members up to the time of fore-
casting. Here, the factor #(i < j ≤ n) is the number of
pairs in the first n members of the cluster c.

It must be noted that interactions between the nor-
malized statistics were not selected in equation (23) by
the AIC comparison; namely, independency for the for-
mula (15) is shown between the statistics of time inter-
vals, epicenter separations and magnitude differences.
Such conditions can be extended for a case in which
the factors are dependent by considering higher or-
der of polynomials; however, the linear factor in equa-
tion (23) represented the best fit in this case according
to AIC (Ogata, Utsu and Katsura, 1996).

Probability forecasts that use prediction equation (23)
have been conducted from January 1994 to April 2011,
and their performances have been evaluated by Ogata
(2011a) and Ogata and Katsura (2012). Therefore,
these forecasts are expected to be applied for practi-
cal use in real time in the near future.

4. INCORPORATING PHYSICAL MECHANISMS OF
EARTHQUAKES

4.1 Earthquake Dynamics and Interactions

The earth crust and upper mantle lithosphere can be
approximately considered as an elastic body. These be-
come distorted under stress, which increases steadily
in a particular direction. Fault planes are cracks within
the lithosphere or plate boundary interfaces. Earth-
quakes occur through distortion of subsurface rocks

and both sides of the fault plane moving out of align-
ment. The earthquake location listed in hypocenter cat-
alogs is location at which a fault displacement started,
and earthquake magnitude represents eventual size of
the displacement. Moreover, some catalogs record the
orientations and slips of fault planes of relatively large
earthquakes.

For each fault plane, stress tensor in lithosphere is
decomposed into two perpendicular components. The
shear stress acts in a direction parallel to fault shifting,
and the normal stress acts perpendicular to the fault
plane. The orientation of each fault plane determines
shear and normal stress, which define Coulomb failure
stress (CFS):

CFS = (Shear Stress) − (friction coefficient)
(24)

× (Normal Stress − pore fluid pressure).

CFS increases at a constant rate over time. When CFS
exceeds a particular threshold, the fault slips dramati-
cally (an earthquake). Then, the stress reduces to a cer-
tain value and accumulates again over decades to re-
sult in large earthquakes on plate boundaries, and over
thousands of years to result in slips on inland active
faults (see Section 2.3).

When an earthquake occurs, the displacement of the
source fault causes sudden Coulomb stress changes
(�CFS) on the peripheral receiver faults. The �CFS of
each receiver fault plane either decreases or increases
depending on its orientations relative to the slip angles
of the source fault. On the faults with increased �CFS,
earthquakes occur earlier than expected, whereas on
those with decreased �CFS, forthcoming earthquakes
are delayed. When faults of similar orientations domi-
nate a region, either seismic activation or quiescence is
expected in the region.

In equation (24), the pore fluid pressure of the gap
fault related to CFS is generally a constant. However,
its changes may be important. For example, pressure
changes in the fluid magma gap affect swarm activity
in volcanic areas (Dieterich, Cayol and Okubo, 2000;
Toda, Stein and Sagiya, 2002). In addition, earthquakes
can be induced through increased pore fluid pressure
in a fault system (Hainzl and Ogata, 2005; Terakawa,
Hashimoto and Matsu’ura, 2013), which is occasion-
ally due to heavy rainfall or shaking of the earth crust
owing to propagated strong seismic waves; the lat-
ter causes dynamic triggering (Steacy, Gomberg and
Cocco, 2005, and papers included in the same volume).
Relevantly, the seasonal nature of seismicity or annual
periodicity has been discussed in Section 3.3 [cf. equa-
tion (22)]. Moreover, the ETAS model applications to
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seismicity changes that were induced by dynamic trig-
gering or injection of water were reported (Lei et al.,
2008, Lei, Xie and Fu, 2011).

4.2 Predicting Seismicity in the Peripheral Area by
Abrupt Stress Changes

To explain earthquake induction or suppression of
seismicity, it is useful to determine whether or not
�CFS was due to a rapid faulting event that caused
an earthquake. When a large earthquake occurs, low-
frequency seismic waves and global positioning system
(GPS) crustal displacement are observed. From such
observations, source fault mechanisms of the earth-
quake can be solved, such as size, orientation and vec-
tor of the fault slip. Such source parameters are input
into a computer program designed by Okada (1992) to
calculate �CFS in a receiver fault system on the ba-
sis of source fault data. Thus, studies on induction of
earthquakes, based on �CFS, have become popular.
Special issue volumes on this subject have been edited
by Harris (1998) and Steacy, Gomberg and Cocco
(2005).

For example, Ogata (2004b) examined regional
�CFS in southwestern Japan by analyzing M7.9 To-
nankai and M8.1 Nankai earthquakes in 1944 and
1946, respectively. Conventionally, some seismic qui-
escence in this period was either considered as a gen-
uine precursor or suspected as an artifact because of
incomplete detection of earthquakes during the Sec-
ond World War. Positive and negative �CFS correlated
strongly with seismic activation and quiescence, re-
spectively. In particular, this study classified seismicity
anomalies into pre-seismic, coseismic and post-seismic
before, during and after massive earthquakes, respec-
tively. These scenarios may be helpful in interpreting
seismicity in western Japan prior to occurrences of ex-
pected subsequent large earthquakes along the Nankai
Trough.

4.3 Physical Implication of the ETAS Model and
Seismicity

In general, interactions among earthquakes are fairly
complex. Once an earthquake occurs in a particular lo-
cation, CFS of the fault system adjacent to the source
fault is considerably increased, and many earthquakes
are induced. Traditionally, these earthquakes are called
as aftershocks. Some of them are induced outside the
aftershock region; these are also called as off-fault af-
tershocks, or aftershocks in a broad sense. Significant

changes in stress result in many aftershocks; even small
changes can induce aftershocks to some extent. Fur-
thermore, any aftershock can change stress, too, caus-
ing their aftershocks. Because of such complex inter-
actions among invisible fault segments in the crust, de-
tailed calculations of such stress changes are difficult
and impractical.

Therefore, statistical models designed to describe the
actual macroscopic outcome of these stress interac-
tions are required. For example, the ETAS model in
equation (5), which consists of empirical laws of after-
shocks, quantifies dynamic forecasting of induced ef-
fects. By fitting to the selected data from the catalog
earthquake, this ETAS model determines the parame-
ters by the maximum-likelihood method. Thus, predic-
tion of earthquakes conforming to regional diversity is
possible.

On the other hand, the friction law of Dieterich
(1994), which was developed on the basis of rock frac-
ture experiments with controlled stress, can be linked
to statistical laws of earthquake occurrences. In par-
ticular, this law reproduces temporal and spatial distri-
bution of the attenuation rate of aftershocks, such as
that determined by the O–U law in equation (2). How-
ever, because of seismicity diversity, predictions adapt-
ing well to development of seismicity appear to be dif-
ficult.

Seismicity anomalies can hardly be detected by ob-
serving conventional plots of earthquake series because
they show a complex generation due to successive oc-
currences of earthquakes or clustering. The clustering
nature is also the main difficulty for traditional statisti-
cal test analysis. Complexity due to the clustering fea-
ture creates difficulties in revealing anomalies of seis-
micity caused by slight stress changes, hence, various
anomalous signals are missed.

Therefore, some seismologists have devised various
declustering methods that include only isolated and
largest earthquakes in a clustering group or the main
shock, and other earthquakes are excluded. On the ba-
sis of declustered data, statistical significance of seis-
mic quiescence was tested against the Poisson process.
Occasionally, however, analysis results depend on the
choice of criteria of the adopted declustering algorithm
(Van Stiphout, Zhuang and Marsan, 2012). Hence, re-
sults could be due to artificial treatment. In addition,
declustering methods result in a significant loss of in-
formation because they discard a large amount of data
from the original catalog.

The ETAS model uses original earthquake data with-
out declustering. As mentioned in Section 2.2.3, the
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FIG. 4. Shallow earthquakes in the inland rectangular region in (a) were analyzed from August 2002–July 2003 to investigate the effect
of the M7.0 earthquake in 2003. CFS increments of this region took the largest values transferred from the M7.0 earthquake that is shown
by the small rectangle fault located at (141.7°E, 38.8°N) at a depth of 71 km. Epicenters and latitude versus time are shown in (a) and (b),
respectively. The occurrence time of the M7.0 earthquake is shown in each panel as the vertical dotted line indicated by TJ. The ETAS model
was fitted to the data from the target period (TS, TJ). The panel (c) shows cumulative numbers and magnitude versus ordinary time; and
the panel (d) shows these values against the transformed time determined in equation (7) by the estimated ETAS model. The black and grey
cumulative function in panels (c) and (d) show the empirical cumulative function (step function) and the theoretical one (curve and straight
line) estimated and then predicted by the ETAS model, respectively. At the southeastern corner of the inland rectangular region, a large M6.2
earthquake (occurrence time indicated by TM) and its largest M5.5 foreshock (indicated by TF) occurred on July 26, 2003. The panel (d)
shows that the foreshock activity was more active than was expected, which is seen from the steepest slope of the cumulative function in (d).
In contrast, the aftershock activity of the M6.2 earthquake, during the period TM-Tend, appears to be similar to predicted rates in (d). Dotted
parabola-like envelope curves show twofold standard deviations (95% error bands) of cumulative numbers of the transformed time.

ETAS model is a point process model configured to
conform to empirical laws derived from various stud-
ies such as aftershocks in Japan and the time evolu-
tion of seismicity rate. Because regional characteris-
tics of earthquake occurrences can be captured and
considered as typical seismicity in this model, it has
been accepted by seismologists as a standard model
of ordinary seismicity. The ETAS model is used as a
“barometer” for detecting significant deviations from
normal activities as demonstrated in Figure 4 in Ogata
(2005a).

5. SEISMICITY ANOMALIES FOR
INTERMEDIATE-TERM FORECASTS

5.1 Seismicity Quiescence Relative to the ETAS
Model

The deviation of actual cumulative number of earth-
quakes is measured relative to the theoretical cumu-
lative function of the earthquake that serves as an in-
definite integral in time for the predicted rate func-
tion (7) of the ETAS model. Relative quiescence occurs
when actual earthquake occurrence rates are systemat-
ically lowered in comparison with the predicted inci-
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dence that is determined by the ETAS model (Ogata,
1992). Relative quiescence lasting for many years was
observed in a broad region before great earthquakes of
M8 class and larger occurred in and near Japan (Ogata,
1992, 2006b). Similar phenomena were observed be-
fore M9-class large earthquakes in other regions of the
world.

Since 2001, I have reported 25 agendas of vari-
ous seismicity anomalies and forecasting proposals in
Japan at the Coordinating Committee for Earthquake
Prediction of Japan (CCEP). Except the agenda that re-
ported seismic quiescence of aftershock activity before
the largest aftershock (see Section 6.2 for detail), all
were ex-post analysis report; the agendas were sum-
marized in Ogata (2009). In addition, among 76 af-
tershock cases in Japan that I have investigated, rela-
tive quiescence was observed in 34 (see Ogata, 2001b,
and its appendix for details of the case studies). More-
over, Section 5.4 includes a discussion on the manner
in which results of this aftershock study will be used
for space–time probability prediction of a neighboring
large earthquake with a size similar to that of the main
shock.

Here, I will note the results on the aftershock re-
search of inland earthquakes of M6.0 or larger in south-
western Japan that occurred 30 years before and af-
ter the M8.1 Nankai earthquake in 1946. Among six
earthquakes which occurred before 1946, relative qui-
escence was observed in five aftershock sequences. In
contrast, among seven earthquakes after 1946, rela-
tive quiescence was not observed in six aftershock se-
quences, and these aftershock sequences were on track
as expected. Since the ERC forecasts the next large
earthquake for the next 30 years 60–70% (see Sec-
tion 2.3, also see Ogata, 2001b and 2002), it would be
worthy to monitor recent and future aftershock activity
of similar large inland earthquakes.

5.2 Aseismic Slip, Stress Change and Seismicity
Anomalies

Since a dense GPS observation network was estab-
lished in Japan, aseismic fault motions or slow slips
that could not be detected by seismometers have been
successively identified in the plate boundary regions.
We can take occurrence of such motion into account in
discussing the relationship between seismicity anoma-
lies (quiescence or activation) and stress changes.

Specifically, it can be assumed that slow slips on a
focal fault or its adjacent part have occurred during a
particular period. Then, depending on dominating ori-
entations of receiver faults neighboring the focal fault,

CFS could decrease or increase. Accordingly, we ex-
pect that seismicity there decrease or increase relative
to the expected occurrence rate by the ETAS model.
Such seismicity anomalies are revealed before some
recent large earthquakes (Ogata, 2005b, 2007, 2010a,
2011c; and Kumazawa, Ogata and Toda, 2010). See
Figure 5 for an example. By assuming slow slip on the
source fault, the peripheral regions were classified as
either of the increasing or decreasing CFS. Then, each
region can theoretically correspond to an area that ei-
ther promoted or suppressed seismicity. Such anomaly
patterns of seismicity relative to the ETAS model (5)
are in good agreement with those of CFS increment.

5.3 Variation of Local Stress Deduced from
Spatio-Temporal Variation of Aftershocks

Local anomalies occur in space–time locations of
most of the aftershocks. To elucidate these anomalies,
we firstly apply the O–U formula (2) for aftershock de-
cay to data of occurrence times and convert these times
by the estimated theoretical cumulative function (7).
We then examine whether space–time coordinates on a
projected line, such as longitude and latitude, against
the converted time remained temporally uniform or
not. If nonuniformity in a certain portion of space–
time conversion is observed, this implies discrepan-
cies between theoretical and actual aftershock occur-
rences in such a place. Several possible scenarios for
such discrepancies are offered: Secondary aftershocks
that follow a large aftershock are obvious once seen as
a cluster. Such a cluster shows traces of a new local
rupture to extend the peripheral portion of the fault of
the main shock. Moreover, when a nonuniform portion
other than the secondary aftershocks is observed, it is
crucial for us to explore the reasons.

Based on recent accurate aftershock location data,
Ogata (2010b) revealed local relative quiescence and
activations; these can occur associated with post- or
pre-slips of a large aftershock. These anomalies were
systematically investigated assuming that they were re-
lated to changes in the CFS rate. In addition, assum-
ing several scenarios of stress changes due to slow
slips, Ogata and Toda (2010) and Ogata (2010b) per-
formed simulations to reproduce seismicity anomalies
of relative activation and quiescence within aftershocks
on the basis of the rate/state friction law of Dieterich
(1994).

5.4 Space–Time Probability Gain of a Large
Earthquake Under Relative Quiescence of
Aftershocks

The probability of relative quiescence being precur-
sor to a large earthquake must be evaluated with their
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FIG. 5. (a) Seismic activity for the eight years period before the M6.8 earthquake of 2004. Dominating fault slip orientations of earthquakes
in this area are similar to those of the main shock and its aftershocks. The small black rectangle in the center of the magnified geographical
map shows the main shock fault model determined by the GPS observations. The regions of thin and thick contours show positive and
negative Coulomb failure stress (CFS) increments, respectively, assuming that slow slips in the source have occurred for some time. These
define four subregions N, S, W and E used for the following ETAS analysis. (b) The four panels show the empirical cumulative curve
(thin black) of the sequence of earthquakes of magnitude 2 or larger in each of the four divided subregions from 1997 until the M6.8
earthquake (downward arrows). Thick gray curves show estimated and predicted cumulative functions before and after each change-point
time, respectively. Activation and quiescence relative to those predicted by the ETAS model agrees with increase and decrease in CFS,
respectively.

likely time and location. Because these involve many
conditions and a number of parameters, they cannot be
easily stated. However, by statistical studies of after-
shock sequences in Japan (Ogata, 2001a), what I can
say about a probability gain that a large earthquake
will occur is as follows: First, if a large earthquake oc-
curred in a particular location, the probability per unit
area that another earthquake of similar magnitude will
occur in the vicinity is greater than that which will oc-
cur in a distant area. This is the result of simple statis-
tics regarding the self-similarity feature (inverse-power
law correlations), and also physically suggests that the
neighboring earthquake will be more probably induced
by a sudden stress change on the periphery because
of the abrupt slip of the earthquake. Moreover, if af-
tershock activity becomes relatively quiet, it becomes
more likely that large aftershocks will occur around
the boundary of the aftershock area. Furthermore, if
relative quiescence lasts for a sufficiently long time
more than a few months, the probability that another
earthquake of similar magnitude will increase within

six years in the vicinity of the aftershock area within
200 km distance.

6. SEISMICITY AND GEODETIC ANOMALIES

6.1 Aseismic Slip and Crustal Deformation

The Geological Survey Institute (GSI) of Japan com-
piles daily geodetic locations of global positioning sys-
tem (GPS) stations throughout Japan, and baseline dis-
tances between GPS stations can be calculated from
data in the GPS catalog. The geodetic time series show
that contraction or extension of the distance between
stations is basically linear with time because the sub-
ducting plate converges with constant speed. However,
several years prior to large inland earthquakes of M7
class, the time series of the baseline distance variation
around the fault was observed with systematic devia-
tion from a linear trend (Ogata, 2007, 2010a, 2011c;
Kumazawa, Ogata and Toda, 2010; GSI, 2009). Each
deviation of these baselines was consistently explained
by slow slips on the earthquake source fault or on its
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down-dip extension. These results were due to post-
hoc analysis based on knowledge of the source fault
obtained by coseismic displacement.

From a predictive perspective, it is highly desirable
to estimate such a fault slip in near real-time to that
of occurrence. So far, several estimates of sufficiently
large slips on plate boundaries have been obtained from
GPS records by inversion analysis. GSI has regularly
reported such estimates of coseismic, post-seismic and
large-size habitual slips, at the CCEP meeting. How-
ever, it is difficult to obtain fine images of small slips,
particularly in inland, even though inland GPS stations
are arranged closely. This is attributed to high seismic-
ity rather than GPS observation errors. Because strong
earthquakes occur frequently, various effects of slow
slips in GPS records are mixed up with such stronger
changes. Hence, development of statistical models and
methods to separate such signals is crucial. To estimate
slow slips more precisely, combined modeling and
analysis of seismicity and geodetic anomalies will be
useful. Analyzing both seismicity and transient geode-
tic movements in a number of areas and locating the
area of aseismic slip is very important for increasing
the probability gain of a large earthquake.

6.2 Considering the Scenario of an Earthquake
from Aseismic Slip

Observed anomalies of crustal movement and seis-
micity assume fault mechanisms and locations of slip
precursors for prediction probability; therefore, their
uncertainty must be estimated. In addition, probabili-
ties of considered scenarios must be estimated. Such
tasks are difficult. A possible method is to consider
the logic tree of various scenarios regarding destruc-
tion of the fault system by attaching appropriate sub-
jective or objective probabilities to tree components,
as was performed for long-term predictions in Califor-
nia and Japan. Hence, such a scenario ensemble gives
a forecast probability. Similarly, medium- and short-
term prediction logic trees of various scenarios must
be considered.

At the CCEP meeting on April 6, 2005, I reported
relative quiescence of aftershocks of the Fukuoka–
Oki earthquake (Ogata, 2005d). In addition, I exam-
ined potential slow slip areas on nearby active faults
that may have created a stress shadow (region of de-
creased CFS) to cause relative quiescence in the after-
shock sequence. Among these areas, the Kego fault,
traversing Fukuoka City, had a large positive �CFS
because of the main shock rupture, which showed evi-
dence of possible slow-slip induction. Furthermore, the

seismogenic zone along the Kego fault had already ac-
tivated before the Fukuoka–Oki earthquake occurred
(Ogata, 2010a). Therefore, because a slow-slip sce-
nario on this fault was possible, I examined the pattern
causing stress variation in the aftershock area. How-
ever, no stress shadow in the aftershock area was found.
Therefore, I determined that probability of slow slip on
the Kego fault was quite low. I also examined whether
other possible slow slips in neighboring active faults
could create a stress shadow that covered the after-
shock region. However, no large earthquake has oc-
curred in those faults thus far.

Approximately one month later, however, the largest
aftershock occurred at the southeast end of the after-
shock zone. Post-mortem examination based on infor-
mation of the fault mechanism of this aftershock and
detailed aftershock data revealed a detailed scenario.
This means that by assuming a slow slip into the gap
between the fault of the largest aftershock and main
shock, relative quiescence of activity in the deeper part
of the aftershock zone can be clearly explained (Ogata,
2006a). Moreover, the slip can explain relative quies-
cence in the induced swarm activity that occurred away
from the aftershock area (Ogata, 2006a).

This setting as a prediction of future scenarios is
much more vague and difficult to explain, even if it
includes an ex-post scenario. Moreover, the time of
occurrence must be predicted in addition to location,
which is more difficult. Occurrence of slow slip does
not always indicate a proximate precursor of fault cor-
ruption. Nevertheless, it is desired to keep observing
GPS data to form scenarios of forthcoming large earth-
quake. For example, using Bayesian inversion by us-
ing GPS records, Hashimoto et al. (2009) estimated
the locked zones on the plate boundary, where the next
great earthquakes are expected.

7. CONCLUSIONS

To predict the future of a complex and diverse earth-
quake generation process, probability forecasting can-
not be avoided. The likelihood (log-likelihood) is ra-
tional to measure the performance of the prediction.
To provide a standard stochastic prediction of seismic
activity in long term and short term, it is necessary to
construct proper point process models and revise those
that conform to each region. By the appearance of the
anomaly, we need to evaluate the probability that it will
be a precursor to a large earthquake. Namely, we need
to forecast that the probability in a space–time zone
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will increase to an extent, relative to those of the ref-
erence probability. For this, we make use of a point
process model for the causality relationship.

It is desired to search any anomaly phenomena that
enhance the probability gains. Having such anoma-
lies, application of the multiple element prediction for-
mula increases a precursory probability. A compre-
hensive physical study between precursory phenomena
and earthquake mechanisms is essential for composing
useful point process models. These elements must be
incorporated to achieve predicted probability exceed-
ing predictions of typical statistical models.

Furthermore, to determine urgency and uncertainty
of major earthquakes against abnormal phenomena,
numerous research examples must be accumulated. On
the basis of these examples, possible prediction scenar-
ios must be presented. Furthermore, to adapt well to
diversity of earthquake generation, it is useful to adopt
Bayesian predictions (Akaike, 1980b; Nomura et al.,
2011) and consider region-specific models.

My experiences thus far confirm that the method of
statistical science is essential to elucidate movement
leading to prediction of a complex system. There is
a need for development of a forecasting model that
reflects diversity of the vast amount of information
on seismicity and various covariate data. I believe
that these will be developed by inventing an appropri-
ate hierarchical Bayesian model. Space–time models
for seismicity have become increasingly complicated
(Ogata, 1998, 2004a, 2011b; Ogata, Katsura and Tane-
mura, 2003; Ogata and Zhuang, 2006).

A similar evolution is required for statistical models
of geodetic GPS data.
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