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Test for a Mean Vector with Fixed or
Divergent Dimension
Liang Peng, Yongcheng Qi and Fang Wang

Abstract. It has been a long history in testing whether a mean vector with
a fixed dimension has a specified value. Some well-known tests include the
Hotelling T 2-test and the empirical likelihood ratio test proposed by Owen
[Biometrika 75 (1988) 237–249; Ann. Statist. 18 (1990) 90–120]. Recently,
Hotelling T 2-test has been modified to work for a high-dimensional mean,
and the empirical likelihood method for a mean has been shown to be valid
when the dimension of the mean vector goes to infinity. However, the asymp-
totic distributions of these tests depend on whether the dimension of the mean
vector is fixed or goes to infinity. In this paper, we propose to split the sam-
ple into two parts and then to apply the empirical likelihood method to two
equations instead of d equations, where d is the dimension of the underlying
random vector. The asymptotic distribution of the new test is independent of
the dimension of the mean vector. A simulation study shows that the new test
has a very stable size with respect to the dimension of the mean vector, and
is much more powerful than the modified Hotelling T 2-test.
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1. INTRODUCTION

Suppose X1 = (X1,1, . . . ,X1,d)T , . . . ,Xn = (Xn,1,

. . . ,Xn,d)T are independent random vectors having
common distribution function F with mean μ and co-
variance matrix �. It has been a long history to test
H0 :μ = μ0 against Ha :μ �= μ0 for a given μ0. When
the dimension d is fixed, a traditional test is the so-
called Hotelling T 2-test defined as

T 2 = (X̄n − μ0)
T

·
{

1

n − 1

n∑
i=1

(Xi − X̄n)(Xi − X̄n)
T

}−1

· (X̄n − μ0),
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where X̄n = 1
n

∑n
i=1 Xi . Another commonly used one

is the empirical likelihood ratio test proposed by Owen
(1988, 1990). More specifically, by defining the empir-
ical likelihood function as

L(μ) = sup

{
n∏

i=1

(npi) :p1 ≥ 0, . . . , pn ≥ 0,

(1)
n∑

i=1

pi = 1,

n∑
i=1

piXi = μ

}
,

Owen (1988, 1990) showed that the Wilks theo-
rem holds under some regularity conditions, that is,
−2 logL(μ0) converges in distribution to a chi-square
limit with d degrees of freedom, where μ0 denotes the
true value of the mean of Xi . Therefore, based on the
chi-square limit, one can construct a confidence region
for μ or test H0 :μ = μ0 against Ha :μ �= μ0.

Without assuming a family of distributions for the
data, the empirical likelihood ratio statistics can be de-
fined to share similar properties as the likelihood ra-
tio for parametric distributions. For instance, the em-
pirical likelihood method produces confidence regions
whose shape and orientation are determined entirely by
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the data. In comparison with the normal approximation
method and the bootstrap method for constructing con-
fidence regions, the empirical likelihood method does
not require a pivotal quantity, and it has better small
sample performance (see Hall and La Scala, 1990). For
more details on empirical likelihood methods, we refer
to Owen (2001) and the recent review paper of Chen
and Van Keilegom (2009).

Motivated by applications in neuroimaging and
bioinformatics studies, some tests for a mean vector
with divergent dimension have been proposed in the lit-
erature. It is known that, as the dimension is large, the
calculation of the inverse of the sample covariance ma-
trix in Hotelling T 2-test statistic becomes problematic
and the sample covariance matrix may diverge when
d/n → c > 0; see Yin, Bai and Krishnaiah (1988).
Moreover, Hotelling T 2-test is valid only when d < n.
In order to allow d > n, one may remove the sample
matrix in Hotelling’s T 2-test statistic and avoid the sin-
gularity of the sample covariance. This is exactly what
has been done in Bai and Saranadasa (1996) and Chen
and Qin (2010) for the two-sample test problem. The
one-sample analogues of the two-sample test statistics
in Bai and Saranadasa (1996) and Chen and Qin (2010)
lead to the following test statistics:

Mn = (X̄n − μ0)
T (X̄n − μ0)

− n−1 tr

(
1

n − 1

n∑
i=1

(Xi − X̄n)(Xi − X̄n)
T

)

and

Fn = n−1(n − 1)−1
n∑

i �=j

(Xi − μ0)
T (Xj − μ0),

respectively, where tr means the trace of a matrix. It is
easy to check that

Mn = 1

n2

n∑
i=1

n∑
j=1

(Xi − μ0)
T (Xj − μ0)

− 1

n(n − 1)

· tr

{
n∑

i=1

(Xi − μ0)(Xi − μ0)
T

− n−1
n∑

i=1

n∑
j=1

(Xi − μ0)(Xj − μ0)
T

}

= 1

n2

n∑
i=1

n∑
j=1

(Xi − μ0)
T (Xj − μ0)

− 1

n(n − 1)

·
{

n∑
i=1

(Xi − μ0)
T (Xi − μ0)

− n−1
n∑

i=1

n∑
j=1

(Xi − μ0)
T (Xj − μ0)

}

= 1

n(n − 1)

n∑
i=1

n∑
j=1

(Xi − μ0)
T (Xj − μ0)

− 1

n(n − 1)

n∑
i=1

(Xi − μ0)
T (Xi − μ0)

= Fn.

That is, the test in Bai and Saranadasa (1996) is
the same as that in Chen and Qin (2010) when the
one-dimensional data is concerned. As mentioned in
the end of Section 3 of Chen and Qin (2010), the
asymptotic behavior of Fn depends on whether d is
fixed or goes to infinity. Alternatively, Srivastava and
Du (2008) and Srivastava (2009) proposed to replace
the covariance matrix in Hotelling T 2-test statistic
by a diagonal matrix. Rates of convergence for the
high-dimensional mean are studied by Kuelbs and
Vidyashankar (2010). For nonasymptotic studies, we
refer to Arlot, Blanchard and Roquain (2010a, 2010b).

Although it is known that the empirical likelihood
method performs worse when the dimension d is large
and the sample size n is not large enough, Hjort,
McKeague and Van Keilegom (2009) and Chen, Peng
and Qin (2009) showed that the empirical likelihood
method for a fixed-dimensional mean is still valid
when d = d(n) → ∞ as n → ∞. More specifically,
they showed under some regularity conditions that
(2d)−1/2{−2 logL(μ0) − d} converges in distribution
to a standard normal if d → ∞ as n → ∞. That is, the
limiting distribution differs when the dimension of the
mean vector is fixed or diverges.

Now, the question is whether there exists a way to
test H0 :μ = μ0 against Ha :μ �= μ0 without distin-
guishing the dimension of μ is finite or goes to in-
finity. Motivated by the tests in Bai and Saranadasa
(1996) and Chen and Qin (2010), we propose to ap-
ply the empirical likelihood method to the equation
E{(X1 −μ0)

T (X2 −μ0)} = 0 instead of EX1 = μ0 for
testing H0 :μ = μ0 against Ha :μ �= μ0, where X1 and
X2 are independent and identically distributed random
vectors with mean μ. Although the equation E{(X1 −
μ0)

T (X2 −μ0)} = 0 is equivalent to H0 :μ = μ0, a test
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only based on the equation E{(X1 −μ0)
T (X2 −μ0)} =

0 has a poorer power than a test based on EX1 = μ0.
The reason is that E{(X1 −μ0)

T (X2 −μ0)}/d = δ2/n

instead of the standard order 1/
√

n when EX1 = μ0 +
δ1d/

√
n, where 1d = (1, . . . ,1)T is a d-dimensional

vector. To overcome this issue so as to improve the test
power, we propose to add one more linear equation.
More specifically, we propose to consider the follow-
ing two equations:

E
{
(X1 − μ0)

T (X2 − μ0)
} = 0

and

E
{
1T
d (X1 + X2 − 2μ0)

} = 0.

It is easy to see that E{1T
d (X1 + X2 − 2μ0)}/d =

O(1/
√

n) rather than O(1/n) when EX1 = μ0 +
δ1d/

√
n. The first equation ensures the consistency of

the proposed test, and the second equation enhances
the power in detecting a deviation. It turns out that the
empirical likelihood method based on the above two
equations works for either fixed d or divergent d . This
differs from the results in Bai and Saranadasa (1996)
and Chen and Qin (2010). More interestingly, the new
method allows one to easily include more independent
equations if such equations characterize the departure
from the null hypothesis and are available. On the other
hand, when the number of equations becomes large, the
minimization in the empirical likelihood method turns
out to be nontrivial.

We organize this paper as follows. In Section 2 the
new methodology and main results are given. Section 3
presents a simulation study. All proofs are given in Sec-
tion 4.

2. METHODOLOGY

Assume X1 = (X1,1, . . . ,X1,d)T , . . . ,Xn = (Xn,1,

. . . ,Xn,d)T are independent and identically distributed
random vectors having common distribution function
F with mean μ and covariance matrix �. For test-
ing H0 :μ = μ0 against Ha :μ �= μ0 for a given μ0,
we propose to apply the empirical likelihood method
to the equations E{(X1 − μ0)

T (X2 − μ0)} = 0 and
E{1T

d (X1 + X2 − 2μ0)} = 0. In order to have two in-
dependent samples, we simply split the first m = [n/2]
observations into a subsample and the second m ob-
servations into another subsample, and put Yi(μ) =
(ui(μ), vi(μ))T , where

ui(μ) = (Xi − μ)T (Xi+m − μ),

vi(μ) = 1T
d (Xi + Xi+m − 2μ) for i = 1, . . . ,m.

Hence, {Yi(μ),1 ≤ i ≤ m} are i.i.d. bivariate random
vectors. Define the empirical likelihood function as

L̃(μ) = sup

{
m∏

i=1

(mpi) :p1 ≥ 0, . . . , pm ≥ 0,

(2)
m∑

i=1

pi = 1,

m∑
i=1

piYi(μ) = 0

}
.

By the Lagrange multiplier technique, we have pi =
m−1{1 + βT Yi(μ)}−1 for i = 1, . . . ,m and l̃(μ) =
−2 log L̃(μ) = 2

∑m
i=1 log{1 + βT Yi(μ)}, where β =

β(μ) = (β1(μ),β2(μ))T satisfies

1

m

m∑
i=1

Yi(μ)

1 + βT Yi(μ)
= 0.(3)

Write � = (σi,j )1≤i≤d,1≤j≤d = E{(X1 − μ)(X1 −
μ)T }, the covariance matrix of X1, and use λ1 ≤ · · · ≤
λd to denote the d eigenvalues of the matrix �. Note
that λi ’s may depend on n when d depends on n.

First we show the Wilks theorem under very general
conditions.

THEOREM 1. Assume
∑d

i=1
∑d

j=1 σi,j > 0 and for
some δ > 0

E|u1(μ)|2+δ

(
∑d

i=1
∑d

j=1 σ 2
i,j )

(2+δ)/2
= o

(
n(δ+min(δ,2))/4)

(4)

and

E|v1(μ)|2+δ

(
∑d

i=1
∑d

j=1 σi,j )(2+δ)/2
= o

(
n(δ+min(δ,2))/4)

.(5)

Then under H0 :μ = μ0, l̃(μ0) converges in distribu-
tion to a chi-square limit with two degrees of freedom
as n → ∞.

Based on the above theorem, one can test H0 :μ =
μ0 against Ha :μ �= μ0. A test with level α is to reject
H0 when l̃(μ0) > ξ1−α , where ξ1−α is the (1 − α)th
quantile of a chi-square limit with two degrees of free-
dom.

Note that the proposed method works as well if one
is interested in testing the difference of two mean vec-
tors based on paired data. However, it is not applicable
to the two-sample case with different sample sizes.

Next we verify Theorem 1 by imposing conditions
on the moments and dimension of the random vector:

(A1): 0 < C1 ≤ lim infn→∞ λ1 ≤ lim supn→∞ λd ≤
C2 < ∞ for some constants C1 and C2;

(A2): For some δ > 0, 1
d

∑d
i=1 E|X1,i − μi |2+δ =

O(1); and
(A3): d = o(n(δ+min(δ,2))/(2(2+δ))).



116 L. PENG, Y. QI AND F. WANG

COROLLARY 1. Assume conditions (A1)–(A3)
hold. Then conditions (4) and (5) are satisfied and,
thus, Theorem 1 holds.

Condition (A3) is a somewhat restrictive condition
for the dimension d . Note that conditions (A1) and
(A2) are related only to the covariance matrix and
higher moments on the components of the random vec-
tors. Condition (A3) can be removed for models with
some special dependence structures. For comparisons,
we prove the Wilks theorem for the proposed empirical
likelihood method under the following model B con-
sidered by Bai and Saranadasa (1996), Chen, Peng and
Qin (2009) and Chen and Qin (2010):

Model B. Xi = 	Zi + μ for i = 1, . . . , n, where
	 is a d × k matrix with 		T = � = (σi,j ) and
Zi = (Zi,1, . . . ,Zi,k)

T are i.i.d. random k-vectors with
EZi = 0, Var(Zi) = Ik×k , EZ4

i,j = 3 + 
 < ∞ and

E
∏k

l=1 Z
νl

i,l = ∏k
l=1 EZ

νl

i,l whenever ν1 + · · · + νk = 4
for nonnegative integers νl’s.

THEOREM 2. Assume
∑d

i=1
∑d

j=1 σi,j > 0. Then

under model B and H0 :μ = μ0, l̃(μ0) converges in
distribution to a chi-square limit with two degrees of
freedom as n → ∞.

THEOREM 3. Assume
∑d

i=1
∑d

j=1 σi,j > 0 and put

τ = m‖μ0 − μ‖4∑d
i=1

∑d
j=1 σ 2

i,j

+ 2m(1T
d (μ0 − μ))2∑d

i=1
∑d

j=1 σi,j

.

Then under model B and Ha :μ �= μ0, we have

P
(
l̃(μ0) > ξ1−α

) = P
(
χ2

2,τ > ξ1−α

) + o(1)(6)

as n → ∞, where ξ1−α denotes the (1 − α)th quantile
of a chi-square limit with two degrees of freedom, and
χ2

2,τ denotes a noncentral chi-square random variable
with two degrees of freedom and noncentrality param-
eter τ .

REMARK 1. It can be seen from the proof of
Theorem 2 that assumption EZ4

i,j = 3 + 
 < ∞ in
model B can be replaced by the much weaker condi-
tion max1≤j≤k EZ4

1,j = o(m).

REMARK 2. Unlike Bai and Saranadasa (1996)
and Chen and Qin (2010), there is no restriction on d

and k for our proposed method in Theorem 2. The only
constraint imposed on matrix 	 is also very weak, that
is,

∑d
i=1

∑d
j=1 σi,j > 0 or, equivalently,

∑d
i=1 X1,i is a

nondegenerate random variable.

REMARK 3. We notice that conditions (4) and (5)
in Theorem 1 impose some restriction on d implicitly.
Whether such a restriction can be relaxed or removed
depends on how sharp the moments in the right-hand
sides of (4) and (5) can be estimated. In Corollary 1,
since we do not assume any dependence structure
among the components of X1, the best order of d al-
lowed in (A3) is less than n1/2 even for bounded X1.
On the other hand, since model B assumes that the
components of X1 are linear combinations of some or-
thogonal random variables, conditions (4) and (5) be-
come trivial and, consequently, the restriction on d is
removed in Theorem 2.

REMARK 4. When the test in Bai and Saranadasa
(1996) is applied to model B for one sample, its power
is

�

(
−ξ∗

1−α + n‖μ0 − μ‖2√
2

∑d
i,j=1 σ 2

i,j

)
+ o(1),(7)

where �(x) denotes the standard normal distribution
function and ξ∗

1−α denotes its (1 − α)th quantile; see
Theorem 4.1 of Bai and Saranadasa (1996). Under
model B, assumption (A1), d → ∞, and μ = μ0 +anμ̄

for an �= 0 and ‖μ̄‖ = 1, it follows from Lemma 1
in Section 4 that τ in Theorem 3 has the order 
1 =
na4

n

d
+ n(1T

d μ̄)2a2
n

d
, and the order of n‖μ0−μ‖2√

2
∑d

i,j=1 σ 2
i,j

in (7)

is 
2 = na2
n√
d

. When both 
1 → ∞ and 
2 → ∞,
the power of both tests goes to one. Due to the o(1)
term in Theorem 3 and (7), one cannot claim which
power goes to one faster in this case. When 0 <

lim inf
2 ≤ lim sup
2 < ∞ and
(1T

d μ̄)2
√

d
→ ∞, the test

in Bai and Saranadasa (1996) has a power bounded
from one, but the proposed new test has a power tend-
ing to one, that is, the proposed empirical likelihood
test is much more powerful than the test in Bai and
Saranadasa (1996) in this situation. However, when

0 < lim inf
2 ≤ lim sup
2 < ∞ and
(1T

d μ̄)2
√

d
→ 0, the

proposed empirical likelihood test is much less power-
ful. In this case, a different linear functional cT (Xi +
Xi+m − μ0) has to be employed to replace 1T

d (Xi +
Xi+m −μ0) so as to improve the test power, where c is
a d-dimensional constant. When 1T

d (Xi + Xi+m − μ0)

is replaced by any new functional cT (Xi +Xi+m −μ0)

in the definition of the empirical likelihood L̃(μ) given
in (2), similar results to Theorems 1, 2 and 3 can also
be derived easily. Moreover, the above 
1 becomes
na4

n

d
+ n(cT μ̄)2a2

n

d
. Therefore, when

(1T
d μ̄)2
√

d
→ 0, one can
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choose c such that lim inf (cT μ̄)2√
d

> 0 so as to improve
the power. However, as discussed in the Introduction,
it remains open on how to find such c or the optimal
linear functionals.

3. SIMULATION STUDY

We investigate the finite sample behavior of the pro-
posed empirical likelihood method (NELM) and com-
pare it with the Hotelling’s T 2-test (HT) and the test
statistic Mn in Bai and Saranadasa (1996) (BS) in terms
of size and power. A simulation reveals that the stan-
dard empirical likelihood method (OELM) in Owen
(1990) has a size much larger than the nominal level
when d > 20 and, thus, it makes no sense to compare
these two empirical likelihood methods.

Let W1, . . . ,Wd be independent and identically dis-
tributed random variables with distribution function ei-
ther the standard normal [notation N(0,1)] or t distri-
bution with 6 degrees of freedom [notation t (6)]. Con-
sider the following two models:

Model 1: X1,1 = W1 + δ/
√

n,X1,2 = W1 + W2 +
δ/

√
n, . . . ,X1,d = Wd−1 + Wd + δ/

√
n.

Model 2:

(X1,1, . . . ,X1,d)T ∼ N
(
δ1d/

√
n,

(
0.5|i−j |)

1≤i,j≤d

)
,

where δ ∈ R and n is the sample size. The question is
to test H0 :μ = 0 against Ha :μ �= 0. Hence, the case of
δ = 0 denotes the size of tests. It is easy to check that
these two models are a special case of model B in Sec-
tion 2. For example, model 1 corresponds to model B
with

	 =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
· · · · · · · ·
0 0 0 · · · 1 1

⎞
⎟⎟⎟⎟⎠

and
∑d

i=1
∑d

j=1 σi,j = 4d −3,
∑d

i=1
∑d

j=1 σ 2
i,j = 6d −

5. Hence, Theorem 2 holds for model 1 without re-
striction on the dimension d , and τ in Theorem 3
equals md2δ4

(6d−5)n2 + 2md2δ2

(4d−3)n
. Moreover, 
1 and 
2 de-

fined in Remark 4 are dδ2 and
√

dδ2, respectively,
as d → ∞. Hence, theoretically the proposed empir-
ical likelihood method is much more powerful when√

dδ2 is bounded away from infinity. When δ is fixed,
both tests have a power tending to one. In this case
Theorem 3 and equation (7) in Remark 4 cannot be
used to claim which test is more powerful theoreti-
cally, but the simulation results below show that the

empirical likelihood method is still more powerful.
Similarly, we can verify that Theorem 2 holds for
model 2 without restriction on the dimension as well
and τ = md

n2
δ4

5/3−8(1−0.52d )d−1/9
+ md

n
2δ2

3−4(1−0.5d )d−1 in

Theorem 3. Using Remark 4, we conclude that the
proposed empirical likelihood method for model 2 is
more powerful than the test in Bai and Saranadasa
(1996) when

√
dδ2 is bounded away from infinity and

d → ∞. When δ is fixed and d → ∞, both tests have a
power tending to one and theoretical comparison does
not exist. However, the following simulation results
show that the proposed empirical likelihood method is
more powerful.

By drawing 10,000 random samples of sample size
n = 100 and 300 from X = (X1,1, . . . ,X1,d)T with
d = 5,10,15, . . . ,200 and δ = 0,0.1,0.5, we calculate
the empirical sizes and powers of those tests mentioned
above.

In Figure 1 we plot the empirical sizes (i.e., δ = 0) of
these tests against d = 5,10, . . . ,200 at a nominal level
0.05. Note that the Hotelling’s T 2-test only works for
d < n. As we see, the size of the proposed empirical
likelihood method is slightly larger than the nominal
level and less accurate than the other two tests when
n = 100, but it becomes close to the nominal level and
comparable to the other two tests when n = 300.

In Figures 2 and 3 the powers for δ = 0.1 and 0.5 are
plotted against d = 5,10, . . . ,200 at level 0.05. These
figures clearly show that the proposed empirical likeli-
hood method is much more powerful than others espe-
cially when d becomes relatively large.

In conclusion, the proposed empirical likelihood
method has a stable size with respect to the dimension
and a large power, and performs well for all consid-
ered d .

4. PROOFS

In the proofs we use ‖ · ‖ to denote the L2 norm of a
vector or matrix. Without loss of generality, we assume
μ0 = 0. Write ui = ui(0) and vi = vi(0) for 1 ≤ i ≤ m.
Then it is easily verified that

E(u1) = E(v1) = E(u1v1) = 0,

Var(u1) =
d∑

i,j=1

σ 2
i,j =: π11

and

Var(v1) = 2
d∑

i,j=1

σi,j =: π22.
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FIG. 1. Sizes of tests are plotted against d = 5,10, . . . ,200 for δ = 0 and level 0.05. The upper, middle and lower panels represent model 1
with Wi ∼ N(0,1), model 1 with Wi ∈ t6 and model 2, respectively. Solid line is the nominal level.
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FIG. 2. Powers of tests are plotted against d = 5,10, . . . ,200 for δ = 0.1 and level 0.05. The upper, middle and lower panels represent
model 1 with Wi ∼ N(0,1), model 1 with Wi ∈ t6 and model 2, respectively. Solid line is the nominal level.
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FIG. 3. Powers of tests are plotted against d = 5,10, . . . ,200 for δ = 0.5 and level 0.05. The upper, middle and lower panels represent
model 1 with Wi ∼ N(0,1), model 1 with Wi ∈ t6 and model 2, respectively. Solid line is the nominal level.
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LEMMA 1.

tr(�4) = O
((

tr(�2)
)2)

,

π11 =
d∑

j=1

λ2
j

and

2dλ1 ≤ π22 ≤ 2dλd.

PROOF. Since tr(�j ) = ∑d
i=1 λ

j
i for any positive

integer j , the first equality follows immediately. The
second equality follows since π11 = tr(�2). The third
inequalities on π22 can be proved easily. The proof of
the lemma is complete. �

LEMMA 2. Assume conditions (4) and (5) hold.
Then

1√
m

m∑
i=1

⎛
⎜⎝

ui√
π11
vi√
π22

⎞
⎟⎠ d→ N(0, I2),(8)

∑m
i=1 u2

i

mπ11
− 1

p→ 0,(9)

∑m
i=1 v2

i

mπ22
− 1

p→ 0,(10)

∑m
i=1 uivi

m
√

π11π22

p→ 0,(11)

where I2 is a 2 × 2 identity matrix. Moreover, we have

max
1≤i≤m

∣∣∣∣ ui√
π11

∣∣∣∣ = op

(
m1/2)

and

(12)

max
1≤i≤m

∣∣∣∣ vi√
π22

∣∣∣∣ = op

(
m1/2)

.

PROOF. Note that u1 and v1 are uncorrelated. To
show (8), we need to prove that for any constants a

and b with a2 + b2 �= 0,

1√
m

m∑
i=1

(
a

ui√
π11

+ b
vi√
π22

)
d→ N

(
0, a2 + b2)

.

Therefore, we shall verify the Lindeberg condition,
which is a consequence of the Lyapunov condition as
follows:

1

m(2+δ)/2

m∑
i=1

E

∣∣∣∣a ui√
π11

+ b
vi√
π22

∣∣∣∣
2+δ

= 1

mδ/2 E

∣∣∣∣a u1√
π11

+ b
v1√
π22

∣∣∣∣
2+δ

(13)

≤ (2|a|)2+δ

mδ/2 E

∣∣∣∣ u1√
π11

∣∣∣∣
2+δ

+ (2|b|)2+δ

mδ/2 E

∣∣∣∣ v1√
π22

∣∣∣∣
2+δ

→ 0

from conditions (4) and (5).
To show (9), we need to estimate E|∑m

i=1 u2
i −

mπ11|(2+δ)/2. We have from von Bahr and Esseen
(1965) that

E

∣∣∣∣∣
m∑

i=1

u2
i − mπ11

∣∣∣∣∣
(2+δ)/2

≤ 2mE
∣∣u2

1 − E
(
u2

1
)∣∣(2+δ)/2(14)

= O
(
mE|u1|2+δ),

if 0 < δ ≤ 2, and from Dharmadhikari and Jogdeo
(1969) that

E

∣∣∣∣∣
m∑

i=1

u2
i − mπ11

∣∣∣∣∣
(2+δ)/2

≤ Cm(2+δ)/4E
∣∣u2

1 − E
(
u2

1
)∣∣(2+δ)/2(15)

= O
(
m(2+δ)/4E|u1|2+δ),

if δ > 2. Therefore, by (14), (15) and (4) we have for
any ε > 0

P

(∣∣∣∣
∑m

i=1 u2
i

mπ11
− 1

∣∣∣∣ > ε

)

≤ ε−(2+δ)/2 E|∑m
i=1 u2

i − mπ11|(2+δ)/2

(mπ11)(2+δ)/2

= O

(
m−(δ+min(δ,2))/4E

∣∣∣∣ u1√
π11

∣∣∣∣
2+δ)

= o(1),

which implies (9). Similarly, we can show (10) and
(11). Equation (12) follows from the Lyapunov condi-
tion (13) by letting a = 1 and b = 0 or a = 0 and b = 1.
This completes the proof of the lemma. �

LEMMA 3. For any δ > 0

E|u1|2+δ ≤ dδ

(
d∑

i=1

E|X1,i |2+δ

)2

and

E|v1|2+δ ≤ 24+δd1+δ
d∑

i=1

E|X1,i |2+δ.
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PROOF. It follows from the Cauchy–Schwarz in-
equality that

|u1|2 ≤ ‖X1‖2‖Xm+1‖2.

Using the Cr inequality that E|∑d
i=1 Zi |r ≤ dr−1 ×∑d

i=1 E|Zi |r for any random variables Z1, . . . ,Zd and
positive constant r > 1, we conclude that

E|u1|2+δ ≤ E

(
d∑

i=1

X2
1,i

)(2+δ)/2

E

(
d∑

i=1

X2
m+1,i

)(2+δ)/2

=
(
E

(
d∑

i=1

X2
1,i

)(2+δ)/2)2

≤
(
dδ/2

d∑
i=1

E|X1,i |2+δ

)2

= dδ

(
d∑

i=1

E|X1,i |2+δ

)2

.

Similarly, from the Cr inequality we have

E|v1|2+δ ≤ 24+δE

(
d∑

i=1

|X1,i |
)2+δ

≤ 24+δd1+δ
d∑

i=1

E|X1,i |2+δ.

This completes the proof. �

PROOF OF THEOREM 1. Set u′
i = ui/

√
π11, v′

i =
vi/

√
π22 and Y ′

i = (u′
i , v

′
i )

T for i = 1, . . . ,m. Then it
is easy to see that

l̃(0) = −2 log L̃(0) = 2
m∑

i=1

log
{
1 + ρT Y ′

i

}
,

where ρ = (ρ1, ρ2)
T solves

1

m

m∑
i=1

Y ′
i

1 + ρT Y ′
i

= 0.(16)

It follows from Lemma 2 that

1√
m

m∑
i=1

Y ′
i

d→ N(0, I2),(17)

∥∥∥∥∥ 1

m

m∑
i=1

Y ′
i

(
Y ′

i

)T − I2

∥∥∥∥∥ p→ 0,(18)

max
1≤i≤m

∥∥Y ′
i

∥∥ = op

(
m1/2)

.(19)

Similar to the proof of (2.14) in Owen (1990), we
can show ‖ρ‖ = Op(m−1/2). Then it follows from (19)
that

max
1≤i≤m

∥∥∥∥ ρT Y ′
i

1 + ρT Y ′
i

∥∥∥∥ = op(1).

Therefore, we have from (16) that

0 = 1

m

m∑
i=1

ρT Y ′
i

1 + ρT Y ′
i

= 1

m

m∑
i=1

ρT Y ′
i

(
1 − ρT Y ′

i + (ρT Y ′
i )

2

1 + ρT Y ′
i

)

= 1

m

m∑
i=1

ρT Y ′
i − 1

m

m∑
i=1

(
ρT Y ′

i

)2 + 1

m

m∑
i=1

(ρT Y ′
i )

3

1 + ρT Y ′
i

= 1

m

m∑
i=1

ρT Y ′
i − (1 + op(1))

m

m∑
i=1

(
ρT Y ′

i

)2
,

which implies

1

m

m∑
i=1

ρT Y ′
i = (1 + op(1))

m

m∑
i=1

(
ρT Y ′

i

)2
.(20)

By using (16) and (18) we obtain

0 = 1

m

m∑
i=1

Y ′
i

1 + ρT Y ′
i

= 1

m

m∑
i=1

Y ′
i

(
1 − (

Y ′
i

)T
ρ + (ρT Y ′

i )
2

1 + ρT Y ′
i

)

= 1

m

m∑
i=1

Y ′
i − 1

m

m∑
i=1

Y ′
i

(
Y ′

i

)T
ρ + 1

m

n∑
i=1

Y ′
i (ρ

T Y ′
i )

2

1 + ρT Y ′
i

= 1

m

m∑
i=1

Y ′
i − 1

m

m∑
i=1

Y ′
i

(
Y ′

i

)T
ρ

+ Op

(
max

1≤i≤m

∥∥∥∥ Y ′
i

1 + ρT Y ′
i

∥∥∥∥ 1

m

n∑
i=1

(
ρT Y ′

i

)2
)

= 1

m

m∑
i=1

Y ′
i − 1

m

m∑
i=1

Y ′
i

(
Y ′

i

)T
ρ

+ op

(
m1/2ρT

(
1

m

n∑
i=1

Y ′
i

(
Y ′

i

)T )
ρ

)

= 1

m

m∑
i=1

Y ′
i − 1

m

m∑
i=1

Y ′
i

(
Y ′

i

)T
ρ + op

(
m−1/2)

,
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which implies

ρ =
(

1

m

m∑
i=1

Y ′
i

(
Y ′

i

)T )−1
1

m

m∑
i=1

Y ′
i + op

(
m−1/2)

.(21)

Finally, by using Taylor’s expansion, (20), (21), (17)
and (18), we obtain

l̃(0) = 2
m∑

i=1

ρT Y ′
i − (

1 + op(1)
) m∑

i=1

(
ρT Y ′

i

)2

= (
1 + op(1)

)
ρT

(
m∑

i=1

Y ′
i

(
Y ′

i

)T )
ρ

= (
1 + op(1)

)( 1√
m

m∑
i=1

Y ′
i

)T

·
(

1

m

m∑
i=1

Y ′
i

(
Y ′

i

)T )−1
1√
m

m∑
i=1

Y ′
i

+ op(1)

d→ χ2
2 as n → ∞.

This completes the proof of Theorem 1. �
PROOF OF COROLLARY 1. Equations (4) and (5)

follow from conditions (A1)–(A3) by using Lemmas 1
and 3. �

PROOF OF THEOREM 2. It suffices to verify con-
ditions (4) and (5) with δ = 2 in Theorem 1. As before,
assume μ0 = 0. Write 	 = (γi,j )1≤i≤d,1≤j≤k . Then
Var(X1) = � = 		T . Denote 1T

d 	 = (a1, . . . , ak)

and �′ = 	T 	 = (σ ′
j,l)1≤j,l≤k . Then v1 = v1(0) =∑k

j=1 aj (Z1,j + Z1+m,j ) and

u1 = u1(0) =
k∑

j=1

k∑
l=1

σ ′
j,lZ1,jZ1+m,l.

Set δj1,j2,j3,j4 = E(Z1,j1Z1,j2Z1,j3Z1,j4). Then

δj1,j2,j3,j4 = 3 + 
,

if j1 = j2 = j3 = j4, 1 if j1, j2, j3 and j4 form two dif-
ferent pairs of integers, and zero otherwise. It follows
from Lemma 1 that

Eu4
1 =

k∑
j1,j2,j3,j4=1

k∑
l1,l2,l3,l4=1

σ ′
j1,l1

σ ′
j2,l2

σ ′
j3,l3

σ ′
j4,l4

· δj1,j2,j3,j4δl1,l2,l3,l4

= O

(∣∣∣∣ ∑
j1 �=j2

∑
l1 �=l2

σ ′
j1,l1

σ ′
j1,l2

σ ′
j2,l1

σ ′
j2,l2

∣∣∣∣
)

+ O

( ∑
j1 �=j2

k∑
l=1

σ ′2
j1,l

σ ′2
j2,l

)

+ O

(
k∑

j=1

∑
l1 �=l2

σ ′2
j,l1

σ ′2
j,l2

)
+ O

(
k∑

j=1

k∑
l=1

σ ′4
j,l

)

= O

(∣∣∣∣∣
k∑

j1=1

k∑
j2=1

k∑
l1=1

k∑
l2=1

σ ′
j1,l1

σ ′
j1,l2

σ ′
j2,l1

σ ′
j2,l2

∣∣∣∣∣
)

+ O

(
k∑

j1=1

k∑
j2=1

k∑
l=1

σ ′2
j1,l

σ ′2
j2,l

)

+ O

(
k∑

j=1

k∑
l=1

σ ′4
j,l

)

= O
(
tr

(
�′4)) + O

((
k∑

j=1

k∑
l=1

σ ′2
j,l

)2)

= O
(
tr

(
�′4)) + O

((
tr

(
�′2))2)

= O
(
tr

(
�4)) + O

((
tr

(
�2))2)

= o
(
m

(
tr

(
�2))2)

,

that is, (4) holds with δ = 2.
Similarly, we have

Ev4
1 ≤ 24E

(
k∑

j=1

ajZ1,j

)4

= O

(
k∑

j1,j2=1

a2
j1

a2
j2

)
+ O

(
k∑

j=1

a4
j

)

= O

((
k∑

j=1

a2
j

)2)

= O
((

1T
d 		T 1d

)2)

= O

((
d∑

i=1

d∑
j=1

σi,j

)2)
,

which yields (5) with δ = 2. The proof is complete. �
PROOF OF THEOREM 3. We continue to use the

notation in the proof of Theorem 1. Define

ρn1 = (μ0 − μ)T (μ0 − μ)√
π11

,

ρn2 = 1T
d (2μ − 2μ0)√

π22
.
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Then τ = mρ2
n1 + mρ2

n2.
Notice that the true value for the mean of X1 is μ

under the alternative hypothesis. Since for 1 ≤ i ≤ m

ui(μ0) = ui(μ) + (μ − μ0)
T (μ − μ0)

(22)
+ (μ − μ0)

T (Xi + Xi+m − 2μ)

and

vi(μ0) = vi(μ) + 1T
d (2μ − 2μ0),

we have

Y ′
i =

(
ui(μ)/

√
π11

vi(μ)/
√

π22

)
+

(
ρn1
ρn2

)
+

(
si(μ)

0

)
,

where si(μ) = (μ−μ0)
T (Xi +Xi+m −2μ)/

√
π11 and

Y ′
i = (ui(μ0)/

√
π11

vi(μ0)/
√

π22

)
as defined in the proof of Theorem 1.

First we consider the case of τ = o(m). Since τ =
o(m) implies that ρn1 = o(1) and ρn2 = o(1), it follows
from Lemma 1 that

E
(
s2

1(μ)
) = O

(
1

π11
(μ − μ0)

T �(μ − μ0)

)

= O

(
λd

π11
(μ − μ0)

T (μ − μ0)

)
(23)

= O

(
λd√
π11

ρn1

)
→ 0,

which implies ∑m
i=1 s2

i (μ)

m

p→ 0

and

max1≤i≤m |si(μ)|√
m

≤
√∑m

i=1 s2
i (μ)

m

p→ 0

as m → ∞. Hence, we conclude that

Vn :=
(

Vn1
Vn2

)
= 1√

m

m∑
i=1

{
Y ′

i −
(

ρn1
ρn2

)}
(24)

d→ N(0, I2),

and both (18) and (19) hold when τ = o(m). Following
the proof of Theorem 1, we can show that

l̃(μ0) = (
1 + op(1)

)( 1√
m

m∑
i=1

Y ′
i

)T

·
(

1

m

m∑
i=1

Y ′
i

(
Y ′

i

)T )−1
1√
m

m∑
i=1

Y ′
i + op(1)

(25)
= (Vn1 + √

mρn1)
2(

1 + op(1)
)

+ (Vn2 + √
mρn2)

2(
1 + op(1)

) + op(1),

when τ = o(m).
If the limit of τ , say, τ0, is finite, then it follows from

(24) and (25) that l̃(μ0) converges in distribution to
a noncentral chi-square distribution with two degrees
of freedom and noncentrality parameter τ0 and, conse-
quently, (6) holds. If τ goes to infinity, the limit of the
right-hand side of (6) is 1. By (25), together with the

elementary inequality (a +b)2 ≥ a2

2 −b2, we have that

l̃(μ0) ≥
(

mρ2
n1

2
− V 2

n1

)(
1 + op(1)

)

+
(

mρ2
n2

2
− V 2

n2

)(
1 + op(1)

) + op(1)

= τ

2

(
1 + op(1)

)
(26)

− (
V 2

n1 + V 2
n2

)(
1 + op(1)

) + op(1)

p→ ∞,

which implies that the limit of the left-hand side of (6)
is also 1. Thus, (6) also holds when τ = o(m).

Next we consider the case of lim infρ2
n2 > 0. Since∑m

i=1 piYi(μ0) = 0 implies that
∑m

i=1 pivi(μ0) = 0,
we have

L̃(μ0) ≤ sup

{
m∏

i=1

(mpi) :p1 ≥ 0, . . . , pm ≥ 0,

m∑
i=1

pi = 1,

m∑
i=1

pivi(μ0) = 0

}

(27)

= sup

{
m∏

i=1

(mpi) :p1 ≥ 0, . . . , pm ≥ 0,

m∑
i=1

pi = 1,

m∑
i=1

pi

vi(μ0)√
π22

= 0

}
.

Define

L∗(θ) = sup

{
m∏

i=1

(mpi) :p1 ≥ 0, . . . , pm ≥ 0,

m∑
i=1

pi = 1,

m∑
i=1

pi

(
vi(μ0)√

π22
− ρn2

)
= θ

}
.

Put θ∗ = 1
m

∑m
i=1(

vi(μ0)√
π22

− ρn2). Then

−2 logL∗(
θ∗) = 0.(28)

Since E{vi(μ0)/
√

π22 − ρn2} = E{vi(μ)/
√

π22} = 0
and E{vi(μ0)/

√
π22 − ρn2}2 = 1 under Ha :μ �= μ0,

we have by using Chebyshev’s inequality that

P
(∣∣θ∗∣∣ > m−2/5) → 0.(29)
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Using E{vi(μ0)/
√

π22 − ρn2}2 = 1, similar to the
proof of (26), we can show that

−2 logL∗(
θ∗

1
) p→ ∞ and −2 logL∗(

θ∗
2
) p→ ∞,

where θ∗
1 = m−1/4 and θ∗

2 = −m−1/4, which satisfy
m(θ∗

1 )2 = o(m) and m(θ∗
2 )2 = o(m). To help under-

stand this better, we first notice that L̃(μ0) can be
rewritten as follows:

L̃(μ0) = sup

{
m∏

i=1

(mpi) :p1 ≥ 0, . . . , pm ≥ 0,

m∑
i=1

pi = 1,

m∑
i=1

piY
′
i = 0

}

= sup

{
m∏

i=1

(mpi) :p1 ≥ 0, . . . , pm ≥ 0,

m∑
i=1

pi = 1,

m∑
i=1

pi

(
Y ′

i −
(

ρn1
ρn2

))
= −

(
ρn1
ρn2

)}
.

In equation (26), it is the quantity m‖−(ρn1
ρn2

)‖2 = τ

that determines whether l̃(μ0) diverges. As a one-
dimensional analogue of L̃(μ0), for any sequence θn,
if θn = o(1), −2 logL∗(θn) can be expanded as in (25)
via replacing Y ′

i by vi(μ0)/
√

π22 − ρn2, and replacing
−(ρn1

ρn2

)
by θn. And if, further, mθ2

n → ∞, −2 logL∗(θn)

goes to infinity in probability, just like (26). Obviously,
with the choices of θn = ±m−1/4, conditions θn = o(1)

and mθ2
n → ∞ are satisfied.

It follows from Hall and La Scala (1990) that the
set {θ :−2 logL∗(θ) ≤ c} =: Ic is convex for any c.
Take c = cn = min{−2 logL∗(θ∗

1 ),−2 logL∗(θ∗
2 )}/2.

If −ρn2 belongs to the above convex set, then it fol-
lows from (28) that −aρn2 + (1 − a)θ∗ belongs to that
convex set for any a ∈ [0,1] or, equivalently, any num-
ber between −ρn2 and θ∗ belongs to Icn . Recall that
we assume lim infρ2

n2 > 0. Assume n is large such
that m−1/4 < |ρn2|. Under the condition |θ∗| ≤ m−2/5,
if ρn2 > 0, then −ρn2 < θ∗

2 = −m−1/4 < θ∗, and if
ρn2 < 0, then θ∗ < θ∗

1 = m−1/4 < −ρn2. Therefore, if
|θ∗| ≤ m−2/5 and −ρn2 ∈ Icn , at least one of θ∗

1 and θ∗
2

belongs to Icn . Precisely, we have, as n goes to infinity,

P
(∣∣θ∗∣∣ ≤ m−2/5,−ρn2 ∈ Icn

)
≤ P

(
θ∗

1 ∈ Icn or θ∗
2 ∈ Icn

)
= P

(
min

{−2 logL∗(
θ∗

1
)
,−2 logL∗(

θ∗
2
)} ≤ cn

)

= P
(
min

{−2 logL∗(
θ∗

1
)
,−2 logL∗(

θ∗
2
)} = 0

)
→ 0,

which, together with (29), implies

P
(−2 logL∗(−ρn2) > cn

)
= P(−ρn2 /∈ Icn)

≥ 1 − P
(∣∣θ∗∣∣ ≤ m−2/5,−ρn2 ∈ Icn

)
− P

(∣∣θ∗∣∣ > m−2/5)
→ 1

and, therefore,

−2 logL∗(−ρn2)
p→ ∞(30)

since cn
p→ ∞. Hence, combining with (27), we have

P
(−2 log L̃(μ0) > ξ1−α

)
≥ P

(−2 logL∗(−ρn2) > ξ1−α

)
→ 1,

when lim infρ2
n2 > 0.

Next we consider the case of lim infρn1 > 0. Define
π33 = E{(μ − μ0)

T (X1 + X1+m − 2μ)}2 and ρn3 =
(μ0−μ)T (μ0−μ)√

π11+π33
. As before, we have

L̃(μ0) ≤ sup

{
m∏

i=1

(mpi) :p1 ≥ 0, . . . , pm ≥ 0,

m∑
i=1

pi = 1,

m∑
i=1

piui(μ0) = 0

}

(31)

= sup

{
m∏

i=1

(mpi) :p1 ≥ 0, . . . , pm ≥ 0,

m∑
i=1

pi = 1,

m∑
i=1

pi

ui(μ0)√
π11 + π33

= 0

}
.

Define

L∗∗(θ) = sup

{
m∏

i=1

(mpi) :p1 ≥ 0, . . . , pm ≥ 0,

m∑
i=1

pi = 1,

m∑
i=1

pi

(
ui(μ0)√
π11 + π33

− ρn3

)
= θ

}
.

Since u1(μ) and (μ − μ0)
T (X1 + X1+m − 2μ) are

two uncorrelated variables with zero means, we have
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Var(u1(μ) + (μ − μ0)
T (X1 + X1+m − 2μ)) = π11 +

π33. As we have shown in the proof of Theorem 2,
E|u1(μ)|4 = o(mπ2

11). Following the same lines for es-
timating E(v4

1) in the end of the proof of Theorem 2,
we have

E
{
(μ − μ0)

T (X1 + X1+m − 2μ)
}4 = O

(
π2

33
)
.

Then it follows that

E
{
u1(μ) + (μ − μ0)

T (X1 + X1+m − 2μ)
}4

≤ 8
(
E

∣∣u1(μ)
∣∣4

+ E
{
(μ − μ0)

T (X1 + X1+m − 2μ)
}4)

= o
(
m(π11 + π33)

2)
.

From (22),

ui(μ0)√
π11 + π33

− ρn3

= ui(μ) + (μ − μ0)
T (Xi + Xi+m − 2μ)√

π11 + π33

and, thus, we have

E

(
ui(μ0)√
π11 + π33

− ρn3

)4

= E(ui(μ) + (μ − μ0)
T (Xi + Xi+m − 2μ))4

(π11 + π33)2

= o(m).

This ensures the validity of the Wilks theorem for
−2 logL∗∗(0), that is, −2 logL∗∗(0) converges in dis-
tribution to a chi-square distribution with one degree
of freedom. Note that in Theorem 1, two similar condi-
tions, (4) and (5), are imposed to obtain the Wilks the-
orem for the log-empirical likelihood statistic for two-
dimensional mean vectors. Similar to the proof of (26),
we can show that

−2 logL∗∗(
θ∗

1
) p→ ∞ and −2 logL∗∗(

θ∗
2
) p→ ∞,

where θ∗
1 = m−1/4 and θ∗

2 = −m−1/4, which satisfy
m(θ∗

1 )2 = o(m) and m(θ∗
2 )2 = o(m).

Put θ∗∗ = 1
m

∑m
i=1(

ui(μ0)√
π11+π33

− ρn3). Then

−2 logL∗∗(
θ∗∗) = 0.(32)

Since

E
{
ui(μ0)/

√
π11 + π33 − ρn3

}
= E

{
ui(μ) + (μ − μ0)

T (Xi + Xi+m − 2μ)√
π11 + π33

}

= 0

and

E

{
ui(μ0)√
π11 + π33

− ρn3

}2

= E

{
ui(μ) + (μ − μ0)

T (Xi + Xi+m − 2μ)√
π11 + π33

}2

= 1

under Ha :μ �= μ0, we have from Chebyshev’s inequal-
ity that

P
(∣∣θ∗∗∣∣ > m−2/5) → 0.(33)

By (23), we have π33/π11 = Es2
1(μ) = O(ρn1), which

implies that there exists a constant M > 0 such that

ρn3/m−1/4 = m1/4ρn1

√
π11√

π11 + π33

≥ m1/4ρn1{1 + Mρn1}−1/2

→ ∞
since lim infρn1 > 0.

Using (32), (33) and the same arguments in proving
(30), we have

−2 logL∗∗(−ρn3)
p→ ∞.

Hence, combining with (31), we have

P
(−2 log L̃(μ0) > ξ1−α

)
≥ P

(−2 logL∗∗(−ρn3) > ξ1−α

)
→ 1,

when lim infρ2
n1 > 0. Therefore, (6) holds when

lim infρn1 > 0. This completes the proof of Theorem 3.
�
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