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Abstract: This paper is devoted to the discrimination between a station-
ary long-range dependent model and a non stationary process. We develop
a nonparametric test for stationarity in the framework of locally station-
ary long memory processes which is based on a Kolmogorov-Smirnov type
distance between the time varying spectral density and its best approxima-
tion through a stationary spectral density. We show that the test statistic
converges to the same limit as in the short memory case if the (possibly
time varying) long memory parameter is smaller than 1/4 and justify why
the limiting distribution is different if the long memory parameter exceeds
this boundary. Concerning the latter case the novel FARI(∞) bootstrap
is introduced which provides a bootstrap-based test for stationarity which
shows good empirical properties if the long memory parameter is smaller
than 1/2 which is the usual restriction in the framework of long-range
dependent time series. We investigate the finite sample properties of our
approach in a comprehensive simulation study and employ the new test in
an analysis of two data sets.
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1. Introduction

For many decades one of the leading paradigms in time series analysis is the as-
sumption of stationarity which means that the second-order charateristics of the
considered time series are constant over time. One of the prime examples which
fits into the framework of stationary processes is the well-known ARMA(p, q)
model. Such processes are widely used in applications due to their simplicity
and flexibility, and they belong to the class of so called short memory models
containing a summable autocovariance function γ.
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However, many time series in reality exhibit an effect which is known as
long-range dependence (or long memory) and which means that γ decays to
zero slowly. Usually one has γ(k) ∼ Ck2d−1 as k → ∞ for some d ∈ (0, 1/2),
so in particular the autocovariance function is not absolutely summable. The
coefficent d is called long memory parameter, and the most common way to
model these kinds of strong dependencies is to employ FARIMA(p, d, q) pro-
cesses which were introduced in Granger and Joyeux (1980) and Hosking (1981).
These long memory extensions of ARMA(p, q) processes are stationary under
certain regularity conditions as well. There exists a large literature on long-range
dependence in applications, as it occurs e.g. in the modeling of asset volatility,
computer network traffic or various other phenomena; see for example Park and
Willinger (2000), Henry and Zaffaroni (2002) and Doukhan et al. (2002) for an
overview. The assumption of stationarity, however, is always imposed.

More recently, several authors have pointed out that a slow decrease of γ(k)
might also occur if the true underlying process does actually not possess long
memory but is non stationary instead; see Mikosch and Starica (2004), among
others. In addition, Starica and Granger (2005) compared the performance of
a non stationary model with that of a FARIMA(1, d, 1) and a GARCH(1, 1)
process in the framework of volatility forecasting and found out that their non
stationary model is leading to superior results. Fryzlewicz et al. (2006) proved
that most of the stylized facts which are observed for financial return data can
be explained by fitting the simple (but usually non stationary) model

Xt,T = σ(t/T )Zt, t = 1, . . . , T, (1.1)

to the data, where T here and throughout the paper denotes the sample size,
σ(·) : [0, 1] → IR+ is a non parametric function and (Zt)t is some i.i.d. white
noise process. Thus many phenomena in reality can be explained by either fitting
a stationary long memory process or a non stationary (short memory) model
to the data. A natural question then is how to discriminate between these two
approaches.

Although the importance of statistical tests concerning this matter was point-
ed out by many authors (see e.g. Perron and Qu (2010) or Chen et al. (2010)),
there does not exist much research on this topic. Berkes et al. (2006) and Dehling
et al. (2013) developed CUSUM and Wilcoxon type tests which discriminate be-
tween long-range dependence and changes in mean. While the authors of the first
article are testing the null hypothesis that there is no long-range dependence
but one change in mean at some unknown point in time (i.e. the alternative
corresponds to the case where the process possesses long memory), the latter
paper considers the null hypothesis that there is no change in mean but possibly
long-range dependence (i.e. the alternative corresponds to the case where there
is a change in mean). A similar approach can be found in Sibbertsen and Kruse
(2009). However, one can observe many other deviations from stationarity be-
sides changes in mean and it is of particular importance to detect variations
in the dependency structure of a given time series as well. There exist some
approaches in this area as well, like the one of Lavancier et al. (2011), but, as
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the articles cited above, they impose rather restrictive conditions either on the
type of considered processes or on the class in which the null hypothesis lies. So,
in summary, the development of a discrimination procedure in a truly general
framework has not been considered yet.

This paper is devoted to the construction of a test for stationarity in the
framework of locally stationary long memory processes. The concept of local
stationarity became quite famous in recent years, because in contrast to other
proposals to model non-stationarity it allows for a meaningful asymptotic the-
ory. Locally stationary processes were introduced by Dahlhaus (1997) and there
exist numerous articles which are concerned with estimation techniques or seg-
mentation methods in this framework; see Neumann and von Sachs (1997), Adak
(1998), Chang and Morettin (1999), Sakiyama and Taniguchi (2004), Dahlhaus
and Polonik (2006), Van Bellegem and von Sachs (2008) or Kreiß and Paparo-
ditis (2011), among others. Articles allowing for long memory effects are rare,
however, as only Beran (2009), Palma and Olea (2010) and Roueff and von
Sachs (2011) considered parametric and semiparametric estimation.

Similarly, there exist several tests for stationarity in the context of locally
stationary models [see for example von Sachs and Neumann (2000), Paparoditis
(2009), Paparoditis (2010), Dwivedi and Subba Rao (2010), Dette et al. (2011)
and Preuß et al. (2012)], but in all articles long-range dependence is excluded,
i.e. these methods cannot be employed for discriminating between long memory
and non-stationarity. Our aim is to fill this gap, and for this reason we consider
a Kolmogorov-Smirnov type distance which was already discussed in Dahlhaus
(2009) and Preuß et al. (2012) to measure deviations from stationarity in the
short memory case. Precisely, set

E := sup
(v,ω)∈[0,1]2

|E(v, ω)|, (1.2)

where

E(v, ω) :=
1

2π

(

∫ v

0

∫ πω

0

f(u, λ)dλdu−v
∫ πω

0

∫ 1

0

f(u, λ)dudλ
)

, (v, ω) ∈ [0, 1]2,

and f(u, λ) denotes the time-varying spectral density. Under the null hypothesis
of stationarity f(u, λ) does not depend on u and therefore E equals zero. For
this reason it is natural to consider an empirical version of the measure in (1.2)
in order to construct a test for stationarity.

Even though the literature on empirical spectral processes is quite large in in
general (see Dahlhaus (1988), Dahlhaus and Polonik (2009) or Can et al. (2010)
among others), those discussing the long memory framework are surprisingly
few, even when restricted to the simpler stationary case. To the best of our
knowledge, only Kokoszka and Mikosch (1997) have discussed weak convergence
of the integrated periodogram to a Gaussian process under stationarity. Our
first (and rather probabilistic) goal is therefore to derive the asymptotics of an
empirical version ÊT (v, ω) of the measure proposed above. Note that neither
convergence of the finite dimensional distributions nor asymptotic tightness is
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self-evident in this context, since the time varying spectral density is typically
estimated through a rolling window approach, and it is far from being obvious
to what extent the different segments influence each other. Nevertheless, we
are able to prove weak convergence of the process ÊT (v, ω) to (a discretized
version ET (v, ω) of) E(v, ω) at the parametric rate T−1/2, but only one if the
long memory parameter satisfies d < 1/4. This is a natural restriction in this
framework (see e.g. Fox and Taqqu (1987) for a similar result on quadratic
forms) since the covariances of the finite-dimensional limits contain integrals
over the square of the spectral density. These do not exist if the boundary at
1/4 is exceeded.

This result is obviously of theoretical interest, but it appears unsatisfac-
tory from a statistician’s view. Indeed, we obtain a central limit theorem for√
T supv,ω |ÊT (v, ω)| under the null hypothesis as a consequence, but with a

rather complicated dependence structure due to the unknown spectral density
and only if d < 1/4. Our second main contribution is therefore the invention of
the novel FARI(∞) bootstrap for which we are able to prove consistency in the
situation above. Interestingly, as it automatically adapts to a switch in the rate
of convergence this procedure yields reasonable tests indeed for the entire case of
d < 1/2 which is the usual assumption in the framework of long-range dependent
time series; see for example Berkes et al. (2006) or Giraitis et al. (2012).

The paper is organized as follows. In Section 2 we introduce the necessary
notation, whereas we describe the testing procedure in Section 3. The FARI(∞)
bootstrap required to obtain asymptotic quantiles of the test statistic is dis-
cussed in Section 4, and we investigate the finite sample behaviour of our ap-
proach in Section 5. Finally, we defer all proofs to an appendix in Section 6.

2. Locally stationary long memory processes

Locally stationary processes are usually defined via a sequence of stochastic
processes {Xt,T}t=1,...,T which possess a time-varying MA(∞) representation

Xt,T =
∞
∑

l=0

ψt,T,lZt−l, t = 1, . . . , T, (2.1)

with independent and identically distributed Zt where E(|Zt|k) < ∞ for all
k ∈ N; see Dahlhaus and Polonik (2009). For the coefficents ψt,T,l we assume
that

sup
t,T

∞
∑

l=0

ψ2
t,T,l <∞ (2.2)

is fulfilled which ensures that the process in (2.1) is well defined; see Brockwell
and Davis (1991). If the ψt,T,l are independent of t and T the process Xt,T

is stationary. However, the coefficents ψt,T,l depend on t and T in general. To
ensure that in this case the processXt,T behaves approximately like a stationary
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process on a small time interval, it is typically assumed that

sup
t=1,...,T

∞
∑

l=0

∣

∣ψt,T,l − ψl(t/T )
∣

∣ = O(1/T ) (2.3)

holds for twice continuously differentiable functions ψl : [0, 1] → IR, l ∈ Z.
Different smoothness conditions on the functions ψl(·) are imposed in the liter-
ature, and in essentially all articles in the framework of local stationarity it is
assumed that in addition to (2.2) the condition

sup
t,T

∞
∑

l=0

|ψt,T,l||l|δ <∞ (2.4)

is satisfied for some δ > 0. This implies supt,T
∑∞

h=0 |Cov(Xt,T , Xt+h,T )| < ∞,
and therefore long memory models are excluded. For this reason we replace (2.4)
by a growth condition which is flexible enough to include long-range dependent
time series as well. Moreover, instead of using a condition on approximation of
the coefficients in an ℓ1-sense as in (2.3), which is not a natural condition for
long memory models whose coefficients are not absolutely summable, we only
assume that there exist constants C > 0 and D < 1/2 such that

sup
t=1,...,T

∣

∣

∣ψt,T,l − ψl(t/T )
∣

∣

∣ ≤ C

T

(

log(l)

l1−D
1{l 6=0} + 1{l=0}

)

, ∀l ∈ N, (2.5)

holds. This condition is obviously more general than (2.3); see e.g. Roueff and
von Sachs (2011) for a similar framework.

Assumption 2.1. Suppose we have a sequence of stochastic processes
{Xt,T}t=1,...,T which have an MA(∞) representation as in (2.1) with indepen-
dent and standard normal distributed Zt such that (2.2) is fulfilled. Further-
more, we assume that (2.5) holds with twice continuously differentiable func-
tions ψl : [0, 1] → IR which satisfy the following conditions:

a) There exist twice differentiable functions a, d : [0, 1] → IR+ such that

ψl(u) = a(u)I(l)d(u)−1 +O(I(l)D−2) (2.6)

holds uniformly in u as l → ∞, where D := supu∈[0,1] |d(u)| < 1/2 and
I(x) := |x| · 1{x 6=0} + 1{x=0}.

b) The time varying spectral density

f(u, λ) :=
1

2π

∣

∣

∣

∞
∑

l=0

ψl(u) exp(−iλl)
∣

∣

∣

2

(2.7)

is twice continuously differentiable on (0, 1)× (0, π). Furthermore, f(u, λ)
and all its partial derivatives up to order two are continuous on [0, 1] ×
(0, π].
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c) There exists a constant C ∈ IR which is independent of u and λ such that
the first and second derivative of the approximating functions ψl(·) satisfy

sup
u∈(0,1)

|ψ′
l(u)| ≤ C log(l)I(l)D−1, (2.8)

sup
u∈(0,1)

|ψ′′
l (u)| ≤ C log2(l)I(l)D−1

for l 6= 0 and are bounded otherwise. Furthermore, we assume

sup
u∈(0,1)

|∂/∂u f(u, λ)| ≤ C log(λ)/λ2D,

sup
u∈(0,1)

|∂2/∂u2 f(u, λ)| ≤ C log2(λ)/λ2D.

d) We have

sup
t,T

|ψt,T,l| ≤ CI(l)D−1. (2.9)

To simplify the notation we use C ∈ IR as a universal constant throughout
this paper. Note that it is common sense to consider only zero mean processes
in this framework since observed data can be easily transformed into data with
mean zero. Furthermore, innovations Zt with a time varying variance σ2(t/T )
can be included by choosing other coefficents ψt,T,l. The assumption of Gaus-
sianity is standard (see Palma and Olea (2010) or Dette et al. (2011)) and
only imposed to simplify technical arguments since the proofs are already quite
involved in this situation. In addition, the functions ψl(u) might have finitely
many points of discontinuity without affecting any result stated throughout this
article, and we furthermore conjecture that the constraints can be weakened to
some kind of condition on the total variation of ψl(u) as in Definition 2.1 of
Dahlhaus and Polonik (2009).

To obtain an impression for local stationarity, note that the process

Xt(u) =
∞
∑

l=0

ψl(u)Zt−l (2.10)

is stationary for every u ∈ [0, 1], and that Xt(t/T ) serves as an approximation
of Xt,T in the sense of (2.5). It is easy to see that (2.6) implies

|Cov(Xt(u), Xt+k(u))| ∼ y1(u)/k
1−2d(u) as k → ∞

and

f(u, λ) ∼ y2(u)/λ
2d(u) as λ→ 0 (2.11)

for some functions yi(·); see the proof of Theorem 3.1 in Palma (2007) for details.
This shows that the autocovariance function γ(u, k) = Cov(X0(u), Xk(u)) is not
absolutely summable and that the time varying spectral density f(u, λ) has a
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pole in λ = 0 for every u ∈ [0, 1]. If the considered process is stationary then
u 7→ d(u) is independent of u which yields that D equals the long memory
parameter d of a stationary time series.

Let us now present an important example which fits into the above framework
of locally stationary long memory processes. To this end we define the backshift
operator B through BkXt := Xt−k, k ∈ N, and we set

(1−B)d(u) =

∞
∑

j=0

(

d(u)

j

)

(−1)jBj ,

just as for the binomial series. The next theorem justifies that both stationary
FARIMA(p, d, q) processes and a time-varying extension of them are included
in our theoretical framework.

Theorem 2.2. Consider the system of equations

a(t/T,B)Xt,T = b(t/T,B)(1−B)−d(t/T )Zt, t = 1, . . . , T, (2.12)

where the Zt are independent and standard normal distributed random variables,
aj(·) and bj(·) are twice continuously differentiable functions from [0, 1] to IR
with ap(·), bq(·) 6≡ 0, and d(·) is a twice continuously differentiable function from
[0, 1] to (0, D) with D < 1/2. Furthermore, we assume that a0(u) = b0(u) ≡ 1
and that there exists a δ > 0 such that for all z ∈ C with |z| ≤ 1+δ the condition

p
∑

j=0

aj(z)z
j 6= 0 (2.13)

is satisfied. Then (2.12) possesses a locally stationary solution in the sense of
Assumption 2.1.

3. The testing procedure

Let us now come to the development of a test for stationarity in the case of long
memory models. We are thus interested in testing the null hypothesis

H0 : f(u, λ) is independent of u (3.1)

against the alternative that there exists an λ ∈ [0, π] such that u 7→ f(u, λ) is not
independent of u. Our test will be based on empirical versions of the quantities
E and E(v, ω) specified in (1.2), and we see that E vanishes under the null
hypothesis while it is positive under the alternative due to the continuity of the
spectral density.

In order to obtain an estimator for E we have to define an empirical version
of E(v, ω) at first, and for this reason we require an estimator for f(u, λ). We
assume without loss of generality that the sample size T can be decomposed as
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T = NM where N and M are integers with N even. We then define the local
periodogram at the rescaled time point u ∈ [0, 1] by

IN (u, λ) :=
1

2πN

∣

∣

∣

N−1
∑

s=0

X⌊uT⌋−N/2+1+s,T exp(−iλs)
∣

∣

∣

2

[see Dahlhaus (1997)], where we have set Xj,T = 0, if j 6∈ {1, . . . , T }. This
is the usual periodogram computed from the observations X⌊uT⌋−N/2+1,T , . . .,
X⌊uT⌋+N/2,T . It can be shown that the quantity IN (u, λ) is an asymptotically
unbiased estimator for the local spectral density if N → ∞ and N = o(T ).
However, IN (u, λ) is not consistent just as the usual periodogram.

An empirical version of E(v, ω) is now constructed by replacing the integral
by its Riemann sum and substituting the time varying spectral density f(u, λ)
by its (asymptotically) unbiased estimator IN (u, λ). In other words, we define
an estimator for E(v, ω) by

ÊT (v, ω) :=
1

T

⌊vM⌋
∑

j=1

⌊ωN
2 ⌋

∑

k=1

IN (uj , λk)−
⌊vM⌋
M

1

T

M
∑

j=1

⌊ωN
2 ⌋

∑

k=1

IN (uj , λk), (3.2)

where uj := tj/T := (N(j − 1) +N/2)/T and λk := 2πk/N with j = 1, . . . ,M
and k = 1, . . . , N/2. Note that in this procedure the T observations are divided
into M intervals with length N and that the uj correspond to the midpoints of
these intervals in rescaled time. The λk are the usual Fourier frequencies. We
then set

ET (v, ω) :=
1

T

⌊vM⌋
∑

j=1

⌊ωN
2 ⌋

∑

k=1

f(uj, λk)−
⌊vM⌋
M

1

T

M
∑

j=1

⌊ω N
2 ⌋

∑

k=1

f(uj, λk),

which is the Riemann sum approximation of E(v, ω), and consider the empirical
spectral process

ĜT (v, ω) := ÊT (v, ω)− ET (v, ω), v, ω ∈ [0, 1].

Alternatively, an estimator for the time-varying spectral density could be based
on the pre-periodogram

JT (u, λ) :=
1

2π

∑

k:1≤⌊uT+1/2±k/2⌋≤T

X⌊uT+1/2+k/2⌋X⌊uT+1/2−k/2⌋ exp(−iλk),

which was introduced by Neumann and von Sachs (1997) and further discussed
in Dahlhaus (2009) and Preuß et al. (2012) in the short memory context. The
main advantage of the pre-periodogram is that no specification of a tuning pa-
rameter such as N is necessary. However, as discussed in an extensive simulation
study in Preuß et al. (2012), a test based on this concept leads to a substantial
loss in power, which is why we restrict ourselves to local periodograms in the
following.
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The following theorem specifies the asymptotic properties of the process
(ĜT (v, ω))v,ω in the case D < 1/4, in which the empirical spectral process
converges at the parametric rate T−1/2 to a mean zero Gaussian process. Note
that the results hold both under the null hypothesis and the alternative, and
throughout this paper the symbol ⇒ denotes weak convergence in L∞([0, 1]2).

Theorem 3.1. Suppose that Assumption 2.1 with D < 1/4 is satisfied and let

N → ∞, N/T → 0. (3.3)

Then as T → ∞ we have
√
T (ĜT (v, ω)− CT (v, ω))(v,ω)∈[0,1]2 ⇒ (G(v, ω))(v,ω)∈[0,1]2 ,

where (G(v, ω))(v,ω)∈[0,1]2 is a Gaussian process with mean zero and covariance
structure

Cov(G(v1, ω1), G(v2, ω2)) =
1

2π

∫ 1

0

∫ πmin(ω1,ω2)

0

(1[0,v1](u)− v1)(1[0,v2](u)− v2)

× f2(u, λ)dλdu.

CT (v, ω) denotes a bias term which equals zero if the functions ψl(u) are in-
dependent of u for all l ∈ Z and which is some O(N2/T 2 + log(N)/N1−2D),
uniformly in v, ω, otherwise.

Even under the alternative the bias term above is negligible for D < 1/6, at
least for a suitable choice of N . This is why it does not appear in the related
result in Preuß et al. (2012). More interesting for us is the behaviour under
(3.1), however. In this case we have CT (v, ω) = ET (v, ω) = 0 for all v, ω, T .
Thus Theorem 3.1 implies

(
√
TÊT (v, ω))(v,ω)∈[0,1]2 ⇒ (G(v, ω))(v,ω)∈[0,1]2

under the null hypothesis which yields

√
T sup

(v,ω)∈[0,1]2
|ÊT (v, ω)| D−−→ sup

(v,ω)∈[0,1]2
|G(v, ω)|.

An asymptotic level α test is then given by rejecting (3.1) whenever√
T sup(v,ω)∈[0,1]2 |ÊT (v, ω)| exceeds the (in principle unknown) (1 − α) quan-

tile of the distribution of the random variable sup(v,ω)∈[0,1]2 |G(v, ω)|. To obtain
consistency of the test, note that ET (v, ω) ≥ C for some v, ω ∈ [0, 1] and
T large enough, if we are under the alternative. Since Theorem 3.1 implies
|ÊT (v, ω) − ET (v, ω)| → 0 in probability for this specific (v, ω), it follows that√
T sup(v,ω)∈[0,1]2 |ÊT (v, ω)| blows up to infinity (in probability).
Even under the null hypothesis the distribution of the limiting distribution

depends in a complicated way on the unknown spectral density. For this reason,
we introduce the FARI(∞) bootstrap in the next section and prove that it can be
employed to approximate the distribution of

√
T sup(v,ω)∈[0,1]2 |ÊT (v, ω)| which

implies a test for stationarity in the case of Theorem 3.1.
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The restriction D < 1/4 in Theorem 3.1 is necessary since f2(u, λ) in the
asymptotic variance is not integrable anymore if D ≥ 1/4 due to (2.11). In
fact, in the latter case the rate of convergence is different to T−1/2 and the
calculation of the corresponding variance (not to even mention higher moments)
becomes extremely messy. However, we are able to prove tightness of the process

(β
1/2
T (ĜT (v, ω)−CT (v, ω)))(v,ω)∈[0,1]2 in general (see the auxiliary Theorem 6.1

in the Appendix and its use for establishing tightness of several other variables),
where

βT =











T, D < 1/4,

T/ logN, D = 1/4,

TN1−4D, D > 1/4.

(3.4)

We conjecture that a central limit theorem holds with the rate specified above,
but we dispense with the precise statement of such claims. We see from the
simulation results in Section 5 that the FARI(∞) bootstrap possesses good
empirical properties in this situation as well, even though a formal proof that
the test keeps the exact asymptotic level relies on a central limit theorem which
we do not provide. Note that we requireD to be smaller than 1/2 in any case, as
this is the usual restriction in this framework since for example FARIMA(p, d, q)
models are not stationary anymore if D ≥ 1/2.

4. Bootstrapping the test statistic

In this section we introduce a bootstrap procedure which approximates the

distribution of β
1/2
T sup(v,ω)∈[0,1]2 |ÊT (v, ω)| in the case D < 1/2. We call our

procedure the FARI(∞) bootstrap as it extends the AR(∞) bootstrap of Kreiß
(1988) to the long memory situation. While the AR(∞) bootstrap works by
choosing a p = p(T ) ∈ N and then fitting an AR(p) model to the data, the
FARI(∞) bootstrap fits an FARIMA(p, d, 0) model to the data where in both
cases p = p(T ) grows to infinity as T gets larger. We will describe this method
in more detail later and state now the main technical assumptions which will
be required.

Assumption 4.1. For the stationary process Xt with strictly positive spectral

density λ 7→
∫ 1

0
f(u, λ)du, there exists a 0 < D < 1/2 such that the process

Yt = (1−B)DXt possesses an AR(∞)-representation, i.e.

Yt =

∞
∑

j=1

ajYt−j + σZt, (4.1)

where the (Zt)t∈Z denote independent standard normal distributed random vari-
ables, σ2 > 0, 1−∑∞

j=1 ajz
j 6= 0 for |z| ≤ 1 and

∞
∑

j=1

|aj |j7 <∞. (4.2)
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The proof of Theorem 2.2 reveals that Xt has the representation

Xt =
∞
∑

l=0

ψ̃lZt−l (4.3)

with coefficents ψ̃l satisfying Assumption 2.1, and the aim of the bootstrap
procedure is to reproduce the behaviour of the previous test statistic in case
the process Xt was observed. Note that under the null hypothesis Xt basically
equals Xt,T , that D is the corresponding long memory parameter and that ψ̃l

is close to ψl,t,T in the sense of (2.5).

We start by choosing some p = p(T ) ∈ N, estimating D through some D̂ and
then fitting an AR(p) model to the process Yt from (4.1), i.e. estimating

(a1,p, . . . , ap,p) = argmin
b1,p,...,bp,p

E
(

Yt −
p
∑

j=1

bj,pYt−j

)2

.

We then consider the approximating process Y AR
t (p) which is defined through

Y AR
t (p) =

p
∑

j=1

aj,pY
AR
t−j (p) + ZAR

t (p), (4.4)

where ZAR
t (p) is a Gaussian white noise process with mean zero and variance

σ2
p = E(Yt −

∑p
j=1 aj,pYt−j)

2. The idea is that for p = p(T ) → ∞ the process

Y AR
t (p) is close to the process Yt and therefore (1−B)−DY AR

t (p) is close to the

stationary process Xt whose spectral density is given through λ 7→
∫ 1

0
f(u, λ)du

as well.
So if we observe the data X1,T , . . . , XT,T , the FARI(∞) bootstrap precisely

works as follows:

1) Choose p = p(T ) ∈ N and calculate θ̂T,p = (D̂, σ̂2
p, â1,p, . . . , âp,p) as the

minimizer of

1

T

T/2
∑

k=1

(

log fθp(λk,T ) +
IT (λk,T )

fθp(λk,T )

)

where λk,T =2πk/T for k=1, . . . , T/2, IT (λ)=
1

2πT |
∑T

t=1Xt,T exp(−iλt)|2
is the usual periodogram for stationary processes and

fθp(λ) =
|1− exp(−iλ)|−2D

2π
×

σ2
p

|1−∑p
j=1 aj,p exp(−iλj)|2

is the spectral density of a stationary FARIMA(p,D, 0) model which we

want to fit. Note that the estimator θ̂T,p is the classical Whittle estimator
of a stationary process; see Whittle (1951).
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2) Simulate a pseudo-series (Y ∗
t )t∈Z according to the model

Y ∗
t =

p
∑

j=1

âj,pY
∗
t−j + σ̂pZ

∗
t ,

where the Z∗
t are independent standard normal distributed random vari-

ables. Note that in practice it is not possible to simulate such an infinite
series. We comment further on this issue at the beginning of Section 5.

3) Create the pseudo-series X∗
1,T , . . . , X

∗
T,T by calculating X∗

i,T = (1 −
B)−D̂Y ∗

i,T and compute Ê∗
T (v, ω) in the same way as ÊT (v, ω) but with the

original observations X1,T , . . . , XT,T replaced by the bootstrap replicates
X∗

1,T , . . . , X
∗
T,T .

Our goal now is to prove consistency of the FARI(∞) bootstrap which is
concerned with the series X∗

t,T . Some technical assumptions on rates regarding

p and θ̂T,p are necessary which are standard in the framework of an AR(∞)
bootstrap; see for example Berg et al. (2010) or Kreiß et al. (2011).

Assumption 4.2. i) We have p = p(T ) ∈ [pmin(T ), pmax(T )] with
pmin(T ) → ∞, where also

p11max(T )log(T )
2/T ≤ C and

√
Tpmin(T )

−10 → 0.

ii) The condition

max
1≤p≤pmax(T )

||θ̂T,p − θp|| = OP (
√

pmax(T )/T ), (4.5)

holds, where θp = (D, σ2
p, a1,p, . . . , ap,p) denotes the vector of the true

parameters.

Note that a rigorous proof of condition (4.5) is missing in the case of (locally)
stationary long memory models. At least, we know from Theorem 2.1 in Hannan
and Kavalieris (1986) that the even stronger relation

max
1≤j≤pmax(T )

||θ̂T,p − θp||∞ = OP (
√

log(T )/T )

holds true for linear short memory models [see also the discussion on Assump-
tion 3 of Berg et al. (2010)], and Fox and Taqqu (1986) show that the parameters
of a stationary long memory model with a finite number of parameters can be
estimated with rate T−1/2. These examples indicate that (4.5) holds in our
specific class of long memory processes as well. However, determining a gen-
eral class of processes for which such a conditions holds is an open problem.
Similarly under the alternative: In this case, Dahlhaus (1997) proves that in a
(short memory) locally stationary model the Yule-Walker estimator converges
at rate T−1/2 to the parameters of the best stationary approximation in the
sense above. Again, we need an extension to the long memory context in the
sense of Fox and Taqqu (1986) and a result on the behaviour for growing p as
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in Hannan and Kavalieris (1986) which are both not available so far. A detailed
treatment of this conjecture is beyond the scope of the paper, however.

Let us mention some implications: Assumption 4.1 together with Lemma 2.3
of Kreiß et al. (2011) yields that there exists a p0 ∈ N such that for all p ≥
p0 the approximating process Y AR

t (p) defined in (4.4) possesses an MA(∞)
representation

Y AR
t (p) =

∞
∑

l=0

cl,pZ
AR
t−l (p).

In order to obtain such an MA(∞) representation, the authors use the fact that
the characteristic polynomial of the autoregressive part has no zeroes inside the
unit disc. Therefore, employing condition (4.5) we obtain a similar form of the
fitted AR(p) process Y ∗

t , namely

Y ∗
t =

∞
∑

l=0

ĉl,pZ
∗
t−l, (4.6)

with a probability tending to one as T increases. Note also that the additional
condition

∞
∑

l=0

|cl,p|l7 ≤ C <∞ (4.7)

holds, due to (4.2) and Lemma 2.4 of Kreiß et al. (2011). We can use these rela-
tions to investigate the properties of anMA(∞) representation of the bootstrap
replicates X∗

t,T . If D̂ > 0, a Taylor expansion yields

(1− z)−D̂ =

∞
∑

l=0

η̂lz
l with η̂l :=

Γ(l + D̂)

Γ(D̂)Γ(l + 1)

for l ∈ N; see (6.37) with d(u) replaced by D̂. Otherwise, for D̂ = 0 we have
η̂l = 1{l=0}. Using this expansion and (4.6) we obtain

X∗
t,T = (1−B)−D̂Y ∗

t =

∞
∑

l=0

ψ̂l,pZ
∗
t−l, (4.8)

where the parameters ψ̂l,p are given through the relation

ψ̂l,p =

l
∑

k=0

ĉk,pη̂l−k; (4.9)

see for example the proof of Lemma 3.2 in Kokoszka and Taqqu (1995).
Recall that the X∗

t,T are designed as replicates of the stationary process Xt

with MA(∞) representation (4.3). Once we show consistency of the FARI(∞)
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bootstrap later, we will naturally use similar arguments as in the proof of Theo-
rem 3.1. For this reason we require the coefficents ψ̂l,p− ψ̃l to satisfy conditions
which are similar to the conditions on the true coefficents as stated in Assump-
tion 2.1. Note that the coefficents ψ̂l,p−ψ̃l do not depend on the rescaled time u.
Therefore all conditions but (2.6) in Assumption 2.1 are automatically fulfilled
and the following lemma ensures that we obtain a condition similar to (2.6) as
well.

Lemma 4.3. Suppose that the Assumptions 2.1, 4.1 and 4.2 are satisfied. Then
we have

|ψ̂l,p − ψ̃l|l1−max(D̂,D) = OP (p
5/
√
T ), uniformly in p, l, D̂,D.

Let us now state the formal bootstrap test for stationarity. Empirical quan-
tiles of sup(v,ω)∈[0,1]2 |ÊT (v, ω)| are obtained by calculating

F̂ ∗
T,i := sup

(v,ω)∈[0,1]2
|Ê∗

T,i(v, ω)| for i = 1, . . . , B,

where Ê∗
T,1(v, ω), . . . , Ê

∗
T,B(v, ω) are the B bootstrap replicates of ÊT (v, ω). We

then reject the null hypothesis, whenever

sup
(v,ω)∈[0,1]2

|ÊT (v, ω)| > (F̂ ∗
T )T,⌊(1−α)B⌋, (4.10)

where (F̂ ∗
T )T,1, . . . , (F̂

∗
T )T,B denotes the order statistic of F̂ ∗

T,1, . . . , F̂
∗
T,B. Note

that there is no need to standardise either side with the (in principle unknown)

factor β
1/2
T from (3.4).

In order to explain why this bootstrap procedure works, we have to intro-
duce approximations of ÊT (v, ω) and Ê

∗
T (v, ω). First, if we replace Xt,T in the

definition of ÊT (v, ω) by Xt(t/T ) from (2.10), we denote the resulting process
with ÊT,a(v, ω). Similarly, we set

X∗
t,T,a =

∞
∑

l=0

ψ̃lZ
∗
t−l, (4.11)

where the Z∗
t are the innovations from part 2) above. We then define Ê∗

T,a(v, ω)

in the same way as Ê∗
T (v, ω), but with the bootstrap series X∗

t,T replaced
by X∗

t,T,a.

Lemma 4.4. Let the Assumptions 2.1, 4.1 and 4.2 be fulfilled and choose N
in such a way that N ∼ cT κ for some 0 < κ < 1 and some c > 0. If the null
hypothesis (3.1) holds, we have

a)

sup
(v,ω)∈[0,1]2

|ÊT,a(v, ω)| D
= sup

(v,ω)∈[0,1]2
|Ê∗

T,a(v, ω)|,
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b)

β
1/2
T

(

sup
(v,ω)∈[0,1]2

|ÊT (v, ω)| − sup
(v,ω)∈[0,1]2

|ÊT,a(v, ω)|
)

= oP (1).

Also, both under the null hypothesis and the alternative we have

c)

β
1/2
T

(

sup
(v,ω)∈[0,1]2

|Ê∗
T (v, ω)| − sup

(v,ω)∈[0,1]2
|Ê∗

T,a(v, ω)|
)

= oP (1),

d)

(β
1/2
T Ê∗

T (v, ω))(v,ω)∈[0,1]2 is tight.

It has been indicated in Paparoditis (2010) that Lemma 4.4 a)–c) are suffi-
cient to prove that the test constructed in (4.10) has exact asymptotic level α,
but an important ingredient in its proof is the weak convergence of

sup(v,ω)∈[0,1]2 β
1/2
T |ÊT (v, ω)| with a continuous limit distribution. This result

is only available for D < 1/4.
Although we cannot use Lemma 4.4 to show that the bootstrap test keeps

the exact asymptotic level α even for a general D < 1/2, a conservative test
based on it can be constructed as well.

Theorem 4.5. Suppose that the assumptions of Lemma 4.4 are satisfied and
let Q∗

T (1 − α) denote the 1 − α quantile of the bootstrap statistic

sup(v,ω)∈[0,1]2 β
1/2
T |Ê∗

T (v, ω)|.
a) If D < 1/4, under the null hypothesis we have

P
(

sup
(v,ω)∈[0,1]2

β
1/2
T |ÊT (v, ω)| ≤ Q∗

T (1 − α)
)

→ 1− α.

b) Let δ > 0 be arbitrary. Then, under the null hypothesis we have

lim inf
T→∞

P
(

sup
(v,ω)∈[0,1]2

β
1/2
T |ÊT (v, ω)| ≤ Q∗

T (1− α) + δ
)

≥ 1− α.

Consistency of the test in (4.10) is granted from Lemma 4.4 d) in any case,
since each bootstrap statistic sup(v,ω)∈[0,1]2 |Ê∗

T (v, ω)| converges to zero then,

while sup(v,ω)∈[0,1]2 |ÊT (v, ω)| becomes larger than some positive constant under
the alternative due to Theorem 6.1 a), b) and (2.11).

5. Finite sample properties

Our aim now is to demonstrate how the test for stationarity performs in finite
sample situations. Since the proposed decision rule (4.10) depends on the choice
of N in the estimation of the Kolmogorov-Smirnov type distance and further-
more on the selection of the AR parameter p in the bootstrap procedure, we
start by discussing how we choose both parameters. We then investigate the
size and power of our test where all reported results are based on 200 bootstrap
replications and 1000 simulation runs. Finally we apply our test to two data
sets, one regarding tree ring data and one containing S&P 500 returns.
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5.1. Choice of the parameters N and p

Although the proposed method does not show much sensitivity with respect to
different choices of the AR parameter, we select p throughout this section as the
minimizer of the AIC criterion dating back to Akaike (1973), which is defined by

p̂ = argminp
2π

T

T/2
∑

k=1

(

log fθ̂(p)(λk,T ) +
IT (λk,T )

fθ̂(p)(λk,T )

)

+ p/T

in the context of stationary processes due to Whittle (1951). Here, fθ̂(p) is the

spectral density of the fitted stationary FARIMA(p,D, 0) process and IT is the
usual stationary periodogram; see step 1) in the description of the FARI(∞)
bootstrap. Therefore we focus in the following discussion on a sensitivity analysis
of the test (4.10) with respect to different choices of N . We will see that the
particular choice of that tuning parameter has typically very little influence on
the outcome of the test under the null hypothesis while it can change the power
substantially under certain alternatives.

Note further that in practice it is not feasible to create an infinite series
(Y ∗

t )t∈Z as described in step 2) of the FARI(∞) procedure. In order to circum-
vent this problem during the simulation study we follow a pragmatic approach
and replace step 2) by

2∗) Calculate Yt,T = (1 − B)D̂X
(b)
t , where X

(b)
t = Xt,T for t = 1, . . . , T and

X
(b)
t = 0 for t ≤ 0. Then simulate a pseudo-series Y ∗

1,T , . . . , Y
∗
T,T according

to

Y ∗
t,T = Yt,T ; t = 1, . . . , p, Y ∗

t,T =

p
∑

j=1

âj,pY
∗
t−j,T + σ̂pZ

∗
t ; p < t ≤ T,

where the Z∗
t are independent standard normal distributed random vari-

ables.

5.2. Size of the test

In order to study the approximation of the nominal level, we consider the
FARIMA(1, d, 1) model

(1− φB)(1 −B)dXt = (1 + θB)Zt (5.1)

for independent and standard Gaussian Zt and present the results for different
values of φ, θ and d. To be more precise, we simulate

(1− φB)(1 −B)dXt = Zt (5.2)

and

(1−B)dXt = (1 + θB)Zt (5.3)

for d ∈ {0.2, 0.4} and φ, θ ∈ {−0.9,−0.5, 0, 0.5, 0.9}. The corresponding results
for d = 0.2 are depicted in Tables 1 and 2 for the models (5.2) and (5.3),
respectively. In the latter case we observe a precise approximation of the nominal
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Table 1

Rejection probabilities of the test (4.10) under the null hypothesis. The data was generated
according to model (5.1) with d = 0.2, θ = 0 and different values for φ

φ = −0.9 φ = −0.5 φ = 0 φ = 0.5 φ = 0.9
T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
128 16 8 0.131 0.179 0.064 0.098 0.054 0.087 0.078 0.122 0.104 0.17
128 8 16 0.129 0.167 0.069 0.11 0.056 0.102 0.086 0.127 0.095 0.151
256 32 8 0.093 0.129 0.056 0.099 0.039 0.072 0.051 0.083 0.087 0.152
256 16 16 0.069 0.107 0.057 0.088 0.041 0.086 0.068 0.124 0.08 0.118
256 8 32 0.067 0.112 0.046 0.093 0.046 0.09 0.077 0.118 0.051 0.096
512 64 8 0.051 0.099 0.047 0.086 0.039 0.087 0.031 0.07 0.062 0.108
512 32 16 0.058 0.109 0.048 0.097 0.043 0.087 0.051 0.1 0.077 0.14
512 16 32 0.056 0.109 0.046 0.085 0.062 0.115 0.066 0.112 0.054 0.122
512 8 64 0.052 0.092 0.05 0.1 0.033 0.086 0.065 0.118 0.041 0.091

Table 2

Rejection probabilities of the test (4.10) under the null hypothesis. The data was generated
according to model (5.1) with d = 0.2, φ = 0 and different values for θ

θ = −0.9 θ = −0.5 θ = 0.5 θ = 0.9
T N M 5% 10% 5% 10% 5% 10% 5% 10%
128 16 8 0.075 0.124 0.066 0.124 0.061 0.106 0.059 0.092
128 8 16 0.064 0.112 0.058 0.101 0.066 0.109 0.069 0.112
256 32 8 0.046 0.107 0.056 0.105 0.044 0.097 0.056 0.094
256 16 16 0.047 0.094 0.058 0.115 0.037 0.085 0.064 0.108
256 8 16 0.059 0.098 0.061 0.109 0.047 0.085 0.046 0.085
512 64 8 0.057 0.096 0.041 0.084 0.041 0.088 0.049 0.094
512 32 16 0.041 0.089 0.056 0.107 0.052 0.101 0.058 0.091
512 16 32 0.046 0.084 0.046 0.098 0.057 0.095 0.048 0.087
512 8 64 0.036 0.089 0.05 0.091 0.043 0.083 0.055 0.1

level even for T = 128 and it can be seen that the results are basically not
affected by the choice of N in these cases. For the model (5.2) we obtain very
good results for φ ∈ {−0.5, 0, 0.5} while the nominal level is overestimated
for |φ| = 0.9 and smaller T . However, the approximation becomes much more
precise if T grows and is also robust with respect to different choices of the
window length N .

The results for the case d = 0.4 are presented in Table 3 and Table 4 and we
can draw exactly the same picture from it as for d = 0.2. In fact, apart from
the process (5.2) with φ = 0.9, the performance under the null hypothesis does
not change at all with different d.

5.3. Power of the test

To study the power of our test we consider the following three time varying
FARIMA((1, d, 1)) models

Xt,T =
√

sin(πt/T )Z
(d)
t (5.4)

Xt,T = Z
(d)
t + 1.1 cos (1.5− cos(4πt/T ))Z

(d)
t−1 (5.5)

(

1 + 0.9
√

t/TB
)

Xt,T = Z
(d)
t (5.6)
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Table 3

Rejection probabilities of the test (4.10) under the null hypothesis. The data was generated
according to model (5.1) with d = 0.4, θ = 0 and different values for φ

φ = −0.9 φ = −0.5 φ = 0 φ = 0.5 φ = 0.9
T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
128 16 8 0.138 0.174 0.056 0.104 0.06 0.091 0.096 0.138 0.18 0.256
128 8 16 0.126 0.168 0.083 0.124 0.059 0.107 0.088 0.139 0.153 0.219
256 32 8 0.08 0.116 0.044 0.078 0.05 0.087 0.047 0.099 0.12 0.196
256 16 16 0.082 0.125 0.043 0.075 0.052 0.09 0.055 0.101 0.111 0.173
256 8 32 0.071 0.107 0.055 0.096 0.045 0.097 0.064 0.112 0.084 0.13
512 64 8 0.051 0.1 0.041 0.089 0.044 0.083 0.029 0.067 0.061 0.124
512 32 16 0.053 0.104 0.049 0.094 0.038 0.09 0.057 0.097 0.082 0.145
512 16 32 0.063 0.111 0.053 0.105 0.056 0.112 0.049 0.086 0.074 0.129
512 8 64 0.051 0.096 0.051 0.094 0.042 0.089 0.056 0.11 0.067 0.117

Table 4

Rejection probabilities of the test (4.10) under the null hypothesis. The data was generated
according to model (5.1) with d = 0.4, φ = 0 and different values for θ

θ = −0.9 θ = −0.5 θ = 0.5 θ = 0.9
T N M 5% 10% 5% 10% 5% 10% 5% 10%
128 16 8 0.086 0.136 0.081 0.13 0.053 0.084 0.069 0.099
128 8 16 0.085 0.128 0.065 0.11 0.069 0.11 0.073 0.11
256 32 8 0.07 0.116 0.059 0.096 0.039 0.07 0.05 0.096
256 16 16 0.069 0.119 0.076 0.133 0.053 0.09 0.04 0.089
256 8 16 0.043 0.087 0.068 0.111 0.051 0.099 0.051 0.112
512 64 8 0.052 0.109 0.037 0.079 0.051 0.085 0.046 0.105
512 32 16 0.068 0.119 0.05 0.103 0.053 0.099 0.042 0.095
512 16 32 0.056 0.101 0.054 0.106 0.045 0.084 0.056 0.11
512 8 64 0.056 0.102 0.065 0.101 0.054 0.098 0.043 0.082

with Z
(d)
t = (1−B)−dZt for independent and standard Gaussian Zt and different

values of d. We also simulate the time varying fractional noise processes

Xt,T = (1−B)−d(t/T )Zt (5.7)

with either d1(u) = 0.4u2 or d2(u) = 0.1× 1(u ≤ 0.5) + 0.4× 1(u > 0.5). Here,
in contrast to the models (5.4)–(5.6), the long memory parameter d(u) varies
over time. Additionally, we consider the periodic series

Xt,T = sin(tπ/30)(1−B)−dZt (5.8)

for d = 0.2, which in contrast to (5.4) is not locally stationary, because the
function by which the innovation is multiplied depends on t instead of t/T .

The results for the alternatives (5.4)–(5.6) are depicted in Table 5, and it is
remarkable that the choice of N seems to affect the results more than under the
null hypothesis. This is less important for model (5.4), for which the observed
rejection frequencies are large even for small sample sizes, whereas the effect can
have an extreme impact on the power for the other ones; see first and foremost
model (5.5) for d = 0.2. We display the results for the alternatives (5.7) and
(5.8) in Table 6. Concerning model (5.7), it can be seen that for these kinds of
processes the power seems to grow slower in T than for the alternatives (5.4)–
(5.6). Again, the sensitivity of the results with respect to the choice of N is
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Table 5

Rejection probabilities of the test (4.10) for the models (5.4)–(5.6)

(5.4) (5.5) (5.6)
T N M d 5% 10% 5% 10% 5% 10%
128 16 8 0.2 0.694 0.811 0.198 0.303 0.028 0.084
128 8 16 0.2 0.702 0.824 0.169 0.266 0.023 0.071
256 32 8 0.2 0.909 0.968 0.211 0.332 0.132 0.262
256 16 16 0.2 0.946 0.978 0.197 0.312 0.121 0.3
256 8 16 0.2 0.942 0.98 0.158 0.264 0.164 0.32
512 64 8 0.2 0.997 1.0 0.519 0.791 0.557 0.742
512 32 16 0.2 0.999 1.0 0.477 0.702 0.575 0.764
512 16 32 0.2 1.0 1.0 0.362 0.564 0.648 0.808
512 8 64 0.2 1.0 1.0 0.258 0.39 0.664 0.823
128 16 8 0.4 0.517 0.659 0.217 0.326 0.027 0.056
128 8 16 0.4 0.649 0.769 0.188 0.262 0.022 0.067
256 32 8 0.4 0.639 0.771 0.198 0.308 0.115 0.246
256 16 16 0.4 0.795 0.903 0.162 0.292 0.11 0.271
256 8 16 0.4 0.907 0.963 0.137 0.236 0.138 0.312
512 64 8 0.4 0.731 0.861 0.275 0.525 0.471 0.652
512 32 16 0.4 0.925 0.974 0.355 0.602 0.531 0.718
512 16 32 0.4 0.989 0.995 0.355 0.564 0.662 0.784
512 8 64 0.4 0.997 1.0 0.221 0.386 0.677 0.819

Table 6

Rejection probabilities of the test (4.10) for the models (5.7) and (5.8)

(5.7), d1(u) (5.7), d2(u) (5.8)
T N M 5% 10% 5% 10% 5% 10%
128 16 8 0.058 0.108 0.037 0.075 0.349 0.552
128 8 16 0.078 0.129 0.07 0.114 0.416 0.586
256 32 8 0.054 0.108 0.049 0.125 0.147 0.239
256 16 16 0.074 0.147 0.047 0.109 0.222 0.368
256 8 16 0.094 0.143 0.085 0.128 0.288 0.426
512 64 8 0.175 0.288 0.283 0.439 0.223 0.331
512 32 16 0.131 0.218 0.218 0.356 0.276 0.378
512 16 32 0.074 0.145 0.096 0.179 0.300 0.454
512 8 64 0.104 0.172 0.099 0.181 0.332 0.467

rather large, where the best overall performance is obtained if we choose N
large.

A slightly different picture can be drawn by looking at the results for the
not even locally stationary model (5.8). In this case, the power decreases as T
increases from 128 to 256, but gets larger as well if T grows further. However,
for all sample sizes, the rejection frequencies are far above the nominal level.

5.4. Tree ring data

In this section we apply our procedure to a centered series containing 1990
annual pinus longaeva tree ring width measurements at Mammoth Creek, Utah,
between 0 AD to 1989 AD. These data are displayed in the left panel of Figure 1
and were analyzed by several authors in the framework of locally stationary long-
range dependent models [cf. Beran (2009) or Palma and Olea (2010) among
others]. By employing the WhittleFit function from the R-package fArma to
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Fig 1. Left panel: tree ring data. Right panel: the solid line represents the time varying
estimator d̂(u) while the dashed horizontal line indicates the stationary estimator D̂.

Fig 2. Left panel: fractional noise with parameter d = 0.1919. Right panel: the solid line
represents the time varying estimator d̂(u) while the dashed horizontal line indicates the

stationary estimator D̂.

the tree ring data Xt one obtains an estimator D̂ = 0.1919 for the long memory
parameter d, and if a time varying model is assumed, then the (time varying)
long memory parameter d(u) can be (for example) estimated through a rolling

window of N = 400 data. Such an estimator d̂(u) is depicted in the right panel
of Figure 1 and it suggests that d(u) is not constant over time; see Beran (2009)
or Palma and Olea (2010) for a similar argumentation and an approach to fit a
time varying fractional noise process to the data.

However, if we simulate 1990 data from a stationary fractional noise with
long memory parameter d = 0.1919 and calculate d̂(u) as above, one observes
that the variability of the estimator is quite large as well; cf. Figure 2. Thus,
by using graphical methods only, it is hard to tell whether the time variation
of d̂(u) is due to non stationarity or to standard estimation errors. For this
reason, we apply the test (4.10) with N = 248 and N = 124 and obtain p-values
of 0.34 and 0.135, respectively. Both values do not provide enough evidence
to reject the null hypothesis of stationarity at a 10% level. Even though the
rejection frequencies for model (5.7) show that our test is rather conservative
in models with a time varying long memory parameter, its power improves as
N increases. Therefore our results indicate that the assumption of stationarity
should probably not be rejected too hastily.

In order to support this observation we compare the forecasting performance
of a stationary fractional noise model with that of a time varying version. For this
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Table 7

The ratio MSES(p)/MSELS,N (p) for different time horizons (p) and window lengths (N).
A ratio smaller than one indicates that the stationary model provides a more precise forecast

Horizon p N=100 N=125 N=150 N=175 N=200 N=500
10 0.21 0.41 0.51 0.73 0.9 0.96
20 0.10 0.375 0.33 0.66 0.87 0.94
30 0.06 0.32 0.22 0.60 0.86 0.94
40 0.04 0.28 0.16 0.57 0.85 0.93
50 0.02 0.25 0.13 0.53 0.84 0.94

reason, we start at the 100th observation and use all previous data to estimate
the long memory parameter in the stationary case while we employ only the
last N data in the time varying fractional noise model. We define fS

t,r as the

r-step ahead forecast of the stationary model and fLS,N
t,r as the corresponding

forecast for the locally stationary one. In order to compare the performance of
both approaches we follow Starica and Granger (2005) and define aggregated
versions through

Xt,r =

r
∑

i=1

Xt+i, f
S

t,r =

r
∑

i=1

fS
t,i, f

LS,N

t,r =

r
∑

i=1

fLS,N
t,i .

Both approaches are then compared via the ratio MSES(r)/MSELS,N(r),
where

MSES(r) =
1

1890− r

1990−r
∑

t=100

(Xt,r − f
S

t,r)
2

MSELS,N(r) =
1

1990−max(100, N)− r

1990−r
∑

t=max(100,N)

(Xt,r − f
LS,N

t,r )2.

A ratio smaller than one indicates a better performance of the stationary model
while a ratio bigger than one suggests that the locally stationary model provides
a better forecast. The results are depicted in Table 7. From these it can be
observed that the stationary model in general outperforms the time varying
version. While the differences become smaller if N grows, the discrepancy is
quite large for N smaller than 175. We conclude that relying on a plain visual
inspection of the behaviour of the long memory parameter over time may lead
to worse results in term of prediction and recommend to use a formal test for
stationarity as well.

5.5. S&P 500 returns

Finally we apply the test (4.10) to 4097 observations of the S& P 500 which
were recorded between April 10, 1996 and July 13, 2012. We consider the log
returns Xt = log(Yt+1/Yt) (t = 1, . . . , 4096) which are plotted in the right panel
of Figure 3. We observe that days with either small or large movements are likely
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Fig 3. The left panel displays the price of the S&P 500 between April 10th 1996 and July
13th 2012 whereas the log returns of the S&P 500 in the same period are shown in the right
panel.

Fig 4. Left panel: ACF (autocorrelation function) of the log returns Xt, middle panel: ACF
of the absolute log returns |Xt|, right panel: ACF of the squared log returns X2

t .

to be followed by days with similar fluctuation. This effect is called ’volatility
clustering’ and serves as the usual motivation to employ GARCH(p, q) processes
in the modelling of stock returns.

In Figure 4 the ACF (autocorrelation function) is plotted for the log returns
Xt (left panel), the absolute values |Xt| (middle panel) and squared returns X2

t

(right panel). It can be seen that the autocorrelation function γ(k) of the log
returns is rather small if k 6= 0. However, if we take the absolute values |Xt| or
the squared returns X2

t then γ(k) decays to zero very slow as k → ∞. The latter
observation is the main reason to use a long memory model if the volatility of
a financial asset is analyzed.

It was shown in Mikosch and Starica (2004) and Fryzlewicz et al. (2006)
that all these effects can also occur if model (1.1) is used. Starica and Granger
(2005), among others, demonstrated that a simple and natural model like (1.1)
is leading to a superior volatility forecast compared to a GARCH or a long
range dependent FARIMA model. So it might be beneficial to consider not only
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Fig 5. The left panel displays the histogram of the p-values if the test (4.10) (with T = 64
and N = 8) is applied on a rolling window of the 4096 datapoints. In the middle panel we
present the histogram of the p-values if the test (4.10) (with T = 64 and N = 8) is applied
on a rolling window of the first 1000 datapoints. The right panel shows the corresponding
histogram if the last 1000 datapoints are used.

Fig 6. Histograms of the p-values if the test (4.10) with T = 256 and different choice for
N is applied on a rolling window of the 4096 datapoints. Left panel: N = 32, middle panel:
N = 16, right panel: N = 8.

complicated (e.g. long-range dependent) stationary processes in the analysis of
a financial time series but to take into account models which are not stationary
anymore.

We applied our test (4.10) with T = 64 and N = 8 to a rolling window of the
4096 log returns, i.e. we employed our approach using the data Xi, . . .Xi+63 for
i = 1, . . . , 4033. Thus we obtain 4033 p-values whose histogram is displayed in
in the left panel of Figure 5. It can be seen that the assumption of stationarity is
usually not justified since for example 789 of the 4033 p-values are equal to zero
and 1789 are smaller than 0.2. This effect becomes even more evident if we use
a rolling window of T = 256 data. In this case we obtain 3841 p-values whose
histograms are presented in Figure 6 for different window lengths N . If we take
N = 32 then 2413 of the 3841 p-values are equal to zero and 3300 are smaller
than 0.2. So the more data we look at, the bigger is the urgency to employ also
non stationary processes in the statistical analysis. Moreover, we observe that
the histograms in Figure 6 look similar and therefore the results are basically
not affected by the choice of N .

One interesting observation is that during the period we took into account
the data seem to become more non stationary in time which can be oberserved
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from the two histograms in the middle and the right panel of Figure 5. In the
middle panel we display the histogram of the p-values if our test (with T = 64
and N = 8) is applied to Xi, . . . Xi+63 with i = 1, . . . , 1000 while the same
is shown in the right panel if our approach is applied to Xi, . . . Xi+63 with
i = 3034, . . . , 4033. If we look at both histograms it can be seen that there is a
significant shift towards lower p-values.

6. Appendix: Proofs

In this section we present the proofs of all results above. We define

φv,ω,T (u, λ) :=
(

I
[0, ⌊vM⌋

M
]
(u)− ⌊vM⌋/M

)

I
[0,

2π⌊ω N
2

⌋

N
]
(λ)

for u, λ ≥ 0, v, ω ∈ [0, 1],

ρ2,T,D(y1, y2) :=
( 1

T

M
∑

j=1

N/2
∑

k=1

(φv1,ω1,T (uj , λk)− φv2,ω2,T (uj , λk))
2 1

λ4Dk

)1/2

(6.1)

for yi = (vi, ωi) ∈ [0, 1]2 and set

φv,ω(u, λ) := lim
T→∞

φv,ω,T (u, λ) =
(

I[0,v](u)− v
)

I[0,πω](λ), v, ω ∈ [0, 1]. (6.2)

Note that M and N depend on T and observe the relations

ÊT (v, ω) =
1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)IN (uj , λk)

ET (v, ω) =
1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)f(uj , λk)

which will be employed in the proofs of the following two main theorems. All
results below are assumed to hold uniformly in v, ω unless otherwise stated.

Theorem 6.1. Suppose Assumption 2.1 holds and assume that v, ω, vi, ωi ∈
[0, 1] for i ∈ N. Then we have with the notation of Theorem 3.1

a) E(ÊT (v, ω)) = ET (v, ω) + CT (v, ω) +O (1/T ) .

b) Cov(ÊT (v1, ω1), ÊT (v2, ω2))

=
1

T 2

M
∑

j=1

⌊min(ω1,ω2)N/2⌋
∑

k=1

(

1[0,v1](uj)− v1
) (

1[0,v2](uj)− v2
)

f2(uj , λk)

+O(log(N)2/(TN1−4D)) +O(N/T 2).

c) cum(ÊT (v1, ω1), . . . , ÊT (vl, ωl)) = o(T−l/2) for D < 1/4 and l ≥ 3.

d) E|ĜT (v1, ω1)− CT (v1, ω1)− (ĜT (v2, ω2)− CT (v2, ω2))|k

≤ (2k)!Ckρ2,T,D ((v1, ω1), (v2, ω2))
k
T−k/2 for all even k ∈ N.
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Theorem 6.1 is the main tool for proving the results from Section 3. Regarding
the bootstrap, the next theorem ensures that the random variable Ê∗

T (v, ω) can

be approximated by the random variable Ê∗
T,a(v, ω) and is mainly used for

proving Lemma 4.4.

Theorem 6.2. Suppose that Assumptions 2.1, 4.1 and 4.2 are satisfied, and let
v, ω, vi, ωi ∈ [0, 1] for i = 1, 2. Let α > 0 be fixed and denote with AT (α) the set
where |D̂ −D| ≤ α/4 and

|ψ̂l,p − ψ̃l|l1−max(D̂,D) ≤ C
p5 log(T )√

T
∀l ∈ N (6.3)

is fulfilled. Then we have

a) E
(

(Ê∗
T (v, ω)− Ê∗

T,a(v, ω))1AT (α)

)

= 0.

b) Var
(

(Ê∗
T (v, ω)− Ê∗

T,a(v, ω))1AT (α)

)

= O
(

p10 log(T )2log(N)2Nmax(4D−1,0)+αT−2
)

.

c) E
(

|(Ê∗
T (v1, ω1)− Ê∗

T,a(v1, ω1))− (Ê∗
T (v2, ω2)− Ê∗

T,a(v2, ω2))|k1AT (α)

)

≤ (2k)!Ckρ̃k((v1, ω1), (v2, ω2))(p
10 log(T )2Nmax(4D−1,0)+αT−2)k/2

for all k ∈ N even, where ρ̃((v1, ω1), (v2, ω2)) := 1{v1 6=v2 or ω1 6=ω2}.

We begin with the proof of Theorem 6.1 and 6.2 for which we require some
technical lemmata.

Lemma 6.3. Suppose Assumption 2.1 is satisfied. Then for all λ ∈ (0, π) and
N ∈ N

∣

∣

∣

∞
∑

l,m=0
|l−m|>N

ψl(u)ψm(u) exp(−iλ(l −m))
∣

∣

∣ ≤ C

λN1−2D
.

Proof. Without loss of generality we only consider the case m > l. We have

∞
∑

l,m=0
m−l>N

ψl(u)ψm(u) exp(−iλ(l−m)) =
∞
∑

l=0

ψl(u)
∞
∑

m=l+N+1

ψm(u) exp(−iλ(l−m)),

and the absolute value of the right term can be bounded through

∞
∑

l=0

∣

∣

∣ψl(u) exp(−iλl)
∣

∣

∣

(

∣

∣

∣

∞
∑

m=l+N+1

a(u)

m1−d(u)
exp(iλm)

∣

∣

∣

+

∞
∑

m=l+N+1

∣

∣

∣ψm(u)− a(u)

m1−d(u)

∣

∣

∣

)

(6.4)
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where a(u) is the function from (2.6). Equation (2.9) in chapter 5 of Zygmund
(1959) says that

∣

∣

∣

∞
∑

m=l+N+1

1

m1−d(u)
exp(−iλm)

∣

∣

∣ ≤ C

λ

1

(l +N)1−D

holds for a constant C ∈ IR which is independent of l, N , u and λ. In addition,
(2.6) implies

sup
u

|ψl(u)| ≤ C|l|D−1 ∀l ≥ 1. (6.5)

If we combine the last two statements with (2.6) we can bound (6.4) up to a
constant through

∞
∑

l=1

1

l1−D

(

1

λ

1

(l +N)1−D
+

1

(l +N)1−D

)

≤ C

λ

1

N1−2D
.

Lemma 6.4. a) For all n ≥ 1 and k1, k2 ∈ N there exists a constant
C(k1, k2) > 0 such that:

∞
∑

l,m=1
|l−m|≥n

logk1 |l| logk2 |m|
|lm|1−D

1

|l −m| ≤ C(k1, k2)

(

logk1+k2+1(n)

n1−2D
+ 1{n=1}

)

.

b) For n ≥ 1 we have

∞
∑

l,m=1
0<|l−m|<n

1

|lm|1−D
≤ Cn2D.

c) We write (+)6= if |m1 − l2| ≤ n, |m2 − l1| ≤ n and m1 − l2 +m1 − l1 6= 0
hold. Then for n ≥ 2

1

n

∞
∑

m1,m2,l1,l2=1
(+) 6=

1

|m1m2l1l2|1−D

|m2 − l1|
|m1 − l2 +m2 − l1|

≤ C log(n)

n1−4D
.

d) For l ≥ 3 we write (+)6=,l if |n1−ml| ≤ n and |ni+1−mi| ≤ n are satisfied
for i ∈ {1, . . . , l−1} and furthermore m1−n1+m2−n2+ · · ·+ml−nl 6= 0
holds. Then there exists Cl > 0 such that for all n ≥ 2

∞
∑

mi,ni=1
(+) 6=,l

1

|m1n1m2n2 · · ·mlnl|1−D

1

|m1 − n1 +m2 − n2 + · · ·+ml − nl|

≤ Cl log(n)n
2Dl−4D.
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Proof. Before we begin with the proof, note that a simple change of variables
yields

∫ b

a

1

x1−D

logk x

(c± x)e
dx =

1

ce−D

∫ b/c

a/c

logk(cz)

z1−D

1

(1± z)e
dz (6.6)

for a, b, c, e ∈ IR with a ≤ b, c > 0, k ∈ N if any of the integrals exist. The proof
now basically works by considering approximating integrals instead of the sums,
using (6.6) and afterwards employing that

∫ b

a

| logk(z)|
z1−D

1

1− z
dz ≤ C(k) + C| log(1− b)| (6.7)

holds for k ∈ N0, 0 < a < b < 1 and constants C(k) ∈ IR which are independent
of a and b. Note that the absolute value of the right hand side of (6.6) is bounded
by

1

ce−D

∫ ∞

0

| logk(cz)|
z1−D

1

(1± z)e
dz

which is in any case finite if 0 < D < 1, 0 < e < 1 and 1−D+e > 1. If e = 1 and
b/c is close to the possible pole 1, (6.7) implies that the integral on the right hand
side of (6.6) is only bounded by a constant times some additional log term which
incorporates in some way how close the boundary is to 1. This rule of thumb
will be helpful in understanding the treatment of the approximating integrals
in the following. Since all proofs work in that particular way of replacing the
sum through integrals and applying (6.6) and (6.7) afterwards we will present
the details for part a) only.

Proof of a): For n = 1 let l > m without loss of generality. Then

∞
∑

m=1

∞
∑

l=m+1

logk1 |l| logk2 |m|
|lm|1−D

1

|m− l| =
∞
∑

m=1

∞
∑

s=1

logk2(m)

m1−D(m+ s)1−D−ε

logk1(m+ s)

s(m+ s)ε
,

for some ε small enough such that 2 − 2D − ε > 1. Both sums are finite then,
so let n ≥ 2. Again, we discuss the case l > m only, which becomes

∞
∑

l=n+1

logk1 l

l1−D

l−n
∑

m=2

logk2 m

m1−D

1

l −m
.

If we treat the expression in the second summand as a function in m, it can be
seen that this function only has a finite number of points where the first derivate
equals zero. Thus it is piecewise monotonic, which allows us to bound the sum
over m by its approximating integral, i.e. by

∫ l−n+1

1

logk2 x

x1−D

1

l − x
dx =

1

l1−D

∫ 1−n−1
l

1/l

logk2(lz)

z1−D

1

1− z
dz



2268 P. Preuß and M. Vetter

≤ logk2(l)

l1−D

∫ 1−n−1
l

1/l

1

z1−D

1

1− z
dz.

With (6.7) it follows that the entire expression can be (up to a further constant)
bounded by

∞
∑

l=n+1

logk1+k2 l

l2−2D

(

1 +
∣

∣

∣log

(

n− 1

l

)

∣

∣

∣

)

≤ 3
∞
∑

l=n+1

logk1+k2+1 l

l2−2D
=O

(

logk1+k2+1 n

n1−2D

)

.

This yields the claim for m > 0 and we now consider the case m < 0. A straight-
forward calculation yields that

∞
∑

l≥n/2,m≤min(0,l−n)

logk1 |l| logk2 |m|
|lm|1−D

1

|m− l|

≤
n−1
∑

l=n/2

logk1 l

l1−D

(

logk2 n

n
+

∞
∑

m=n−l+1

logk2 m

m1−D

1

l+m

)

+

∞
∑

l=n

logk1 l

l1−D

∞
∑

m=2

logk2 m

m1−D

1

l +m
,

and by replacing the sum over m through its approximating integral we can
bound this expression by

logk2 n

n

n−1
∑

l=n/2

logk1 l

l1−D
+

n−1
∑

l=n/2

logk1 l

l1−D

∫ ∞

n−l

logk2 x

x1−D

1

l + x
dx

+

∞
∑

l=n

logk1 l

l1−D

∫ ∞

1

logk2 x

x1−D

1

l + x
dx.

By using (6.6) we can bound both integrals through a constant times logk2(l)/l1−D

which then yields the claim by calculating the resulting sums.

Analogously to the above proof we can show the next lemma, which, although
it looks similar to Lemma 6.4 (and is proven in the same way), is different since
the index of summation m is fixed.

Lemma 6.5. For all m ∈ Z and n ≥ 1 we have

a)

∞
∑

l=1
0<|l−m|<n

1

|l|1−D

1

|l −m| ≤ C

(

log |m|
|m|1−D

1{m 6=0} + 1{m=0}

)

≤ C

b)

∞
∑

l=1
n/2≤|l−m|<n

1

|l|1−d

1

n− |l−m|

≤ C

(

max

(

log |n−m|
|n−m|1−d

,
log |n+m|
|n+m|1−d

)

1{m 6=n} + 1{m=n}

)

≤ C.
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6.1. Proof of Theorem 6.1

Proof of a). We have

E
( 1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)IN (uj , λk)
)

=
1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2πN

N−1
∑

p,q=0

∞
∑

l,m=0

ψtj−N/2+1+p,T,lψtj−N/2+1+q,T,mE(Ztj−N/2+1+p−mZtj−N/2+1+q−l)

exp(−iλk(p− q)).

Set ej,N := tj −N/2 + 1. By using the independence of the innovations Zi we
obtain that the above term equals

1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2πN

∞
∑

l,m=0
|l−m|<N

N−1
∑

q=0
0≤q+m−l≤N−1

ψej,N+q+m−l,T,lψej,N+q,T,m

exp(−iλk(m− l)). (6.8)

Write the product of the ψ-terms above as

ψl

(ej,N + q +m− l

T

)

ψm

(ej,N + q

T

)

+ ψej,N+q+m−l,T,l

(

ψej,N+q,T,m − ψm

(ej,N + q

T

))

+ ψm

(

ej,N + q

T

)(

ψej,N+q+m−l,T,l − ψl

(

ej,N + q +m− l

T

))

}

, (6.9)

so (6.8) splits into a sum of three terms. We will now demonstrate that the
second summand is of order O(1/T ) and analogously for the third one. The
absolute value of the second summand can be bounded by

1

M

M
∑

j=1

∞
∑

l,m=0
|l−m|<N

1

2πN

N−1
∑

q=0
0≤q+m−l≤N−1

|ψej,N+q+m−l,T,l|
∣

∣

∣

∣

ψej,N+q,T,m − ψm

(

ej,N + q

T

)∣

∣

∣

∣

×
∣

∣

∣

∣

1

N

N/2
∑

k=1

φv,ω,T (uj , λk) exp(−iλk(m− l))

∣

∣

∣

∣

. (6.10)

We employ (A.2) of Eichler (2008) which says that there exists a constant C ∈ IR
such that for all {r ∈ Z : rmodN/2 6= 0} we have

∣

∣

∣

1

N

N/2
∑

k=1

φv,ω,T (u, λk) exp(−iλkr)
∣

∣

∣ ≤ C

|rmodN/2| (6.11)
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uniformly in v, ω. Using (2.5), (2.9), (6.11) and a symmetry argument we can
bound (6.10) up to a constant by

2
∞
∑

l,m=1
0<|l−m|<N/2

1

|l|1−D
sup
q,tj

∣

∣

∣ψtj−N/2+1+q,T,m − ψm

( tj −N/2 + 1 + q

T

)∣

∣

∣

1

|l −m|

+

∞
∑

l,m=1
|l−m|=N/2 ∨ l=m

1

|l|1−D
sup
q,tj

∣

∣

∣ψtj−N/2+1+q,T,m − ψm

( tj −N/2 + 1 + q

T

)∣

∣

∣

+

N/2−1
∑

m=1

sup
q,tj

∣

∣

∣ψtj−N/2+1+q,T,m − ψm

( tj −N/2 + 1 + q

T

)∣

∣

∣

1

m

+
1

T

N/2−1
∑

l=1

1

|l|1−D

1

l
+

1

T
.

Note that the terms in the final line correspond to the case where l = 0 or
m = 0. It can be shown that each of the terms above is of order O(1/T ) due
to Lemma 6.5, (2.5) and D < 1/2. In the following we will bound expressions
like the above one w.l.o.g. by a constant times the first summand, i.e. from now
on we will only consider the case 0 < |l −m| < N/2 if we derive the order of
error terms. We do this since the remaining terms will be either of the same or
of smaller order and are treated analogously.

Following the above argumentation we obtain that (6.9) equals

1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2πN

N−1
∑

p,q=0

∞
∑

l,m=0

ψl

(ej,N + p

T

)

ψm

(ej,N + q

T

)

× E(Zej,N+p−mZej,N+q−l) exp(−iλk(p− q)) +O(1/T )

=
1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2πN

N−1
∑

p,q=0

∞
∑

l,m=0

E(Zej,N+p−mZej,N+q−l)ψl(uj)ψm(uj)

× exp(−iλk(p− q)) + C̃T (v, ω) +O(1/T ) (6.12)

with

C̃T (v, ω)

:=
1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2πN

N−1
∑

p,q=0

∞
∑

l,m=0

E(Zej,N+p−mZej,N+q−l)

× exp(−iλk(p− q))

{(

ψl

(

ej,N + p

T

)

− ψl(uj)

)

ψm(uj)

+

(

ψm

(

ej,N + q

T

)

− ψm(uj)

)

ψl(uj)
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+

(

ψl

(

ej,N + p

T

)

− ψl(uj)

)(

ψm

(

ej,N + q

T

)

− ψm(uj)

)}

. (6.13)

Let us begin with the first summand of (6.12). This term can be rewritten as

1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2πN

∞
∑

l,m=0
|l−m|<N

N−1
∑

q=0
0≤q+m−l≤N−1

ψl(uj)ψm(uj)

× exp(−iλk(m− l))

=
1

2πT

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)

∞
∑

l,m=0
|l−m|<N

ψl(uj)ψm(uj) exp(−iλk(m− l))

− 1

2πTN

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj, λk)

∞
∑

l,m=0
|l−m|<N

|l −m|ψl(uj)ψm(uj) exp(−iλk(m− l))

= AT (v, ω)−BT (v, ω) (6.14)

where AT and BT are defined implicitly. (6.5) and (6.11) prove that BT is up
to a constant independent of (v, ω) bounded by

1

N

∞
∑

l,m=1
0<|l−m|<N/2

1

l1−D

1

m1−D

which is of order O(log(N)/N1−2D) due to Lemma 6.4 b). Note that the cases
with either l = 0, m = 0 or N/2 ≤ |l −m| < N are of the same or of smaller
order. Consider AT next. Our aim is to skip the condition |l −m| ≤ N − 1. By
employing Lemma 6.3 we obtain

ÃT (v, ω) =
1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2π

∞
∑

l,m=0
|l−m|≥N

ψl(uj)ψm(uj) exp(−iλk(m− l))

= O

(

log(N)

N1−2D

)

,

uniformly in (v, ω), and therefore AT can be decomposed as

1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj, λk)f(uj, λk) +O

(

log(N)

N1−2D

)

− ÃT (v, ω)

= ET (v, ω) +O

(

log(N)

N1−2D

)

.

Setting CT = C̃T − ÃT − BT note that all three terms are zero if the ψl are
independent of time. For the first summand this follows immediately as it is



2272 P. Preuß and M. Vetter

built on differences of ψ variables, whereas for the latter two ones the claim
follows by definition of φv,ω,T (u, λ). We are therefore left to show that C̃T =
O(N2/T 2) +O(log(N)/N1−2D) holds uniformly in v, ω ∈ [0, 1]. Without loss of
generality we only consider the first summand in (6.13) which equals

1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2πN

N−1
∑

p=0
0≤p+l−m≤N−1

∞
∑

l,m=0
|l−m|<N

ψ′
l(uj)ψm(uj)

p−N/2 + 1

T

× exp(−iλk(m− l)) +O(N2/T 2)

due to a second order Taylor expansion plus Assumption 2.1, Lemma 6.4 a)
and (6.11). We proceed here as for AT and BT in (6.14) above, and a similar
argument as for BT proves that we can skip the condition 0 ≤ p+l−m ≤ N−1 at
the cost of an error of order O(log(N)/N1−2D). Therefore the above expression
equals

1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2πN

N−1
∑

p=0

∞
∑

l,m=0
|l−m|<N

ψ′
l(uj)ψm(uj)

p−N/2 + 1

T

× exp(−iλk(m− l)) +O

(

log(N)

N1−2d

)

.

Using
∑N−1

p=0 (p−N/2 + 1)/T = N/(2T ) we see that this term is the same as

1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

4πT

∞
∑

l,m=0
|l−m|<N

ψ′
l(uj)ψm(uj) exp(−iλk(m− l))

+O

(

log(N)

N1−2d

)

,

and its first part is some O(1/T ) because of (2.8), (6.5), (6.11) and Lemma 6.4 a)
with n = 1, k1 = 1 and k2 = 0.

Proof of b). We set

V true
T = Cov

( 1

T

M
∑

j1=1

N/2
∑

k1=1

φv1,ω1,T (uj1 , λk1 )IN (uj1 , λk1),

1

T

M
∑

j2=1

N/2
∑

k2=1

φv2,ω2,T (uj2 , λk2)IN (uj2 , λk2)
)

=
1

T 2

M
∑

j1,j2=1

N/2
∑

k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj2 , λk2)
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× 1

(2πN)2

N−1
∑

p1,p2,q1,q2=0

∞
∑

m1,m2,l1,l2=0

ψej1 ,N+p1,T,m1ψej1 ,N+q1,T,l1

× ψej2,N+p2,T,m2ψej2,N+q2,T,l2

× cum(Zej1,N+p1−m1Zej1,N+q1−l1 , Zej2,N+p2−m2Zej2,N+q2−l2)

× exp(−iλk1(p1 − q1)) exp(−iλk2(p2 − q2)).

with eji,N = tji −N/2 + 1. We start by considering the approximating version
V appr
T which is the same as above, but where all ψ-terms have been replaced,

so e.g. ψej1,N+p1,T,m1 by ψm1(uj1) and similarly for the others. Using the well-
known formula

cum(Zej1,N+p1−m1Zej1,N+q1−l1 , Zej2,N+p2−m2Zej2,N+q2−l2)

= cum(Zej1,N+p1−m1Zej2,N+q2−l2)cum(Zej1 ,N+q1−l1Zej2,N+p2−m2)

+ cum(Zej1 ,N+p1−m1Zej2,N+p2−m2)cum(Zej1,N+q1−l1Zej2,N+q2−l2). (6.15)

the computation of V appr
T splits into two similar terms which we denote with

VT,1 and VT,2. We start by considering the first one. Because of the independence
of the innovations Zi we obtain

VT,1 =
1

T 2

M
∑

j1,j2=1

N/2
∑

k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj2 , λk2)

× 1

(2πN)2

∞
∑

m1,m2,l1,l2=0

N−1
∑

q1,q2=0
0≤q2+m1−l2+tj2−tj1≤N−1
0≤q1+m2−l1+tj1−tj2≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp(−iλk1(q2 − q1 + tj2 − tj1 +m1 − l2))

× exp(iλk2(q2 − q1 + tj2 − tj1 + l1 −m2)).

We divide the sum over j1, j2 into two sums, namely one sum where j1 = j2 is
satisfied and one sum with j1 6= j2. Then

VT,1 =
1

T 2

M
∑

j1=1

N/2
∑

k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj1 , λk2)

× 1

(2πN)2

∞
∑

m1,m2,l1,l2=0

N−1
∑

q1,q2=0
0≤q2+m1−l2≤N−1
0≤q1+m2−l1≤N−1

ψm1(uj1)ψl1(uj1)ψm2(uj1)ψl2(uj1)

× exp(−iλk1(q2 − q1 +m1 − l2)) exp(iλk2(q2 − q1 + l1 −m2)) + V j1 6=j2
T,1 ,

(6.16)

where V j1 6=j2
T,1 corresponds to the case where j1 and j2 are not equal to each

other. The first claim will be

V j1 6=j2
T,1 = O

(

log(N)2/(TN1−4D)
)

, (6.17)
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i.e. the second summand in (6.16) vanishes asymptotically, meaning that we can
restrict ourselves to the case j1 = j2 thereafter.

Proof of (6.17): Note that we can bound the absolute value of V j1 6=j2
T,1 by the

sum of four terms V j1 6=j2
T,1,i [i = 1, . . . , 4] which are the absolute values of the

terms corresponding to the following four cases:

1) q2 − q1 + tj2 − tj1 +m1 − l2 6= 0 and q2 − q1 + tj2 − tj1 + l1 −m2 = 0

2) q2 − q1 + tj2 − tj1 +m1 − l2 = 0 and q2 − q1 + tj2 − tj1 + l1 −m2 6= 0

3) q2 − q1 + tj2 − tj1 +m1 − l2 6= 0 and q2 − q1 + tj2 − tj1 + l1 −m2 6= 0
(6.18)

4) q2 − q1 + tj2 − tj1 +m1 − l2 = 0 and q2 − q1 + tj2 − tj1 + l1 −m2 = 0

We will present the details for the term V j1 6=j2
T,1,3 only since it is the dominating

one due to the least restrictive conditions. Setting ∆t = tj2 − tj1 we obtain that

|V j1 6=j2
T,1,3 | equals

∣

∣

∣

1

T 2

M
∑

j1,j2=1
j1 6=j2

N/2
∑

k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj2 , λk2)

× 1

(2πN)2

∞
∑

m1,m2,l1,l2=0

N−1
∑

q1,q2=0
0≤q2+m1−l2+∆t≤N−1
0≤q1+m2−l1−∆t≤N−1

(6.18)

ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)

× exp(−iλk1(q2 − q1 +∆t+m1 − l2)) exp(−iλk2(q1 − q2 −∆t+m2 − l1))
∣

∣

∣

≤ 1

(2πT )2

M
∑

j1=1

∞
∑

m1,m2,l1,l2=0

N−1
∑

q2=0

M
∑

j2 6=j1
0≤q2+m1−l2+∆t≤N−1

× |ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2)|

×
N−1
∑

q1=0
0≤q1+m2−l1−∆t≤N−1

(6.18)

∣

∣

∣

1

N

N/2
∑

k1=1

φv1,ω1,T (uj1 , λk1)

exp(−iλk1(q2 − q1 +∆t+m1 − l2))
∣

∣

∣

×
∣

∣

∣

1

N

N/2
∑

k2=1

φv2,ω2,T (uj2 , λk2) exp(−iλk2(q1 − q2 −∆t+m2 − l1))
∣

∣

∣. (6.19)

The conditions 0 ≤ q2+m1− l2+∆t ≤ N−1 and 0 ≤ q1+m2− l1−∆t ≤ N−1
can only be satisfied if |m1 − l2 + ∆t| < N and |m2 − l1 − ∆t| < N hold. By
combining this with (6.5) and (6.11) it can be seen that the above term is up
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to a constant bounded by

1

T 2

∞
∑

m1,m2,l1,l2=1
m1−l2+m2−l1 6=0

N−1
∑

q2=0

M
∑

j2 6=j1
0≤q2+m1−l2+∆t≤N−1

|m1−l2+∆t|<N
|m2−l1−∆t|<N

1

|m1m2l1l2|1−D

×
∑

q1∈AN

|q2−q1+∆t+m1−l2|<N/2
|q1−q2−∆t+m2−l1|<N/2

1

|q2 − q1 +∆t+m1 − l2|
1

|q1 − q2 −∆t+m2 − l1|

(6.20)

where AN = {0, 1, 2, . . . , N − 1}\{z1, z2} with z1 = q2 + ∆t + m1 − l2, z2 =
q2 + ∆t + l1 − m2. We used once more that the cases with mi = 0, li = 0,
m1−l2+m2−l1 = 0, |q2−q1+∆t+m1−l2| ≥ N/2 or |q1−q2−∆t+m2−l1| ≥ N/2
are of the same or smaller order and that z1 and z2 correspond to the values of
q1 for which the argument in one of the exp-function is zero which cannot occur
because of (6.18). By considering the approximating integral we can bound the
latter sum up to a constant by

∫

A

1

|q2 − q1 +∆t+m1 − l2|
1

|q1 − q2 −∆t+m2 − l1|
dq1

with A = [0, N − 1]\{[z1− 1, z1+1]∪ [z2− 1, z2+1]}. A simple integration via a
decomposition into partial fractions yields that (6.20) is thus (up to a constant)
bounded by

1

T 2

M
∑

j1=1

∞
∑

m1,m2,l1,l2=1
m1−l2+m2−l1 6=0

N−1
∑

q2=0

M
∑

j2 6=j1
0≤q2+m1−l2+∆t≤N−1

|m1−l2+∆t|<N
|m2−l1−∆t|<N

1

|m1m2l1l2|1−D

× log |q2 − q1 +∆t+m1 − l2|+ log |q1 − q2 −∆t+m2 − l1|
|m1 − l2 +m2 − l1|

∣

∣

∣

∣

∂A

where
∣

∣

∂A
means that the antiderivative with respect to q1 is computed at all

values of the boundary of A and always combined via a sum. We observe that
the construction of A together with the conditions on qi,mi, li and j2 imply
that the arguments in the log-function are between 1 and 2N . Furthermore, for
chosen q2, m1, l2 and j1, there is at most one possible choice for j2 for which
the corresponding summand does not vanish. Thus we have to show that

1

TN

∞
∑

m1,m2,l1,l2=1
m1−l2+m2−l1 6=0

N−1
∑

q2=0

M
∑

j2=1
0≤q2+m1−l2+∆t≤N−1

|m1−l2+∆t|<N
|m2−l1−∆t|<N

1

|m1m2l1l2|1−D

log(N)

|m1 − l2 +m2 − l1|

(6.21)
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satisfies the bound from (6.17), unformly in |∆t| ≥ N . In fact, due to constraints
such as |m1 − l2 +∆t| < N the expression (6.21) becomes largest for |∆t| = N ,
as in this case m1 and l2 can jointly be chosen ’small’. Then it follows from the
restriction 0 ≤ q2 +m1 − l2 + ∆t ≤ N − 1 on q2 that there are only |m1 − l2|
possible choices for q2 if m1 and l2 are chosen. Therefore (6.21) is bounded by

1

TN

∞
∑

m1,m2,l1,l2=1
|m1−l2+N |<N
|m2−l1−N |<N

m1−l2+m2−l1 6=0

log(N)

|m1m2l1l2|1−D

|m1 − l2|
|m1 − l2 +m2 − l1|

=
1

TN

∞
∑

m1,m2,l1,l2=1
|m1−l2|<2N
|m2−l1|<2N

m1−l2+m2−l1 6=0

log(N)

|m1m2l1l2|1−D

|m1 − l2|
|m1 − l2 +m2 − l1|

which is of order O(log(N)2/(TN1−4D)) due to Lemma 6.4 c). We have thus
shown (6.17) and can restrict ourselves to the case j1 = j2 in the first term of
(6.16), i.e. VT,1 equals

1

T 2

M
∑

j=1

N/2
∑

k1,k2=1

φv1,ω1,T (uj , λk1)φv2,ω2,T (uj, λk2 )

∞
∑

m1,m2,l1,l2=0
(+)

N−1
∑

q1,q2=0
0≤q2+m1−l2≤N−1
0≤q1+m2−l1≤N−1

ψm1(uj)ψl1(uj)ψm2(uj)ψl2(uj)

× 1

(2πN)2
exp(−iλk1(q2 − q1 +m1 − l2)) exp(iλk2 (q2 − q1 + l1 −m2))

+O

(

log(N)2

TN1−4D

)

,

where (+) is a shortcut for max(|m1 − l2|, |m2 − l1|) < N and is due to the
restrictions on qi.

Note first that we make an error of order O(log(N)2/(TN1−4D)) if we skip
the conditions on the choice of q1 and q2. This follows in a similar way as above,
using (6.5), (6.11) and Lemma 6.4 c) once more. Therefore

VT,1 =
1

T 2

M
∑

j=1

N/2
∑

k1,k2=1

φv1,ω1,T (uj , λk1)φv2,ω2,T (uj , λk2)
1

(2πN)2

∞
∑

m1,m2,l1,l2=0
(+)

N−1
∑

q1,q2=0

ψm1(uj)ψl1(uj)ψm2(uj)ψl2(uj)

× exp(−iλk1(q2 − q1 +m1 − l2)) exp(iλk2(q2 − q1 + l1 −m2))

+O
(

log(N)2/(TN1−4D)
)

.
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By employing the well known identity

1

N

N−1
∑

q=0

exp(−i(λk1 − λk2)q) =

{

1, k1 − k2 = lN with l ∈ Z,

0, else,
(6.22)

it can be seen that all terms with k1 6= k2 are equal to zero and we therefore get

VT,1 =
1

T 2

M
∑

j=1

N/2
∑

k=1

φv1,ω1,T (uj, λk)φv2,ω2,T (uj , λk)
1

(2π)2

∞
∑

m1,m2,l1,l2=0
(+)

ψm1(uj)ψl1(uj)ψm2(uj)ψl2(uj) exp(−iλk(m1 − l2 +m2 − l1))

+O
(

log(N)2/(TN1−4D)
)

.

The same error arises due to Lemma 6.3, (6.5) and Lemma 6.4 b) if we skip
the condition (+). Note that we can proceed completely analogously for the
term VT,2 with the difference that instead of the right hand side in (6.22) we
obtain the corresponding term with λk1 − λk2 replaced by λk1 + λk2 . Because
of (6.22) we then only have to consider the case k1 = k2 = N/2 and therefore
the whole term is of order O(log(N)2/(TN1−4D)). Using the definition of the
spectral density the claim follows for V appr

T .
What remains is to show

V true
T = V appr

T +Op

(

N

T 2
(N4D−1 log(N) + 1)

)

,

from which the claim follows due to N = o(T ). However, the only property of the
coefficents ψl(·) used in the treatment of VT,1 is (6.5). Since (2.9) provides the
same property as (6.5) for the original coefficents, we obtain that V true

T equals
the final quantity above but with the approximating functions ψl(uj) recplaced
by some ψtj+cj,lN,T,l, cj,l ∈ (−1, 1). Condition (2.5) together with (essentially)
Lemma 6.4 c) then yields that we make an error of the order specified above, if
we replace ψtj+cj,lN,T,l by ψl(tj + cj,lN/T ). A Taylor expansion combined with
(2.8) then gives the result.

Proof of c). Assume w.l.o.g. that (v, ω) := (v1, ω1) = (v2, ω2) = · · · = (vl, ωl).
Using the same replacement of coefficients as in the previous proof we obtain
from (2.5), a Taylor expansion and (2.8) that cuml(ÊT (v, ω)) equals

1

T l

M
∑

j1,...,jl=1

N/2
∑

k1,...,kl=1

φv,ω,T (uj1 , λk1) · · ·φv,ω,T (ujl , λkl
)

1

(2πN)l

N−1
∑

p1,...,ql=0

∞
∑

m1,...,nl=0

cum(Ztj1−N/2+1+p1−m1
Ztj1−N/2+1+q1−n1

, . . . , Ztjl−N/2+1+pl−ml
Ztjl−N/2+1+ql−nl

)

× ψm1(uj1) · · ·ψnl
(ujl) exp(−iλk1(p1 − q1)) · · · exp(−iλkl

(pl − ql))(1 + o(1))

for l ≥ 3. We define Yi,1 := Ztji−N/2+1+pi−mi
and Yi,2 := Ztji−N/2+1+qi−ni

for i ∈ {1, . . . , l}. Following chapter 2.3 of Brillinger (1981) we obtain
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cuml(ÊT (v, ω)) =
∑

ν VT (ν)(1+o(1)), where the sum runs over all indecompos-
able partitions ν = ν1 ∪ . . . ∪ νl with |νi| = 2 (1 ≤ i ≤ l) of the matrix

Y1,1 Y1,2
...

...
Yl,1 Yl,2

and

VT (ν) :=
1

T l

M
∑

j1,...,jl=1

N/2
∑

k1,...,kl=1

φv,ω,T (uj1 , λk1) · · ·φv,ω,T (ujl , λkl
)

1

(2πN)l

N−1
∑

p1,...,ql=0

∞
∑

m1,...,nl=0

ψm1(uj1) · · ·ψnl
(ujl)cum(Yi,k; (i, k) ∈ ν1) · · · cum(Yi,k; (i, k) ∈ νl)

× exp(−iλk1(p1 − q1)) · · · exp(−iλkl
(pl − ql)).

We now fix one indecomposable partition ν̃ and assume without loss of generality
that

ν̃ =
l−1
⋃

i=1

(Yi,1, Yi+1,2) ∪ (Yl,1, Y1,2). (6.23)

Because of cum(Zi, Zj) 6= 0 for i 6= j we obtain the equations q1 = pl + n1 −
ml + tjl − tj1 and qi+1 = pi + ni+1 − mi + tji − tji+1 for i ∈ {1, . . . , l − 1}.
Therefore only l variables of the 2l variables p1, q1, p2, . . . , ql are free to choose
and must satisfy the conditions

0 ≤ pl + n1 −ml + tjl − tj1 ≤ N − 1 and

0 ≤ pi + ni+1 −mi + tji − tji+1 ≤ N − 1 for i ∈ {1, . . . , l − 1}. (6.24)

Thus we obtain

VT (ν̃) =
1

T l

M
∑

j1,...,jl=1

N/2
∑

k1,...,kl=1

φv,ω,T (uj1 , λk1) · · ·φv,ω,T (ujl , λkl
)

× 1

(2πN)l

N−1
∑

p1,...,pl=0

∞
∑

m1,...,nl=0
(6.24)

ψm1(uj1) · · ·ψnl
(ujl)

× exp(−iλk1(p1 − pl +ml − n1 + tj1 − tjl))

l
∏

i=2

exp(−iλki
(pi − pi−1 +mi−1 − ni + tji − tji−1)).

Note that (6.24) can only be satisfied if |n1 −ml + tjl − tj1 | < N and |ni+1 −
mi+ tji − tji+1 | < N hold for i ∈ {1, 2, . . . , l−1}. Using this fact in combination
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with (6.5) and (6.11) the term above is (up to a constant) bounded by

1

T l

M
∑

j1=1

∞
∑

m1,n1,...,ml,nl=0
mi,ni 6=0

M
∑

j2,...,jl=1
|ni+1−mi+tji−tji+1

|<N

|n1−ml+tjl−tj1 |<N

1

|m1|1−d
· · · 1

|nl|1−d

N−1
∑

p1,p2,...,pl=0
|pi−pi−1+mi−1−ni+tji−tji−1

|<N/2

1

|p1 − pl +ml − n1 + tj1 − tjl |

l
∏

i=2

1

|pi − pi−1 +mi−1 − ni + tji − tji−1 |

l
∏

i=1

1(pi /∈ {zi1, zi2})

where zi1, zi2 are the pi for which the denominator vanishes, i.e. zi1 = pi−1 +
ni−mi−1 + tji−1 − tji and zi2 = pi+1 +mi−ni+1 + tji+1 − tji for i = {1, . . . , l},
where we identified 0 with l and l+ 1 with 1. Note that the cases with pi = zij
for a j ∈ {1, 2} or |pi−pi−1+mi−1−ni+ tji − tji−1 | ≥ N/2 are again of smaller
or equal order. Recall the treatment of (6.20). If we set Ai = [0, N − 1]\([zi1 −
1, zi1 + 1] ∪ [zi2 − 1, zi2 + 1]) for i = {1, . . . , l}, the final line of the previous
display can be bounded by

N−1
∑

pl=0

∫

A1×...×Al−1

1

|p1 − pl +ml − n1 + tj1 − tjl |
l
∏

i=2

1

|pi − pi−1 +mi−1 − ni + tji − tji−1 |
d(p1, . . . , pl−1)

≤
N−1
∑

pl=0

∫

A2×...×Al−1

log |p1 − pl +ml − n1 + tj1 − tjl |+ log |p2 − p1 +m1 − n2 + tj2 − tj1 |
|p2 − pl + tj2 − tjl +ml − n1 +m1 − n2|

∣

∣

∣

∣

∂A1

×
l
∏

i=3

1

|pi − pi−1 +mi−1 − ni + tji − tji−1 |
d(p2, . . . , pl−1).

where we considered partial fractions again and with the same notation as be-
fore. The conditions on pi,mi, ni and ji imply that the arguments of the log-
functions are between 1 and 2N , so also smaller than 2lN . Thus the above term
bounded by

N−1
∑

pl=0

∫

A2×...×Al−1

log(2lN)

|p2 − pl + tj2 − tjl +ml − n1 +m1 − n2|
l
∏

i=3

1

|pi − pi−1 +mi−1 − ni + tji − tji−1 |
d(p2, . . . , pl−1).
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Using this argumentation also in the integration over p2, . . . , pl−1, we can bound
VT (ν̃) (up to a constant) by

1

T l

M
∑

j1=1

∞
∑

m1,n1,...,ml,nl=1
m1−n1+···+ml−nl 6=0

M
∑

j2,...,jl=1
|ni+1−mi+tji−tji+1

|<N

|n1−ml+tjl−tj1 |<N

1

|m1|1−d
· · · 1

|nl|1−d

1

|m1 − n1 + · · ·+ml − nl|

N−1
∑

p1=0

log(2lN)l−1

where all the differences of pi- and tji -terms vanish in a telescoping sum. Note
that for T large enough, the conditions

|ni+1 −mi + tji − tji+1 | < N and |n1 −ml + tjl − tj1 | < N (6.25)

can only be satisfied if |ni+1 −mi| ≤ 2T for i ∈ {1, . . . , l} where we identified
l + 1 with 1. Therefore the above term is smaller or equal to

1

T l

M
∑

j1=1

∞
∑

m1,n1,...,ml,nl=1
(+) 6=,l

M
∑

j2,...,jl=1

(6.25)

1

|m1|1−d
· · · 1

|nl|1−d

1

|m1 − n1 + · · ·+ml − nl|

N−1
∑

p1=0

log(2lN)l−1

where (+)6=,l was defined in Lemma 6.4 d) and we now have n = 2T . As in
the proof of part b), it can be seen that if j1,mi, ni are chosen, there are only
finitely many possible choices for j2, . . . , jl because of the conditions (6.25). By
using this and Lemma 6.4 d), we finally obtain

VT (ν̃) = O(T 1−l log(N)l−1 log(T )T 2Dl−4D)

= O
(

T (1−4D)−l(1/2−2D)−l/2 log(T )l
)

which is of order o(1/T l/2) for l ≥ 3 and D < 1/4.

Proof of d). Recall that ĜT (v, ω)−CT (v, ω) = ÊT (v, ω)−CT (v, ω)−ET (v, ω).
Analogously to the proof of Theorem 5.1 in Preuß et al. (2012) the claim can
be proven by finding appropriate bounds for cumulants instead of moments. We
begin with the first cumulant, as only in this case the non-random terms play a
role. Regarding the other cumulants, we show

|cuml(ÊT (v1, ω1)− ÊT (v2, ω2))| ≤ (2l)!Clρ2,T,D ((v1, ω1), (v2, ω2))
l T−l/2

(6.26)

later only for even l, as the general result can be obtained similarly.
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Let us start with the first cumulant. Recall that

E[|X |] ≤
√

Var(X) + E[X ]2 ≤
√

Var(X) + |E[X ]|

for any random variable X . Therefore, in order to bound

E|ĜT (v1, ω1)− CT (v1, ω1)− (ĜT (v2, ω2)− CT (v2, ω2))|

we have to discuss two terms, and since the variance equals the second cumulant,
the bound for the first term will follow from (6.26) for l = 2. Furthermore, it
follows from the proof of Theorem 6.1 a) that

E[ĜT (v, ω)− CT (v, ω)]

consists of two error terms which are due to the approximation (2.5). We discuss
the one corresponding to the third summand in (6.9) only, which is

1

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (u, λ)
1

2πN

∞
∑

l,m=0
|l−m|<N

N−1
∑

q=0
0≤q+m−l≤N−1

ψm

(

ej,N + q

T

)

(

ψej,N+q+m−l,T,l − ψl

(

ej,N + q +m− l

T

))

exp(−iλk(m− l)). (6.27)

We first consider the sum over m. Note that, if l and q are fixed, m has to lie
between max(l− q, 0) and l+N − 1− q. For l < q+1, we obtain with (2.6) and
Theorem 2.6 in Chapter V of Zygmund (1959) that

∣

∣

∣

l+N−1−q
∑

m=0

ψm

(

ej,N + q

T

)

exp(−iλkm)
∣

∣

∣ ≤ Cλ−D
k (6.28)

holds. For l ≥ q + 1 we get with equation (2.9) from Chapter V in Zygmund
(1959) that

∣

∣

∣

l+N−1−q
∑

m=l−q

ψm

(

ej,N + q

T

)

exp(−iλkm)
∣

∣

∣ ≤ C(l − q)D−1λ−1
k

≤ C(l − q)D−1N1−2Dλ−2D
k .

If we employ (2.5) thereafter and use approximating integrals in the summation
over l we get that (6.27) is smaller than a positive constant times

1

T 2

M
∑

j=1

N/2
∑

k=1

φv,ω,T (u, λ)
1

2πN

N−1
∑

q=0

log(q)
(

λ−D
k qD +N1−2Dλ−2D

k q2D−1
)

.

By bounding the sum over q again through approximating integrals, we finally
obtain that (6.27) is smaller than

CND log(N)

T 2

M
∑

j=1

N/2
∑

k=1

φv,ω,T (u, λ)
1

λ2D
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for some suitable constant C ∈ IR, yielding the claim for l = 1 because of
N = o(T ) and D < 1/2.

In order to simplify technical arguments for l ≥ 2 we furthermore define
φv,ω,T (u, λ) := φv,ω,T (u,−λ) for u ∈ [0, 1] and λ ∈ [−π, 0]. Due to the symmetry

of IN (u, λ) in λ we then obtain that the l-th cumulant of ÊT (v1, ω1)−ÊT (v2, ω2))
is given by

1

2lT l

M
∑

j1,...,jl=1

N/2
∑

k1,...,kl=−⌊(N−1)/2⌋

(φv1,ω1,T (uj1 , λk1)− φv2,ω2,T (uj1 , λk1)) · · ·

· · · (φv1,ω1,T (ujl , λkl
)− φv2,ω2,T (ujl , λkl

))

× 1

(2πN)l

N−1
∑

p1,...,ql=0

∞
∑

m1,...,nl=0

ψm1(uj1) · · ·ψnl
(ujl) exp(−iλk1(p1 − q1)) · · ·

· · · exp(−iλkl
(pl − ql))

× cum(Ztj1−N/2+1+p1−m1
Ztj1−N/2+1+q1−n1

, . . .

. . . , Ztjl−N/2+1+pl−ml
Ztjl−N/2+1+ql−nl

)(1 + o(1))

Set φ1,2,T (u, λ) := φv1,ω1,T (u, λ) − φv2,ω2,T (u, λ). We restrict ourselves again
to the indecomposable partition ν̃ defined in (6.23) and call the corresponding
summand V2,T (ν̃). Then as in the proof of Theorem 5.1 in Preuß et al. (2012)
we see that

0 ≤ pi+mi−ni+ tji − tji+1 ≤ N − 1 for i ∈ {1, 3, 5, . . . , l− 3, l− 1} (6.29)

must be satisfied and that V2,T (ν̃) is bounded by
√

J1,TJ2,T with

J1,T =
1

2lT l

M
∑

j1,...,jl=1

N/2
∑

k1,k3,...,kl−1=−⌊(N−1)/2⌋

φ21,2,T (uj1 , λk1)φ
2
1,2,T (uj3 , λk3)

2 · · ·

· · ·φ21,2,T (ujl−1
, λkl−1

)2
1

(2πN)l

N−1
∑

p1,p3,...,pl−1=0

N−1
∑

p̃1,p̃3,...,p̃l−1=0

∞
∑

m1,n1,m3,n3,...,ml−1,nl−1=0
(6.29)

∞
∑

m̃1,ñ1,m̃3,ñ3,...,m̃l−1,ñl−1=0

(̃6.29)

exp(−iλk1(p1 − p̃1)) exp(−iλk3(p3 − p̃3)) · · · exp(−iλkl−1
(pl−1 − p̃l−1))

ψm1(uj2)ψn1(uj1) · · ·ψml−1
(ujl)ψnl−1

(ujl−1
)

ψm̃1(uj2)ψñ1(uj1) · · ·ψm̃l−1
(ujl)ψñl−1

(ujl−1
)

N/2
∑

k2,k4,...,kl=−⌊(N−1)/2⌋

exp(−iλk2(p̃1 − p1 + n1 −m1 + m̃1 − ñ1))

exp(−iλk4(p̃3 − p3 + n3 −m3 + m̃3 − ñ3)) · · ·
· · · exp(−iλkl

(p̃l−1 − pl−1 + nl−1 −ml−1 + m̃l−1 − ñl−1)) (6.30)
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and J2,T being defined for even pi,mi, ni. Here, the condition (̃6.29) says that
(6.29) holds but with the pi,mi, ni replaced by p̃i, m̃i, ñi. The identity (6.22)
implies that in (6.30) the restrictions

p̃i = pi +mi − ni + ñi − m̃i and

0 ≤ pi +mi − ni + ñi − m̃i ≤ N − 1 for odd i (6.31)

must be fulfilled and that J1,T therefore equals

1

(4π)lT lN l/2

M
∑

j1,...,jl=1

N/2
∑

k1,k3,...,kl−1=−⌊(N−1)/2⌋

φ21,2,T (uj1 , λk1 )φ
2
1,2,T (uj3 , λk3) · · ·

φ21,2,T (ujl−1
, λkl−1

)

N−1
∑

p1,...,pl−1=0

∞
∑

m1,...,nl−1=0
(6.29)

∞
∑

m̃1,...,ñl−1=0
(6.31)

ψm1(uj2) · · ·ψnl−1
(ujl−1

)

ψm̃1(uj2) · · ·ψñl−1
(ujl−1

) exp(−iλk1(n1 −m1 + m̃1 − ñ1)) · · ·
· · · exp(−iλkl−1

(nl−1 −ml−1 + m̃l−1 − ñl−1)).

A factorisation yields J1,T = L1,T × L3,T × · · · × Ll−1,T with

Li,T :=
1

16π2T 2

M
∑

ji=1

N/2
∑

ki=−⌊(N−1)/2⌋

φ21,2,T (uji , λki
)

∞
∑

mi,ni,m̃i,ñi=0
|mi−ni+ñi−m̃i|<N

1

N

N−1
∑

pi=0
0≤pi+mi−ni+ñi−m̃i≤N−1

M
∑

ji+1=1
0≤pi+mi−ni+tji−tji+1

≤N−1

ψmi
(uji+1)ψni

(uji)

ψm̃i
(uji+1)ψñi

(uji) exp(−iλki
(ni −mi + m̃i − ñi))

=
1

16π2T 2

M
∑

ji=1

N/2
∑

ki=−⌊(N−1)/2⌋

φ21,2,T (uji , λki
)hsup,ji,N (λk)

with hsup,ji,N (λ) being defined implicitly. In the following we will show that
there exist a constant C ∈ R such that

− C2/λ4Dk ≤ hsup,ji,N (λk) ≤ C2/λ4Dk (6.32)

for all ji, N, λk, which then yields that each |Li,T | is up to a constant bounded
by

1

T 2

M
∑

j=1

N/2
∑

k=1

φ1,2,T (uj , λk)
2 1

λ4Dk
.

This implies J1,T ≤ Clρ2,T,D((v1, ω1), (v2, ω2))
lT−l/2 and since the same upper

bound is obtained for J2,T the claim then follows analogously to the proof of
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Theorem 5.1 in Preuß et al. (2012) by employing that (2l)!2l is an upper bound
for the number of indecomposable partitions.

Concerning the proof of (6.32) we restrict ourselves to the right inequality
and assume without loss of generality that d(uji) = D. It turns out that this
case is the ’worst’ one in the sense that it yields the largest possible upper
bound. By setting l = ni −mi + m̃i − ñi and employing (2.6) we obtain

hsup,ji,N (λ) =

(

N−1
∑

l=−N+1

bji,N,l exp(−iλl)
)

(1 + o(1)),

where the o(1) term is uniformly bounded in ji, N, λ and where

bji,N,l =

∞
∑

ni=0

1

N

N−1
∑

pi=0
0≤pi−l≤N−1

∞
∑

mi=0
b1,N (ji,pi)≤mi−ni≤b2,N (ji,pi)

∞
∑

m̃i=l+mi−ni

a(uji)
2a(ug(ji,pi,mi−ni))

2

I(ni(m̃i −mi + ni − l))1−d(uji
)I(mim̃i)

1−d(ug(ji,pi,mi−ni)
)
.

Here, b1,N (ji, pi) and b2,N (ji, pi) are chosen to ensure that for given ji, pi there
exists a ji+1 ∈ {1, . . . ,M} such that 0 ≤ pi + mi − ni + tji − tji+1 ≤ N − 1
can be satisfied. For an admissible pair (mi, ni), g(ji, pi,mi − ni) then denotes
the corresponding ji+1. Note that there exists at most one such ji+1 for a given
(mi, ni), and if pi is fixed and |mi − ni| < T/2 then there always exist such an
ji+1, implying that b1,N (ji, pi) ≤ −T/2 and b2,N (ji, pi) ≥ T/2 for all ji, pi. If
we then make use of the fact that a(·) is strictly positive and replace the sums
in bji,N,a through approximating integrals we obtain

bji,N,l =
N − |l|
N

b̃ji,N,l

I(l)1−4D

with 0 < C1 ≤ b̃1ji,N,l ≤ C2 < ∞ for constants C1, C2 uniformly in ji, N, l. The
claim now follows as in the treatment of (6.27) by employing the periodicity
of exp(x) and approximating integrals. See the second section of Chapter V in
Zygmund (1959) for a detailed analysis of such terms.

6.2. Proof of Theorem 6.2

The proof works in the same way as the proof of Theorem 6.1 but by employing
Lemma 4.3 instead of (2.6) in order to keep error terms uniformly small in
probability.

Proof of a). At first note that the coefficents in the MA(∞) representations
(4.8) and (4.11) do not depend on the time. Thus, if we write I∗N (u, λ) for the
bootstrap analogon of IN (u, λ), we obtain

E
(

Ê∗
T (v, ω)1AT (α)

∣

∣

∣
X1,T , . . . , XT,T

)

(6.33)
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= E
(1AT (α)

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)I
∗
N (uj , λk)|X1,T , . . . , XT,T

)

=
1AT (α)

T

M
∑

j=1

N/2
∑

k=1

φv,ω,T (uj , λk)
1

2πN

N−1
∑

p,q=0

∞
∑

l,m=0

ψ̂l,pψ̂m,q (6.34)

E(Z∗
tj−N/2+1+p−mZ

∗
tj−N/2+1+q−l) exp(−iλk(p− q)).

The ψ̂l,p possess no time dependence, thus the above expression equals zero by

definition of φv,ω,T . The same result holds for Ĝ∗
T,a(v, ω).

Proof of b). Because of part a) we obtain

Var
(

(Ê∗
T (v, ω)− Ê∗

T,a(v, ω))1AT (α)

)

= E
(

Var(Ê∗
T (v, ω)− Ê∗

T,a(v, ω)|X1,T , . . . , XT,T )1AT (α)

)

=
1

T 2

M
∑

j1,j2=1

N/2
∑

k1,k2=1

φv1,ω1,T (uj1 , λk1)φv2,ω2,T (uj2 , λk2)
1

(2πN)2

N−1
∑

p1,p2,q1,q2=0

∞
∑

m1,m2,l1,l2=0

E(ψ̂m1,l1,m2,l2,p1AT (α))

× cum(Z∗
ej1 ,N+p1−m1

Z∗
ej1,N+q1−l1 , Z

∗
ej2,N+p2−m2

Z∗
ej2,N+q2−l2)

× exp(−iλk1(p1 − q1)) exp(−iλk2(p2 − q2))

with ψ̂m1,l1,m2,l2,p = (ψ̂m1,pψ̂l1,p − ψ̃m1ψ̃l1)(ψ̂m2,pψ̂l2,p − ψ̃m2 ψ̃l2). By using

ψ̂m1,pψ̂l1,p − ψ̃m1ψ̃l1 = (ψ̂m1,p − ψ̃m1)ψ̃l1 + (ψ̂l1,p − ψ̃l1)ψ̂m1,p

and the analogue for ψ̂m2,pψ̂l2,p− ψ̃m2,pψ̃l2,p, we can divide the above expression
into the sum of four terms. For the sake of brevity details are presented only for
the first one. By using (6.15) the corresponding summand splits into two terms
and we restrict ourselves to the first one which we denote with V ∗

T,1. As in the

proof of Theorem 6.1 b) we then obtain an error term V j1 6=j2,∗
T,1 which is defined as

V j1 6=j2
T,1 but with the ψm1(uj1)ψl1(uj1)ψm2(uj2)ψl2(uj2) replaced by E

(

(ψ̂m1,p −

ψ̃m1)(ψ̂m2,p − ψ̃m2)ψ̃l1 ψ̃l21AT (α)

)

. In the following we will demonstrate that

V j1 6=j2,∗
T,1 = O

(

p10 log(T )2log(N)2Nmax(4D−1,0)+αT−2
)

.

The proof is similar to the one of (6.17) up to employing (6.3). Let us demon-

strate this concept in the treatment of V j1 6=j2,∗
T,1,3 which is bounded by

1

(2πT )2

M
∑

j1=1

∞
∑

m1,m2,l1,l2=0

N−1
∑

q2=0

M
∑

j2=1
j2 6=j1

0≤q2+m1−l2+∆t≤N−1
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E|(ψ̂m1,p − ψ̃m1)(ψ̂m2,p − ψ̃m2)ψ̃l1 ψ̃l21AT (α)|
N−1
∑

q1=0
0≤q1+m2−l1−∆t≤N−1

(6.18)

∣

∣

∣

1

N

N/2
∑

k1=1

φv1,ω1,T (uj1 , λk1) exp(−iλk1(q2 − q1 +∆t+m1 − l2))
∣

∣

∣

∣

∣

∣

1

N

N/2
∑

k2=1

φv2,ω2,T (uj2 , λk2) exp(−iλk2(q1 − q2 −∆t+m2 − l1))
∣

∣

∣;

compare with (6.19). In the proof of Theorem 6.1 b) we have shown that V j1 6=j2
T,1,3

is of order O(log(N)2/(TN1−4D)) by employing (6.5). Here we use (6.3) instead
and combine it with the fact that |D̂ −D| < α/4 on AT (α) to obtain

|ψ̂l,p − ψ̃l| ≤ Cp5 log(T )T−1/2|l|α/4+D−1 ∀l ∈ N. (6.35)

This together with (6.5) and Assumption 4.2 implies

|ψ̂l,p| ≤ C|l|α/4+D−1 ∀l, p ∈ N. (6.36)

Thus the role of D is played by D+α/4 now, and using (6.35) and (6.36) instead
of (6.5) we obtain

V j1 6=j2,∗
T,1,3 ≤ Cp10 log(T )2T−1 × log(N)2T−1N4D+α−1

≤ Cp10 log(T )2log(N)2Nmax(4D−1,0)+αT−2.

Similarly, the subsequent steps in the proof of Theorem 6.1 b) reveal that V ∗
T,1

becomes

1

T 2

M
∑

j=1

N/2
∑

k=1

φv1,ω1,T (uj , λk)φv2,ω2,T (uj , λk)
1

(2π)2

∞
∑

m1,m2,l1,l2=0
(+)

exp(−iλk(m1 − l2 +m2 − l1))E
(

(ψ̂m1,p − ψ̃m1)(ψ̂m2,p − ψ̃m2)ψ̃l1 ψ̃l21AT (α)

)

+O
(

p10 log(T )2log(N)2Nmax(4D−1,0)+αT−2
)

.

In the proof of Theorem 6.1 b), the analogue of the first quantity on the right
hand side above is the main term contributing to the variance. Here, however,
it is of the same order as the error terms. This can be seen using (6.35) and
(6.36) again plus Lemma 6.4 c).

Proof of c). Since the expectation is zero by construction, it is clearly sufficient
to focus on the higher cumulants only. If we employ (6.35) and (6.36) as in the
proof of part b) and follow the arguments in the proof of Theorem 6.1 d), we
obtain

E
(

|(Ê∗
T (v1, ω1)− Ê∗

T,a(v1, ω1))− (Ê∗
T (v2, ω2)− Ê∗

T,a(v2, ω2))|k1AT (α)

)
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≤ (2k)!Ckρ2,T,D+α/4 ((v1, ω1), (v2, ω2))
k
(

p10 log(T )2T−2
)k/2

,

where ρ2,T,D+α/4(·, ·) corresponds to the metric defined in (6.1) but with D

replaced by D + α/4 due to |D̂ −D| ≤ α/4. The claim then follows from

ρ2,T,D+α/4 ((v1, ω1), (v2, ω2)) ≤ Cρ̃ ((v1, ω1), (v2, ω2))
√

Nmax(4D−1,0)+α.

6.3. An auxiliary result used for the bootstrap

Lemma 6.6. Suppose that there are random variables which satisfy the condi-
tions

• Ŵ ∗
T,a

D
= ŴT,a,

• Ŵ ∗
T = Ŵ ∗

T,a + Z∗
T with Z∗

T = oP (1),

• ŴT = ŴT,a + ZT with ZT = oP (1).

Let wT denote the γ quantile of Ŵ ∗
T . Then for any ε, δ > 0 there exists some

T0 > 0 such that

P (ŴT ≤ wT − δ)− ε < γ < P (ŴT ≤ wT + δ) + ε

for any T ≥ T0.

Proof. We have

γ ≤ P (Ŵ ∗
T ≤ wT + δ/3) = P (Ŵ ∗

T,a + Z∗
T ≤ wT + δ/3)

≤ P (Ŵ ∗
T,a ≤ wT + 2δ/3) + P (|Ẑ∗

T | ≥ δ/3).

Furthermore,

P (Ŵ ∗
T,a ≤ wT + 2δ/3) = P (ŴT,a ≤ wT + 2δ/3) = P (ŴT − ZT ≤ wT + 2δ/3)

≤P (ŴT ≤ wT + δ) + P (|ẐT | ≥ δ/3).

Finally, choose T0 large enough to secure that both P (|Ẑ∗
T | ≥ δ/3) < ε/2 and

P (|ẐT | ≥ δ/3) < ε/2 hold for any T ≥ T0. This gives the upper bound. The
lower one follows in the same way.

6.4. Proof of the results from the main corpus

Proof of Theorem 2.2. Without loss of generality we prove the claim for the
case q = 0 only. The extension to q > 0 is then straightforward. Following the
arguments from the proof of Proposition 2.3 in Dahlhaus and Polonik (2009) we
obtain that the process Xt,T possesses an MA(∞) representation with innova-
tions (1−B)−d(t/T )Zt and coefficents

a0,t,T = 1, al,t,T =
(

l−1
∏

j=0

a
( t− j

T

))

11
, l ≥ 1,
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where

a(u) :=

















−a1(u) −a2(u) · · · · · · −ap(u)
1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

















.

By setting η0(u) ≡ 1 and

ηl(u) =
Γ(l + d(u))

Γ(d(u))Γ(l + 1)
, l ≥ 1, (6.37)

we can invert the operator (1 − B)d(t/T ) in order to obtain an MA(∞) repre-
sentation of the process Xt,T with innovations Zt and coefficents

ψl,t,T =

l
∑

k=0

ak,t,T ηl−k(t/T ).

Finally, we set ãl(u) = (a(u)l)11 and define

ψl(u) =

l
∑

k=0

ãk(u)ηl−k(u).

In the stationary case, such processes have been investigated in Kokoszka and
Taqqu (1995), where it has been shown that the equivalent of (2.6) holds true
for each fixed u; cf. their Corollary 3.1. Uniformity of this approximation follows
from our assumptions on the coefficients easily. Furthermore, it is straightfor-
ward to see that (2.8) and (2.9) are fulfilled, so Assumption 2.1 it satisfied up
to (2.5). If we employ the fact that there exists a constant C ∈ R such that
supu∈[0,1] |ηl(u)| ≤ CI(l)1−D, we obtain

|ψl,t,T − ψl(t/T )|

≤ C

l−1
∑

k=0

1

(l − k)1−D

∣

∣

∣ak,t,T − ak(t/T )
∣

∣

∣+
∣

∣

∣al,t,T − al(t/T )
∣

∣

∣. (6.38)

It now follows completely analogous to the proof of Proposition 2.3 in Dahlhaus
and Polonik (2009) that there exists a 0 < ρ < 1 such that

|ak,t,T − ak(t/T )| ≤ C
k−1
∑

i=1

ρk−1

p
∑

j=1

∣

∣

∣
aj(

t− i

T
)− aj(

t

T
)
∣

∣

∣
. (6.39)

This yields that the second summand in (6.38) can be bounded by a constant
times l2ρl/T which tends faster to zero than lD−1/T and we therefore restrict
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ourselves to the first term of (6.38). With (6.39) this term can be bounded
through

C

l−1
∑

k=0

1

(l − k)1−D

k−1
∑

i=1

ρk−1 i

T
≤ C

1

T

l−1
∑

k=1

1

(l − k)1−D
ρk−1k2.

By using the fact that ρk−1k2 is smaller than a constant times k−1, we are left
to discuss

1

T

l−1
∑

k=1

1

(l − k)1−D

1

k
.

We see from Lemma 6.5 a) that this term is (up to a constant) bounded by
log(l)lD−1T−1, which then yields the claim.

Proof of Theorem 3.1. To show weak convergence we have to prove the following
two claims [see van der Vaart and Wellner (1996), Theorem 1.5.4 and 1.5.7]:

(1) Convergence of the finite dimensional distributions

√
T (ĜT (yj)− CT (yj))j=1,...,K

D−−→ (G(yj))j=1,...,K (6.40)

where yj = (vj , ωj) ∈ [0, 1]2 (j = 1, . . . ,K) and K ∈ N.
(2) Stochastic equicontinuity, i.e.

∀η, ε > 0 ∃δ > 0 :

lim
T→∞

P
(

sup
y1,y2∈[0,1]2:ρ2,D(y1,y2)<δ

√
T |(ĜT (y1)− CT (y1))

− (ĜT (y2)− CT (y2))| > η
)

< ε,

where

ρ2,D (y1, y2) :=

(

1

2π

∫ 1

0

∫ π

0

(φv1,ω1(u, λ)− φv2,ω2(u, λ))
2 1

λ4D
dλdu

)1/2

with the functions φv,ω defined in (6.2) and yi = (vi, ωi) for i = 1, 2.

The claim (6.40) can be deduced from Theorem 6.1 a)–c), while stochastic
equicontinuity can be concluded along the lines of the corresponding result in
Preuß et al. (2012). Note that ρ2,D,T (y1, y2) converges to the pseudo distance
ρ2,D(y1, y2), since D < 1/4.

Proof of Lemma 4.3. If we denote with ψl,p the coefficents in the MA(∞) rep-
resentation of the process (1 − B)−DY AR

t (p) and with ηl the coefficent which
appears if we replace D̂ with D in η̂l, we obtain with (4.9)

ψ̂l,p − ψl,p =

l
∑

k=0

(ĉk,pη̂l−k − ck,pηl−k) (6.41)
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=

l
∑

k=0

(ĉk,p − ck,p) η̂l−k +

l
∑

k=0

ck,p (η̂l−k − ηl−k) . (6.42)

We start with the treatment of the first term and let l ≥ 1. By employing (4.5)
we can apply Cauchy’s inequality for holomorphic functions analogously to the
proof of Lemma 2.5 in Kreiß et al. (2011) to obtain

|ĉl,p − cl,p| =
p2

(1 + 1/p)l
/
√
TOP (1), uniformly in p, l ∈ N.

With this bound we get
∑∞

k=0 k
2|ĉk,p−ck,p| = OP (p

5/
√
T ) which directly yields

|ĉk,p − ck,p| = OP (p
5/(

√
Tk2)), k 6= 0. (6.43)

Using (6.37) and properties of the Gamma function we obtain η̂l ≤ C/l1−D̂,
uniformly in D̂. Therefore we see with (6.43) that the first term in (6.41) is

some OP (p
5T−1/2lD̂−1). This works again by replacing the sum through its

approximating integral (for k 6= 0, l) and applying (6.6) as in the proof of
Lemma 6.4. Concerning the second summand in (6.41) note that (4.7) implies
ck,p = OP (1/k

7), uniformly in p. If we combine this with (4.5) and the mean
value theorem we obtain with standard properties of the gamma function that

the second summand in (6.41) is of order OP (pT
−1/2lmax(D̂,D)−1).

Thus to complete the proof it remains to consider |ψl,p−ψ̃l| which is bounded
through

l
∑

k=0

|ck,p − ck||ηl−k|,

where ck are the coefficents in the MA(∞) representation of the process Yt =
(1−B)DXt, see Assumption 4.1. It follows from (4.2) and Lemma 2.4 in Kreiß
et al. (2011) that |ck,p − ck| = O(1/(k2p5)) which implies that |ψl,p − ψl| is of
order O(1/(l1−Dp5)) as for the first term in (6.41). This yields the claim since√
T = o(p10).

Proof of Lemma 4.4. To prove part a), note that sup(v,ω)∈[0,1]2 |ĜT,a(v, ω)| and
sup(v,ω)∈[0,1]2 |Ĝ∗

T,a(v, ω)| have the same distribution, because ψ̃l = ψl = ψl(u)
for all u ∈ [0, 1] under the null hypothesis and since the Zt and Z∗

t are both
independent and standard normal distributed.

Let us now prove part d) which is essentially a corollary of Theorem 6.1.
Before we start, note that when we prove part c) below, we show (6.44). It is thus

sufficient for us to prove tightness of (β
1/2
T Ê∗

T,a(v, ω))(v,ω)∈[0,1]2 only. To this end,
we use again the corresponding result in Preuß et al. (2012) which states that
we need a claim such as Theorem 6.1 d). Luckily, Ê∗

T,a(v, ω) is constructed from

the stationary process in (4.11), whose coefficients ψ̃l satisfy Assumption 2.1.
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Therefore Theorem 6.1 holds true with ET (v, ω) = CT (v, ω) = 0. Precisely, we
obtain

E|β1/2
T (Ê∗

T,a(y1)− Ê∗
T,a(y2))|k ≤ (2k)!Ckρ2,T,D(y1, y2)

k(βT /T )
k/2

for all even integers k. For D < 1/4, βT equals T and ρ2,T,D(y1, y2) converges
to ρ2,D(y1, y2) as before, so we are done. Things change in the other cases. For
D = 1/4, we have

βT
T
ρ2,T,D(y1, y2)

2 =
1

T logN

M
∑

j=1

N/2
∑

k=1

(φv1,ω1,T (uj , λk)− φv2,ω2,T (uj, λk))
2 1

λk
,

and the limit is notably different from ρ2,D(y1, y2) for D < 1/4. For example,

1

T logN

M
∑

j=1

N/2
∑

k=1

φ2v,ω,T (uj , λk)
N

2πk

=
1

M

M
∑

j=1

(I
[0, ⌊vM⌋

M
]
(u)− ⌊vM⌋/M)2

⌊ωN
2 ⌋

∑

k=1

1

2πk logN
→ v(1− v)1{ω 6=0}/(2π).

It is simple to show that in general

ρ2,D(y1, y2) =























0, ω1 = ω2 = 0,
v2(1−v2)
(2π)4DKD

, ω1 = 0, ω2 6= 0,
v1(1−v1)
(2π)4DKD

, ω1 6= 0, ω2 = 0,
|v1−v2|−(v1−v2)

2

(2π)4DKD
, ω1, ω2 6= 0,

for D ≥ 1/4, where K1/4 = 1 and KD =
∑∞

k=1 k
−4D otherwise. Formally, this

pseudo distance has to make [0, 1]2 a totally bounded space, which is satisfied.
Therefore, tightness follows.

We now come to the proof of assertion c). As noted above, it suffices to prove

β
1/2
T sup

(v,ω)∈[0,1]2
|Ê∗

T (v, ω)− Ê∗
T,a(v, ω)| = oP (1), (6.44)

and we have

sup
(v,ω)∈[0,1]2

β
1/2
T |Ê∗

T (v, ω)− Ê∗
T,a(v, ω)|

≤ β
1/2
T 1AT (α) sup

(v,ω)∈[0,1]2
|Ê∗

T (v, ω)− Ê∗
T,a(v, ω)|

+ β
1/2
T 1AC

T
(α) sup

(v,ω)∈[0,1]2
|Ê∗

T (v, ω)− Ê∗
T,a(v, ω)|.

Note that Lemma 4.3 implies P (AT (α)) → 1 as T → ∞ for every α > 0.
Therefore we may restrict our attention to the first term on the right hand side.
According to Newey (1991) we have to show the following two claims:



2292 P. Preuß and M. Vetter

(1) For every v, ω ∈ [0, 1] we have

β
1/2
T 1AT (α)(Ê

∗
T (v, ω)− Ê∗

T,a(v, ω)) = oP (1).

(2) For every η, ε > 0 there exists a δ > 0 such that

lim
T→∞

P
(

sup
y1,y2∈[0,1]2:ρ̃(y1,y2)<δ

β
1/2
T 1AT (α)|(Ê∗

T (y1)− Ê∗
T,a(y1))

− (Ê∗
T (y2)− Ê∗

T,a(y2))| > η
)

< ε,

where yi = (vi, ωi) for i = 1, 2 and ρ̃ is a pseudo distance such that [0, 1]2

equipped with ρ̃ is a totally bounded space.

To prove pointwise convergence as in (1) note that

βTE[1AT (α)|Ê∗
T (v, ω)− Ê∗

T,a(v, ω)|2]

= βTE[1AT (α)(Ê
∗
T (v, ω)− Ê∗

T,a(v, ω))]
2 + βTVar

(

(Ê∗
T (v, ω)− Ê∗

T,a(v, ω))1AT (α)

)

Then we use Theorem 6.2 a), b) as well as Assumption 4.2 which yields

βTE[1AT (α)|Ê∗
T (v, ω)− Ê∗

T,a(v, ω)|2] = O
(

log(N)2Nαpmin(T )
−1
)

for all choices of D. Since both pmin(T ) and N converge to infinity at a polyno-
mial growth in T , convergence to zero follows by choosing α small enough. The
same arguments can be used to obtain (2). From Theorem 6.2 c) we have

E|β1/2
T ((Ê∗

T (y1)− Ê∗
T,a(y1))− (Ê∗

T (y2)− Ê∗
T,a(y2)))|k

≤ (2k)!Ckρ̃k((v1, ω1), (v2, ω2))(log(N)2Nαpmin(T )
−1)k/2.

We set aT = log(N)2Nαpmin(T )
−1 and note that it is

⋃

(v,ω)∈[0,1]2{φv,ω,T } =
⋃

(v,ω)∈PT
{φv,ω,T } with PT := {0, 1/M, 2/M, . . . , 1} × {0, 2/N, 4/N, . . . , 1}. We

define dT as the pseudo metric on PT with respect to which all points have
distance aT and consider the corresponding covering integral of PT , namely

JT (δ) =

∫ δ

0

[

log(48N2
T (x)x

−1)
]2

dx,

where NT (x) denotes the covering number of PT with respect to dT . The claim
can be then deduced completely analogously to the proof of (5.2) in Preuß et al.
(2012) if we show that limT→∞ JT (δ) converges to zero as δ → 0. However, for
x < aT it is NT (x) = #PT = (M + 1)(N/2 + 1) ≤ 3T , and for x ≥ aT we get
NT (x) = 1. Therefore JT (δ) is bounded by

∫min(aT ,δ)

0
log2(432T 2x−1)dx+ 1{δ>aT }

∫ δ

aT
log2(48x−1)dx

≤
∫ aT

0 log2(432T 2x−1)dx +
∫ δ

0 log2(48x−1)dx.
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Since the second term is independent of T and converges to zero as δ → 0, we
can restrict ourselves to the first integral which equals
∫ aT

0

log2(432T 2)dx+ 2

∫ aT

0

log(432T 2) log(x−1)dx +

∫ aT

0

log2(x−1)dx.

For α small enough, this expression obviously converges to zero as T → ∞.
The claim b) finally can be proven in a similar way, but by using Theo-

rem 6.1 instead. For part (1), note that the only difference between ÊT (v, ω)
and ÊT,a(v, ω) regards the use of ψl(t/T ) instead of the true ψl,t,T . Since we are
under the null hypothesis, Theorem 6.1 a) shows that the expectation of both
ÊT (v, ω) and ÊT,a(v, ω) is the same one, up to an error term O(1/T ) which is

some o(β
−1/2
T ). Similarly, if we compute each of the (co)variances, the first step

in the proof of Theorem 6.1 b) is to replace them with the corresponding V appr
T

which are all the same quantities. These cancel out, so the remaining step is to
prove that the approximation error Op(

N
T 2 (N

4D−1 log(N) + 1)) is some o(β−1
T ).

This is an immediate consequence of the definition of βT and the fact that N

converges to infinity at a polynomial rate. Therefore, β
1/2
T (ÊT (v, ω)−ÊT,a(v, ω))

converges to zero pointwise as claimed. In order to show (2), note that we are
in a position to proceed as in the proof of part d) above. The main difference is,
however, that ÊT (v, ω)−ÊT,a(v, ω) is a process whose coefficients ψt,T,l−ψl(t/T )
satisfy (2.5). As a consequence,

sup
t=1,...,T

∣

∣

∣ψt,T,l − ψl(t/T )
∣

∣

∣ ≤ C

T

(

1

l1−D−ε
1{l 6=0} + 1{l=0}

)

for some ε > 0 small enough such that D + ε < 1/2. Therefore, using the same
proof as for Theorem 6.1 d) we obtain

E|β1/2
T ((ÊT (y1)− ÊT,a(y1)) − (ÊT (y2)− ÊT,a(y2)))|k

≤ (2k)!Ckρ2,T,D+ε(y1, y2)
kβ

k/2
T T−k.

Tightness follows then in the same way as for part c) above.

Proof of Theorem 4.5. We begin with the proof of part a). If D < 1/4, we

know from Theorem 3.1 that sup(v,ω)∈[0,1]2 |β
1/2
T ÊT (v, ω)| converges under the

null hypothesis in distribution to sup(v,ω)∈[0,1]2 |G(v, ω)|, which is a continuous
random variable; see Lifshits (1984). Call FT and F their respective distribution
functions.

Now, since F is a continuous distribution function, it is in fact uniformly
continuous, and we have furthermore that FT converges to F uniformly and not
just pointwise. Thus, let ε > 0 be arbitrary and choose δ > 0 and T1 > 0 in
such a way that for an arbitrary z

|F (z)− F (z − δ)| < ε,

which is possible due to uniform continuity, and that

|F (z)− FT (z)| < ε and |F (z − δ)− FT (z − δ)| < ε
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for all T > T1, which this time holds due to uniform convergence. Also, we know
from Lemma 4.4 and Lemma 6.6 that

FT (Q
∗
T (1− α) − δ)− ε < 1− α < FT (Q

∗
T (1− α) + δ) + ε

for any T ≥ max(T0, T1). Therefore,

FT (Q
∗
T (1− α)) ≤|FT (Q

∗
T (1− α))− F (Q∗

T (1 − α))|
+ |F (Q∗

T (1 − α))− F (Q∗
T (1− α) − δ)|

+ |F (Q∗
T (1 − α)− δ)− FT (Q

∗
T (1 − α)− δ)|

+ FT (Q
∗
T (1− α)− δ) ≤ 1− α+ 4ε

for any T ≥ max(T0, T1). In the same way, the lower bound can be obtained.
The claim follows since ε > 0 was arbitrary.

In order to obtain the claim in b), we use Lemma 4.4 and Lemma 6.6 to
obtain

FT (Q
∗
T (1− α) + δ) ≥ 1− α− ε

for any T ≥ T0. The same lower bound thus holds for the limes inferior, and as
ε > 0 was arbitrary, the desired result follows.
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