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Abstract: We discuss the implications of Bayes’ postulate in the setting of
exchangeable Bernoulli random variables. Bayes’ postulate, here, stipulates
a uniform distribution on the total number of successes in any number of
trials. For an infinite sequence of exchangeable Bernoulli variables the con-
ditions of Bayes’ postulate are equivalent to a uniform (prior) distribution
on the underlying mixing variable which necessarily exists by De Finetti’s
representation theorem. We show that in the presence of exchangeability,
the conditions of Bayes’ postulate are implied by a considerably weaker as-
sumption which only specifies the probability of n successes in n trials, for
every n. The equivalence of the Bayes’ postulate and the weak assumption
holds for both finite and infinite sequences. We also explore characteri-
zations of the joint distribution of finitely many exchangeable Bernoulli
variables in terms of probability statements similar to the weak assump-
tion. Finally, we consider extensions of Bayes’ postulate in the framework
of exchangeable multinomial trials.
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1. Introduction

Bayes’ postulate, ascribed to the Reverend Thomas Bayes, was published posthu-
mously by Richard Price, exactly 250 years ago, in the Philosophical Transac-
tions of the Royal Society of London (1753), under the name ‘An Essay towards
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solving a problem in the doctrine of chances’.1 Among other things, it deals with
the problem of eliciting posterior probabilities for the chance of a success in a
single Bernoulli trial in the wake of observed evidence based on a finite number
of identical trials and prescribes equi-distribution of ignorance when assigning
probabilities to events about which no prior stance can be taken. An excellent
discussion of this material is available in the work of Stigler (1986), Chapter 3,
but see also Molina (1931).

We formulate Bayes’ postulate following the discussion on Bayes’ scholium
in (Stigler, 1986, Ch. 3). Consider a game between two rivals to be played
n times where we ‘absolutely know nothing’ of the probability that player 1
will win any single match. We define random variables X1, X2, . . . , Xn where
Xi equals 1 if the i’th match is won by player 1, and 0 otherwise. Let Sn =
X1 +X2 + · · ·+Xn denote the total number of matches won by player 1. It is
not assumed that the outcomes of these matches are independent. Ruling out
temporal trends, the random variables may however be assumed to be identically
distributed. A natural assumption is to take the joint distribution of the Xi’s to
be exchangeable: i.e. if π is any permutation of the integers 1 through n, the joint
distribution of (Xπ(1), Xπ(2), . . . , Xπ(n)) is the same as the joint distribution of
(X1, X2, . . . , Xn).

As explained by Stigler, what Bayes postulates in this scenario of absolutely
knowing nothing is that the distribution of Sn should be taken to follow a dis-
crete uniform distribution: i.e. P (Sn = m) = 1/(n + 1) for m = 0, 1, . . . n.
A standard situation in which the outcomes are exchangeable is what is to-
day the classical Bayesian situation where the unknown chance Θ that player 1
will win any match is considered to be a random variable, and the vector of
outcomes X1, X2, . . . , Xn considered to be i.i.d. Bernoulli(θ), conditional on
a realized value θ of Θ – indeed, this is essentially the situation considered
in Bayes’ Billiard Table Problem (Stigler, 1986, pp. 124–125). Stigler (1982)
notes that several commentators on Bayes’ postulate have unfortunately mis-
interpreted it as specifying a uniform (prior) distribution on Θ as a way of
summarizing perfect ignorance and argued that this notion of perfect igno-
rance about Θ is not invariant to reparametrizations, since monotone (non-
linear) transformations of a uniform random variable are not necessarily uni-
form. According to Schrieber (1987), the source of this (flawed) argument ap-
pears to be Fisher’s address (interestingly enough!) to the Royal Society in
the 1920s. In Schrieber’s opinion, it is Fisher’s criticism of Bayes’ idea that
eventually led to ‘the emergence of different schools and is the main root of
subjective Bayesianism!’ But, Bayes’ postulate simply assigns a uniform dis-
tribution to the outcome variable Sn and does not correspond to a unique
specification of the distribution of Θ; see the appendix, also Edwards (1978).
Observe that, Bayes’ postulate, correctly interpreted, is indeed invariant to
monotone transformations owing to the discreteness of the random variable Sn.

1See, for example, http://www.socsci.uci.edu/~bskyrms/bio/readings/bayes_essay.

pdf for a copy of Bayes’ essay.

http://www.socsci.uci.edu/~bskyrms/bio/readings/bayes_essay.pdf
http://www.socsci.uci.edu/~bskyrms/bio/readings/bayes_essay.pdf
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Variants and extensions of Bayes’ postulate have been proposed by a number
of authors. Schrieber (1987) wrote about an extended version of Bayes’ postulate
and its potential effect on statistical methods: the extended postulate requires
the statement of two prior uniform distributions and provides a unique parame-
ter representation (leaving no freedom for nonlinear parameter transformations
that arise in Fisher’s argument) and unique posterior statements which are use-
ful for both small and large sample sizes. Coolen (1998A,B) also revisited the
postulate, formulated a revised version based on Hill’s assumption A(n) (Hill,
1968), and used it for statistical inferences about future trials given past trials
via the notion of imprecise probabilities. Hill’s assumption, A(n), asserts that
given past observations, O1, . . . , On of a continuously valued quantity, a future
observation, On+1, is equally likely to fall in any of the open intervals between
successive order statistics of the past observations: i.e.,

P
(

O(i) < On+1 < O(i+1) | O1, . . . , On

)

=
1

n+ 1
.

Hill (1968) goes on to show that if ties have probability zero, for no n can we
find a countably additive exchangeable distribution on the space of observations
such that the conditional probabilities conform to A(n) for almost all O1, . . . , On;
however, it is possible to exploit A(n) to make valid statistical inferences if
one is willing to work with finitely additive distributions as pursued in a later
paper Hill (1993). Very recently, an interesting extension of Bayes’ postulate
to trinomial trials was achieved by Diniz and Polpo (2012), who also discussed
the philosophical implications of Bayes’ postulate and its misinterpretation, but
see also Good (1979). Their work appears in connection with the material in
Section 5.

In this paper, we revisit the implications of Bayes’ postulate for a sequence
of exchangeable Bernoulli trials. For an infinite sequence of Bernoulli trials, the
conditions of Bayes’ postulate, which stipulates a discrete uniform distribution
on Sn for all n, imply a uniform prior distribution on the probability of success, a
fact independently (and differently) established by Murray (1930) and de Finetti
(1930). We are able to show that under the exchangeability assumption, the
conditions of Bayes’ postulate are implied by a considerably weaker assumption
on the distribution of Sn which only specifies its distribution at a single point.
We show that this is true not only for an infinite sequence of exchangeable
Bernoulli variables but also for a finite exchangeable sequence in which situation
a prior need not exist. In the process, we also develop a characterization of the
distribution of a vector of exchangeable Bernoulli random variables in terms of a
vector of monotonically decreasing probabilities. This characterization is closely
related to prior results of de Finetti (1964) and also Wood (1992). Finally, we
provide a generalization of Bayes’ postulate to multinomial trials.

2. Bayes’ postulate and the uniform prior

Consider the classical Bayesian situation as considered in the last paragraph of
the previous section. In this situation, we have:
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P (Sn = m) = E[P (Sn = m) | Θ]

=

∫ 1

0

(

n

m

)

θm(1− θ)n−mdG(θ), for m = 0, 1, . . . , n,

where G is the (prior) distribution on Θ. If G is the uniform (0, 1) distribution, it
is easy to check using properties of beta integrals that P (Sn = m) = 1/(n+1) for
all 0 ≤ m ≤ n, so that the conditions of Bayes’ postulate are satisfied. However,
the converse is not true. Indeed, take any integer N > 0 and assume that

P (Sn = m) =
1

n+ 1
∀0 ≤ m ≤ n, ∀1 ≤ n ≤ N. (2.1)

Proposition. For any finite N , the above set of conditions is not sufficient to
guarantee that G is the Uniform (0, 1) distribution.

This proposition is established in the appendix where for every fixed N we
show that there exists a non-uniform GN that satisfies all of the above con-
ditions. Note that Bayes’ postulate therefore does not imply uniformity of the
underlying Θ, a point raised in the previous section. However, if N is allowed to
go to infinity, the conditions of Bayes’ postulate do imply that Θ has a Uniform
(0, 1) distribution.

Theorem 2.1. Consider an infinite sequence of Bernoulli random variables
X1, X2, . . . , that are conditionally i.i.d. Bernoulli (θ), given Θ = θ. Suppose
that (2.1) is satisfied for all positive integers N . Then Θ has a Uniform (0, 1)
distribution.

Proof. Since P (Sn = n) =
∫ 1

0
θndG(θ) = 1/(n + 1) equals the n’th moment

of G for each n ≥ 1 and since a compactly supported distribution is uniquely
determined by its moments, it follows that G is the Uniform (0, 1) distribution
(as EUn = (n+ 1)−1, for each n ≥ 1, if U is Uniform (0, 1)).

The Weak Assumption. For an exchangeable Bernoulli sequence X1, X2, . . . ,
Xn, Bayes’ postulate would stipulate a uniform distribution on Sn. Suppose we
now make the considerably weaker assumption that P (Sn = n) = 1/(n + 1).
Thus, we only specify the distribution of Sn at a single point, as opposed to the
entire distribution.

The following then holds.

Theorem 2.2. Consider an infinite sequence of exchangeable Bernoulli random
variables X1, X2, . . .. Then there exists a random variable Θ such that the Xi’s
are conditionally i.i.d. given Θ = θ and provided that the weak assumption is
satisfied for every n, Θ has a Uniform (0, 1) distribution.

Remarks. We avoid a formal proof of the theorem but outline the main ideas
involved. The first part of the theorem about the existence of Θ is De Finetti’s
representation theorem. See, for example, Hewitt and Savage (1955) and Al-
dous (1985). Letting S denote the symmetric sigma-field, Θ can be taken to be
E(X1 | S) which is also the almost sure limit of Xn. We elaborate on this a
bit further. Letting ǫ1, ǫ2, . . . , ǫn be a sequence of 0’s and 1’s, the crux of the
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argument lies in the fact that:

P (X1 = ǫ1, X2 = ǫ2, . . . , Xn = ǫn | S) = Πn
i=1P (Xi = ǫi | S).

Now, P (Xi = ǫi | S) = E(Xi | S)ǫi(1 − E(Xi | S))1−ǫi and by exchangeability
E(X1 | S) = E(Xi | S) for each i. Using these facts,

P (X1 = ǫ1, X2 = ǫ2, . . . , Xn = ǫn | S) = E(X1 | S)
∑

ǫi(1− E(X1 | S))n−
∑

ǫi ,

showing that Θ can be taken to be E(X1 | S).

That the weak assumption (for every n) implies a uniform prior on Θ follows
easily, since only the corresponding conditions were used in the proof of The-
orem 2.1. Thus, the weak assumption implies Bayes’ postulate for an infinite
exchangeable sequence. This implication also holds true for a finite exchangeable
sequence as shown next.

3. Bayes’ postulate, the weak assumption and finitely many

exchangeable Bernoulli variables

Our goal in this section is to explore the connection between the Bayes’ postu-
late and the weak assumption when we have a finite sequence of exchangeable
Bernoulli random variables X1, X2, . . . , Xn.

With a finite sequence, it may no longer be assumed that there is a ‘mix-
ing’ random variable Θ assuming values in [0, 1], conditional on which, the Xi’s
are conditionally independent Bernoulli(Θ) random variables. In other words,
exchangeability can no longer be viewed in the classical Bayesian set-up. In-
deed, for every n, it is possible to construct an exchangeable sequence of n
Bernoulli random variables, such that no random Θ assuming values in [0, 1]
can act as a mixing variable. For example, consider simple random sampling
without replacement from a population of n individuals where np are of Type
A and the remaining are of Type B, 0 < p < 1. Let the size of the sample be
n as well (we exhaust the population) and let X1, X2, . . . , Xn be the random
sample obtained, with Xi = 1 if the i’th draw yields an individual of Type
A and 0 otherwise. It is not difficult to show that the Bernoulli random vari-
ables X1, X2, . . . , Xn are exchangeable, i.e. any permutation of the Xi’s has the
same distribution as the original sequence. However, a mixing variable Θ cannot
exist in this situation. For if it did, given Θ, the Xi’s would be conditionally
independent and identically distributed Bernoulli(Θ) and it would follow that
Cov(Xi, Xj) = Var(Θ) ≥ 0 for all i 6= j. It is easy to check that in the given
situation Cov(Xi, Xj) < 0 for i 6= j. See, also, the example in the introduction
in Diaconis and Freedman (1980).

However, as the following Theorem shows, the weak assumption does imply
Bayes postulate in this setting as well. The equivalence of the weak assumption
and Bayes’ postulate is purely a consequence of exchangeability and not of a
De Finetti type representation. For finite forms of De Finetti’s theorem, see
Diaconis (1977); for approximations to the distribution of a finite exchangeable



2198 M. Banerjee and T. Richardson

Bernoulli sequence by a mixture of i.i.d. random variables under appropriate
conditions, see Diaconis and Freedman (1980); and for finite exchangeability in
the context of binomial mixtures, see Wood (1992).

Theorem 3.1. Let X1, X2, . . . , XN be a sequence of exchangeable Bernoulli
random variables. Assume that P (Sn = n) = 1/(n + 1) for n = 1, 2, . . . , N ,
where Sn =

∑n
i=1 Xi is the number of successes in n trials. Then Sn has a

discrete uniform distribution for each n ≤ N .

Proof. Let p
(n)
k denote the probability of k successes in n trials for generic n

and k ≤ n. By exchangeability,:

P (X1 = 1, X2 = 1, . . . , Xk = 1, Xk+1 = 0, Xk+2 = 0, . . . , Xn = 0) =
1
(

n
k

)p
(n)
k .

Now the left side of the above display is simply:

P (X1 =1, X2=1, . . . , Xk =1, Xk+1=0, Xk+2 =0, . . . , Xn =0, Xn+1 =0)

+ P (X1 =1, X2 =1, . . . , Xk =1, Xk+1 =0, Xk+2 =0, . . . , Xn =0, Xn+1=1),

which, by exchangeability, equals

P (Xi = 1 ∀1 ≤ i ≤ k,Xj = 0 ∀k < j ≤ n+ 1)

+P (Xi = 1 ∀1 ≤ i ≤ k + 1, Xj = 0 ∀k + 1 < j ≤ n+ 1)

which, by exchangeability again, is

1
(

n+1
k

)p
(n+1)
k +

1
(

n+1
k+1

)p
(n+1)
k+1 .

It follows that for each k with 0 ≤ k ≤ n,

1
(

n
k

)p
(n)
k =

1
(

n+1
k

)p
(n+1)
k +

1
(

n+1
k+1

)p
(n+1)
k+1

which implies

p
(n)
k =

n− k + 1

n+ 1
p
(n+1)
k +

k + 1

n+ 1
p
(n+1)
k+1 . (3.1)

The proof now follows by induction. For n = 1, it is trivially seen that Sn ≡ X1

assumes the values 0 and 1 with equal probability 1/2. So we assume that
the result holds for n and establish it for n + 1. From (3.1), it is easily ver-

ified that if p
(n+1)
k+1 = 1/(n + 2) and the induction hypothesis holds, so that

p
(n)
k = 1/(n+1), then p

(n+1)
k = 1/(n+2) as well. But, by the weak Bayes’ postu-

late, p
(n+1)
n+1 = 1/(n+2), showing that p

(n+1)
k = 1/(n+2) for all 0 ≤ k ≤ n+1.

Remark. The weak assumption could also have been formulated as: P (Sn =
0) = 1/(n + 1) for 1 ≤ n ≤ N . This would imply that P (S̃n = n) = 1/(n+ 1)
for all n, where S̃n = Y1 + Y2 + · · · + Yn with Yi = 1 − Xi. Since the Xi’s
are exchangeable Bernoullis, so are the Yi’s. Theorem 3.1 then leads to the
conclusion that each S̃n is uniformly distributed on {0, 1, . . . , n}. Hence, each
Sn = n− S̃n also has a discrete uniform distribution.
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4. A characterization of exchangeable distributions on {0, 1}N

The considerations of the previous section raise a natural question: for which
sequences 1 ≥ p1 ≥ p2 ≥ · · · ≥ pN ≥ 0 do there exist bona-fide probability
distributions for a sequence X1, X2, . . . , XN of exchangeable Bernoulli random
variables such that P (Sn = n) = pn for all 1, 2, . . .N? We have already seen that
there is at least one sequence that works: namely, pn = 1/(n+1) for 1 ≤ n ≤ N .

We show below that such sequences are well-characterized and that, in fact,
there is a one-to-one correspondence between such sequences and the class
of all exchangeable probability distributions on {0, 1}N . So, consider the set
{(q0, q1, . . . , qN ), qi ≥ 0,

∑

qi = 1}. Each vector in this set corresponds to a
unique exchangeable distribution on {0, 1}N which is completely determined by
the requirement that P (SN = n) = qn, for 0 ≤ n ≤ N , the probability mass be-
ing assigned to a generic sequence (ǫ1, ǫ2, . . . , ǫN) ∈ {0, 1}N by this distribution
being qn/

(

N
n

)

where n =
∑

ǫi.
We now compute P (Sn = n) for this distribution. This is simply the sum,

over 0 ≤ k ≤ N − n, of the probability that X1 = X2 = · · · = Xn = 1, k of the
remaining Xi’s are 1 and the remaining N−(n+k) are all 0. For a fixed k, there
are

(

N−n
k

)

such points in {0, 1}N and the probability of each such sequence is

simply qn+k/
(

N
n+k

)

. It follows that

P (Sn = n) =

N−n
∑

k=0

(

N−n
k

)

(

N
n+k

) qn+k =

N−n
∑

k=0

Cn,kqn+k,

where

Cn,k =
(k + 1)(k + 2) . . . (k + n)

(N − n+ 1)(N − n+ 2) . . .N
.

Letting q = (q1, q2, . . . , qN ) and p = (p1, p2, . . . , pN) (where pn denotes P (Sn =
n)), we see that the two vectors are connected by the equation

p = ANq

where AN is an N × N upper triangular matrix with the n’th row given by
(01×(n−1), Cn,0, Cn,1, Cn,2, . . . , Cn,N−n). Since AN is (clearly) non-singular, it
follows that the family of exchangeable probability distributions on {0, 1}N can
equally well be characterized by (p1, p2, . . . , pN ). The equation in the above dis-
play therefore provides a complete characterization of all sequences 1 ≥ p1 ≥
· · · ≥ pN ≥ 0 that correspond to (and determine) valid exchangeable distribu-
tions on {0, 1}N .

Remark 4.1. It should be noted that not all decreasing sequences 1 ≥ p̃1 ≥
· · · ≥ p̃N ≥ 0 correspond to bona fide exchangeable distributions on {0, 1}N . To
see this, take N = 2, and use the general relations established above (or direct
calculation) to see that q1 = 2p1−2p2. Since q2 = p2 and q1+q2 ≤ 1, this forces
2p1 − p2 ≤ 1 in addition to p1 ≥ p2.
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Remark 4.2. Given a sequence, 1 ≥ p̃1 ≥ · · · ≥ p̃N ≥ 0, it can be easily
ascertained whether this corresponds to a bona fide exchangeable distribution
on {0, 1}N by computing q̃ = AN

−1p̃ (where p̃ = (p̃1, . . . , p̃N)T ) and checking
that the entries of q̃ are non-negative and sum up to at most 1.

The next result provides an explicit characterization of the distribution of Sn

for each n in terms of the vector p.

Proposition 4.1. Let {p
(n)
0 , p

(n)
1 , . . . , p

(n)
n } be the pmf of Sn, for n = 1, 2, . . . , N ,

so that q = {p
(N)
0 , . . . , p

(N)
n }. In terms of the vector p, 1 ≡ p0 ≥ p1 ≥ · · · ≥

pN ≥ 0, where, for each m > 0, pm = p
(m)
m , we may obtain the pmf for Sn as

follows:

p
(n)
k =

n−k
∑

t=0

(−1)t
(

n

(k , t)

)

pk+t. (4.1)

See also de Finetti (1964), p. 122, Eq. (5) for an alternative formulation in
terms of finite difference operators.

Proof.

p
(n)
k = P

(

n
∑

i=1

Xi = k

)

=

(

n

k

)

P (X1 = · · · = Xk = 1, Xk+1 = · · · = Xn = 0)

=

(

n

k

)

∑

C⊆{k+1,...,n}

(−1)|C|P (Xi = 1, i ∈ {1, . . . , k} ∪C)

=

(

n

k

)

∑

C⊆{k+1,...,n}

(−1)|C|p|C|+k

=

(

n

k

) n−k
∑

t=0

(−1)t
(

n− k

t

)

pk+t

=
n−k
∑

t=0

(−1)t
(

n

(k , t)

)

pk+t.

Here the second equation follows by exchangeability; the third via Möbius in-
version (see, e.g. Proposition 1 in Drton and Richardson (2008)); the fourth
via exchangeability; the fifth by counting subsets of a given size; the conclusion
follows by definition of a trinomial coefficient:

(

n
(k,t)

)

:= n!/(k! t! (n − k − t)!).

Note that in the third line, when k = 0, the term in the sum corresponding to
C = ∅ is (−1)|C|P (Xi = 1, i ∈ C) = 1, since the event is vacuously true.

Remark 4.3. Notice that taking n = N , in (4.1) gives:

p
(N)
k =

(

N

k

)

pk +
N
∑

s=k+1

(−1)s−k

(

N

k s− k

)

ps. (4.2)
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Thus, p
(N)
k is a linear function of pk, . . . , pN . Further note that for k ≥ 0 we

have

1 ≥
N
∑

r=k

p(N)
r =

N
∑

s=k

ps

s
∑

r=k

(−1)s−r

(

N

r s− r

)

=

(

N

k

)

pk +
N
∑

s=k+1

ps

s
∑

r=k

(−1)s−r

(

N

r s− r

)

,

with equality when k = 0. Hence given valid values for pN , . . . , pk+1 we have
the following upper bound:

pk ≤

(

N

k

)−1
(

1−
N
∑

s=k+1

ps

s
∑

r=k

(−1)s−r

(

N

r s− r

)

)

. (4.3)

Note that this bound is achievable, since given valid values of pk+1, . . . , pN , we

can first determine {p
(N)
j }Nj=k+1 uniquely, using Proposition 4.1, and then set

p
(N)
k = 1−

∑N
r=k+1 p

(N)
r , and p

(N)
j = 0 for j < k. Conversely, since p

(N)
k ≥ 0 we

have the following lower bound on pk:

pk ≥
1
(

N
k

)

N
∑

s=k+1

(−1)s−k+1

(

N

k s− k

)

ps =

N
∑

s=k+1

(−1)s−k+1

(

N − k

s− k

)

ps. (4.4)

Again, for k > 0 the bound is achievable, as it corresponds to setting p
(N)
k = 0.

(Note that p
(N)
0 is determined by p

(N)
1 , . . . , p

(N)
N .) Lastly, simple algebra shows

that the difference between the upper and lower bounds is:

(

N

k

)−1
(

1−
N
∑

r=k+1

p(N)
r

)

≥ 0.

These bounds provide a means of specifying a joint distribution over the set of
permissible vectors p: first, one specifies the marginal distribution of pN , and
conditional on a value of pN , one specifies the conditional distribution of pN−1

so that it is concentrated on the interval given by the lower and upper bounds
(which obviously depend on pN ) and so on.

Remark 4.4. Theorem 3.1 can be derived from Proposition 4.1, but is of in-
dependent interest, as it quantifies the extent to which the conditions of Bayes’
postulate can be relaxed under finite exchangeability.

Remark 4.5. The correspondence that we have established between p and q

also bears similarity to the mapping between distributions on the number of
successes out of n and distributions over exchangeable sequences considered by
Wood (1992).
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5. Bayes’ postulate and multinomial trials

Good (1979) observed that Bayes’ billiard ball argument could be easily ex-
tended to a multinomial context. More recently, Diniz and Polpo (2012) consid-
ered Bayes’ postulate in the context of trinomial trials. They show, using the
strategy in de Finetti (1930), that the assumption of equiprobability a priori
for the possible outcomes of trinomial trials, in the spirit of Bayes’ postulate,
implies that the parameter vector must have a Dirichlet(1, 1, 1) prior, which
can be viewed as a uniform distribution on the 2 dimensional simplex. Their
proof relies on using a recursive equation for multinomial probabilities under
exchangeability to obtain a differential equation for the probability generating
function, the solution to which is then deployed to obtain a limiting characteris-
tic function. In this section, we provide a proof of a general version of their result
in the multinomial setting, using a somewhat different argument that relies on
moments.

To set up the problem, let X̃1, X̃2, . . . be an infinite sequence of exchange-
able multinomial vectors with X̃1 ∼ Mult(1, p1, p2, . . . , pk, pk+1) with pk+1 =

1 −
∑k

i=1 pi. Each X̃i is then a vector containing 1’s and 0’s, of length k + 1,
with a solitary 1 at the l’th position if outcome l was realized among the
k + 1 exhaustive and mutually exclusive outcomes 1 through k + 1. Let Sn ≡
(Sn,1, Sn,2, . . . , Sn,k, n −

∑k
j=1, Sn,j) be defined as

∑n
j=1 X̃j . Then, Sn is sim-

ply the status of the multinomial trials at Stage n. The natural extension of
Bayes’ postulate to this situation proceeds thus: under the assumption that
we absolutely know nothing of the underlying mechanism, we should postu-
late that, for each n, all outcomes of Sn are equally likely, i.e. for each n, Sn

has a discrete uniform distribution on the set {(x1, x2, . . . , xk, n −
∑k

j=1 xj) :

xi ∈ Z
+,
∑k

j=1 xj ≤ n}. Since the cardinality of this set is
(

n+k
k

)

, P (Sn =

(x1, x2, . . . , xk, n−
∑k

j=1 xj)) = 1/
(

n+k
k

)

for a generic vector in the above set.

Invoking the general De Finetti representation (Hewitt and Savage, 1955)2,

there exists a random vector Θ = (Θ1,Θ1, . . . ,Θk, 1−
∑k

j=1 Θj) such that {X̃i}

are i.i.d. conditional on Θ; further, X̃1 | Θ ∼ Mult(1,Θ) and Sn/n →a.s Θ.
Letting G denote the distribution of (Θ1,Θ2, . . . ,Θk) on the k dimensional

simplex Sk ≡ {(θ1, θ2, . . . , θk) :
∑k

i=1 θi ≤ 1, θi ≥ 0}, we can write:

1
(

n+k
k

) = P (Sn = (x1, x2, . . . , xk, n−
k
∑

j=1

xj))

=

∫

Sk

P (Sn = (x1, x2, . . . , xk, n−
k
∑

j=1

xj) | {Θi} = {θi})dG(θ1, . . . , θk)

=

∫

Sk

(

n

(x1, x2, . . . , xk)

) k
∏

i=1

θi
xi(1−

k
∑

i=1

θi)
n−

∑
k

i=1
xi dG(θ1, . . . , θk).

2but see also Diniz and Polpo (2013)
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In the above display
(

n
(x1,x2,...,xk)

)

:= n!/(x1! x2! . . . xk!(n −
∑k

i=1 xi)!) is the

usual multinomial coefficient. The above display implies that for all {(y1, y2, . . . ,
yk) : yi ≥ 0,

∑

yi = n},

1
(

n+k
k

)(

n
(y1,y2,...,yk)

) =

∫

Sk

θy1

1 θy2

2 · · · θyk

k dG(θ1, θ2, . . . , θk) = E(Θy1

1 Θy2

2 · · ·Θyk

k ).

It follows that all possible moments of (Θ1, . . . ,Θk) are determined by the pos-
tulate and provided that these correspond to the moments of a valid distribu-
tion G0 on Sk, the G in question must be G0, since distributions supported on
bounded domains of Euclidean space are completely determined by their mo-
ments. Note that we defined the k dimensional simplex, above, as a subset of
R

k, rather than R
k+1 as is usually done. Of course, there is a 1-1 correspondence

between the two sets.
We show that choosing G0 to be the Dirichlet(1, 1, . . . , 1) distribution on Sk

works. Recall that the Dirichlet(β1, β2, . . . , βk+1) distribution on Sk is given by
the following density function:

f(θ1, θ2, . . . , θk; {βi})

=
Γ(β1 + β2 + · · ·+ βk+1)

∏k+1
i=1 Γ(βi)

θβ1−1
1 · · · θβk−1

k

(

1−
k
∑

i=1

θi

)βk+1−1

.

Now we take G0 to be the Dirichlet with all βi’s equal to 1 and compute a
generic moment of (Θ1, . . . ,Θk) under G0:

EG0
(Θy1

1 · · ·Θyk

k ) =

∫

Sk

θy1

1 · · · θyk

k k! dθ1 · · · dθk

= k!

∫

Sk

k
∏

i=1

θyi+1−1
i (1−

k
∑

i=1

θi)
1−1θ1 · · · dθk

= k!

∏k
i=1 Γ(yi + 1)

Γ(n+ k + 1)

=
k!
∏k

i=1 yi!

(n+ k)!
=

1
(

n+k
k

)(

n
(y1,y2,...,yk)

) .

We conclude that the prior distribution implied by Bayes’ postulate in the multi-
nomial setting is precisely the uniform distribution over Sk (note that Sk has
volume 1/k!).

Multinomial random variables and insights into the ‘weak assumption’

Recall that for a finite exchangeable sequence of Bernoullis, sayX1, X2, . . . , XN ,
the weak assumption specified the distribution of Sn at the point n for each
1 ≤ n ≤ N . Our assumption was that P (Sn = n) = 1/(n + 1) and we showed
that this forced the distribution of each Sn to be uniform. The argument re-
lied on the recursion formula (3.1) which can be viewed as a system of (n+ 1)

linear equations in {p
(n+1)
k+1 }n+1

k=0 . However, as
∑n

k=0 p
(n)
k = 1, there are only n
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linearly independent equations involving (n+1) variation dependent unknowns

(since
∑n+1

k=0 p
(n+1)
k = 1). It follows that the distribution of Sn+1 cannot be

uniquely recovered from that of Sn (via these equations) unless one of the

p
(n+1)
k is pre-specified. And this, by specifying {p

(n)
n }Nn=1, is precisely what the

weak assumption does. Specifying p
(1)
1 pins down the distribution of S1 ≡ X1

as Bernoulli(1/2), and now, using the pre-specified values of p
(2)
2 , p

(3)
3 , . . ., the

distribution of each Sn can be recovered uniquely. Note that alternative specifi-
cations would also have worked, as the remark prior to Section 4 shows. In fact,

all that is needed for unique recovery is a specification of the vector {p
(n)
kn

}Nn=1

where (k1, k2, . . . , kN ) is an arbitrary set of integers with 0 ≤ kn ≤ n; and,

provided p
(n)
kn

is set to 1/(n + 1) for each n, the distributions of the Sn’s will
be seen to be discrete uniforms as before. The specifications we discussed in
Section 3, where we set all kn’s to be n (or 0), are aesthetically somewhat more
pleasing as they correspond to probability statements about all n trials resulting
in successes (failures).

It is natural to ask whether there are analogous weak assumptions in the
general multinomial setting. We discuss this briefly in the trinomial setting as
considered in Diniz and Polpo (2012). The analogue of (3.1) in the trinomial
context is equation (14) of their paper:

ω(n−1)
x1,x2

= ω
(n)
x1+1,x2

(

x1 + 1

n

)

+ ω
(n)
x1,x2+1

(

x2 + 1

n

)

+ ω(n)
x1,x2

(

n− x1 − x2

n

)

,

(5.1)

where ω
(n)
x1,x2

= P (Sn = (x1, x2, n−x1−x2)), using our notation from the general
multinomial setting with k = 2. The distribution of Sn−1 is determined by the

vector {ω
(n−1)
x1,x2

}, of dimension
(

n+1
2

)

, while that of Sn is determined by {ω
(n)
x1,x2

},

of dimension
(

n+2
2

)

. If the distribution of Sn−1 is known, and the ω
(n)
x1,x2

are

treated as unknowns, this gives us a system of
(

n+1
2

)

equations in
(

n+2
2

)

variables,

and for unique recovery of the distribution of Sn,
(

n+2
2

)

−
(

n+1
2

)

= n+ 1 of the

ω
(n)
x1,x2

would, at least, need to be specified.3 Thus, a ‘weak assumption’ in this
setting would need to specify the distribution of S1 at 2 points, the distribution
of S2 at 3, and so on till SN . A ‘weak assumption’ that, for each n ≤ N , sets the

value of each of some n+1 pre-specified ω
(n)
x1,x2’s to be 1/

(

n+2
2

)

= 2/(n+1)(n+2),
would force the distribution of each Sn, 1 ≤ n ≤ N to be the discrete uniform,
as can be readily verified via an inspection of the equation (5.1): it is satisfied

if we set ω
(n−1)
x1,x2 = 1/

(

n+1
2

)

= 2/n(n + 1) and ω
(n)
x1+1,x2

= ω
(n)
x1,x2+1 = ω

(n)
x1,x2 =

2/(n + 1)(n + 2). We note, as before, that with finitely many exchangeable
trinomials, it is not possible to talk about a prior distribution on the trinomial
parameter and any analysis of the distributions of the Sn’s has to start from
(5.1), which follows purely from the exchangeability hypothesis.

3Note that as the variables have to add up to 1, there are only
(

n+2

2

)

− 1 ‘free’ variables;

on the other hand, there are only
(

n+1

2

)

− 1 linearly independent equations, since the ω
n−1
x1,x2

have to add up to 1. So, the difference between the number of ‘free’ variable and the number
of independent equations is n+ 1.
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The linear recurrence relations (3.1) and (5.1) can be generalized, without
much difficulty, to the generic multinomial setting, based on exchangeability
considerations as in Section 3 of this paper or Section 4 of Diniz and Polpo
(2012). For the general k + 1 compartment multinomial of this section, letting
p(x1, x2, . . . , xk, n) denote the probability of the event that outcome 1 is ob-
tained in the first x1, outcome 2 in the next x2, . . . , outcome k in the next xk

and outcome k + 1 in the final n −
∑k

i=1 xi, the following relation is an easy
outcome of exchangeability:

p(x1, x2, . . . , xk, n− 1) = p(x1, x2, . . . , xk, n) + p(x1 + 1, x2, . . . , xk, n) + · · ·

+ p(x1, x2, . . . , xi−1, xi + 1, xi+1, . . . , xk, n) + · · ·

+ p(x1, . . . , xk−1, xk + 1, n). (5.2)

By exchangeability,

p(y1, y2, . . . , yk, n) =
ω(y1, y2, . . . , yk, n)
(

n
(y1,y2,...,yk)

) ,

where ω(y1, y2, . . . , yk, n) = P (Sn = (y1, y2, . . . , yk, n −
∑k

j=1 yj)). We can use
this equation to rewrite (5.2) in terms of the pmf’s of Sn and Sn−1 as follows:

ω(x1, x2, . . . , xk, n− 1) =
n−

∑k
i=1 xi

n
ω(x1, x2, . . . , xk, n) (5.3)

+

k
∑

j=1

xj + 1

n
ω(. . . , xj−1, xj + 1, xj+1, . . . , n).

Following the discussion for the trinomial situation, it is not difficult to see,
that for a k+1 compartment multinomial, a unique recovery of the distribution
of {Sn}Nn=1 using (5.3) would require specifying the distribution of each Sn at
(

n+k
k

)

−
(

n−1+k
k

)

=
(

n−1+k
k−1

)

points.

Remark. The proof in Section 4 of Diniz and Polpo (2012), of the fact that
Bayes’ postulate implies the uniform (Dirichlet) prior in the trinomial situation,
was based upon their equation (14) which is what (5.3) reduces to, for k = 2. It
would seem that their method, involving difference-differential equations, should
be extendible to the multinomial case, where the relevant differential equations
would be derived from (5.3).

6. Concluding remarks

As we have seen, the equal assignment of probabilities to all possible outcomes
in an exchangeable multinomial experiment (with infinitely many trials) – i.e.
postulating that each Sn is uniformly distributed – forces a uniform distribu-
tion on the prior parameter. However, it is important to note the fundamental
distinction between imposing uniformity on the outcome variable of an exper-
iment and that of imposing uniformity on a prior, a point that has often been
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glossed over. We have noted that with finitely many exchangeable Bernoullis
(the simplest possible multinomial variables), many different prior distributions
can produce uniformity of the outcome distribution. It would be interesting to
investigate the connections between outcome distributions in a general infinitely
exchangeable experiment and the prior distribution that would uniquely exist in
this case. More specifically, can we characterize all infinitely exchangeable exper-
iments for which the assumption of equiprobability of outcomes forces a uniform
distribution on the prior? As Diniz and Polpo (2012) note in their conclusion,
for certain experiments, uniformity of the outcome distribution might actually
translate to a non-uniform prior, in which case, the uniform prior should not be
regarded as a non-informative prior. Such considerations would go a long way
towards extending our understanding of Bayes’ postulate and its implications
in general.

7. Appendix

We establish a slightly stronger version of the Proposition stated in Section 2.

Proposition. Let X1, X2, . . . , XN be (exchangeable Bernoulli) random vari-
ables that are conditionally i.i.d. Bernoulli (Θ), given some random variable Θ
taking values in [0, 1]. Let Sn = X1 +X2 + · · ·Xn. Then, there exist infinitely
many (prior) distributions for Θ, for which Sn is uniformly distributed for each
1 ≤ n ≤ N .

Proof. For a positive integer P , let g denote a density on [0, 1] that assumes
values L1, L2, . . . , LP on [0, 1/P ], (1/P, 2/P ], . . . respectively and such that Sn

is uniformly distributed for each 1 ≤ n ≤ N under g. The constraints that

P (Sn = m) =

∫ 1

0

(

n

m

)

θm(1−θ)n−mg(θ) dθ =
1

n+ 1
, for 0 ≤ m ≤ n, 1 ≤ n ≤ N

and the fact that g integrates to 1 give rise to a system of linear equations in
L1, L2, . . . , LP , namely

P
∑

i=1

Im,n,iLi = 1/(n+ 1), for 0 ≤ m ≤ n, 1 ≤ n ≤ N

and
∑P

i=1 Li/P = 1, where Im,n,i =
∫ i/P

(i−1)/P

(

n
m

)

θm(1 − θ)n−m. This can be

written in matrix notation as M l = v for a (c(N) + 1) × P matrix M whose
last row is the vector (1/P, 1/P, . . . , 1/P ) and the rows above are given by
(Im,n,1, Im,n,2, . . . , Im,n,P ), stacked in order of increasing n, and increasing m
within n; v is a c(N)+ 1 dimensional vector of the form (1/2, 1/2, 1/3, 1/3, 1/3,
1/4, . . . , 1/(N + 1), 1/(N + 1), 1)T ; and, l = (L1, L2, . . . , LP )

T . Here c(N) =
∑N

n=1(n+ 1).
Now, P can be chosen to be larger than c(N) + 1 in which case the columns

of M are linearly dependent and there must exist a non-zero vector x such that
Mx = 0(c(N)+1)×1. Since x is orthogonal to the last row of M , whose entries
are all equal, the components of x cannot all be equal. We know that there
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is at least one piecewise constant density on the grid [0, 1/P, 2/P, . . .], namely,
the uniform density, whose corresponding l = (1, 1, . . . , 1)T satisfies the matrix
equation of the previous paragraph. But then the vector (1, 1, . . . , 1)T + λx,
for all λ sufficiently small, has strictly positive co-ordinates, not all equal, and
also satisfies the matrix equation and corresponds to a (piecewise constant) non-
uniform density on the grid [0, 1/P, 2/P, . . .] that makes the distribution of each
Sn uniform.

Alternative proof of Theorem 3.1 using Proposition 4.1. Since it is assumed in

Theorem 3.1, that pn ≡ p
(n)
n = 1/(n + 1) for each n, it suffices to prove that

p
(n)
k = p

(n)
k+1 for all k ≤ (n−1). From Proposition 4.1, it is not difficult to see that

p
(n)
k+1 = −

n−k
∑

t=1

(−1)tn!

(k + 1)!(t− 1)!(n− k − t)!
pk+t.

Now,

p
(n)
k − p

(n)
k+1 =

∑

t∈{0}

(−1)tn!

k! t! (n− k − t)!
pk+t

+

n−k
∑

t=1

(

(−1)tn!

k! t! (n− k − t)!
+

(−1)tn!

(k + 1)! (t− 1)! (n− k − t)!

)

pk+t

=
n!

k! (n− k)!
pk +

n−k
∑

t=1

(−1)t
n!

(k + 1)! t! (n− k − t)!
(k + t+ 1)pk+t

=
n!

(n− k)! (k + 1)!

[

1 +

n−k
∑

t=1

(−1)t
(

n− k

t

)

]

= 0,

where, in the penultimate step, we used pk+t = 1/(k+ t+1) for t ≥ 0, which is
assumed in Theorem 3.1.
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Annales de l’Institut Henri Poincaré. 1937; VII: 1–68. trans. H.E. Kyburg) in
Studies in Subjective Probability, H.E. Kyburg & H.E. Smokler (eds), Wiley,
New York. MR0179814

Diaconis, P. (1977). Finite forms of De Finetti’s theorem on exchangeability.
Synthese 36, 271–181. MR0517222

Diaconis, P. and Freedman, D. (1980). Finite exchangeable sequences. An-
nals of Probability 8, 745–764. MR0577313

Diniz, M.A. and Polpo, A. (2012). Bayes’ postulate for trinomial trials. AIP
Conference Proceedings, 1490, 108–115.

Diniz, M.A. and Polpo, A. (2013). A simple proof for the multinomial version
of the Representation Theorem. Available at http://www.mi.imati.cnr.it/
conferences/BAYSM2013/papers/baysm10.pdf.

Drton, M. and Richardson, T.S. (2008). Binary models for marginal in-
dependence. Journal of the Royal Statistical Society Series B, 70, 287–309.
MR2424754

Edwards, A.W.F. (1978). Commentary on the arguments of Thomas Bayes.
Scandinavian Journal of Statistics, 5, 116–118. MR0518602

Good, I.J. (1979). Bayes’ Billiard-Table Argument Extended to Multinomials.
Journal of Statistical Computation and Simulation, 9(2), 161–163.

Hewitt, E. and Savage, L.J. (1955). Symmetric measures on Cartesian
products. Transactions of the American Mathematical Society, 80, 470–501.
MR0076206

Hill, B.M. (1968). Posterior distribution of percentile Bayes’ theorem for sam-
pling from a population. Journal of the American Statistical Association, 63,
677–691. MR0238430

Hill, B.M. (1993). Parametric models for A(n): Splitting processes and mix-
tures. Journal of the Royal Statistical Society Series B, 55(2), 423–433.
MR1224406

Molina, E.C. (1931). Bayes’ Theorem: An expository presentation. Annals of
Mathematical Statistics, 2, 23–37.

Murray, F.H. (1930). Note on a scholium of Bayes. Bulletin of the American
Mathematical Society, 36, 129–132. MR1561904

Schrieber, F. (1987). The Extended Bayes-Postulate, Its Potential Effect on
Statistical Methods and Some Historical Aspects. Probability and Bayesian
Statistics, pages 423–430. Springer, US.

Stigler, S.M. (1986). The History of Statistics. The Belknap Press of Harvard
University Press. Cambridge, MA & London, England. MR0852410

Stigler, S.M. (1982). Thomas Bayes’s Bayesian inference. Journal of the Royal
Statistical Society Series A, 145(2), 250–258. MR0669120

Wood, G.R. (1992). Binomial mixtures and finite exchangeability. Annals of
Probability, 20, 1167–1173 MR1175255

http://www.ams.org/mathscinet-getitem?mr=0179814
http://www.ams.org/mathscinet-getitem?mr=0517222
http://www.ams.org/mathscinet-getitem?mr=0577313
http://www.mi.imati.cnr.it/conferences/BAYSM2013/papers/baysm10.pdf
http://www.mi.imati.cnr.it/conferences/BAYSM2013/papers/baysm10.pdf
http://www.ams.org/mathscinet-getitem?mr=2424754
http://www.ams.org/mathscinet-getitem?mr=0518602
http://www.ams.org/mathscinet-getitem?mr=0076206
http://www.ams.org/mathscinet-getitem?mr=0238430
http://www.ams.org/mathscinet-getitem?mr=1224406
http://www.ams.org/mathscinet-getitem?mr=1561904
http://www.ams.org/mathscinet-getitem?mr=0852410
http://www.ams.org/mathscinet-getitem?mr=0669120
http://www.ams.org/mathscinet-getitem?mr=1175255

	Introduction
	Bayes' postulate and the uniform prior
	Bayes' postulate, the weak assumption and finitely many exchangeable Bernoulli variables
	A characterization of exchangeable distributions on {0,1}N
	Bayes' postulate and multinomial trials
	Concluding remarks
	Appendix
	References

