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1. Introduction

In a recent decade, volatility estimations and inferences have attracted much at-
tention in the econometrical and statistical literature. Realized volatility based
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on high frequency data, as an estimator of the integrated volatility, is very pop-
ular and has been actively researched in both academia and financial markets.
The realized volatility is defined as the sum of squared intraday returns, and is
consistent in the ideal situation of no market micro structure noise under some
general condition, (see e.g. [4, 6, 17, 26] etc.). In particular, [4] and [6] made
significant contributions in theory of realized volatility by establishing asymp-
totic theorems including central limit theorems of bipower variation in financial
econometrics.

In practice, the prices recorded at the high frequency are contaminated by
market microstructure noise. The presence of market microstructure noise in
high frequency financial data complicates volatility estimation and causes some
statistically serious problems such as bias problem and inconsistency, (see [3]
and [29]). Recently, many econometricians and statisticians have studied the ef-
fects of market microstructure noise and developed asymptotic validity theories
for the realized volatility under market microstructure noise. [13] studied empir-
ical properties of market microstructure noise and analyzed its implications for
the realized volatility. In particular, they established asymptotic normality for
the bias-corrected estimator of [30]. The estimator of [13] and [30] incorporates
the first-order autocovariance, which amounts to a bias correction that works
in the same way that robust covariance estimators achieve their consistency. [3]
provided a general treatment of the effect of market microstructure noise on
realized volatility estimates, and specifically considered both asymptotic and
finite sample effects of noise. [2] analyzed the impact of time series dependence
in market microstructure noise on the properties of estimators of the integrated
volatility, based on data sampled at frequencies high enough for that noise to
be a dominant consideration. [24] provided theoretical reviews and comparisons
of high-frequency based volatility estimators and the impact of different types
of noise.

Some bootstrapping methods are developed for realized volatility by [9]
and [11]. In the absence of market microstructure noise, [11] proposed bootstrap
methods for a class of nonlinear transformation of realized volatility including
the raw version and its logarithmic transformation, by means of i.i.d. boot-
strap and wild bootstrap, and [9] studied bootstrap methods for statistics that
are functions of multivariate high frequency returns such as realized regression
coefficients, covariances and correlations.

This paper considers a bootstrap approach for realized volatility under market
microstructure noise by adopting the stationary bootstrap of [25]. The station-
ary bootstrap, which is an extension of the moving block bootstrap or circular
block bootstrap by allowing the block length to be a geometric random vari-
able, has been widely used as a powerful resampling technique for approximating
the sampling distribution of non-parametric estimators. Recent applications of
stationary bootstrapping are found in [14, 15, 20], regarding nonparametric es-
timation and in [23, 27, 28] regarding nonstationary time series analysis. Some
new properties of the stationary bootstrap are established by [10, 12, 16, 21].

We verify the first order asymptotic validity of the stationary bootstrap
method for the bias-corrected realized volatility as a consistent estimator of
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the integrated volatility. This allows us to construct a stationary bootstrap con-
fidence interval (CI) of integrated volatility, which improves other existing CIs
by [4] based on asymptotic normality of uncorrected realized volatility, by [11]
based on i.i.d. bootstrapping of uncorrected realized volatility, and by [13] based
on asymptotic normal theory of bias-corrected realized volatility.

For cases of market microstructure noises, the CIs of [4] and [11] are not valid
while the proposed CI and the CI of [13] are valid. The proposed bootstrap CI
has an advantage over the CI based on asymptotic normality as [13] in that,
unlike the latter, the former does not require estimates of market microstructure
noise variance to which coverage probability of the latter is very sensitive.

A Monte-Carlo experiment shows that the proposed stationary bootstrapping
CI has better coverage performance than the existing ones.

The remaining of the paper is organized as follows. In Section 2 we describe
the setup and the existing theory that will be used in this work, and review the
stationary bootstrap procedure. Main theoretical results and construction of a
bootstrap confidence interval are presented in Section 3, a Monte-Carlo result
is given in Section 4, and a conclusion is provided in Section 5 while technical
results and proofs are found in Section 6.

2. Preliminary setup

2.1. Existing theories

We assume that the latent log-price process {S̃(t) : t ≥ 0} follows a continuous
time process dS̃(t) = µ(t)dt+σ(t)dW (t) where µ(t) is the drift process, σ(t) is a
volatility process, and W (t) is the standard Brownian motion. Let S(t) denote
the observable log-price process, and thus the noise process is given by

u(t) = S(t)− S̃(t).

We are interested in estimating the integrated volatility (IV) over a fixed time
interval [0, 1] defined by

IV =

∫ 1

0

σ2(s) ds.

In order to define an estimator of IV, we partition the interval [0, 1] into n
subintervals; 0 = t0 < t1 < · · · < tn = 1, and define the intraday returns by

r̃i = S̃(ti)− S̃(ti−1), i = 1, 2, . . . , n.

The increments in S and u are defined similarly by

ri = S(ti)− S(ti−1), ei = u(ti)− u(ti−1), i = 1, 2, . . . , n.

A consistent estimator of the integrated volatility is the realized volatility
(RV) defined by the sum of squared high frequency returns

R̃V (n) =

n∑

i=1

r̃2i .
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Since S̃ is latent, R̃V (n) is not a feasible estimator. The realized volatility of
process S defined by

RV(n) =
n∑

i=1

r2i

is observable but suffers from the bias problem and inconsistency. To overcome
these problems, [30] proposed the bias-corrected estimator incorporated with
the empirical first-order autocovariance given by

RV AC1

(n) =

n∑

i=1

r2i +

n∑

i=2

ri−1ri +

n−1∑

i=1

riri+1. (2.1)

[13] and [31] reconsidered the estimator RV AC1

(n) of [30]. In particular, [13] an-

alyzed a special case of their work under simplistic assumptions of the inde-
pendent noise, and discussed when its theoretical results provide reasonable
approximations. According to the empirical analysis of [13] the noise may be
ignored when intraday returns are sampled at relatively low frequencies, such
as 20-minute sampling. When intraday returns are sampled every 15 ticks or so,
assumption of independent noise seems to be reasonable.

The case with independent market microstructure noise has been dealt with
by several authors including [1, 3, 7, 29]. In a general setting of the noise, [19]
studied a theoretical comparison between IV and RV by characterizing the noise
term and by quantifying the importance of the noise. The case with dependent
market microstructure noise has been discussed by [2], where the noise process
is assumed to be strong mixing. [13] and [22] considered a finite time-dependent
noise process to analyze bias-corrected RVs.

The works mentioned above are about the case of exogenous noise process,
that is, the noise u(t) and the process S̃(t) are independent, whereas [5] and [18]
dealt with the case of endogenous noise. In particular, [5] have studied realized
kernels which is robust to endogenous noise.

To derive our main goal of this paper, we need the following assumptions,
which are based on the special case of [13].

Assumption 1. The efficient price process satisfies dS̃(t) = σ(t)dW (t), where
W (t) is a standard Brownian motion, σ(t) is a time-varying (random) function
that is independent of W , and σ2(t) is Lipschitz (almost surely).

Assumption 2. The noise process u is independent of the process S̃, and u(s)
and u(t) are independent of each other for s 6= t. Let ω2 = E[u(t)]2 < ∞ for
all t.

In [13], we find several good arguments for analyzing the properties of the RV
and related quantities under the independent noise, in spite of dismissing this
form of noise as an accurate description of the noise in the data. The independent
noise assumption makes the analysis tractable and provides valuable insight into
the issues related to market microstructure noise.
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[13] showed unbiasedness and asymptotic normality of RV AC1

(n) of [30] in ( 2.1),

which are given in Proposition 2.1 below under Assumptions 1 and 2 of no drift
and independent noise.

Proposition 2.1. ([13]) Under Assumptions 1 and 2, we have

(a) E(RV AC1

(n) ) = IV ,

(b)

V ar
(
RV AC1

(n)

)
= 8ω4n+ 8ω2

n∑

i=1

σ2
i,n − 6ω4 + 6

n∑

i=1

σ4
i,n +O(n−2)

where σ2
i,n =

∫ ti
ti−1

σ2(s)ds, i = 1, . . . , n, and

(c)

RV AC1

(n) − IV
√
8ω4n

d−→ N(0, 1) as n→ ∞.

An important result of Proposition 2.1 is that RV AC1

(n) is unbiased for the

IV at any sampling frequency. Also, a remarkable result of Proposition 2.1 is
that the bias-corrected estimator RV AC1

(n) has a smaller asymptotic variance as

n→ ∞ than the unadjusted estimator RV(n), (see Lemma 2 of [13]). [13] noted
that the asymptotic results in Proposition 2.1 are more useful than those of
the unadjusted estimator RV(n), for example, the results of Proposition 2.1 are
used by [3] and [29] to estimate the variance of the noise, ω2. Based on the
asymptotic results in Proposition 2.1, our main results will be established via
stationary bootstrapping.

In other cases with dependent and endogenous noises as in [3] and [13], boot-
strapping estimators need to be proposed, but it is out of our scope in this work
and remains as a further study.

2.2. Stationary bootstrap procedure

The stationary bootstrapping of {r1, . . . , rn} is described. First we define a new
time series {rni : i ≥ 1} by a periodic extension of the observed data set as
follows. For each i ≥ 1, define rni := rj where j is such that i = qn+j for some q.
The sequence {rni : i ≥ 1} is obtained by wrapping the data r1, . . . , rn around
a circle, and relabelling them as rn1, rn2, . . . . Next, for a positive integer ℓ,
define the blocks B(i, ℓ), i ≥ 1 as B(i, ℓ) = {rni, . . . , rn(i+ℓ−1)} consisting of
ℓ observations starting from rni. Bootstrap observations under the stationary
bootstrap method are obtained by selecting a random number of blocks from
collection {B(i, ℓ) : i ≥ 1, ℓ ≥ 1}. To do this, we generate random variables
I1, . . . , In and L1, . . . , Ln as follows: (i) I1, . . . , In are i.i.d. discrete uniform on
{1, . . . , n}: P (I1 = i) = 1

n , for i = 1, . . . , n, (ii) L1, . . . , Ln are i.i.d. random
variables having the geometric distribution with a parameter p ∈ (0, 1): P (L1 =
ℓ) = p(1− p)ℓ−1 for ℓ = 1, 2, . . . , where p = p(n) depends on the sample size n
and (iii) the collections {I1, . . . , In} and {L1, . . . , Ln} are independent.
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For notational simplicity, we suppress dependence of the variables I1, . . . ,
In, L1, . . . , Ln and of the parameter p on n. We assume that p = p(n) goes
to 0 as n → ∞. Under the stationary bootstrap the block length variables
L1, . . . , Ln are random and the expected block length EL1 is p−1, which tends
to ∞ as n → ∞. Now, a pseudo-time series r∗1 , . . . , r

∗
n is generated in the fol-

lowing way. Let τ = inf{ k ≥ 1 : L1 + · · · + Lk ≥ n}. Then select τ blocks
B(I1, L1), . . . , B(Iτ , Lτ). Note that there are L1 + · · ·+ Lτ elements in the re-
sampled blocks B(I1, L1), . . . , B(Iτ , Lτ ). Arranging these elements in a series
and deleting the last L1 + · · · + Lτ − n elements, we get the bootstrap obser-
vations r∗1 , . . . , r

∗
n. Conditional on {r1, . . . , rn}, the process {r∗t , t = 1, 2, . . .} is

stationary. In the following, P ∗, E∗, and V ar∗ denote the conditional probabil-
ity, expectation, and variance, respectively, given r1, . . . , rn.

3. Asymptotic validity and confidence interval

In this section we propose the stationary bootstrap realized volatility and es-
tablish its asymptotic validity. The asymptotic theory enables us to construct
a bootstrap confidence interval. In addition to Assumptions 1 and 2 above, we
need weak dependence conditions on the data {r1, r2, . . . , rn} as follows.

Assumption 3. Let {r1, r2, . . . , rn} satisfy E|ri|4+2δ < ∞ for some δ > 0,
and 1

n

∑n
i=1 iCov(g1(r1, r2), g2(ri+1, ri+2)) → 0 as n → ∞, where functions

g1, g2 : R2 → R are either g(x, y) = x2 or g(x, y) = xy.

Now we define the stationary bootstrap version of RV AC1

(n) by

RV AC1∗
(n) =

n∑

i=1

r∗2i +
n∑

i=2

r∗i−1r
∗
i +

n−1∑

i=1

r∗i r
∗
i+1

and we state main asymptotics results for the stationary bootstrap realized
volatility.

Theorem 3.1. We suppose Assumptions 1, 2 and 3 above. If parameter p of
geometric distribution of random block length in the stationary bootstrap proce-
dure is chosen so that np2 → ∞, then

(a)
1

n

∣∣∣V ar∗
(
RV AC1∗

(n)

)
− V ar

(
RV AC1

(n)

)∣∣∣ p−→ 0,

(b)

sup
x∈R

∣∣∣∣∣P
∗

(
RV AC1∗

(n) −E∗(RV AC1∗
(n) )

√
8ω4n

≤x

)
−P

(
RV AC1

(n) − IV
√
8ω4n

≤x

)∣∣∣∣∣
p−→ 0

as n→ ∞.
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Theorem 3.2. We suppose Assumptions 1, 2 and 3 above. If parameter p of
geometric distribution of random block length in the stationary bootstrap proce-

dure satisfies p = c · n− δ−2ρ
2(2+δ) for some c > 0, 0 < ρ < δ/2 and 0 < δ < 1,

then

(a)
1

n

∣∣∣V ar∗
(
RV AC1∗

(n)

)
− V ar

(
RV AC1

(n)

)∣∣∣ a.s−→ 0,

(b)

sup
x∈R

∣∣∣∣∣P
∗

(
RV AC1∗

(n) − E∗(RV AC1∗
(n) )

√
8ω4n

≤x

)
−P

(
RV AC1

(n) − IV
√
8ω4n

≤x

)∣∣∣∣∣
a.s−→ 0

as n→ ∞.

The above Theorem 3.1 enables us to construct a bootstrap confidence inter-
val of the integrated volatility. According to Theorem 3.1, we have

P ∗
[
RV AC1∗

(n) ≤ x
]

= P ∗
[(
RV AC1∗

(n) − E∗(RV AC1∗
(n) )

)/√
8ω4n ≤

(
x− E∗(RV AC1∗

(n) )
)/√

8ω4n
]

∼= P
[(
RV AC1

(n) − IV
)/√

8ω4n ≤
(
x− E∗(RV AC1∗

(n) )
)/√

8ω4n
]

= P
[
RV AC1

(n) −
(
x− E∗(RV AC1∗

(n) )
)
≤ IV

]
.

Therefore, observing that 0.95 = P ∗[ q∗0.025 ≤ RV AC1∗
(n) ≤ q∗0.975 ]

∼=

P
[
RV AC1

(n) −
(
q∗0.975 −E∗(RV AC1∗

(n) )
)
≤ IV ≤RV AC1

(n) −
(
q∗0.025 −E∗(RV AC1∗

(n) )
)]
,

we construct, for example, a 95% bootstrap confidence interval for IV:

[
RV AC1

(n) +RV
AC1∗
(n) − q∗0.975, RV AC1

(n) +RV
AC1∗
(n) − q∗0.025

]
(3.1)

where q∗0.025 and q∗0.975 are the 2.5% and 97.5% quantiles, respectively, of the B
bootstrap replications RV AC1∗

(n) (b), b = 1, . . . , B, and

RV
AC1∗
(n) = B−1

B∑

b=1

RV AC1∗
(n) (b).

One of the main advantages of the proposed stationary bootstrap method is that
it does not require estimation of the noise variance, ω2, as seen in the bootstrap
confidence interval in ( 3.1) above. On the other hand, the confidence interval
of [13] based on Proposition 2.1(c) requires estimation of ω2. This fact gives the
former confidence interval stabler finite sample coverage probability than the
latter confidence interval as investigated in the following section.
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4. Monte Carlo study

This section compares finite sample empirical coverage probability of the pro-
posed stationary bootstrapping confidence interval with those of existing ones in
the presence of both conditional heteroscedasticity and market microstructure
noise.

For the comparison, we consider the same data generating process studied by
[11] given by dS̃(t) = µdt + σ(t)(ρ1dW1(t) + ρ2dW2(t) +

√
1− ρ21 − ρ22dW3(t))

with the following two volatility processes: GARCH(1, 1) diffusion, dσ2(t) =
0.035(0.636 − σ2(t))dt + 0.144σ2(t)dW1(t); two-factor affine diffusion, σ(t) =
exp(−1.2+ 0.04σ2

1(t) + 1.5σ2
2(t)), dσ

2
1(t) = −0.00137σ2

1(t)dt+ dW1(t), dσ
2
2(t) =

−1.386σ2
2(t)dt+ (1 + 0.25σ2

2(t))dW2(t), where W1(t),W2(t),W3(t) are indepen-
dent standard Brownian motions. The observed prices are p(ti) = p̃(ti)+ui, i =
1, . . . , n, where ti = i/n and ui are iid N(0, ω2) noise independent of the la-
tent price process S̃(t). The observed return ri = r̃i + ei is subject to noise
ei = ui − ui−1.

For n, three values 10, 100, 1000 are considered, which correspond to sampling
periods of 0.6 hour, 3.6 minute, 21.6 second, respectively, in a trading day.
For (µ, ρ1, ρ2), two cases are considered: {(0, 0, 0), (0.0314, −0.576, 0)} for
GARCH(1, 1) model and {(0, 0, 0), (0.030, −0.3, −0.3)} for two-factor diffusion
model. The case with (µ, ρ1, ρ2) = 0 corresponds to a model with no drift and
no leverage and the other case correspond to a model with drift and leverage.
For the noise variance ω2, four cases ω2 = 0, 0.01, 0.02, 0.03 are considered.
The case with ω2 = 0 correspond to a case with no noise. Magnitude of noise
increases as n or iu increase because the noise-to-signal ratio is given by λ =∑n

i=1 var(ei)/E(IV ) = 2nω2/E(IV ).

The normal errors are simulated using standard normal errors generated by
RNNOA, a FORTRAN subroutine in IMSL. The volatility process is initiated
with σ2(0) = 0.636 for the GARCH(1, 1) diffusion and σ2

1(0) = σ2
2(0) = 0.1

for the two-factor affine diffusion. The integrated volatility IV =
∫ 1

0 σ
2(s)ds is

approximated by the noise-free realized volatility R̃V (n0) =
∑n0

i=1 r̃
2
i computed

with large n0 = 100, 000.

Four confidence intervals of nominal coverage probability 95% are compared.
The first one, denoted by NA1, is based on the normal approximation theory
of [4] and [6] for RV(n): RV(n) ± 1.96

√
2nRQ(n), where RQ(n) = (n/3)

∑n
i=1 r

4
i .

The second one, denoted by IB, is based on i.i.d. bootstrapping of [11]: RV(n)±
t∗0.95

√
2nRQ(n), t

∗
0.95 is the 95% percentile of the B bootstrap values of

√
n(RV ∗

(n)−
RV(n))/

√
Q∗

(n), whereQ
∗
(n) = n

∑n
i=1 r

∗4
i −(RV ∗

(n))
2. Next one, denoted byNA2,

is based on the normal approximation theory of [13] for RV AC1

(n) : RV AC1

(n) ±
1.96

√
8nω̂4, where ω̂2 =

∑n
i=1 r

2
i /(2n). The last one, denoted by SB, is based

on stationary bootstrapping of RV AC1

(n) : [RV AC1

(n) +RV
AC1∗
(n) − q∗0.975, RV

AC1

(n) +

RV
AC1∗
(n) −q∗0.025 ] as given by ( 3.1) in Section 3. The first two intervals NA1 and

IB are valid for cases without market micro structure noise, ω2 = 0. The last
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two intervals NA2 and SB are valid for both cases with and without market
micro structure noise, ω2 ≥ 0.

The bootstrap confidence intervals by IB and SB are computed using B =
1, 000 bootstrap replications. For SB, we use the block-length parameter p =
0.2ip(n/100.)

−1/3, ip = 1, 2. SB with ip = 1, 2 are denoted by SB1, SB2, re-
spectively. The noise-to-signal ratio, λ = 2nω2/E(IV ) is also computed by
approximating E(IV ) by the average of the 10, 000 values of IV .

Table 1 reports empirical coverage probabilities computed using 10, 000 in-
dependent replications. The table shows us that the proposed confidence in-
terval SB has the best overall coverage performance. We observe that SB
tends to have uniformly better coverage than NA2. For both noise-free cases
and noise cases, SB based on stationary bootstrapping of RV AC1

(n) provides

more stable confidence intervals than NA2 based on normal limit theory of
RV AC1

(n) .

The poor performance of NA2 for small n or for small λ dues to poor
estimation of ω2 as observed by [13] that small noise causes the estimator
ω̂2 =

∑n
i=1 r

2
i /2n to have a large bias unless n is very large. The proposed

bootstrap interval SB, requiring no estimation of ω2, has stabler coverage than
NA2 for all n and λ considered here.

We also observe that SB based on RV AC1

(n) is better than NA1 and IB based

on RV(n). Ignoring noise, NA1 and IB have serious problems for large n and
ω2 6= 0. The confidence intervals NA1 and IB fail to work having empirical
coverage values below 10% for non-ignorable noise cases of n = 1000 and ω2 =
0.01, 0.02, 0.03. On the other hand, the proposed confidence interval SB has
stable coverage probability.

Table 2 reports average lengths of the confidence intervals. For the
GARCH(1, 1) diffusion, the average lengths of the 5 confindence intervals are
not much different. For the two-factor affine diffusion, the average lengths are
very different: IB has the largest length and NA2 has the smallest length; the
stabler coverage probability of SB than NA2 is obtained by the cost of enlarged
average length. The intervals NA2 and SB with coverage probabilities closer to
the nominal coverage 95% tend to have larger average lengths than those with
smaller coverage probabilities. The intervals NA1 and IB show similar aspects
for the cases of n = 10 or λ = 0 in which bias of RV(n) is negligible. For the
other cases of (n, λ) in which bias of RV(n) is not negligible, even though NA1
and IB have average lengths not much smaller than those of (NA2, SB), own-
ing to the bias, NA1 and IB have seriously small coverage probabilities close
to 0.

5. Conclusion

Asymptotic normality is established for stationary bootstrapping of a bias-
corrected realized volatility in the presence of market microstructure noise. Ap-
plying stationary bootstrapping to the bias-corrected realized volatility, we con-
struct the stationary bootstrapping confidence interval of the integrated volatil-



Stationary bootstrapping RV under noise 2041

T
a
b
l
e
1
.
C
o
ve
ra
ge

p
ro
ba
bi
li
ti
es

(%
)
o
f
co
n
fi
d
en

ce
in
te
rv
a
ls

n
o
d
ri
ft

&
n
o
le
v
er
a
g
e

d
ri
ft

&
le
v
er
a
g
e

m
o
d
el

n
ω
2

λ
N
A
1

I
B

N
A
2

S
B

1
S
B

2
λ

N
A
1

I
B

N
A
2

S
B

1
S
B

2

1
1
0

0
.0
0

.0
0
0

8
5
.2

9
2
.9

7
4
.4

8
3
.0

8
6
.8

.0
0
0

8
5
.1

9
2
.8

7
3
.6

8
2
.7

8
6
.4

1
1
0

0
.0
1

.0
0
3

8
5
.3

9
3
.1

7
4
.4

8
3
.2

8
6
.9

.0
0
3

8
5
.2

9
2
.8

7
3
.6

8
2
.5

8
6
.3

1
1
0

0
.0
2

.0
1
3

8
5
.8

9
3
.4

7
4
.4

8
3
.3

8
6
.9

.0
1
3

8
5
.6

9
3
.1

7
4
.0

8
3
.2

8
6
.6

1
1
0

0
.0
3

.0
2
8

8
6
.4

9
3
.6

7
5
.2

8
3
.9

8
7
.3

.0
2
8

8
5
.7

9
3
.3

7
4
.8

8
3
.6

8
7
.1

1
1
0
0

0
.0
0

.0
0
0

9
3
.6

9
4
.3

7
4
.1

9
2
.3

9
3
.1

.0
0
0

9
4
.0

9
4
.6

7
3
.1

9
1
.9

9
2
.9

1
1
0
0

0
.0
1

.0
3
1

9
5
.3

9
5
.5

7
4
.5

9
2
.3

9
3
.6

.0
3
1

9
4
.9

9
5
.7

7
4
.1

9
1
.9

9
3
.1

1
1
0
0

0
.0
2

.1
2
6

9
1
.9

9
3
.2

7
7
.4

9
3
.1

9
4
.3

.1
2
6

9
2
.1

9
2
.9

7
7
.0

9
2
.6

9
4
.1

1
1
0
0

0
.0
3

.2
8
3

6
9
.3

7
4
.2

8
1
.1

9
4
.1

9
5
.3

.2
8
3

6
9
.6

7
4
.4

8
0
.4

9
3
.7

9
4
.9

1
1
0
0
0

0
.0
0

.0
0
0

9
4
.9

9
4
.1

7
4
.7

9
4
.4

9
4
.5

.0
0
0

9
4
.9

9
4
.3

7
4
.6

9
4
.8

9
4
.9

1
1
0
0
0

0
.0
1

.3
1
5

.0
.0

8
1
.8

9
5
.3

9
5
.7

.3
1
5

.0
.0

8
1
.8

9
5
.1

9
5
.5

1
1
0
0
0

0
.0
2

1
.2
5
9

.0
.0

9
0
.6

9
5
.8

9
6
.8

1
.2
5
9

.0
.0

9
0
.3

9
5
.7

9
6
.5

1
1
0
0
0

0
.0
3

2
.8
3
2

.0
.0

9
3
.5

9
6
.2

9
7
.1

2
.8
3
2

.0
.0

9
3
.6

9
6
.4

9
7
.2

2
1
0

0
.0
0

.0
0
0

7
7
.9

8
9
.7

6
5
.5

7
5
.9

7
9
.2

.0
0
0

7
8
.0

8
9
.4

6
4
.9

7
6
.1

7
9
.4

2
1
0

0
.0
1

.0
0
0

7
9
.0

8
9
.9

6
6
.0

7
6
.5

7
9
.8

.0
0
0

7
9
.0

8
9
.8

6
6
.0

7
6
.7

7
9
.8

2
1
0

0
.0
2

.0
0
1

8
2
.0

9
1
.1

6
7
.8

7
8
.1

8
1
.6

.0
0
1

8
1
.6

9
1
.3

6
7
.8

7
8
.1

8
1
.8

2
1
0

0
.0
3

.0
0
3

8
4
.4

9
2
.7

7
0
.5

7
9
.9

8
3
.6

.0
0
3

8
4
.1

9
2
.6

7
0
.4

7
9
.9

8
3
.8

2
1
0
0

0
.0
0

.0
0
0

9
0
.8

9
3
.0

5
9
.4

8
8
.7

8
9
.1

.0
0
0

9
0
.6

9
2
.9

5
9
.5

8
8
.9

8
9
.2

2
1
0
0

0
.0
1

.0
0
4

8
3
.7

8
8
.3

6
6
.3

9
0
.3

9
1
.1

.0
0
4

8
3
.9

8
8
.2

6
5
.6

8
9
.9

9
0
.6

2
1
0
0

0
.0
2

.0
1
4

4
4
.9

5
1
.9

7
5
.5

9
2
.7

9
3
.6

.0
1
4

4
5
.0

5
1
.8

7
4
.8

9
2
.2

9
3
.1

2
1
0
0

0
.0
3

.0
3
2

2
3
.7

2
9
.1

8
1
.6

9
4
.4

9
5
.2

.0
3
2

2
3
.8

2
9
.0

8
0
.8

9
4
.1

9
5
.0

2
1
0
0
0

0
.0
0

.0
0
0

9
4
.3

9
4
.1

5
7
.8

9
6
.9

9
5
.8

.0
0
0

9
4
.2

9
3
.8

5
8
.2

9
6
.9

9
5
.8

2
1
0
0
0

0
.0
1

.0
3
6

6
.2

6
.5

8
0
.9

9
7
.1

9
7
.0

.0
3
5

6
.1

6
.4

8
1
.1

9
7
.0

9
6
.7

2
1
0
0
0

0
.0
2

.1
4
3

1
.6

1
.8

8
9
.6

9
6
.8

9
7
.1

.1
4
1

1
.6

1
.7

8
9
.3

9
6
.7

9
6
.9

2
1
0
0
0

0
.0
3

.3
2
1

.8
.9

9
2
.3

9
6
.4

9
6
.9

.3
1
7

.8
.9

9
2
.0

9
6
.5

9
7
.2

N
o
te
:
M
o
d
el

1
is

G
A
R
C
H
(1
,
1
)
d
iff
u
si
o
n

a
n
d

m
o
d
el

2
is

tw
o
-f
a
ct
o
r
a
ffi
n
e
d
iff
u
si
o
n
.
N
o
m
in
a
l
co
v
er
a
g
e
=

9
5
%
;
n
u
m
b
er

o
f
re
p
li
ca
ti
o
n
s
=

1
0
,
0
0
0
;

n
u
m
b
er

o
f
b
o
o
ts
tr
a
p
re
p
et
it
io
n
s
B

=
1
,
0
0
0
.



2042 E. Hwang and D. W. Shin

T
a
b
l
e
2
.
A
vera

ge
len

gth
s
o
f
co
n
fi
d
en

ce
in
terva

ls

n
o
d
rift

&
n
o
lev

era
g
e

d
rift

&
lev

era
g
e

m
o
d
el

n
ω
2

λ
N
A
1

I
B

N
A
2

S
B

1
S
B

2
λ

N
A
1

I
B

N
A
2

S
B

1
S
B

2

1
1
0

0
.0
0

.0
0
0

1
.0
2

2
.6
2

1
.1
3

1
.7
3

1
.9
7

.0
0
0

1
.0
2

2
.6
0

1
.1
3

1
.7
3

1
.9
7

1
1
0

0
.0
1

.0
0
3

1
.0
2

2
.6
3

1
.1
3

1
.7
3

1
.9
8

.0
0
3

1
.0
2

2
.6
1

1
.1
3

1
.7
3

1
.9
7

1
1
0

0
.0
2

.0
1
3

1
.0
3

2
.6
4

1
.1
4

1
.7
4

2
.0
0

.0
1
3

1
.0
3

2
.6
3

1
.1
4

1
.7
4

1
.9
9

1
1
0

0
.0
3

.0
2
8

1
.0
5

2
.6
7

1
.1
6

1
.7
6

2
.0
2

.0
2
8

1
.0
4

2
.6
6

1
.1
6

1
.7
6

2
.0
2

1
1
0
0

0
.0
0

.0
0
0

.3
5

.3
9

.3
5

.5
9

.6
1

.0
0
0

.3
5

.3
9

.3
5

.6
0

.6
1

1
1
0
0

0
.0
1

.0
3
1

.3
6

.4
0

.3
7

.6
0

.6
2

.0
3
1

.3
6

.4
0

.3
7

.6
1

.6
2

1
1
0
0

0
.0
2

.1
2
6

.3
9

.4
3

.4
0

.6
3

.6
6

.1
2
6

.3
9

.4
3

.4
0

.6
3

.6
6

1
1
0
0

0
.0
3

.2
8
3

.4
5

.4
9

.4
5

.6
8

.7
2

.2
8
3

.4
5

.4
9

.4
5

.6
9

.7
3

1
1
0
0
0

0
.0
0

.0
0
0

.1
1

.1
1

.1
1

.1
9

.1
9

.0
0
0

.1
1

.1
1

.1
1

.1
9

.1
9

1
1
0
0
0

0
.0
1

.3
1
5

.1
5

.1
5

.1
5

.2
2

.2
2

.3
1
5

.1
5

.1
5

.1
5

.2
2

.2
2

1
1
0
0
0

0
.0
2

1
.2
5
9

.2
5

.2
5

.2
5

.3
1

.3
2

1
.2
5
9

.2
5

.2
5

.2
5

.3
1

.3
2

1
1
0
0
0

0
.0
3

2
.8
3
2

.4
3

.4
3

.4
3

.4
8

.5
0

2
.8
3
2

.4
3

.4
3

.4
3

.4
8

.5
0

2
1
0

0
.0
0

.0
0
0

9
.2
8

1
1
3
4

5
.6
8

1
2
.9
3

1
4
.9
5

.0
0
0

8
.3
5

1
0
6
7

5
.3
0

1
2
.0
3

1
3
.3
7

2
1
0

0
.0
1

.0
0
0

9
.2
8

1
1
7
4

5
.6
8

1
2
.4
5

1
4
.9
8

.0
0
0

8
.3
5

1
0
7
2

5
.3
0

1
1
.6
9

1
3
.7
0

2
1
0

0
.0
2

.0
0
1

9
.2
9

1
1
2
8

5
.6
9

1
2
.4
3

1
4
.9
7

.0
0
1

8
.3
6

1
1
1
7

5
.3
1

1
1
.3
3

1
3
.4
4

2
1
0

0
.0
3

.0
0
3

9
.3
0

1
1
3
7

5
.7
1

1
2
.4
1

1
5
.0
0

.0
0
3

8
.3
7

1
1
8
2

5
.3
3

1
1
.4
9

1
3
.2
8

2
1
0
0

0
.0
0

.0
0
0

9
.1
0

1
0
3
.4
1

2
.6
9

1
3
.2
3

1
2
.9
0

.0
0
0

9
.1
9

1
4
2
.7
1

2
.6
2

1
1
.0
6

1
0
.9
0

2
1
0
0

0
.0
1

.0
0
4

9
.1
1

6
3
.2
9

2
.7
0

1
3
.2
1

1
2
.8
5

.0
0
4

9
.2
0

6
3
.9
0

2
.6
4

1
0
.7
5

1
0
.6
9

2
1
0
0

0
.0
2

.0
1
4

9
.1
4

6
1
.3
4

2
.7
4

1
3
.7
3

1
2
.7
7

.0
1
4

9
.2
2

6
8
.1
1

2
.6
7

1
1
.0
1

1
0
.9
8

2
1
0
0

0
.0
3

.0
3
2

9
.1
8

5
9
.6
2

2
.7
9

1
3
.1
7

1
3
.3
5

.0
3
2

9
.2
7

5
7
.8
8

2
.7
2

1
1
.2
6

1
1
.2
1

2
1
0
0
0

0
.0
0

.0
0
0

5
.4
8

1
2
.1
5

.9
2

9
.3
5

8
.8
4

.0
0
0

5
.6
2

1
7
.1
5

.9
3

8
.7
6

7
.7
5

2
1
0
0
0

0
.0
1

.0
3
6

5
.5
1

1
3
.0
8

.9
6

9
.5
5

8
.6
6

.0
3
5

5
.6
4

1
6
.7
0

.9
7

8
.4
5

7
.9
7

2
1
0
0
0

0
.0
2

.1
4
3

5
.6
1

1
3
.3
7

1
.0
6

9
.5
2

9
.1
0

.1
4
1

5
.7
4

1
8
.4
4

1
.0
7

8
.4
1

7
.9
4

2
1
0
0
0

0
.0
3

.3
2
1

5
.7
7

1
3
.7
3

1
.2
4

9
.9
8

9
.0
3

.3
1
7

5
.9
1

1
8
.6
0

1
.2
5

8
.7
8

8
.0
0

N
o
te:

M
o
d
el

1
is

G
A
R
C
H
(1
,
1
)
d
iff
u
sio

n
a
n
d

m
o
d
el

2
is

tw
o
-fa

cto
r
a
ffi
n
e
d
iff
u
sio

n
.
N
o
m
in
a
l
cov

era
g
e
=

9
5
%
;
n
u
m
b
er

o
f
rep

lica
tio

n
s
=

1
0
,
0
0
0
;

n
u
m
b
er

o
f
b
o
o
tstra

p
rep

etitio
n
s
B

=
1
,
0
0
0
.



Stationary bootstrapping RV under noise 2043

ity. A Monte-Carlo experiment reveals advantages of the proposed stationary
bootstrapping confidence interval over existing methods based on asymptotic
normality established by [4] and [13] or those based on i.i.d. bootstrapping of
uncorrected realized volatility by [11].

6. Proofs

In the proofs, Xn
p−→ X , Xn

a.s−→ X and Xn
d−→ X mean that Xn converges to

X in probability, almost surely, and in distribution, respectively. Also,Xn
p∗

−→ X ,

Xn
a.s∗−→ X and Xn

d∗

−→ X mean that Xn converges to X in probability, al-
most surely, in distribution, respectively, conditionally given {r1, . . . , rn}, re-
spectively. Proof of Theorem 3.1(b) is given first because it is the main part.
Proof of Theorem 3.1(a) is given after proofs of Lemmas 6.1, 6.2 below.

Proof of Theorem 3.1(b). Given Proposition 2.1(c), it suffices to show that

1√
n

(
RV AC1∗

(n) − E∗(RV AC1∗
(n) )

)
d∗

−→ N(0, 8ω4). (6.1)

Let

Q∗
n,τ =

sτ∑

i=1

r∗2i + 2

sτ−1∑

i=1

r∗i r
∗
i+1, Un,τ =

τ∑

j=1

(
SIj ,Lj

+ 2 · TIj ,Lj

)
,

where sτ = L1 + · · · + Lτ , Si,ℓ =
∑i+ℓ−1

j=i r2nj , Ti,ℓ =
∑i+ℓ−1

j=i rnjrn(j+1). Then,

thanks to Lemma 6.1, RV AC1∗
(n) is approximated by the average of τ condition-

ally i.i.d. random variables SIj ,Lj
+ 2 · TIj ,Lj

, j = 1, . . . , τ whose conditional

expectation is approximately E∗(RV AC1∗
(n) ) ∼= RV AC1

(n) by Lemma 6.2(b) below

and conditional variance is approximately 8ω4 by Theorem 3.1(b). Then the
classical central limit theorem gives the result Lemma 6.2(a) and hence ( 6.1).

More formally, in order to verify ( 6.1), we will show that 1√
n
|Q∗

n,τ−Un,τ |
p∗

−→ 0,

1√
n
|Q∗

n,τ −RV AC1∗
(n) | p∗

−→ 0 in Lemma 6.1 below and that

1√
n

(
Un,τ −RV AC1

(n)

)
d∗

−→ N(0, 8ω4),
1√
n

(
RV AC1

(n) − E∗(RV AC1∗
(n) )

)
p−→ 0

in Lemma 6.2 below.

Lemma 6.1. Under the same assumptions as in Theorem 3.1, we have

(a)
1√
n
|Q∗

n,τ − Un,τ |
p∗

−→ 0, (b)
1√
n

∣∣∣Q∗
n,τ −RV AC1∗

(n)

∣∣∣ p∗

−→ 0.
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Proof. Denoting Iτ+1 = 0, we first observe that

1√
n
|Q∗

n,τ − Un,τ |

=
1√
n

∣∣∣∣∣∣

sτ∑

i=1

r∗2i + 2

sτ−1∑

i=1

r∗i r
∗
i+1 −

τ∑

j=1




Ij+Lj−1∑

i=Ij

r2ni + 2

Ij+Lj−1∑

i=Ij

rnirn(i+1)



∣∣∣∣∣∣

=
2√
n

∣∣∣∣∣∣

sτ−1∑

i=1

r∗i r
∗
i+1 −

τ∑

j=1




Ij+Lj−1∑

i=Ij

rnirn(i+1)



∣∣∣∣∣∣

=
2√
n

∣∣∣∣∣∣

τ∑

j=1




Ij+Lj−2∑

i=Ij

rnirn(i+1) + rn(Ij+Lj−1)rnIj+1




−
τ∑

j=1




Ij+Lj−1∑

i=Ij

rnirn(i+1)



∣∣∣∣∣∣

≤ 2√
n

τ∑

j=1

∣∣rn(Ij+Lj−1)(rnIj+1 − rn(Ij+Lj))
∣∣ .

Let Yj = rn(Ij+Lj−1)(rnIj+1 − rn(Ij+Lj)). Then {Yj : j = 1, 2, . . .} is a sequence
of i.i.d. random variables since {(Ij , Lj) : j = 1, 2, . . . } are i.i.d. Note that
τ = np+Op(

√
np) by [25]. For any sequence m with m/(np) → 1, we will show

that 2√
n

∑m
j=1 |Yj |

p∗

−→ 0. For any ǫ > 0 and δ > 0,

P ∗


 2√

n

m∑

j=1

|Yj | > ǫ


 ≤ 1

n1+δ/2ǫ2+δ
E∗

∣∣∣∣∣∣

m∑

j=1

Yj

∣∣∣∣∣∣

2+δ

= C
(m
n

)1+δ/2

observing E∗|Yj |2+δ <∞ a.s. The last term above tends to zero as n→ ∞, and
thus (a) holds.

Secondly, we observe

1√
n

(
Q∗

n,τ −RV AC1∗
(n)

)
=

1√
n

sτ∑

i=n+1

(r∗2i + 2r∗i−1r
∗
i ).

Let η1 = n−sτ−1 where sτ−1 = L1+ · · ·+Lτ−1, and let η = Lτ −η1. Note that,
from the memoryless property of the geometric distribution of the block length
of the stationary bootstrap procedure, the random variable η has a geometric
distribution with mean 1/p, conditional on (η1, sτ−1). Hence,

1√
n

∑sτ
i=n+1(r

∗2
i +

2r∗i−1r
∗
i ) is equal in distribution to 1√

n
[SI,η + 2 · TI−1,η] where I is uniform on

{1, . . . , n}. Thus, we will show that

1√
n

I+η−1∑

j=I

(r2nj + 2rn(j−1)rnj)
p−→ 0. (6.2)
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For any ǫ > 0,

P


 1√

n

I+η−1∑

j=I

(r2nj + 2rn(j−1)rnj) > ǫ




=
1

n

n∑

i=1

∞∑

ℓ=1

p(1− p)ℓ−1P


 1√

n

i+ℓ−1∑

j=i

(r2nj + 2rn(j−1)rnj) > ǫ


 .

We note that, for δ > 0,

P


 1√

n

i+ℓ−1∑

j=i

(r2nj + 2rn(j−1)rnj) > ǫ


 ≤ 1

n1+δ/2ǫ2+δ
E|Si,ℓ + 2Ti−1,ℓ|2+δ.

In Appendix (i) it is shown that E|Si,ℓ + 2Ti−1,ℓ|2+δ ≤ Cℓ1+δ/2 by applying
Minkowski’s inequality. Thus,

P


 1√

n

I+η−1∑

j=I

(r2nj + 2rn(j−1)rnj) > ǫ


 ≤ C

∞∑

ℓ=1

p(1− p)ℓ−1 ℓ
1+δ/2

n1+δ/2
=

C

(np)1+δ/2

since
∑∞

ℓ=1(1 − p)ℓ−1ℓa = O(1/pa+1) for a ≥ 1. The last term tends to zero
since np→ ∞. Thus the convergence in (conditional) probability in ( 6.2) holds
and so does the second result (b).

Lemma 6.2. Under the same assumptions as in Theorem 3.1, we have

(a)
1√
n

(
Un,τ −RV AC1

(n)

)
d∗

−→ N(0, 8ω4),

(b)
1√
n

(
RV AC1

(n) − E∗(RV AC1∗
(n) )

)
p−→ 0.

Proof. In order to show the first convergence (a), it suffices to show that, for
any sequence m with m/(np) → 1,

1√
n

[
Un,m − m

np
RV AC1

(n)

]
d∗

−→ N(0, 8ω4), (6.3)

since τ = np+Op(
√
np) by [25].

For 1 ≤ j ≤ m, let Zn,j =
√
m/n(SIj ,Lj

+ 2 · TIj ,Lj
). Note that Z̄m =

1
m

∑m
j=1 Zn,j is the average of i.i.d. variables since {Ij} and {Lj} are i.i.d. Also,

observing

E∗[SIj ,Lj
|Lj = ℓ] =

1

n

n∑

i=1

i+ℓ−1∑

j=i

r2nj =
ℓ

n

n∑

i=1

r2i ,

E∗[TIj ,Lj
|Lj = ℓ] =

1

n

n∑

i=1

i+ℓ−1∑

j=i

rnjrn(j+1) =
ℓ

n

n∑

i=1

riri+1 with rn+1 = r1,
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we have E∗[SIj ,Lj
+ 2 · TIj ,Lj

|Lj ] =
1
nLj(RV

AC1

(n) + 2r1rn) and thus E∗[Z̄m] =
√
m

pn
√
n
[RV AC1

(n) + 2r1rn]. Note that
√
m

pn
√
n
r1rn

p−→ 0 as n→ ∞, and the left term

of ( 6.3) is equal to
√
m[Z̄m − E∗Z̄m] + op(1).

Now let Z∗
n,j = Zn,j − E∗Zn,j, and then

√
m[Z̄m − E∗Z̄m] =

1√
m

m∑

j=1

Z∗
n,j .

{Z∗
n,j : 1 ≤ j ≤ m} are i.i.d. variables with mean zero under P ∗. Thus we

obtain, (for ι =
√
−1),

E∗
[
e
ι(t/

√
m)
∑

m

j=1
Z∗

n,j

]
=
(
E∗
[
eι(t/

√
m)Z∗

n,1

])m

=

[
1 +

ιt√
m
E∗Z∗

n,1 −
t2

2m
(1 + o(1))E∗(Z∗

n,1)
2

]m
.

By Proposition 2.1(b) and Theorem 3.1(a),

1

n
V ar∗

(
RV AC1∗

(n)

)
= V ar∗(Z∗

n,1)
p−→ 8ω4,

and thus the above term tends to e−4t2ω4

in probability, and the desired result
(a) is obtained. Now, by this result and by Lemma 6.1, the second convergence
(b) is obvious.

Proof of Theorem 3.1(a). We write RV AC1∗
(n) =

∑n
i=1X

∗
i where X∗

i = r∗2i +

2r∗i r
∗
i+1 for i = 1, . . . , n− 1, and X∗

n = r∗2n , and observe

1

n
V ar∗

(
RV AC1∗

(n)

)
=

1

n
V ar∗

(
n−1∑

i=1

X∗
i +X∗

n

)

=
1

n

[
V ar∗

(
n−1∑

i=1

X∗
i

)
+ V ar∗(X∗

n) + 2Cov∗

(
n−1∑

i=1

X∗
i , X

∗
n

)]

=
n− 1

n

[
V ar∗(X∗

1 ) + 2
n−2∑

i=1

(
1− i

n− 1

)
Cov∗(X∗

1 , X
∗
1+i)

]

+
1

n
V ar∗(X∗

n) +
2

n

n−1∑

i=1

Cov∗(X∗
i , X

∗
n).

Similarly we can express 1
nV ar(RV

AC1

(n) ) in terms of Xi := r2i + 2riri+1 for

i = 1, . . . , n− 1 and Xn = r2n.
We will show that 1

nV ar
∗(RV AC1∗

(n) ) has the same limiting as that of
1
nV ar(RV

AC1

(n) ), as n→ ∞, which can be expressed as c(0)+2 limn→∞
∑n−2

i=1 c(i)

where c(i) = Cov(r21 + 2r1r2, r
2
1+i + 2r1+ir2+i).
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First, we show that

∣∣∣∣∣

n−2∑

i=1

(
1− i

n− 1

)
Cov∗(X∗

1 , X
∗
1+i)−

n−2∑

i=1

c(i)

∣∣∣∣∣
p−→ 0

as n→ ∞. Write Cov∗(X∗
1 , X

∗
1+i) =

Cov∗(r∗21 , r
∗2
1+i) + 2Cov∗(r∗21 , r∗1+ir

∗
2+i) + 2Cov∗(r∗1r

∗
2 , r

∗2
1+i)

+ 4Cov∗(r∗1r
∗
2 , r

∗
1+ir

∗
2+i)

=: c∗1(i) + 2c∗2(i) + 2c∗3(i) + 4c∗4(i)

and c(i) = c1(i) + 2c2(i) + 2c3(i) + 4c4(i) where c1(i) = Cov(r21 , r
2
1+i), c2(i) =

Cov(r21 , r1+ir2+i), c3(i) = Cov(r1r2, r
2
1+i) and c4(i) = Cov(r1r2, r1+ir2+i). It

suffices to show that, for k = 1, 2, 3, 4,

n−2∑

i=1

[(
1− i

n− 1

)
c∗k(i)− ck(i)

]
p−→ 0. (6.4)

For k = 1, we observe Cov∗(r∗21 , r
∗2
1+i) = E∗[r∗21 r

∗2
1+i] − (E∗r∗2i )2, E∗r∗2i =

1
n

∑n
j=1 r

2
j and

E∗[r∗21 r
∗2
1+i] = E[r∗21 r

∗2
1+i|L1 > i]P (L1 > i) + E[r∗21 r

∗2
1+i|L1 ≤ i]P (L1 ≤ i)

=
1

n

n∑

j=1

r2njr
2
n(j+i)(1 − p)i +


 1

n

n∑

j=1

r2j




2

[1 − (1− p)i]

and thus

Cov∗(r∗21 , r∗21+i) =
(1− p)i

n

n∑

j=1

[
(r2nj −A1)(r

2
n(j+i) −A1)

]

where A1 = 1
n

∑n
j=1 r

2
j . Let d̂n(i) =

1
n

∑n−i
j=1 [(r

2
j −A1)(r

2
j+i −A1)], and then

Cov∗(r∗21 , r
∗2
1+i) = (1 − p)i[d̂n(i) + d̂n(n− i)].

Thus we have

n−2∑

i=1

(
1− i

n− 1

)
Cov∗(r∗21 , r

∗2
1+i) =

n−2∑

i=1

bn(i)d̂n(i)

where bn(i) = (1 − i
n−1 )(1− p)i + i

n−1 (1− p)n−1−i.
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In order to show the convergence in probability for k = 1 in ( 6.4), we observe

n−2∑

i=1

[(
1− i

n− 1

)
c∗1(i)− c1(i)

]

=

n−2∑

i=1

[
bn(i)d̂n(i)− c1(i)

]

=

n−2∑

i=1


 bn(i)

n

n−i∑

j=1

[
(r2j −A1)(r

2
j+i −A1)

]
− c1(i)




≤
n−2∑

i=1


bn(i)

n

n−i∑

j=1

[
(r2j −A1)(r

2
j+i −A1)− c1(i)

]



+
n−2∑

i=1

(
bn(i)

n
(n− i)c1(i)− c1(i)

)
. (6.5)

Since bn(i) − 1 → 0 for all i, the second term of ( 6.5) has the same limit as
1
n

∑n−2
i=1 ic1(i), which tends to zero by Assumption 3.

For the convergence in probability of the first term in ( 6.5), note that∑n−2
i=1 bn(i) ≤ 2/p (see [25]), and we show that

1

np

n−i∑

j=1

[
(r2j −A1)(r

2
j+i −A1)− c1(i)

] p−→ 0.

For any ǫ > 0 and δ > 0

P


 1

np

n−i∑

j=1

[
(r2j −A1)(r

2
j+i −A1)− c1(i)

]
> ǫ


 ≤ 1

(npǫ)2+δ
E

∣∣∣∣∣∣

n−i∑

j=1

Yj,i

∣∣∣∣∣∣

2+δ

(6.6)

where Yj,i = (r2j − A1)(r
2
j+i − A1) − c1(i). By the fact that E|∑n−i

j=1 Yj,i|2+δ ≤
Cn1+δ/2, given in Appendix (ii), the left term of ( 6.6) is less than or equal
to c/(n1+δ/2p2+δ), which tends to zero if np2 → ∞. Hence the convergence in
probability of the first term in ( 6.5) holds, and so does the convergence in
probability for k = 1 in ( 6.4). The convergence in probability for k = 2 in ( 6.4)
can be shown in the same way.

Now we show the convergence in probability for k = 3 in ( 6.4). For k = 3,
we observe Cov∗(r∗1r

∗
2 , r

∗2
1+i) = E∗[r∗1r

∗
2r

∗2
1+i] − (E∗r∗1r

∗
2)(E

∗r∗21+i), E
∗r∗21+i =

1
n

∑n
j=1 r

2
j = E(r21) + op(1) and E∗[r∗1r

∗
2 ] = E[r∗1r

∗
2 |L1 > 1]P (L1 > 1) +

E[r∗21 r
∗2
2 |L1 ≤ 1]P (L1 ≤ 1) = 1

n

∑n
j=1 rnjrn(j+1)(1 − p) + ( 1n

∑n
j=1 rj)

2p =

E(r1r2) + op(1). Now we observe E∗[r∗1r
∗
2r

∗2
1+i]. If i = 1, then we have
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E∗[r∗1r
∗
2r

∗2
1+i] = E[r1r

3
2 ] + op(1). If i ≥ 2, then

E∗[r∗1r
∗
2r

∗2
1+i] = E[r∗1r

∗
2r

∗2
1+i|L1 > i]P (L1 > i) + E[r∗1r

∗
2r

∗2
1+i|L1 ≤ i]P (L1 ≤ i)

=
1

n

n∑

j=1

rnjrn(j+1)r
2
n(j+i)(1 − p)i

+


 1

n

n∑

j=1

rnjrn(j+1)




 1

n

n∑

j=1

r2j


 [1− (1− p)i]

and thus

c∗3(i) = Cov∗(r∗1r
∗
2 , r

∗2
1+i) =

(1− p)i

n

n∑

j=1

[
(rnjrn(j+1) −A2)(r

2
n(j+i) −A1)

]
+op(1)

where A2 = 1
n

∑n
j=1 rnjrn(j+1). For the left term in ( 6.4) with k = 3, we have

(
1− 1

n− 1

)
c∗3(1)− c3(1) +

n−2∑

i=2

[(
1− i

n− 1

)
c∗3(i)− c3(i)

]

=

n−2∑

i=2


(1− p)i

(
1− i

n− 1

)
1

n

n∑

j=1

[
(rnjrn(j+1) −A2)(r

2
n(j+i) −A1)− c3(i)

]



(6.7)

+

n−2∑

i=2

[
(1− p)i

(
1− i

n− 1

)
c3(i)− c3(i)

]
+ op(1). (6.8)

By inequality
∑n−2

i=2 (1 − p)i − 1
n−1

∑n−2
i=2 i(1 − p)i ≤ 2/p, and by the fact that

E|∑n−1
j=1 Wj,i|2+δ ≤ Cn1+δ/2, given in Appendix (iii), whereWj,i = (rnjrn(j+1)−

A2)(r
2
n(j+i) −A1)− c3(i), the term in ( 6.7) converges to zero in probability like

the argument in ( 6.6) if np2 → ∞. The first term in ( 6.8) is less than or

equal to 1
n−1

∑n−2
i=2 ic3(i), which tends to zero by Assumption 3. Therefore, the

convergence in probability for k = 3 in ( 6.4) holds. Similarly, for k = 4 in ( 6.4)
the convergence in probability can be shown.

Secondly, we show that

1

n

n−1∑

i=1

Cov∗(X∗
i , X

∗
n)

p−→ 0.

We have Cov∗(X∗
i , X

∗
n) = Cov∗(r∗2i , r

∗2
n ) + 2Cov∗(r∗i r

∗
i+1, r

∗2
n ) = c∗1(n − i) +

2c∗3(n− i) and thus 1
n

∑n−1
i=1 Cov

∗(X∗
i , X

∗
n) =

1
n

∑n−1
i=1 [c

∗
1(n− i) + 2c∗3(n− i)] =

1
n

∑n−1
i=1 [c

∗
1(i)+2c∗3(i)]

p−→ 0 by the similar arguments above and Assumption 3.
Finally, we show that

n− 1

n
V ar∗(X∗

1 ) +
1

n
V ar∗(X∗

n)− c(0)
p−→ 0.
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We observe V ar∗(X∗
1 ) = V ar∗(r∗2i ) + 4V ar∗(r∗1r

∗
2) + 4Cov∗(r∗21 , r

∗
1r

∗
2),

V ar∗(r∗2i ) = 1
n

∑n
i=1 r

4
i − ( 1n

∑n
i=1 r

2
i )

2 = V ar(r21) + op(1), E
∗(r∗1r

∗
2) =

E∗[r∗1r
∗
2 |L1 > 1]P (L1 > 1)+E∗[r∗1r

∗
2 |L1 = 1]P (L1 = 1) = 1

n

∑n
i=1 rnirn(i+1)(1−

p)+( 1n
∑n

i=1 ri)
2p = E[r1r2]+op(1), similarly E∗(r∗21 r

∗2
2 ) = E[r21r

2
2 ]+op(1), and

thus V ar∗(r∗1r
∗
2) = V ar(r1r2)+op(1). In the same way we haveCov∗(r∗21 , r

∗
1r

∗
2) =

Cov(r21 , r1r2) + op(1), and hence V ar∗(X∗
1 ) = V ar(X1) + op(1), noting that

c(0) = V ar(X1), and
1
nV ar

∗(X∗
n) =

1
nV ar

∗(r∗4)
p−→ 0, we obtain the desired

result. This finishes the proof.

Proof of Theorem 3.2. If p = c · n− δ−2ρ
2(2+δ) for some c > 0, 0 < ρ < δ/2 and 0 <

δ < 1, then all convergences in probability in Lemmas 6.1–6.2 and Theorem 3.1
and their proofs are replaced by almost sure convergences by Borel-Cantelli
Lemma and by the following:

∞∑

n=1

(
1

np2

)1+δ/2

= c

∞∑

n=1

1

n1+ρ
<∞.

See [16] for the almost sure convergence of the stationary bootstrap.

Appendix A

(i) E|Si,ℓ + 2Ti−1,ℓ|2+δ ≤ Cℓ1+δ/2 for some constant C depending only on δ.
Here and below, C is a generic constant.

(ii) E|∑n−i
j=1 Yj,i|2+δ ≤ Cn1+δ/2 where Yj,i is either (r

2
j −A1)(r

2
j+i−A1)−c1(i)

or (r2j −A1)(rj+irj+i+1 −A2)− c2(i).

(iii) E|
∑n−1

j=1 Wj,i|2+δ ≤ Cn1+δ/2 whereWj,i is either (rnjrn(j+1)−A2)(r
2
n(j+i)−

A1)− c3(i) or (rnjrn(j+1) −A2)(rn(j+i)rn(j+i+1) −A2)− c4(i).

Proof of (i). We will use the Marcinkiewicz-Zygmund inequality and the Min-
kowsky inequality for the bound of E|Si,ℓ + 2Ti−1,ℓ|2+δ. First, if i + ℓ − 1 ≤ n,
then

E|Si,ℓ|2+δ = E|
i+ℓ−1∑

j=i

r2nj |2+δ

≤ CE




i+ℓ−1∑

j=i

r4nj




1+δ/2

≤ C



i+ℓ−1∑

j=i

(
E|r2nj |2+δ

)2/(2+δ)



1+δ/2

= Cℓ1+δ/2

since E|r2nj |2+δ <∞. Also we have E|Ti−1,ℓ|2+δ = Cℓ1+δ/2. By the Minkowsky
inequality again, we have

E|Si,ℓ + 2Ti−1,ℓ|2+δ

≤
[(
E|Si,ℓ|2+δ

)1/(2+δ)
+ C

(
E|Ti−1,ℓ|2+δ

)1/(2+δ)
]2+δ

≤ Cℓ1+δ/2.
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Secondly, if i + ℓ − 1 > n and ℓ ≤ n, then write Si,ℓ = (r2ni + · · · + r2nn) +
(r2n1 + · · ·+ r2n(i+ℓ−1)) and Ti−1,ℓ = (rn(i−1)rni + · · ·+ rn(n−1)rnn) + (rnnrn1 +

· · ·+ rn(i+ℓ−2)rn(i+ℓ−1)), and similarly we have E|Si,ℓ + 2Ti−1,ℓ|2+δ ≤ Cℓ1+δ/2.

Finally if i + ℓ − 1 ≥ n and ℓ > n, then write ℓ = nq + ℓ̃ for some q ≥ 1 and
1 ≤ ℓ̃ ≤ n, and

Si,ℓ =




n∑

j=i

r2nj + q

n∑

j=1

r2nj +

i+ℓ̃−1∑

j=1

r2nj


 = nqA1 + Si,ℓ̃ = (ℓ− ℓ̃)A1 + Si,ℓ̃.

Hence, by Minkowsky inequality again, we have E|Si,ℓ|2+δ =

E|(ℓ − ℓ̃)A1 + Si,ℓ̃|2+δ ≤
[(
E|(ℓ − ℓ̃)A1|2+δ

)1/(2+δ)

+
(
E|Si,ℓ̃|2+δ

)1/(2+δ)
]2+δ

≤ C(ℓ − ℓ̃)1+δ/2 + Cℓ̃1+δ/2 ≤ Cℓ1+δ/2.

For Ti−1,ℓ, we have the same argument to get E|Ti−1,ℓ|2+δ = Cℓ1+δ/2, and by the
Minkowsky inequality again, we obtain the desired result in Appendix (i).

Proofs of (ii), (iii). For fixed i in {1, . . . , n− 1}, note that {Yj,i : j = 1, 2, . . .}
and {Wj,i : j = 1, 2, . . . } are i-dependent sequences, which belong to a class
of ψ-weakly dependent sequences, (cf. [8]). Observing E|Yj,i|2+δ < ∞ and
E|Wj,i|2+δ < ∞, by Lemma 4.1 of [16], the desired results for the bounds are
obtained.
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