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1. Introduction

The advent and development of high precision data acquisition technologies in
active fields of research (e.g., medicine, engineering, climatology, economics),
that are able to capture real-time and/or spatially-referenced measures, have
provided the scientific community with large amount of data that challenge the
classical approach to data analysis.

Data sets are indeed increasingly becoming characterized by a number of
random variables that is much larger than the number of sample units (large p
small n data sets) in contrast to the “familiar” data sets where the number of
sample units is often much larger than the number of random variables (small p
large n data sets). This makes many classical inferential tools (e.g. Hotelling’s
Theorem) almost useless in many fields at the forefront of scientific research and
raises the demand for new inferential tools able to efficiently deal with this new
kind of data.

The work of Srivastava (2007) is pioneering in this direction. In it, a general-
ization of the Hotelling’s Theorem is proposed: a generalized T 2 test statistic is
found and its distribution law is computed for p ≥ n under the assumptions of
normality and of proportionality of the covariance matrix to the identity matrix
with the proportionality constant unknown (Theorem 2.2, Srivastava (2007));
this assumption implies the independence among components (and among uni-
variate test statistics as well), enabling also other classical inference procedures.
We shall show that without relying on the latter assumption, it is possible to
generalize this work in a much less stringent framework. In Srivastava (2007),
some inferential results not depending on strong assumptions on the covariance
structure are presented as well, but, being asymptotic in both p and n, they are
not suitable to perform inferential statistical analysis of large p small n data
(Theorem 2.3, Srivastava (2007)).
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Other methods to deal with the analysis of large p small n data are objects
of statistical investigation. Approaches based on the joint use of univariate test
statistics for each component to build multivariate inference procedures have
already appeared in the literature also under the assumption of dependence
among components and thus among univariate test statistics as well. These
approaches rely on the correction of each univariate significance (or confidence)
levels such that the global significance (or confidence) level approximates a
desired value. In particular, we can distinguish between a priori corrections,
based on widely valid theoretical results (e.g., Bonferroni correction), and a
posteriori corrections, based on the empirical distribution of the univariate p-
values (e.g., Benjamini and Yekutieli (2001), Storey (2003)).

Permutation tests provide a further alternative approach to the inference
for large p small n data. Permutation tests are inferential procedures that are
conditional (the focus is on the sample rather than on the population), and
distribution-free (no strong assumption about the population distribution law
is necessary). Pesarin and Salmaso (2010, 2009) and Hall and Keilegorn (2007)
recently proposed the use of permutation tests in the framework of multivariate
and functional data analysis (an extreme case of large p small n data, Ramsay
and Silverman (2005), Ferraty and Vieu (2006)).

Similarly to Srivastava (2007) and differently from the other works cited
above, our proposal is Hotelling-inspired. In particular, to overcome the impos-
sibility of treating large p small n data by means of a classical model-based
approach, our strategy focuses on the random “variability space explored by
the data”, i.e., the space generated by the first n− 1 principal components. In
this reduced space, the proposed analysis is almost classical with the impor-
tant distinction that the randomness of this data-dependent reduced space is
fully taken into account. A pairwise comparison between our new inferential
procedure and the other approaches presented above is of sure interest. Thus, in
the present work, the theoretical and empirical comparison with the inferential
approach proposed in Srivastava (2007) and with the one proposed in Pesarin
and Salmaso (2010, 2009) is carried out. These are two approaches to the same
problem that are very close in spirit and far from ours, respectively.

The paper is outlined as follows: in Section 2, after the introduction of the
probabilistic framework, a generalized version of the Hotelling’s Theorem for
p → ∞ is proposed; part of its proof is reported in Appendix A. In Section 3,
the previous generalized version of the Hotelling’s Theorem is used for the infer-
ence for the mean vector of a p-variate normal population (and for the difference
of the mean vectors of two p-variate normal populations) when the number p of
components is far larger than the number n of sample units; a theoretical com-
parison with the classical Hotelling’s Theorem is here undertaken. In Section 4,
by means of MC simulations, our new inferential procedure is compared with
the two presented in Srivastava (2007) and in Pesarin and Salmaso (2010, 2009).
In the final Section, some hints for possible future investigations are reported;
in particular, a conjecture supported both by the results of MC simulations and
by its theoretical consistency with our generalization of the Hotelling’s Theorem
and with the results presented in Srivastava (2007) is proposed.
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2. p-asymptotic generalized Hotelling’s theorem

The classical approach to inference for the mean µp of a p-variate normal random
vector with unknown full rank covariance matrix Σp relies on a famous corollary
of the Hotelling’s Theorem that holds when the number n of sample units is
larger than the number p of random vector components.

Theorem 1 (Hotelling’s Theorem). For m ≥ 1 and p ≥ 1, assume that:

(i) X ∼ Np(µp,Σp);
(ii) W ∼ Wishartp(Σp,m);
(iii) X and W are independent.

Then, for m ≥ p:

m− p+ 1

p
(X− µp)

′W−1(X− µp) ∼ F (p,m− p+ 1).

Corollary 2 (Hotelling’s T 2 Distribution Law). For n ≥ 2 and p ≥ 1, assume
that:

(i’) {Xi}i=1,...,n ∼ iid Np(µp,Σp).

Then, for n > p:

(n− p)n

(n− 1)p
(X− µp)

′S−1(X− µp) ∼ F (p, n− p),

with X and S being the sample mean and the sample covariance matrix, respec-
tively.

The quantity n(X − µp)
′S−1(X − µp) is known as Hotelling’s T 2 due to its

analogy with the squared of the univariate Student’s t test statistic. Corollary 2
makes possible the development of inferential tools for the mean value of a p-
variate normal random vector (e.g. confidence ellipsoidal regions or hypothesis
testing) when the number n of sample units is larger than the number p of ran-
dom vector components; there are no assumptions on the covariance matrix Σp

that is only required to be positive definite. Proofs of Theorem 1 and Corollary 2
can be found, for instance, in Anderson (2003).

Theorem 1 and Corollary 2 become useless in applications where the covari-
ance matrix is unknown and the number p of random vector components is larger
than the number n−1, with n being the number of sample units. Indeed, in these
cases, T 2 is not defined since S is not invertible because rank(S) = min(n−1, p)
a.s. Analogously to Srivastava (2007), we decide to suitably generalize the in-
verse of S in order to obtain a suitable generalization of T 2. We considered the
Moore-Penrose Generalized Inverse (Rao and Mitra (1971)) of a rectangular
matrix, whose general definition can be found in Appendix A, since it always
exists, it is unique, and it is equal to the inverse matrix when the latter is
squared and invertible. Moreover, in the special case of a squared real positive
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semi-definite matrix A, the Moore-Penrose generalized inverse A+ can be proved
(see Appendix A) to be equal to:

A+ =
∑

i:λi 6=0

1

λi
eie

′
i,

with {λi}i=1,...,p and {ei}i=1,...,p being the eigenvalues and eigenvectors of A,
respectively.

We now present a generalization of Hotelling’s Theorem that can be used to
make inference for the mean of a multivariate normal random vector when the
sample size n is finite, the number of components p goes to infinity, and the
covariance matrix is unknown.

Theorem 3 (p-asymptotic Generalized Hotelling’s Theorem). For m ≥ 1 and
p ≥ 1, assume that:

(i) X ∼ Np(µp,Σp);
(ii) W ∼ Wishartp(Σp,m);
(iii) X and W are independent;

(iv) 0 < σ = limp→∞
tr(Σp)

p < +∞, 0 < σ2 = limp→∞
tr(Σ2

p)

p < +∞, and

0 < σ4 = limp→∞
tr(Σ4

p)

p < +∞.

Then, for p → ∞:

σ2

σ2
p(X− µp)

′W+(X− µp)
D−→ χ2(m).

The proof of Theorem 3 is based on the p-asymptotic distribution of three
auxiliary random matrices Y , L, H that provide alternative useful representa-
tion of the random matrix W appearing in (ii). In particular, Y is a p × m
random matrix whose m columns are independent Np(0,Σp), i.e. we may rep-
resent W = Y Y ′ since the two random matrices have the same law; L is a
random diagonal matrix whose diagonal elements are the m non-zero ordered
eigenvalues of W ; and H is a m × p random matrix whose rows are the corre-
sponding m eigenvectors (i.e. W = H ′LH with HH ′ = Im). Random matrices
Y , L, and H exist almost surely since W is a Wishart random matrix with m
degrees of freedom. Also the diagonal matrix Λp = diag(λ1(Σp), . . . , λp(Σp))
with λ1(Σp) ≥ · · · ≥ λp(Σp) > 0 being the ordered eigenvalues of Σp always
exists thanks to the positive definiteness of Σp.

Theorem 3 relies, among others, on the fact that under assumptions (ii) and

(iv) of the same theorem: Y ′Y
p

P−−−→
p→∞

σIm, L
p

P−−−→
p→∞

σIm, and HΛpH
′ D−−−→

p→∞

σ2

σ Im. These p-asymptotic convergences are presented in Lemma A.2 (a), (b),
and (d) of Srivastava (2007); their proofs rely on Chebyshev’s Inequality, Prokho-
rov’s Theorem, Slutsky’s Theorem, and on algebraic relations supported by the
properties of Moore-Penrose general inverses.
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Proof of Theorem 3. Let us define two auxiliary matrices A = (HΛpH
′)−1/2

and Z = AH(X− µp). The conditional distribution of Z given H is

Z|H ∼ Nm(0m, AHΛpH
′A) = Nm(0m, Im),

since X is distributed as Np(µp,Λp). The conditional distribution of Z given H
does not depend on H : therefore, Z and H are independent and

Z ∼ Nm(0m, Im) while Z′Z ∼ χ2(m).

Thanks to Proposition 9 in Appendix A, the following equalities in distribu-
tion hold:

p(X− µp)
′W+(X− µp) =

= p(X− µp)
′H ′L−1H(X− µp) =

= pZ′(ALA)−1Z = (2.1)

=

[
Z′ (HΛpH

′)
1/2
(
L

p

)−1/2
][(

L

p

)−1/2

(HΛpH
′)
1/2

Z

]
. (2.2)

Because of Lemma A.2 in Srivastava (2007) and the continuity of the maps
B 7→ B−1/2 and B 7→ B1/2 over the set of positive definite matrices, we have
that: (

L
p

)−1/2 P−−−→
p→∞

(σ)
−1/2

Im,

(HΛpH
′)
1/2 D−−−→

p→∞

(
σ2

σ

)1/2
Im.

Thus, Slutsky’s Theorem (e.g., Serfling (2002)) implies that:

(
L

p

)−1/2

(HΛpH
′)
1/2

Z
D−−−→

p→∞

(
σ2

σ2

)1/2

Z.

Finally, since the Euclidean squared norm function on R
m is continuous,

p(X− µp)
′W+(X− µp)

D−−−→
p→∞

σ2

σ2Z
′Z,

and thus
σ2

σ2
p(X− µp)

′W+(X− µp)
D−−−→

p→∞
χ2(m).

Remarks about Theorem 3

1. The proof of Theorem 3 recalls the proof of Theorem 2.3 in Srivastava
(2007) where a n-p-asymptotic result is proven (i.e., a result for both n
and p going to infinity). That result is reported in Section 3 (paragraph
Remarks about Corollary 4). The key point that allows us to obtain a
(finite-n) p-asymptotic result for the distribution of p(X−µp)

′W+(X−µp)
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is the use of the distributional equality (2.2) in place of the distributional
equality (2.1), which is instead used in Srivastava (2007). Indeed, this
new representation of the random quantity p(X−µp)

′W+(X−µp) (iden-
tity (2.2)) makes unnecessary Lemma 2.1 of Srivastava (2007) (where an
n-asymptotic result is proven) for identifying the distribution of p(X −
µp)

′W+(X− µp), leaving space for a finite-n result.
2. Note that in Theorem 3 the practical importance of “p → ∞” (i.e., p-

asymptoticity) is very general. For instance we might consider the situa-
tion where we add extra components to a random normal vector X and
infinite extra rows and columns to a random Wishart matrix W . This is
for instance the case of discrete-time series when time goes to infinity,
or micro-array expressions when the number of genes goes to infinity. But
“p → ∞” can also be relevant in more complex situations where a sequence
of random vectors X and of random matrices W of increasing dimension-
ality is investigated without any “nesting” property as p increases. This
is for instance the case of sequential finite-dimensional representations of
functional data by means of sequential non-necessarily nested basis (e.g.
B-splines) whose dimension goes to infinity.

3. It is easy to prove that if the eigenvalues of Σp are uniformly bounded
away from 0 and +∞, i.e.:

(iv′) ∃ λ, λ : ∀p, 0 < λ ≤ λ1(Σp) ≤ · · · ≤ λp(Σp) ≤ λ < +∞,

and at least one of the limits limp→∞
tr(Σp)

p , limp→∞
tr(Σ2

p)

p or limp→∞
tr(Σ4

p)

p

exists, assumption (iv) of Theorem 3 is satisfied.

3. Inference for the mean of large p small n data

Provided that one can evaluate the ratio σ2/σ2 (this issue is tackled in subsec-
tion 3.3), Theorem 3 can be straightforwardly used to make inference for the
mean of a multivariate normal distribution when the number p of components
is larger than the number n of sample units. Indeed, its natural consequence is
the following:

Corollary 4 (Generalized Hotelling’s T 2 p-asymptotic distribution law). For
n ≥ 2 and p ≥ 1, assume that:

(i’) {Xi}i=1,...,n ∼ iid Np(µp,Σp);

(iv) 0 < σ = limp→∞
tr(Σp)

p < +∞, 0 < σ2 = limp→∞
tr(Σ2

p)

p < +∞, and

0 < σ4 = limp→∞
tr(Σ4

p)

p < +∞.

Then, for p → ∞:

σ2

σ2

np

n− 1
(X− µp)

′S+(X− µp)
D−→ χ2(n− 1),

where X and S are the sample mean and the sample covariance matrix, respec-
tively.
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Proof. It is a direct application of Theorem 3 since
√
n(X̄− µp) ∼ Np(0p,Σp),

(n− 1)S ∼ Wishartp(Σp, n− 1), and they are independent.

The random quantity

T 2 = n(X− µp)
′S+(X− µp) (3.1)

can be naturally denoted as Generalized Hotelling’s T 2 since it is defined for any
n and p such that n ≥ 2 and p ≥ 1 and coincides with the classical Hotelling’s
T 2 = n(X − µp)

′S−1(X − µp) when p < n. Despite the simplicity of this gen-
eralization, important differences occur between the new framework p ≥ n and
the classical framework p < n. These differences involve:

• the connection between T 2 and the univariate Student’s t test statistic
(subsection 3.1);

• the invariance properties of T 2 (subsection 3.2);
• the distribution law of T 2 (subsection 3.3);
• the geometrical characteristics of the confidence regions and of the crit-
ical regions for the mean that can be derived from Corollaries 2 and 4
(subsection 3.4).

Remarks about Corollary 4

1. The p-asymptotic distribution law of T 2 strongly depends on assumptions
(i′) and (iv) involving the normal distribution of the observations and the
p-asymptotic behavior of the covariance matrix, respectively. In particular,
while the latter assumption could probably be relaxed (this issue is still
under investigations by the authors), the former assumption cannot since
there is no Central Limit Theorem for p → ∞ providing that

√
n(X̄−µp)

is approximately normal and (n− 1)S is approximately a Wishart.
2. Corollary 4 (and similarly Corollary 5) generalizes to the finite-sample

framework the result presented in Theorem 2.3 of Srivastava (2007) where,
under the same assumptions (i′) and (iv), the distribution of a transfor-
mation of T 2 is presented both for p and n → ∞. In detail, Theorem 2.3
of Srivastava (2007) states that, under assumptions (i′) and (iv), for p and
n → ∞: (

n− 1

2

)1/2(
p

(n− 1)2
σ2

σ2
T 2 − 1

)
D−→ N(0, 1).

In the light of Corollary 4, Theorem 2.3 of Srivastava (2007) turns out to
be a special case which is obtained when n → ∞ and the n-asymptotic
normal approximation of the χ2(n− 1) distribution is used.
Even if our result covers a wider variety of real applications, it does not
cover the analysis of small p small n data with p > n. This latter scenario
is still an open issue except for the case of homoscedastic and independent
components. This case is indeed fully developed in Srivastava (2007) where
Theorem 2.2 states that under assumption (i′) and Σp = γIp, for p ≥ n:

p− n+ 2

(n− 1)2
T 2 ∼ F (n− 1, p− n+ 2).
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3.1. Connections between the generalized Hotelling’s T 2 and the

student’s t test statistic

Student’s t statistic comes natural in multivariate statistics if the Rp-representa-
tions of the n sample units are projected along a certain direction a ∈ R

p \{0p}.
Along this direction, the usual Student’s t statistic can be computed:

ta =
√
n
a′(X̄− µp)√

a′Sa
∼ t(n− 1),

and univariate inference can be carried on along that direction.
Note that for all a ∈ R

p \ {0p}, ta is almost surely defined. Indeed, since
ker(S) has null Lebesgue measure on R

p and since Xi with i = 1, . . . , n are
absolutely continuous random variables with respect to the same measure, the
probability that ker(S) ∋ a is equal to zero.

The maximization lemma of quadratic forms points out a strong relation
between T 2 defined in (3.1) and the univariate ta. Indeed, one can show that

T 2 = max
a∈Im(S)\{0p}

t2a. (3.2)

This means that making multivariate inference using T 2 at a certain confidence
(significance) level is formally the same as making simultaneous univariate in-
ference along any direction belonging to the “variability space explored by the
data” (i.e. any direction a ∈ Im(S) \ {0p}), while controlling the overall joint
confidence (significance) level, ignoring all orthogonal directions (i.e. any direc-
tion a ∈ ker(S) \ {0p}).

Note that Rp = Im(S)⊕ ker(S) for n ≥ 2 and p ≥ 1, with Im(S) = Rp and
ker(S) = {0p} almost surely if and only if n > p. Thus, when n > p, T 2 can be
more simply defined as maxa∈Rp\{0p} t

2
a; this is actually the most common way

through which T 2 is introduced in the classical framework n > p. In the general
framework the latter definition does not hold since t2a is not uniformly bounded
in Rp \ {0p} when n ≤ p.

3.2. Invariance properties of the generalized Hotelling’s T 2

The Generalized Hotelling’s T 2 is invariant under similarity transformations of
the components (affine transformation preserving angles), i.e. affine transfor-
mation A • +b such that A ∈ R

p×p with A = aO, where a ∈ R
+
0 and O is an

orthogonal matrix, and b ∈ R
p. Indeed, under these assumptions we have that:

n((AX+ b)− (Aµp + b))′(ASA′)+((AX+ b)− (Aµp + b)) =

= n(X− µp)
′S+(X− µp).

The previous result relies on the fact, proven in Appendix A, that (ASA′)+ =
(A′)−1S+A−1 only for A = aO, where a ∈ R

+
0 and O is an orthogonal matrix.
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Similarity transformations are also those transformations that do not affect
assumption (iv) of Theorem 3 nor the value of the constant σ2/σ2. On the
contrary, they might affect the sparsity of both the covariance matrix Σp and
the mean vector µp. Thus, as pointed out by the referees, no extra standard
assumption on sparsity is required to carry on inference based on the Generalized
Hotelling’d T 2. Indeed for instance, given a covariance structure, it is always
possible by means of suitable orthogonal transformations to obtain inferentially
equivalent scenarios in which teh covariance matrix is very sparse (i.e., diagonal)
or completely full. thus, sparsity of the covariance matrix is not an issue for
inference based on the Generalized Hotelling’d T 2.

Finally, it is easy to show that for n > p, T 2 is invariant under the wider
class of affine transformations of the components, i.e. transformations A • +b
with A ∈ R

p×p invertible and b ∈ R
p. This is due to the fact that (ASA′)−1 =

(A′)−1S−1A−1 for any invertible A. Lehmann and Romano (2005) proved that
invariance under generic affinity transformations cannot be achieved in the
framework p ≥ n.

3.3. On the p-asymptotic law of the generalized Hotelling’s T 2

For Corollary 4 to have some impact for inferential purposes, the constant σ2/σ2

needs to be known or at least efficiently estimated. Two cases may occur in
practical situations when Σp is not known:

(a) the constant σ2/σ2 is known even if Σp is not completely known. This case
may occur when partial knowledge of Σp is available;

(b) the constant σ2/σ2 is not known and it thus needs to be estimated.

Case (a) covers a few practical situations. For instance, the constant σ2/σ2

is known if the unknown covariance matrix Σp is equal to Σp = Σ̃p + γVp,

with Σ̃p an unknown positive definite (or even semi-definite) matrix such that

limp→∞ tr(Σ̃p) < +∞, γ an unknown positive constant, and Vp a known pos-
itive definite matrix satisfying (iv′). Indeed, in this case it can be proven that

σ2/σ2 = σv
2/σ2

v where σv = limp→∞
tr(Vp)

p and σ2
v = limp→∞

tr(V 2

p )

p ; the proof
comes straightforward once it is noticed that, without loss of generality, Vp can
be assumed to be diagonal. A covariance matrix of this form occurs for instance
in all applications where the observed p-variate random vectors are assumed to
be generated by the sum of two independent terms: a structural term whose
variability is concentrated on a finite number of components (or even infinite
but with finite total variance) and a zero-mean nuisance term (due to back-
ground noise or measurement errors) satisfying (iv) acting on all components.
If the covariance matrix of the nuisance term is assumed to be proportional to
the identity matrix (as it often happens), in this case we have σ2/σ2 = 1. This
assumption may hold for instance in genetics, where long arrays of genes are ob-
served on a small number of patients, the variability of the array can indeed be
assumed to be generated by two independent terms, an informative variability
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concentrated on a reduced number of positively/negatively correlated genes and
a nuisance homoscedastic error variability acting independently on each gene.
Spectral data presents another situation where the latter assumption may hold;
indeed, spectral data are characterized by the presence of nuisance background
variability along the entire set of observed frequencies plus a series of indepen-
dent sources of variability at some specific frequencies (bands) associated to the
spectral firms of different molecules.

Case (b) is the case where the information about the covariance structure
is sufficient to know that Σp satisfies (iv), but not sufficient to know the value

of the constant σ2/σ2. For instance, referring to the previous examples, we
might know that Vp has a block structure with blocks ℓ × ℓ all equal to an

unknown positive definite matrix B. In this case we know that σ and σ2 are for
sure positive and finite without knowing their actual values σ = tr(B)/ℓ and
σ2 = tr(B2)/ℓ.

In this second case having a good estimate of the constant σ2/σ2 becomes of
primary importance. First of all, one can rely on some natural bounds to the
constant based on the ratio between the maximal and minimal eigenvalue of Σp.

For instance, 1− (λmax/λmin− 1)2 ≤ σ2/σ2 ≤ 1 useful when all eigenvalues are
known to be similar (i.e., Σp is well-conditioned) or (λmin/λmax)

2 ≤ σ2/σ2 ≤ 1
useful when some eigenvalues are known to be very different (i.e., Σp is ill-
conditioned).

A better estimate of σ2/σ2 can be obtained by using some estimates for
tr(Σp)

p and
tr(Σ2

p)

p . Indeed for p → ∞ these quantities converge by definition to

σ and σ2, and thus any unbiased estimator for
tr(Σp)

p (or
tr(Σ2

p)

p ) for a given p is

also a p-asymptotic unbiased estimator for σ (or σ2). The following estimators
(introduced in Srivastava (2005)), defined for all n ≥ 3 and p ≥ 1, can be proven
to satisfy this property:

σ̂p := trS
p , and

ˆ
σ2
p := (n−1)2

(n−2)(n+1)

[
trS2

p − 1
n−1

(trS)2

p

]
.

(3.3)

3.4. p-asymptotic confidence region and hypothesis test for the

mean of a normal population when p ≫ n

Corollary 4 turns out to be a useful tool for the construction of confidence regions
and hypothesis tests for the mean in all practical situations where the number p
of random vector components is far larger than the number n of sample units or
even virtually infinite (e.g., functional data) and data can be assumed normally
distributed.

A p-asymptotic Confidence Region for the mean µp can be defined as
follows:

CR1−α(µp) :=

{
mp ∈ Rp :

σ2

σ2

np

n− 1
(mp −X)′S+(mp −X) ≤ χ2

α(n− 1)

}
,

(3.4)
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with χ2
α(n− 1) being the upper α-quantile of a χ2(n− 1) random variable and

1− α being the p-asymptotic confidence level.
Equivalently, a p-asymptotic Hypothesis Test for H0 : µp = µ0p versus

H1 : µp 6= µ0p with p-asymptotic significance level α has the following rejection
region:

Reject H0 in favor of H1 if:

σ2

σ2

np

n− 1
(X− µ0p)

′S+(X− µ0p) > χ2
α(n− 1). (3.5)

The confidence region CR1−α(µp) is not of practical use for graphical pur-
poses since a clear visual representation of it is not straightforward due to the
large value of p. Similarly to the traditional multivariate framework, univariate
projections of the confidence region along some directions (i.e. T 2-simultaneous
confidence intervals) can give a rough idea about the location and shape of the
confidence region, providing – in the case of rejection of H0 – also some help in
detecting the directions that have taken to the rejection of H0. From Corollary 4
and characterization property 3.2 we have that for p → ∞

P


a′µp ∈


a′X̄±

√
a′Sa

n

√
σ2

σ2

n− 1

p
χ2
α(n− 1)


 , ∀a ∈ Im(S)


→ 1− α.

Thus, given a direction a ∈ Im(S) \ {0}, the corresponding T 2-simultaneous
confidence interval with p-asymptotic family-wise confidence 1 − α can be
defined as follows:

a′µp ∈



a′X̄±
√

a′Sa

n

√
σ2

σ2

n− 1

p
χ2
α(n− 1)



 .

If a /∈ ImS \ {0}, then the corresponding T 2-simultaneous confidence interval
is not bounded, i.e, equal to [−∞,+∞].

Confidence region (3.4) and rejection region of test (3.5) present some peculiar
features that are worth a little discussion.

Because S+ is positive semi-definite, the confidence region CR1−α(µp) –
which for n > p is an ellipsoid subset of Rp – turns out to be a cylinder in
R

p generated by the orthogonal extension in ker(S) of an n − 1-dimensional
ellipsoid contained in Im(S). As illustrative examples, three confidence regions
for the mean vector when p = 3 and n = 2, 3, 4, respectively, are reported in
Figure 1. In particular, as shown by the analytic expression of the generalized
T 2-simultaneous confidence intervals, CR1−α(µp) is bounded in all directions
belonging to the random space Im(S). These directions are easily identifiable
since the first n− 1 sample principal components provide an orthonormal basis
for Im(S).

Due to the non-null dimension of the random space ker(S) and to the or-

thogonality between ker(S) and Im(S), we have that the statistic σ2

σ2

np
n−1 (X −
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Fig 1. Examples of confidence regions for the mean vector when p = 3 and n = 2, 3, 4,
respectively. Data points in black, sample means in red, confidence regions in red, Im(S) in
gray.
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µ0p)
′S+(X−µ0p) in the hypothesis test (3.5) does not change if µ0p is replaced

by µ0p +mker(S) with mker(S) being any vector belonging to ker(S). This im-

plies that H0 might not be rejected even for values of the sample mean X that
are “really very far” from µ0p in some direction within ker(S). This is not sur-
prising, because the use of S+ implies an exclusive focus on the space Im(S)
(the variability space explored by the data), neglecting all p− n+ 1 directions
associated to ker(S) (the space orthogonal to the variability space explored by
the data).

3.5. p-asymptotic pooled confidence region and hypothesis test for

comparing the means of two normal populations when p ≫ n

Theorem 3 can also be used to tackle the problem of comparing the means of
two normal populations when the number p of components is larger than the
number n of sample units. Indeed, under the same assumptions of the classical
multivariate analysis of variance, we have that:

Corollary 5 (Generalized Pooled Hotelling’s T 2
pooled p-asymptotic distribution

law). For na ≥ 1, nb ≥ 1, and p ≥ 1, assume that:

(i”) {Xai}i=1,...,na
∼ iid Np(µpa,Σp), {Xbi}i=1,...,nb

∼ iid Np(µpb,Σp) and the
two finite sequences are independent;

(iv) 0 < σ = limp→∞
tr(Σp)

p < +∞, 0 < σ2 = limp→∞
tr(Σ2

p)

p < +∞, and

0 < σ4 = limp→∞
tr(Σ4

p)

p < +∞.

Then, for na + nb ≥ 3 and p → ∞:

σ2

σ2

p

na + nb − 2

(

1

na

+
1

nb

)

−1

·

·
(

(Xa −Xb) − (µpa − µpb)
)′

S+

pooled

(

(Xa −Xb)− (µpa − µpb)
) D−→ χ2(na + nb − 2),

where Xa and Xb are the two sample means, and Spooled is the pooled sample
covariance matrix.

Proof. It is another direct application of Theorem 3, since ( 1
na

+ 1
nb
)−1/2((Xa−

Xb)−(µpa−µpb)) ∼ Np(0p,Σp), (na+nb−2)Spooled = (na−1)Sa+(nb−1)Sb ∼
Wishartp(Σp, na + nb − 2), and they are independent.

It is natural to denote the following quantity as Generalized Pooled Hotelling’s
T 2
pooled:

T 2
pooled

=
(

1

na
+ 1

nb

)−1 (

(Xa −Xb)− (µpa − µpb)
)′

S+

pooled

(

(Xa −Xb)− (µpa − µpb)
)

.

(3.6)
Indeed, it is defined for any na, nb, and p such that na+nb ≥ 3, na ≥ 1, nb ≥ 1
and p ≥ 1 and coincides with the classical definition of Pooled Hotelling’s T 2

pooled

when p ≤ na+nb−2. The similarities and the differences between the framework
p > na + nb − 2 and the classical framework p ≤ na + nb − 2 are analogous to
the ones presented in Section 3 for the Generalized Hotelling’s T 2.
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In particular, also in the two-population framework we obtain a confidence
region to estimate the difference of the two means and a rejection region to test
the difference of the two means.

A p-asymptotic Confidence Region for difference of the means µpa − µpb

can be defined as follows:

CR1−α(µpa − µpb) =

{
∆mp ∈ Rp :

σ2

σ2

p

na + nb − 2

(
1

na
+

1

nb

)−1

· (3.7)

·
(
Xa −Xb −∆mp

)′
S+
pooled

(
Xa −Xb −∆mp

)
≤ χ2

α(na + nb − 2)

}
,

with 1− α being the p-asymptotic confidence level.
Equivalently, a p-asymptotic Hypothesis Test for H0 : µpa − µpb = ∆µ0p

versus H1 : µpa − µpb 6= ∆µ0p with p-asymptotic significance level α has the
following rejection region:

Reject H0 in favor of H1 if:

σ2

σ2

p

na + nb − 2

(
1

na
+

1

nb

)−1

· (3.8)

·
(
Xa −Xb −∆µ0p

)′
S+
pooled

(
Xa −Xb −∆µ0p)

)
> χ2

α(na + nb − 2).

Also the analytical expression of the T 2
pooled-simultaneous confidence intervals

for the difference of the means comes naturally.
Given a direction a ∈ Im(Spooled) \ {0}, the corresponding T 2

pooled-simulta-
neous confidence interval with p-asymptotic family-wise confidence 1 − α
can be defined as follows:

a′(µpa − µpb) ∈



a′(Xa −Xb) ±

√

(

1

na

+
1

nb

)

a′Sa

√

σ2

σ2

na + nb − 2

p
χ2
α(na + nb − 2)



 .

If a /∈ Im(Spooled)\{0}, then the corresponding T 2
pooled-simultaneous confidence

interval is not bounded, i.e, equal to [−∞,+∞].
Also in the two population framework, the unknown constant σ2/σ2 can be

estimated by means of the following p-asymptotically unbiased and consistent
estimators:

σ̂p :=
trSpooled

p , and
ˆ
σ2
p := (na+nb−2)2

(na+nb−3)(na+nb)

[
trS2

pooled

p − 1
na+nb−2

(trSpooled)
2

p

]
.

(3.9)

Recently, Srivastava and Yanagihara (2010) and Pigoli et al. (2012) proposed
tests for the equality of two covariance matrices in the large p small n data
framework, enabling to check for the homoscedasticity assumption which the
previous results rely on.
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4. Simulation study

In this section, we estimate, by means of MC simulations, the power and the
actual level of significance of the new test, presented in (3.8); from now on we
will refer to it as the p-asymptotic Generalized Hotelling’s test, being based
on the (finite-n) p-asymptotic distribution of the Generalized Hotelling’s T 2.
In particular, we estimate the probability of rejecting the null hypothesis H0 :
µa = µb in favor of the alternative hypothesis H1 : µa 6= µb in twelve different
cases and for increasing values of the number p of components ranging between
20 and 210 (i.e., 1 and 1024) and na = nb = 10:

Simulation µa = 0 µa = 0 µa = 0

Scenario µb = 0 µb = 0.4 · 1 µb = 0.4 · (√p 0 · · · 0)′

Σ = I I0 I1 I2
Σ = D D0 D1 D2
Σ = R R0 R1 R2
Σ = S S0 S1 S2
Σ = L L0 L1 L2

where I is the identity matrix; D is a diagonal matrix whose diagonal alter-
natively assumes the values 0.5 and 1.5; R is a block matrix whose blocks are
equal to the matrix ( 1 0.5

0.5 1 ); S is a block matrix whose blocks are equal to
the matrix

(
1 −0.5

−0.5 1

)
. Covariance matrices R and S can be simply obtained

from D by means of an orthogonal transformation: 45◦ anticlockwise and 45◦

clockwise pairwise rotations, respectively; L is a diagonal matrix whose diagonal
alternatively assumes the values 0.001 and 1.999. The values for na and nb are
the same used in the simulation study presented in Pesarin and Salmaso (2010,
2009). The values for µa and µb used in cases I0, D0, R0, S0, and L0 are the
ones under null hypothesis; the ones used in cases I1, D1, R1, S1, and L1 are
the same used in the simulation study presented in Pesarin and Salmaso (2010,
2009); the ones used in cases I2, D2, R2, S2, and L2 investigate an alternative
hypothesis scenario where (for the same value of the non-centrality parameter
||µa −µb||) the mean difference between the two populations is concentrated on
just one component (i.e., cases I2, D2, R2, S2, and L2) and not uniformly spread
over all components (i.e., cases I1, D1, R1, S1, and L1). The value for Σ used in
cases I0, I1, and I2 are once again the same used in Pesarin and Salmaso (2010,
2009), while the value used in the remaining cases are meant to provide less triv-
ial situations where assumption (iv) still holds. Note that in cases I0, I1, and
I2 the constant σ2/σ2 = 1, in cases L0, L1, and L2 the constant σ2/σ2 ≈ 1/2,
while in the remaining ones σ2/σ2 = 4/5. All simulations have been performed
twice: either assuming the constant σ2/σ2 known, to avoid confounding effects
due to its estimation; and estimating the constant σ2/σ2 by means of (3.9), to
evaluate the bias due to its estimation. Results of the latter group of simulations
are briefly discussed at the end of subsection 4.2. The rest of this session refers
on the former group of simulations.

In details, for each case and for each value of the number p of components,
1000 synthetic data sets have been randomly generated according to the cor-
responding model and, for each one of these, the p-asymptotic Generalized
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Hotelling’s test has been performed at a nominal level of significance α = 0.05.
The relative number of times the null hypothesis has been rejected provides the
estimate of either the actual level of significance of the p-asymptotic General-
ized Hotelling’s test (cases I0, D0, R0, S0, and L0) or its power (all remaining
cases). The same data sets have been also used to perform three other tests
recently appeared in the literature: the one presented in Pesarin and Salmaso
(2010, 2009), the one presented in Theorem 2.2 of Srivastava (2007), and the
one presented in Theorem 2.3 of Srivastava (2007)). In this section we will
refer to them as the Pesarin-Salmaso’s test, the Identity-matrix Generalized
Hotelling’s test, and the n-p-asymptotic Generalized Hotelling’s test, respec-
tively.

Analogously to the p-asymptotic Generalized Hotelling’s test, also the n-p-
asymptotic and the Identity-matrix Generalized Hotelling’s tests are based on
the generalized T 2

pooled. The three tests differ for the distribution used to build
the corresponding rejection region: the p-asymptotic Generalized Hotelling’s test
uses a rejection region built from its p-asymptotic distribution under the as-
sumption (iv) (equation 3.8), the n-p-asymptotic Generalized Hotelling’s test
uses a rejection region built from its n-p-asymptotic distribution under the
assumption (iv) (Theorem 2.3 of Srivastava (2007)), and the Identity-matrix
Generalized Hotelling’s test uses a rejection region built from its exact distri-
bution under the assumption of independent and homoscedastic components
(Theorem 2.2 of Srivastava (2007)).

The Pesarin-Salmaso’s test is not a model-based test but a permutation test;
the implementation used here is the same used in the simulation study presented
in Pesarin and Salmaso (2010, 2009), i.e., the statistic used is actually a ran-
dom weighted sum of the p univariate Student’s t2pooled that can be written as

(Xa −Xb −∆µ0)
′S−1

diag(Xa −Xb −∆µ0), and its conditional distribution over
the values observed within each data set is estimated by sampling 1000 random
permutations of the na + nb = 20 p-dimensional vectors making each data set.
Sdiag is the diagonal matrix whose diagonal elements are the p (non-pooled)
sample variances of the p components.

The results of the simulation study are summarized in Figure 2. For com-
pleteness, in the cases in which p ≤ na + nb − 2, a classical Hotelling’s test has
been implemented.

In subsections 4.1, 4.2, and 4.3, the p-asymptotic Generalized Hotelling’s
test is compared with the Identity-matrix Generalized Hotelling’s test, the n-p-
asymptotic Generalized Hotelling’s, and the Pesarin-Salmaso’s test, respectively.

4.1. Comparison between the p-asymptotic generalized Hotelling’s

test and the identity-matrix generalized Hotelling’s test

In case I0, where H0 is true and the hypotheses supporting the Identity-matrix
Generalized Hotelling’s test hold, the observed rate of rejection of the Identity-
matrix Generalized Hotelling’s test clearly matches its nominal level of signifi-
cance 5%; on the contrary, in cases D0, R0, S0, and L0, where H0 is still true
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Fig 2. MC-estimates of the probability of rejecting H0 : µa = µb for different values of the
number p of components. Each plot is associated to a different generative model (title) and
each line to a different test (legend).
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but the hypotheses supporting the Identity-matrix Generalized Hotelling’s test
do not hold, the observed rate of rejection of the Identity-matrix Generalized
Hotelling’s test significantly exceeds its nominal level of significance providing
a strongly non-conservative test.

The assumptions which the p-asymptotic Generalized Hotelling’s test is based
on, hold instead for all cases, indeed for p “large enough” (in these cases 1024
seems to be a large enough value for p) the observed rate of rejection matches
the nominal level of significance 5%. The almost identical patterns shown for
cases D0, R0, and S0 confirm the invariance of the p-asymptotic Generalized
Hotelling’s test under orthogonal transformations of the components. Further
simulations, not reported here, for different values of na and nb show a quicker
(slower) convergence to the nominal level of significance for smaller (larger)
values of na and nb. For instance, for na = nb = 2 (i.e. the smallest sample
size we tested), the nominal value is already reached for p = 64. Mind the
fact that, though small sample sizes increase the reliability of the p-asymptotic
Generalized Hotelling’s test, they of course also reduce the power of the same
test, as expected.

Fortunately, the same simulations also suggest that the convergence rate is
independent from the value of the constant σ2/σ2. This fact enables an a-priori
empirical measure, for a given sample size, of the minimal number p of random
vector components (or given p, of the maximal sample size) that is necessary to
make the p-asymptotic Generalized Hotelling’s test reliable.

Talking about the power under the alternative hypothesis ∆µ = 0.4 · 1, in
case I1 the superiority of the p-asymptotic Generalized Hotelling’s test is just
apparent and due to the mismatch between its actual and its nominal level of
significance for too small values of p. For large value of p (i.e. values for which the
actual level of significance reaches its nominal value), the powers of the two tests
appear almost identical confirming the p-asymptotical inferential equivalence of
the two under the more stringent hypotheses of the Identity-matrix Generalized
Hotelling’s test.

In cases D1, R1, S1, and L1, the mismatch between the actual and the
nominal level of significance completely affects the Identity-matrix Generalized
Hotelling’s test providing meaningless power curves for this test. The only values
of interest in these plots are the estimated powers of the p-asymptotic General-
ized Hotelling’s test for p = 1024, that is the only case in which the nominal level
of significance equals the actual one. Different values of that power are achieved
in the four cases. In particular, a comparison of the p-asymptotic Generalized
Hotelling’s test and the classical Hotelling’s test across these four cases points
out an opposite behavior of the two: the power of the p-asymptotic General-
ized Hotelling’s test is higher when the power of the classical Hotelling’s test is
lower and viceversa. More in detail, the power of the p-asymptotic Generalized
Hotelling’s test is enhanced (reduced) and the power of the classical Hotelling’s
test reduced (enhanced) for alternative hypotheses providing a difference of the
means with large (small) components in the directions of important (in terms
of eigenvalues) principal components and small (large) components in the direc-
tions of minor (in terms of eigenvalues) principal components. Indeed, classical
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Hotelling’s test is based on the Mahalanobis distance (induced by the inverse of
the sample covariance matrix) between the sample difference of the means and
the H0 difference of the means; thus, in the classical Hotelling’s test, the effect of
differences occurring in the direction of the minor sample principal components
is enlarged with respect to similar differences occurring in the direction of the
important sample principal components. On the contrary, in the framework of
the p-asymptotic Generalized Hotelling’s test the directions associated to the
minor principal components are expected to be close to the directions detected
by ker(S) and thus any difference in these directions have a high probability
to be annihilated by the Mahalanobis semi-distance induced by the generalized
inverse of the sample covariance matrix used.

4.2. Comparison between the p-asymptotic generalized Hotelling’s

test and the n-p-asymptotic generalized Hotelling’s test

The actual significance level and power functions of the n-p-asymptotic General-
ized Hotelling’s test recall the ones of the p-asymptotic Generalized Hotelling’s
test except for a permanent bias observed in all simulated cases due to the use of
the n-asymptotic approximation in a finite-n scenario. Indeed, differently from
the p-asymptotic Generalized Hotelling’s test, the actual significance level of the
n-p-asymptotic Generalized Hotelling’s test does not seem to converge to the
nominal significance level of 5% for p going to infinity, providing in the large p
small n case non-conservative inference. Given the actual (finite-n) p-asymptotic
distribution of the Generalized Hotelling’s T 2 under the null hypothesis (equa-
tion 3.8) it is straightforward to compute the actual p-asymptotic significance
level of the n-p-asymptotic Generalized Hotelling’s test, which does not depend
on the covariance matrix. For convenience of the reader, in the right panel of Fig-
ure 3, for the nominal significance level α = 1%, 5%, and 10%, the p-asymptotic
actual significance level of the n-p-asymptotic Generalized Hotelling’s test is re-
ported as the sample size na+nb grows from 3 to 1024. As one can see the rate
of convergence to the nominal value is quite slow, providing non-conservative in-
ference in most real-world scenarios. In particular, the highest bias is observed
in correspondence of small values of the nominal significance level and small
sample sizes strongly discouraging the use of the n-p-asymptotic approximation
on the finite-n framework. In the left panel of Figure 3 the same plot is reported
for the one population test.

Both the n-p-asymptotic and the p-asymptotic Generalized Hotelling’s test
require the knowledge of the constant σ2/σ2. If the constant is not known, one
can perform both tests estimating the constant by means of estimators (3.9).
In this case, all simulations, as expected, point out a positive bias for both
tests (which indeed do not take into account the variability introduced by the
estimators (3.9)). In details, for p = 1024, the actual level of significance of the
p-asymptotic Generalized Hotelling’s test is estimated to be close to 7% in all
simulated cases. This bias is expected to decrease/increase as the sample sizes
increase/decrease. Moreover, by comparing cases I0, D0, and L0, the bias does
not seem to be affected by the condition number of Σp.
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Fig 3. p-asymptotic actual significance level of the n-p-asymptotic Generalized Hotelling’s
test as function of the sample size for nominal significance level α = 1%, 5%, and 10%.
One-population test on the left and two-population test on the right.

4.3. Comparison between the p-asymptotic generalized Hotelling’s

test and the Pesarin-Salmaso’s test

The p-asymptotic Generalized Hotelling’s test has also been compared with the
Pesarin-Salmaso’s test (Pesarin and Salmaso (2010, 2009)) by means of MC
simulations. The aim of this comparison is to see to what extent the model-
based approach, pioneered by Srivastava (2007) and further developed in this
work, can compete with another promising and less traditional approach to the
analysis of large p small n data: multivariate permutation test (Pesarin and
Salmaso (2010, 2009)).

The Pesarin-Salmaso’s test presents some very interesting features (proven in
Pesarin and Salmaso (2010, 2009)): first of all it does not require the normality
of data (test for multivariate normality is still an open problem); secondly, its
actual level of significance resembles the nominal level in all simulated scenarios
(cases I0, D0, R0, S0, and L0) and for any value of p (i.e., it is not p-asymptotic).
The Pesarin-Salmaso’s test also presents a few drawbacks due to the discrete
nature of the permutational distribution, to the factorial growth of the num-
ber of permutation with respect to the sample size, and the non parametric
nature of the permutational distribution. Indeed, given sample sizes na and nb,
we have in general (na + nb)! possible permutations of data associated – un-

der the null hypothesis – to (na+nb)!
na! nb!

equiprobable different values of the test
statistic.

The discrete nature of the permutational distribution is particulary evident
for small sample sizes: in these cases, test randomization becomes mandatory in
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order to maintain a certain level of significance α; for instance, for na = nb = 2,
only 24 permutations are possible, the support of the permutational distribution
is reduced to just six values, and thus the only non-randomized bilateral tests
that can be performed are the ones carried out with level of significance α = 1/3
or α = 2/3. If the sample size grows, this issue becomes less relevant from a prac-
tical point of view, but on the meantime the number of possible permutations
quickly increases making mandatory the use of an approximated permutational
distribution based on a randomly selected subset of permutations; for instance,
for na = nb = 10, the number of possible permutations already exceeds 1018

and the support of the permutational distribution is made of more than 105

values.
On the whole, the fact that (in most cases) the statistical conclusions might

change across different runs of the same analysis and of the same data set makes
the permutation-based analysis non replicable. Though the randomness induced
by the approximating permutational distribution is just due to computational
limits and it can be overcome by increasing the size of the random subset of
permutations, on the contrary, the randomness induced by the discrete nature
of permutational distribution is not due to computational limits but is intrinsic
to this approach and thus non reducible.

Finally, due to the non parametric nature of the permutational distribu-
tion, the computation, in high dimension, of confidence regions and of T 2-
simultaneous confidence intervals by means of the permutational approach is
still an open issue.

A comparison of the estimated power functions of the two tests (cases I1,
D1, R1, S1, L1, I2, D2, R2, S2, and L2) shows: a substantial equivalence of the
statistical power of the Pesarin-Salmaso’s test and of the classical Hotelling’s
test in the univariate case (i.e., p = 1); a predominance of one of the two
depending on the number p of random vector components and on the scenario
for the other values of p; this alternate predominance is even more pronounced
for large values of p where in cases I1, D1, R1, S1, and L1 the Pesarin-Salmaso’s
test performs much better than the p-asymptotic Generalized Hotelling’s test
while in cases I2, D2, R2, S2, and L2 the Pesarin-Salmaso’s test performs much
worse than the p-asymptotic Generalized Hotelling’s test.

To this purpose, it is interesting to compare the power functions of the scenar-
ios I1 and I2. Indeed, from a geometric point of view the scenario I2 is obtained
from scenario I1 by means of an orthogonal transformation (i.e., a rotation such
that the vector µb−µa, lying along the bisector of the first 2p-ant in case I1, lies
along the first axis in case I2). On the one hand, one can appreciate the invari-
ance in terms of power of all tests that are based on the Generalized Hotelling’s
T 2
pooled and on the other hand the dramatic drop of the power from nearly 100%

to slightly more than 5% (i.e., the level of the test) of the Pesarin-Salmaso’s
test for large values of p. The unstable behavior of the Pesarin-Salmaso’s test is
probably due to the used test statistic (i.e., direct combination of univariate t-
statistics) rather than on the permutational approach itself. Anyway among all
test statistics suggested in Pesarin and Salmaso (2010, 2009) the “direct combi-
nation” one is probably the one closest to the Generalized Hotelling’s T 2

pooled and
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thus the one that should provide more similar inferential properties. Detecting,
in the large p small n data framework, scenarios for the alternative hypothesis
in which the supremacy of one of the two approaches can be taken for granted
is still a matter of investigation.

5. Discussion

In this paper we dealt with the problem of making inference for the mean vec-
tor of a p-variate normal random vector when the sample size is too small to
enable the use of Hotelling’s Theorem. The problem of making inference for the
difference of the mean vectors of two p-variate normal random vectors when
the sample sizes are too small is discussed as well. In particular, we provided
a generalization of the Hotelling’s Theorem for p going to ∞ and sample size
remaining finite, based on the notion of Moore-Penrose generalized inverse of
the sample covariance matrix that holds under weak assumptions guarantee-
ing the existence and non degeneracy of the corresponding limit statistic and
distribution. Together with the theorem, we provided also explicit formulas to
perform hypothesis test and to build confidence regions and T 2-simultaneous
confidence intervals.

We tested our results by means of MC simulations performed for different
values of the means, of the covariance matrix, of the sample size, and of the
number p of random vector components. Simulations confirm our theoretical re-
sults and moreover have been used to estimate the statistical power of the test
and of the rate of convergence to the p-asymptotic framework. Some interesting
cases are presented in the paper and critically discussed in comparison with
three other approaches presented in the literature: the Identity-matrix Gen-
eralized Hotelling’s test (Theorem 2.2, Srivastava (2007)), the n-p-asymptotic
Generalized Hotelling’s test (Theorem 2.3, Srivastava (2007)), and the Pesarin-
Salmaso’s permutation test (Pesarin and Salmaso (2010, 2009)).

Theoretical and simulation results suggest
(tr(Σp)/p)

2

tr(Σ2
p)/p

(i.e., the finite version

of σ2/σ2) to be the right constant to correct the Identity-matrix Generalized
Hotelling’s test statistic to make it distributed as a F (na+nb−2, p−na−nb+3)
(i.e., the distribution that T 2 is known to follow when the covariance matrix
is proportional to the identity matrix). Among these results we have: the p-
asymptotic inferential equivalence of the Identity-matrix Generalized Hotelling’s
test and of the p-asymptotic Generalized Hotelling’s test under the more strin-
gent hypothesis of the former one; the n-asymptotic inferential equivalence of
the n-p-asymptotic Generalized Hotelling’s test and of the p-asymptotic Gener-
alized Hotelling’s test; and finally, the independence, from the ratio σ2/σ2, of
the rate of convergence of the p-asymptotic Generalized Hotelling’s test to its
nominal level of significance observed in the simulations.

If this were true (further simulations not reported here seem to confirm it), we
could describe within a unique framework the classical Hotelling’s test, Identity-
matrix Generalized Hotelling’s test, n-p-asymptotic Generalized Hotelling’s test,
and the p-asymptotic Generalized Hotelling’s test, as follows:
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Conjecture 6 (Generalized Hotelling’s T 2 distribution law). For n ≥ 2 and
p ≥ 1, assume that:

(i’) {Xi}i=1,...,n ∼ iid Np(µp,Σp).

Then:
tr(Cp)

2

tr(C2
p)

ν2
(n− 1)pν1

T 2 ∼ F (ν1, ν2),

with ν1 = min(n−1, p), ν2 = |(n−1)−p|+1, and Cp =

{
Ip for p ≤ n− 1
Σp for p > n− 1

.

Conjecture 7 (Generalized Pooled Hotelling’s T 2
pooled distribution law). For

na ≥ 1, nb ≥ 1, na + nb ≥ 3, and p ≥ 1, assume that:

(i”) {Xai}i=1,...,na
∼ iid Np(µpa,Σp), {Xbi}i=1,...,nb

∼ iid Np(µpb,Σp), and
the two finite sequences are independent.

Then:
tr(Cp)

2

tr(C2
p)

ν2
(na + nb − 2)pν1

T 2
pooled ∼ F (ν1, ν2),

with ν1 = min(na + nb − 2, p), ν2 = |(na + nb − 2) − p| + 1, and Cp ={
Ip for p ≤ na + nb − 2
Σp for p > na + nb − 2

.

The previous conjectures are proven to be correct when p ≤ n − 1 and
p ≤ na + nb − 2 respectively (Hotelling’s Theorem), when Σp = Ip (Theo-
rem 2.2, Srivastava (2007)) and when p → +∞ (Corollaries 4 and 5). The
generic Σp finite p case is at the moment just supported by our simulations and
by its consistence with the classical Hotelling’s test, with the Identity-matrix
Hotelling’s test, and with the p and n-p-asymptotic Generalized Hotelling’s tests
when restricted conditions are posed. Its general proof is still under investiga-
tion.

Appendix A: Some useful properties of the Moore-Penrose
generalized inverse

Many results presented in the paper rely on properties related to the Moore-
Penrose inverse of positive semi-definite sample covariance matrices. In this
appendix, all these properties are recalled.

Definition 1. Let A be an q × r matrix. The Moore-Penrose inverse of A,
denoted by A+, is the unique r × q matrix such that

1. AA+A = A;
2. A+AA+ = A+;
3. (A+A)⋆ = A+A;
4. (AA+)⋆ = AA+.
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The first two properties let A+ be a generalized inverse of A. The last two
properties confer to A+ its uniqueness. The symbol “⋆” indicates the conjugate
of a matrix. For our purposes, all matrices will have real entries and thus, it is
equivalent to the symbol “′” indicating the transposed matrix.

The proof of the uniqueness of A+ can be found, for instance, in Rao and
Mitra (1971).

Moreover, it can be proven, by means of simple computations, that if A
is a p × p symmetric matrix with real entries with rank m ≤ p, then A+ =∑m

i=1 λ
−1
i eie

′
i, with λ1, . . . , λm being the m non-zero eigenvalues of A and

e1, . . . , em the corresponding eigenvectors. An immediate consequence of this
result is that, if A is of full-rank, then A+ = A−1.

Hereby, we report some results necessary to the proof of Theorem 3.

Proposition 8. Let A be a ℓ×m matrix and B be an m× n matrix. If

• A has orthonormal columns, i.e, A′A = Im; or,
• B has orthonormal rows, i.e, BB′ = Im; or,
• A is of full column rank m and B is of full row rank m,

then, we have
(AB)+ = B+A+

The proof can be found in Rao and Mitra (1971).

Proposition 9. Let A be a ℓ×m matrix. Two particular cases are of interest:

• if A is of full column rank m, then A′A is invertible and we get

A+ = (A′A)−1A′

• if A is of full row rank ℓ, then AA′ is invertible and we get

A+ = A′(AA′)−1

The proof can be found in Rao and Mitra (1971).

Proposition 10. With the same notations defined in the proof of Theorem 3,
we have

W+ = H ′L−1H.

Proof. We first have

W+ = (H ′LH)
+
= [(H ′L)H ]

+

H has orthonormal rows since HH ′ = Im. Thus, Proposition 8 holds and we
have

W+ = H+ (H ′L)
+

Now, we focus on the product H ′L. H ′ has orthonormal columns since H has
orthonormal rows. Therefore, once again, Proposition 8 holds and we obtain

W+ = H+L+(H ′)+
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We now observe that

• L is invertible ⇒ L+ = L−1;
• H is of full row rank ⇒ H+ = H ′(HH ′)−1 thanks to Proposition 9 (first
part); then, since HH ′ = Im, we obtain H+ = H ′;

• H ′ is of full column rank ⇒ (H ′)+ = (HH ′)−1H thanks to Proposition 9
(second part); then, since HH ′ = Im, we obtain (H ′)+ = H .

and it ends the proof.
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