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Abstract: In a linear model, consider the class of estimators that are
equivariant with respect to linear transformations of the predictor basis.
Each of these estimators determines an equivariant linear prediction rule.
Equivariant prediction rules may be appropriate in settings where spar-
sity assumptions (like those common in high-dimensional data analysis)
are untenable or little is known about the relevance of the given predic-
tor basis, insofar as it relates to the outcome. In this paper, we study
the out-of-sample prediction error associated with equivariant estimators
in high-dimensional linear models with Gaussian predictors and errors.
We show that non-trivial equivariant prediction is impossible when the
number of predictors d is greater than the number of observations n. For
d/n → ρ ∈ [0, 1), we show that a James-Stein estimator (a scalar multi-
ple of the ordinary least squares estimator) is asymptotically optimal for
equivariant out-of-sample prediction, and derive a closed-form expression
for its asymptotic predictive risk. Finally, we undertake a detailed com-
parative analysis involving the proposed James-Stein estimator and other
well-known estimators for non-sparse settings, including the ordinary least
squares estimator, ridge regression, and other James-Stein estimators for
the linear model. Among other things, this comparative analysis sheds light
on the role of the population-level predictor covariance matrix and reveals
that other previously studied James-Stein estimators for the linear model
are sub-optimal in terms of out-of-sample prediction error.
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1. Introduction

Consider a linear model with observed outcomes y1, . . . , yn ∈ R and correspond-
ing d-dimensional predictors x1, . . . ,xn ∈ R

d. The outcomes and predictors are
related via

yi = xT
i β + ǫi, i = 1, . . . , n, (1)
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where β = (β1, . . . , βd) ∈ R
d is an unknown parameter and ǫ1, . . . , ǫn ∈ R

are unobserved errors. To simplify notation, let y = (y1, . . . , yn) ∈ R
n, X =

(x1, . . . ,xn)
T , and ǫ = (ǫ1, . . . , ǫn) ∈ R

n. Then (1) may be rewritten as y =
Xβ + ǫ.

High-dimensional linear models, where d is large, have been extensively stud-
ied in recent research. In this challenging setting, additional conditions on β,
such as sparsity, are often required in order to ensure consistent estimation or
prediction. Two of the more widely studied types of sparsity are ℓ0- and ℓ1-
sparsity: β is sparse if its ℓ0- or ℓ1-norm is “small.” While sparsity conditions
may be required for consistency in high-dimensional linear models, these con-
ditions may be untenable in some instances. Moreover, it remains important to
identify optimal methods for practical objectives like out-of-sample prediction,
even in non-sparse (or “dense”) high-dimensional settings.

In this paper, we study high-dimensional out-of-sample prediction problems
and a class of estimators that are equivariant with respect to linear transfor-
mations of the predictors xi, under the assumption that the data are multivari-
ate normal. We argue that equivariant estimators are appropriate in problems
where there is little prior knowledge about the relevance of the given predic-
tor basis vis-à-vis the outcome yi. In particular, equivariant estimators may be
appropriate in settings where sparsity assumptions on β are not desirable or
realistic, as sparsity is highly dependent on the predictor basis. Our analysis
provides new insight into the capabilities and limitations of dense methods for
high-dimensional linear models.

Most of the results in this paper fall into one of three categories: (i) impossi-
bility results, (ii) optimality results, and (iii) comparative results. Our primary
impossibility result (Theorem 1 (c) in Section 3) implies that if d > n, then the

only equivariant estimator is β̂null = 0; thus, non-trivial equivariant prediction
is impossible when d > n. While it is widely understood that high-dimensional
“dense problems” are very difficult, our impossibility results help to make this
idea more precise. It is worth pointing out that these results are derived under
the assumption that Cov(xi) = Σ is an arbitrary, unknown positive definite
matrix (this is a random predictor analysis). If Σ is known or estimable, then
results from (Dicker, 2013) imply that non-trivial equivariant prediction may be
possible even when d > n; this is discussed in more detail in Section 5.2.

The optimality results in this paper primarily focus on a class of James-
Stein estimators for β, which are scalar multiples of the ordinary least squares
(OLS) estimator β̂ols = (XTX)−1XTy. Stein shrinkage and the James-Stein
estimator (James and Stein, 1961; Stein, 1955) are of fundamental importance
in modern statistics. Most research on Stein shrinkage has focused on the Gaus-
sian sequence model and the normal means problem; however, variants of the
James-Stein estimator for linear models have also been studied (Baranchik, 1973;
Copas, 1983; Huber and Leeb, 2012; Stein, 1960). The James-Stein estimators
proposed in this paper are, to our knowledge, new. In Theorems 2-3 of Section
4, we prove that the proposed James-Stein estimators are asymptotically op-
timal among equivariant estimators when d/n → ρ ∈ [0, 1) and d → ∞. Our
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analysis of the James-Stein estimator shares similarities with (Marchand, 1993)
and (Beran, 1996), who considered Stein estimation and equivariance in the
normal means problem. However, the present analysis reveals unique features
of linear models; for instance, our results demonstrate that adjusting for the
degrees of freedom lost to a high-dimensional predictor has a non-trivial effect
on out-of-sample prediction error.

Finally, we undertake a comparative analysis involving the proposed James-
Stein estimator and other well-known dense estimators, including the ordinary
least squares (OLS) estimator β̂ols = (XTX)−1XTy, ridge regression (Hoerl
and Kennard, 1970; Tikhonov, 1943), and other previously studied James-Stein
estimators for β. In Theorem 4 of Section 5.1, we show that if 0 < inf d/n ≤
sup d/n < 1 and d, n are sufficiently large, then the proposed James-Stein es-
timator has uniformly smaller predictive risk than the OLS estimator; hence,
under the specified conditions, the James-Stein estimator is minimax. Our dis-
cussion of ridge regression helps clarify the role of the predictor covariance
matrix Cov(xi) = Σ in dense out-of-sample prediction problems. In particu-
lar, we show that if Σ is known, then a certain equivariant ridge estimator has
smaller predictive risk than the James-Stein estimator; furthermore, results from
(Dicker, 2013) imply that this ridge estimator is asymptotically optimal among
equivariant estimators that may depend on Σ . More standard ridge estimators
(which do not require knowledge of Σ) are also discussed. After discussing ridge
regression, we consider another previously studied James-Stein estimator for β
(Baranchik, 1973) and show that – perhaps surprisingly – it is sub-optimal, in
terms of out-of-sample prediction error.

The rest of the paper is organized as follows. In Section 2, we introduce
notation and definitions, and describe the statistical setting for what follows.
Equivariance is discussed in Section 3. The James-Stein estimator is defined
in Section 4; some of its optimality properties are also discussed in Section 4.
Section 5 contains a comparative analysis of the proposed James-Stein estimator
and other dense estimators for β. A concluding discussion is contained in Section
6, where we consider practical implications of the results contained in this paper
and possible extensions. Proofs may be found in the Appendices.

2. Notation, definitions, and the statistical setting

Let PD(d) denote the collection of d× d positive definite matrices. In addition
to assuming the linear model (1), we assume that

x1, . . . ,xn
iid∼ N(0,Σ) and ǫ1, . . . , ǫn

iid∼ N(0, σ2), (2)

are independent, where Σ ∈ PD(d) and σ2 > 0. Linear models with similar dis-
tributional assumptions have been previously studied by Stein (1960), Baranchik
(1973), Breiman and Freedman (1983), Brown (1990), and Leeb (2009), among
others; Dicker (2013) considered the model (1)-(2) under the additional assump-
tions Σ = I and σ2 = 1. The significance of the normality assumption (2) – and
the possibility of relaxing it – is further discussed in Section 6.1.
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Each estimator β̂ for β determines a linear prediction rule, ŷ(x) = xT β̂. The

unconditional out-of-sample prediction error (predictive risk) of β̂ is given by

E{ynew − ŷ(xnew)}2 = E(ynew − xT
newβ̂)

2 = E(β̂ − β)TΣ(β̂ − β) + σ2, (3)

where (ynew,x
T
new) is independent of (y, X) and has the same distribution as

(yi,x
T
i ). We emphasize that the expectation in (3) is taken over (ynew,xnew) and

(y, X). Broadly speaking, the goal of the unconditional out-of-sample prediction

problem considered in this paper is to minimize (3) over estimators β̂.
In order to introduce more convenient notation for studying out-of-sample

prediction error, letwi = (yi,x
T
i ) ∈ R

d+1. Then the assumption (2) is equivalent

to assuming w1, . . . ,wn
iid∼ N(0, V ), where

V =

(

σ2 + βTΣβ βTΣ
Σβ Σ

)

∈ PD(d+ 1). (4)

In this way, we establish a correspondence between the parameters Σ ∈ PD(d),
β ∈ R

d, and σ2 > 0 in the linear model (1), and positive definite matrices
V ∈ PD(d+ 1). After standardizing by σ2, the predictive risk (3) is equivalent
to

RV (β̂) = σ−2EV

{

(β̂ − β)TΣ(β̂ − β)
}

,

where the subscript V in the expectation on the right-hand side above indicates
that the expectation is taken over w1, . . . ,wn ∼ N(0, V ). In fact, RV (β̂) is

the primary object of study in the sequel and we will typically refer to RV (β̂)

itself as the predictive risk (or out-of-sample prediction error) of β̂. Note that

the predictive risk RV (β̂) is completely determined by the estimator β̂ and the
positive definite matrix V ∈ PD(d + 1). We will often write EΣ (·) in place of
EV (·) when the expectation only involves the random predictors X . Similarly,
we write PV (·) or PΣ (·) when computing probabilities involving w1, . . . ,wn or
X , respectively.

3. Equivariance

Consider the following definition.

Definition 1. A measurable estimator β̂ = β̂(y, X) is linearly equivariant if

Aβ̂(y, X) = β̂(y, XA−1) (5)

for all d× d invertible matrices A ∈ GL(d). It is scale invariant if

β̂(y, X) = β̂(ty, tX) (6)

for all positive scalars t > 0. If an estimator is both linearly equivariant and
scale invariant, we say that it is LiSc.
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As an initial example, notice that the OLS estimator is LiSc. Linearly equiv-
ariant estimators are compatible with linear transformations of the predictors
xi. Intuitively, this type of compatibility implies that the data are treated “the
same” (for the purposes of prediction), regardless of the given predictor basis.
Hence, linearly equivariant estimators may be preferred in situations where there
is little prior knowledge about the relevance of the given predictor basis, insofar
as it relates to the outcome. By contrast, sparsity assumptions convey specific
information about the designated predictor basis, and linear equivariance is less
appropriate for sparse problems. Indeed, most sparse estimators, such as lasso
(Tibshirani, 1996), are not linearly equivariant. Scale invariance is less specific
to non-sparse problems; however, in our view, it is a reasonable property to
require of estimators for β, including sparse estimators (see, for instance, the
scaled lasso (Sun and Zhang, 2012)).

In this paper, we primarily focus on LiSc estimators. Our main objectives
include (i) finding LiSc estimators with small predictive risk and (ii) under-
standing the magnitude of these estimators’ predictive risk in high-dimensional
linear models.

A nice feature of LiSc estimators is that their predictive risk is completely de-
termined by the signal-to-noise ratio (in addition to d, n). In particular, in order
to evaluate the predictive risk of an LiSc estimator, it suffices to consider the
case where Σ = I; this greatly simplifies calculations involving LiSc estimators.
Define

Θd(η2) = {V ∈ PD(d+ 1); βTΣβ/σ2 = η2}, η ≥ 0,

where the relationship between V and β, Σ , σ2 is given by (4). Then Θd(η2)
is the class of linear models with signal-to-noise ratio βTΣβ/σ2 = η2. The
following proposition is proved in Appendix A.

Proposition 1. Suppose that V ∈ Θd(η2).

(a) If β̂ is linearly equivariant, then RV (β̂) = RV0
(β̂), where

V0 =

(

σ2 + βTΣβ βTΣ1/2

Σ1/2β I

)

∈ Θd(η2).

(b) If β̂ is LiSc, then RV (β̂) = RVu
(β̂), where

Vu =

(

1 + η2 ηuT

ηu I

)

∈ Θd(η2)

and u ∈ R
d is any fixed unit vector.

Proposition 1 indicates that the signal-to-noise ratio βTΣβ/σ2 plays an im-
portant role in the analysis of LiSc estimators. The signal-to-noise ratio’s signifi-
cance is further highlighted in our subsequent analysis of LiSc estimators, where
we first focus on “oracle” estimators, which are derived under the assumption
that the signal-to-noise ratio is known, and then study “adaptive” estimators,
which rely on an estimate of the signal-to-noise ratio.
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Define the collection of LiSc estimators,

E = {β̂; β̂ = β̂(y, X) is a LiSc estimator for β},

and the optimal LiSc risk for V ∈ Θd(η2),

r(η2) = inf
β̂∈E

RV (β̂).

By Proposition 1, r(η2) is well-defined.
LiSc estimators have a great deal of structure. By taking advantage of this

structure, we are able to identify optimal LiSc estimators in settings where
d < n, d = n, and d > n, separately, assuming that η2 = βTΣβ/σ2 is known.

Theorem 1. Let V ∈ Θd(η2).

(a) Suppose that d < n. Define

η̂2 =
||y||2
nσ̂2

− 1 and hopt(η̂
2) =

EV (β
TΣ β̂ols|η̂2)

EV (β̂
T

olsΣ β̂ols|η̂2)
, (7)

where σ̂2 = (n−d)−1||y−Xβ̂ols||2. Then hopt(η̂
2) is completely determined

by η2 and η̂2 (along with d, n), and

RV (β̂opt) = r(η2),

where β̂opt = hopt(η̂
2)β̂ols.

(b) Suppose that d = n. If β̂ is LiSc, then there exists a constant c ∈ R and

an LiSc estimator β̂c , cX−1y such that RV (β̂c) ≤ RV (β̂). Furthermore,

RV (β̂c) =

{

∞ if c 6= 0
η2 if c = 0

and r(η2) = RV (β̂null) = η2, where β̂null = β̂0 = 0.

(c) Suppose that d > n. If β̂ is LiSc, then β̂ = β̂null = 0.

Theorem 1 is proved in Appendix A. Theorem 1 (b)-(c) implies that when

d ≥ n, the optimal LiSc estimator is β̂null = 0. Theorem 1 (c) implies further

that if d > n, then β̂null is the only LiSc estimator. Thus, we have a fairly
definitive characterization of LiSc estimators for out-of-sample prediction when
d ≥ n. This characterization is quite negative, which may raise questions about
the appropriateness of LiSc estimators for high-dimensional data analysis. We
defer such questions to Section 6.2, which contains a broader discussion of LiSc
estimators and high-dimensional data analysis.

If d < n, then the optimal LiSc estimator is nontrivial and is given by
β̂opt = hopt(η̂

2)β̂ols in Theorem 1 (a). Theorem 1 (a) should be compared
with Section 2.1 of (Marchand, 1993), where a best equivariant estimator for
the normal means problem is derived. Observe that evaluating hopt(η̂

2) seems
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challenging and hopt(η̂
2) depends on the signal-to-noise ratio, which is typically

unknown; thus, implementing β̂opt in practice is generally infeasible. Further-
more, Theorem 1 (a) does not provide any information about the magnitude
of r(η2), which is important for understanding the performance limits of LiSc
estimators. All of these issues are addressed in the next section.

4. James-Stein estimators

In this section we study James-Stein shrinkage estimators for β and show that
their predictive risk is asymptotically equivalent to the optimal LiSc risk r(η2) in
high-dimensional linear models with d/n → ρ ∈ [0, 1) and d → ∞. In Section 4.1,
we identify an oracle James-Stein estimator that utilizes a non-random shrinkage
parameter, which depends on the signal-to-noise ratio. We show that the oracle
James-Stein estimator is asymptotically equivalent to the optimal LiSc estimator
β̂opt, which was derived in Theorem 1 (a). We also obtain an explicit formula
for the predictive risk of the oracle James-Stein estimator; combined with our
optimality results for the oracle James-Stein estimator, this easily yields an
exact asymptotic expression for the minimal LiSc risk r(η2). In Section 4.2
we propose an adaptive James-Stein estimator that depends on a data-driven
shrinkage parameter; this estimator more closely resembles the original James-
Stein estimator (James and Stein, 1961), which also relies on a data-driven
shrinkage parameter. We show that if d/n → ρ ∈ (0, 1), then the adaptive
James-Stein estimator is asymptotically equivalent to the oracle estimator and,
hence, the optimal LiSc estimator.

4.1. The oracle estimator

For d < n−1 and a shrinkage parameter t ≥ 0, define the James-Stein estimator

β̂js(t) =
t

t+ d/(n− d− 1)
(XTX)−1XTy.

Notice that for fixed t ≥ 0, β̂js(t) is LiSc. Additionally, β̂js(0) = β̂null = 0

and β̂js(∞) = β̂ols. A closed-form expression for the predictive risk of β̂js(t)
follows easily from properties of the inverse-Wishart distribution; it is then
straightforward to optimize over t ≥ 0 and find the James-Stein estimator with
minimal predictive risk. Details are given in the following proposition, which is
proved in Appendix A.

Proposition 2. Suppose that d < n− 1 and that V ∈ Θd(η2). If t ≥ 0, then

RV {β̂js(t)} =

{

t

t+ d/(n− d− 1)

}2
d

n− d− 1
+

{

d/(n− d− 1)

t+ d/(n− d− 1)

}2

η2 (8)

and

RV {β̂js(η
2)} = inf

t∈[0,∞]
RV {β̂js(t)} =

η2d/(n− d− 1)

η2 + d/(n− d− 1)
.
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Proposition 2 implies that the predictive risk of β̂js(t) is minimized when

t = η2 = βTΣβ/σ2 is the signal-to-noise ratio. Since η2 = βTΣβ/σ2 is typically

unknown, we refer to β̂js(η
2) as the “oracle James-Stein estimator.” The next

theorem relates the risk of the oracle James-Stein estimator to the minimal LiSc
risk r(η2).

Theorem 2. Suppose that η2 ≥ 0 and that 0 < d/n ≤ ρ+ < 1 for some fixed
constant ρ+ ∈ R. Then

sup
V ∈Θd(η2)

∣

∣

∣
RV {β̂js(η

2)} − r(η2)
∣

∣

∣
= O

(

η2d/n

η2 + d/n
d−1/2

)

. (9)

Theorem 2 is proved in Appendix A. By Proposition 1, |RV {β̂js(η
2)}−r(η2)|

is in fact constant over V ∈ Θd(η2). Theorem 2 implies that if n → ∞ and

supd/n < 1, then the predictive risk of β̂js(η
2) is close to r(η2); in other words,

the oracle James-Stein estimator is asymptotically optimal among LiSc esti-
mators. This is made more precise in the following corollary, which also gives
explicit asymptotic formulas for r(η2). The corollary follows immediately from
Proposition 2 and Theorem 2.

Corollary 1. For ρ ∈ [0, 1) and η ≥ 0, define the asymptotic risk functions

R0(η
2, ρ) =

η2ρ

η2 + ρ
and R>0(η

2, ρ) =
η2ρ

η2(1− ρ) + ρ
. (10)

If 0 < ρ < 1, then

lim
d/n→ρ

sup
η≥0

∣

∣R>0(η
2, d/n)−r(η2)

∣

∣= lim
d/n→ρ

sup
η≥0

sup
V ∈Θd(η2)

∣

∣

∣
RV {β̂js(η

2)}−r(η2)
∣

∣

∣
= 0.

Additionally,

lim
d/n→0
d→∞

sup
η≥0

∣

∣

∣

∣

r(η2)

R0(η2, d/n)
− 1

∣

∣

∣

∣

= lim
d/n→0
d→∞

sup
η≥0

sup
V ∈Θd(η2)

∣

∣

∣

∣

∣

r(η2)

RV {β̂js(η
2)}

− 1

∣

∣

∣

∣

∣

= 0.

Taken together, Theorem 1 and Corollary 1 provide exact formulas for the
asymptotic behavior of r(η2) in any setting where d → ∞. This is summarized
in Table 1. We emphasize that if ρ, η > 0 are fixed, then the limiting LiSc risk
limd/n→ρ r(η

2) > 0 is non-zero; on the other hand, limd/n→0 supη≥0 r(η
2) = 0.

Table 1

Asymptotics for the minimal LiSc risk

d/n → ρ
Asymptotic

approximation for r(η2)
ρ = 0 R0(η2, d/n)

ρ ∈ (0, 1) R>0(η2, d/n)
ρ ≥ 1 η2
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The asymptotic risk formula R0(η
2, ρ) ∼ r(η2) in Corollary 1, which is valid

when d/n → 0, appears frequently in minimax analyses involving the Gaus-
sian sequence model (Nussbaum, 1999; Pinsker, 1980). On the other hand, if
d/n → ρ ∈ (0, 1), then r(η2) ∼ R>0(η

2, d/n) > R0(η
2, d/n). This reflects the

increased difficulty in prediction problems where d/n is substantially larger than
0 and may be attributed to a degrees of freedom correction that accounts for
the number of predictors in the linear model; in particular, the effect of this
correction is non-vanishing when d/n → ρ ∈ (0, 1).

4.2. Adaptive James-Stein estimators

The oracle James-Stein estimator β̂js(η
2) depends on the signal-to-noise ratio

η2 = βTΣβ/σ2, which is typically unknown. If d/n → ρ < 1, then the signal-
to-noise ratio may be effectively estimated and it is reasonable to replace η2 in
β̂js(η

2) with an estimate. For d < n, define the estimator

η̂2+ = max{η̂2, 0} = max

{ ||y||2
nσ̂2

− 1, 0

}

, (11)

where η̂2 = ||y||2/(nσ̂2) − 1 was introduced in Theorem 1 (a). Note that if
V ∈ Θd(η2) and n, n− d are large, then n−1||y||2 ≈ βTΣβ + σ2 and σ̂2 ≈ σ2,
which suggests that η̂2+ ≈ η2. Now define the adaptive James-Stein estimator

β̌js = β̂js(η̂
2
+).

Observe that β̌js adapts to the unknown signal-to-noise ratio η2. Furthermore,

β̌js is an LiSc estimator. The next result implies that if n is large and d/n is
bounded below 1, then the predictive risk of the adaptive James-Stein estimator
is almost as small as that of the oracle James-Stein estimator.

Theorem 3. Suppose that 0 < d/n < ρ+ < 1, where ρ+ ∈ R is a fixed constant.
Then

sup
V ∈Θd(η2)

∣

∣

∣
RV (β̌js)−RV {β̂js(η

2)}
∣

∣

∣
= O

{(

d/n

η2 + d/n

)

n−1/2

}

.

Theorem 3 is proved in Appendix A. It follows from Theorem 3 that if
d/n → ρ ∈ [0, 1), then the predictive risk of the adaptive James-Stein estima-
tor converges uniformly to that of the oracle James-Stein estimator. Note that
Theorem 3 is less informative when the signal-to-noise ratio is very small. In-
deed, if η2 = O(n−1/2) and d/n → ρ ∈ [0, 1), then supV ∈Θd(η2) RV {β̂js(η

2)} =

O(n−1/2) has the same magnitude as the upper bound in Theorem 3. A more
refined analysis of the adaptive James-Stein estimator when the signal-to-noise
ratio is small may be of interest, but is not pursued further here.

The following corollary is an immediate consequence of Theorems 2-3.
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Corollary 2. Suppose that ρ ∈ (0, 1). Then

lim
d/n→ρ

sup
η≥0

sup
V ∈Θd(η2)

∣

∣RV (β̌js)− r(η2)
∣

∣ = 0.

Corollary 2 implies that if d/n → ρ ∈ (0, 1), then the adaptive James-Stein
estimator is asymptotically optimal for predictive risk among LiSc estimators.

5. Comparative analysis

5.1. OLS estimator

The predictive risk of the OLS estimator follows immediately from Proposition
2: if d < n− 1, then

RV (β̂ols) =
d

n− d− 1
. (12)

Proposition 2 also implies that if V ∈ Θd(η2) for some η ≥ 0, then RV {β̂js(η
2)} <

RV (β̂ols). On the other hand, as discussed in detail above, the oracle James-

Stein estimator β̂js(η
2) is generally not implementable, because the signal-to-

noise ratio β
TΣβ/σ2 = σ2 is typically unknown. The adaptive James-Stein

estimator β̌ does not depend on the signal-to-noise ratio and in Section 4.2 we
argued that it is asymptotically equivalent to the oracle James-Stein estimator.
The next result is valid in finite samples, for d, n sufficiently large, and relates
the risk of the adaptive James-Stein estimator to that of the OLS estimator.

Theorem 4. Suppose that 0 < ρ− ≤ d/n ≤ ρ+ < 1 for some fixed constants
ρ−, ρ+ ∈ R. If d, n are sufficiently large, then

RV (β̌js) < RV (β̂ols) (13)

for all V ∈ PD(d+ 1).

Theorem 4 follows directly from Theorem 2, Theorem 3, and (12). Theorem
4 implies that β̌js is minimax over the entire parameter space PD(d+1), when
d, n are sufficiently large. We refer to Theorem 4 as a “semi-finite sample”
result, because it addresses finite sample properties of β̌js, but we are unable
to specify precisely how large d, n must be in order for (13) to hold. Theorem
4 may be contrasted with more classical finite sample results on James-Stein
estimators for the normal means problem (James and Stein, 1961) and linear
models (Baranchik, 1973), which imply that certain James-Stein estimators are
minimax under explicit conditions on the dimension; for instance, Baranchik
(1973) shows that a different James-Stein estimator for β (which is discussed in
more detail in Section 5.3) is minimax whenever d > 2 and n − d > 1. Similar
results may be available for the adaptive James-Stein estimator β̌js; however,

this paper is more focused on high-dimensional optimality properties of β̌js, like
those discussed in Section 4, and alternative techniques are likely required to
obtain more detailed finite sample results.
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5.2. Ridge regression

Ridge regression (Hoerl and Kennard, 1970; Tikhonov, 1943) is another widely
studied non-sparse estimator. For a positive definite matrix Λ ∈ PD(d), define
the generalized ridge estimator

β̂r(Λ) = (XTX + nΛ)−1XTy.

Note that β̂r(Λ) is defined for all d, n. While generalized ridge estimators have
been studied for many classes of Λ, by far the most common is Λ = λI, where
λ > 0 is a scalar shrinkage factor subject to further specification. Note, however,
that for fixed λ > 0, β̂r(λI) is not LiSc. Furthermore, the following result

suggests that β̂r(λI) has significant drawbacks (in a minimax sense) when its
performance is evaluated over linear models with fixed signal-to-noise ratio.

Proposition 3. Suppose that η ≥ 0. Then

inf
λ>0

sup
V ∈Θd(η2)

RV {β̂r(λI)} ≥ sup
V ∈Θd(η2)

RV (β̂null) = η2.

Proposition 3 is proved in Appendix A. It implies that the ridge estimator
β̂r(λI)’s worst-case out-of-sample prediction error is at least as bad as that of

the trivial estimator β̂null = 0, over linear models with fixed signal-to-noise
ratio.

As an alternative to β̂r(λI), we consider a generalized ridge estimator that
depends on the predictor covariance matrix Cov(xi) = Σ . For V ∈ Θd(η2) given
by (4), define the oracle ridge estimator

β̂r{d/(nη2)Σ} = (XTX + d/η2Σ)−1XTy. (14)

To motivate this estimator, we note that in (Dicker, 2013), the author considered
ridge regression in high dimensional linear models where Cov(xi) = I and σ2 =
1; the oracle ridge estimator (14) corresponds to oracle estimators derived in
(Dicker, 2013), after transforming the data via (y, X) 7→ (y, XΣ−1/2). It follows

that β̂r{d/(nη2)Σ} shares many optimality properties with the ridge estimators
studied in (Dicker, 2013). Adaptive ridge estimators may be derived by replacing
η2 and Σ in (14) with estimates, η̂2 and Σ̂ ; if η̂2 is consistent for η2 and Σ̂ is
operator norm-consistent for Σ , then the associated adaptive ridge estimator is
typically asymptotically equivalent to the oracle ridge estimator.

The oracle ridge estimator (14) satisfies an equivariance property for esti-
mators depending on Cov(xi) = Σ that extends the LiSc property given in

Definition 1. Let β̂ = β̂(y, X,Σ) be an estimator for β that may depend on

Cov(xi) = Σ . Then β̂ is LiSc if

A−1β̂(y, X,Σ) = β̂(ty, tXA, t2ATΣA) (15)

for all d × d invertible matrices A ∈ GL(d) and all t > 0. Thus, an LiSc esti-
mator’s dependence on Σ must respect linear transformations of the predictors
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xi ∼ N(0,xi). Clearly, if β̂ does not depend on Cov(xi) = Σ , then (15) reduces
to the LiSc property given in Definition 1. Furthermore, the oracle ridge estima-
tor (14) is LiSc. We emphasize that the oracle ridge estimator is LiSc, even for
d > n; by contrast, Theorem 1 (c) implies that if d > n, then the null estimator
is the only LiSc estimator that does not depend on Σ .

Some of the basic risk properties of β̂r{d/(nη2)Σ} are given in the following
proposition.

Proposition 4. Suppose that η ≥ 0 is fixed.

(a) [Finite sample predictive risk] If V ∈ Θd(η2), then

RV

[

β̂r

{

d/(nη2)Σ
}

]

= EI

[

tr
{

(XTX + d/η2I)−1
}]

.

(b) [Asymptotic predictive risk] Suppose that ρ ∈ (0,∞) and define

Rr(η
2, ρ) =

1

2ρ

[

η2(ρ− 1)− ρ+

√

{η2(ρ− 1)− ρ}2 + 4η2ρ2
]

. (16)

Then
lim

d/n→ρ
sup

V ∈Θd(η2)

RV

[

β̂r

{

d/(nη2)Σ
}

]

= Rr(η
2, ρ).

Proposition 4 follows immediately from Proposition 1 and Corollary 1 in
(Dicker, 2013). Proposition 4 (a) gives a simplified expression for the predictive

risk of the oracle ridge estimator; in particular, it implies thatRV [β̂r{d/(nη2)Σ}]
is completely determined by the signal-to-noise ratio βTΣβ/σ2 = η2. Proposi-
tion 4 (b) gives a closed-form expression for the asymptotic predictive risk of
the oracle ridge estimator that is valid when d/n → ρ ∈ (0,∞).

It is evident from Proposition 4 that the oracle ridge estimator has smaller
risk than β̂null = 0, even when d > n; that is, if V ∈ Θd(η2), then

RV

[

β̂r

{

d/(nη2)Σ
}

]

≤ RV (β̂null)

with equality if and only if η2 = 0. Since the oracle ridge estimator is LiSc,
it follows that if Cov(xi) = Σ is known, then non-trivial equivariant out-of-
sample prediction may be possible when d > n; on the other hand, Theorem 1
(c) implies that this is impossible if Cov(xi) = Σ is unknown.

Proposition 4 also yields detailed information about the asymptotic predictive
risk of the oracle ridge estimator (14), which is useful for comparing its perfor-
mance to that of the oracle James-Stein estimator. Corollary 1 and Proposition
4 (a) imply that if d/n → 0, then

sup
V ∈Θd(η2)

RV

[

β̂r

{

d/(nη2)Σ
}

]

∼ sup
V ∈Θd(η2)

RV {β̂js(η
2)} ∼ R0(η

2, d/n),

where R0(η
2, d/n) is given in Corollary 1. Thus, if d/n → 0, then the oracle

ridge and James-Stein estimators are asymptotically equivalent. On the other
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Fig 1. Asymptotic predictive risk versus ρ for the oracle James-Stein estimator (R>0(η2, ρ),
defined in Corollary 2), the oracle ridge estimator (Rr(η2, ρ), defined in Proposition 6), the
OLS estimator (Rols(η

2, ρ), defined in (17)), and the null estimator (Rnull(η
2, ρ), defined in

(17)) for various values of the signal-to-noise ratio η2 = βTΣβ/σ2: (a) η2 = 1, (b) η2 = 5,
and (c) η2 = 10. The James-Stein and OLS estimators are undefined when d > n; thus, their
predictive risk plots stop at ρ = 1.
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Fig 2. Asymptotic predictive risk versus ρ for the oracle James-Stein estimator (R>0(η2, ρ),
defined in Corollary 2), the oracle ridge estimator (Rr(η2, ρ), defined in Proposition 6), the
OLS estimator (Rols(η

2, ρ), defined in (17)), and the null estimator (Rnull(η
2, ρ), defined in

(17)) for various values of ρ: (a) ρ = 0.25, (b) ρ = 0.50, and (c) ρ = 0.75.

hand, one easily checks that if ρ ∈ (0,∞), then Rr(η
2, ρ) ≤ R>0(η

2, ρ) with
equality if and only if η2 = 0. Thus, if d/n → ρ ∈ (0,∞), then the ridge esti-
mator outperforms the James-Stein estimator in terms of predictive risk. This
should not be too surprising, because the ridge estimator utilizes knowledge
of Cov(xi) = Σ , while the James-Stein estimator does not. Figures 1-2 con-
tain plots of the asymptotic predictive risk of the oracle ridge and James-Stein
estimator, for d/n → ρ ∈ (0,∞). The asymptotic predictive risk of the OLS
estimator and the null estimator are also plotted in Figures 1-2; it is easily seen
that if d/n → ρ ∈ (0,∞), then the asymptotic predictive risk of β̂ols and β̂null

is given by

Rols(η
2, ρ) =

ρ

1− ρ
(0 ≤ ρ < 1) and Rnull(η

2, ρ) = η2, (17)

respectively (the asymptotic risk for the OLS estimator Rols(η
2, ρ) follows di-

rectly from (12)).
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To conclude this subsection, we give a simple result which implies that the
oracle ridge estimator dominates the oracle James-Stein estimator in finite sam-
ples. Again, this is not surprising because the ridge estimator leverages knowl-
edge of Cov(xi) = Σ , while the James-Stein estimator does not.

Proposition 5. Suppose that d < n− 1, η ≥ 0, and V ∈ Θd(η). Then

RV

[

β̂r

{

d/(nη2)Σ
}

]

≤ RV {β̂js(η
2)}

with equality if and only if η = 0.

Proposition 5 follows from Jensen’s inequality and is proved in Appendix A.

5.3. Other James-Stein estimators

Other James-Stein type estimators for β have been previously studied in the
literature (Baranchik, 1973; Brown, 1990; Copas, 1983; Oman, 1984; Stein,
1960; Takada, 1979). Much of the previous work on James-Stein estimators
for β focuses on identifying situations where the specified estimators have uni-
formly smaller predictive risk than the OLS estimator in finite samples. To our
knowledge, the asymptotic risk of other James-Stein estimators for β in high-
dimensional linear models (with d/n → ρ ∈ (0, 1)) has received relatively little
attention. In this section, we derive the asymptotic predictive risk of a James-
Stein estimator for β studied by Baranchik (1973). For d < n and constant
c > 0, this estimator is defined by

β̂bar(c) =

{

1− c
||y −Xβ̂ols||2

||Xβ̂ols||2

}

β̂ols = β̂js{t̂bar(c)},

where

t̂bar(c) =
d

n− d− 1

(

||Xβ̂ols||2

c||y −Xβ̂ols||2
− 1

)

.

Baranchik (1973) proved that if 0 < c < 2(d − 2)/(n − d + 2), d ≥ 3, and

n ≥ d+2, then RV {β̂bar(c)} < RV (β̂ols). Other previously studied James-Stein

estimators share strong similarities with β̂bar(c). For instance, Copas (1983)

considers precisely β̂bar(c) and provides arguments for using various specific

values of c, while β̂bar(c) serves as a motivating example for a more general class
of James-Stein estimators proposed by Takada (1979). Many of these estimators
can be analyzed using techniques similar to those found in this subsection, and
throughout the paper.

Below, we show that β̂bar(c) is generally sub-optimal, in terms of predictive
risk, and that it is out-performed (asymptotically) by the adaptive James-Stein
estimator β̌js defined in Section 4.2. On the other hand, we also show that

β̂bar(c) is asymptotically optimal for another, closely related loss function. The
main idea behind our asymptotic analysis is that if V ∈ Θ(η2), d/n ≈ ρ ∈ (0, 1),
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and n is large, then ||y − Xβ̂ols||2 ≈ n(1 − ρ)σ2 and ||y||2 ≈ n(βTΣβ + σ2).
Thus,

t̂bar(c) ≈ tbar(c) ,
ρ

1− ρ

{

η2 + ρ− c(1 − ρ)

c(1− ρ)

}

and
β̂bar(c) ≈ β̂js{tbar(c)}. (18)

By Proposition 2, the risk of the James-Stein estimator β̂js(t) is minimized when

t = η2; moreover, if t 6= η2, then RV {β̂js(η
2)} < RV {β̂js(t)} and β̂js(t) is sub-

optimal. Since, in general, tbar(c) 6= η2, (18) suggests that β̂bar(c) is suboptimal
among James-Stein estimators. Observe that while the equality tbar(c) = η2

may hold for some specific values of c, ρ, and η2, in order for it to hold in
general, the constant c from β̂bar(c) must vary with ρ and η2.

Some of the ideas from the previous discussion are made more rigorous in the
next proposition. A detailed proof is omitted; however, part (a) is a straight-
forward calculation, part (b) may be proved similar to Theorem 3, and part (c)
follows directly from part (b), Corollary 1, and Theorem 3.

Proposition 6. (a) Suppose that ρ ∈ (0, 1) and let

R(η2, ρ; t) =

(

t

t+ ρ
1−ρ

)2
ρ

1− ρ
+

(

ρ
1−ρ

t+ ρ
1−ρ

)2

η2

denote the asymptotic predictive risk of the James-Stein estimator β̂js(t)
as d/n → ρ. Then

R>0(η
2, ρ) = R(η2, ρ; η2) ≤ R{η2, ρ; tbar(c)}, (19)

where R>0(η
2, ρ) is the asymptotic risk of the oracle James-Stein estimator

defined in Corollary 2. Furthermore, equality holds in (19) if and only if

c =
η2ρ+ ρ2

η2(1− ρ)2 + ρ(1− ρ)
.

(b) Suppose that 0 < ρ− ≤ d/n ≤ ρ+ < 1 for some fixed constants ρ−, ρ+ ∈ R

and that c is a positive constant satisfying 0 < c < 2ρ−/(1− ρ−) for all n
and d. Let ρ = d/n. Then

RV {β̂bar(c)} = RV

[

β̂js{tbar(c)}
]

+O

{

1

(η2 + 1)n1/2

}

.

(c) Under the assumptions of part (b),

RV {β̂bar(c)} −RV (β̌js) = R{ρ, η2; tbar(c)} −R>0(η
2, ρ)

+O

{

1

(η2 + 1)n1/2

}

,

where β̌js is the adaptive James-Stein estimator from Section 4.2.
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Part (a) of Proposition 6 addresses suboptimality of β̂js{tbar(c)} and part
(b) provides justification for (18). Proposition 6 (c) implies that the predictive
risk of the adaptive James-Stein estimator β̌js is asymptotically smaller than

that of β̂bar(c).

It follows from Proposition 6 that β̂bar(c) is suboptimal in terms of predictive

risk, even among the class of James-Stein estimators, β̂js(t). This naturally leads
to the question: are there other circumstances under which Baranchik’s estima-
tor β̂bar(c) is asymptotically optimal among James-Stein estimators? The an-
swer is affirmative. Consider a prediction problem where the predictors xnew as-
sociated with future outcomes ynew are required to be drawn from {x1, . . . ,xn}.
If we assume that P{xnew = xi|X} = n−1, i = 1, . . . , n, then a reasonable mea-
sure of predictive risk is

R̃V (β̂) =
1

σ2n
EV ||X(β̂ − β)||2.

Now let t∗bar = nη2/(n− d− 1). It is straightforward to check that

R̃V {β̂js(t
∗
bar)} = inf

t∈[0,∞]
R̃V {β̂js(t)}

and, if n is large, then β̂bar{d/(n− d)} ≈ β̂js(t
∗
bar). Ultimately, one can show

that if d/n → ρ ∈ (0, 1), then β̂bar{d/(n− d)} is asymptotically optimal among
James-Stein estimators, with respect to the risk function R̃V (·). In fact, Co-
pas (1983) reaches a similar conclusion – that one should take c ≈ d/(n− d) in

β̂bar(c) – by essentially studying the risk function R̃V (·). However, Copas (1983)
does not take an asymptotic approach, nor does Copas meaningfully distinguish
between the risk functions RV (·) and R̃V (·). Indeed, Copas asserts that differ-
ences between the two risk functions are “unimportant if n is large” (p. 314 of
(Copas, 1983)). This is true if n is large and d is small; however, the results in
this section imply that these differences are significant when both n and d are
large.

6. Discussion

6.1. Distributional assumptions

The normality condition (2) is restrictive. The extent to which this condition is
necessary for the results in this paper is somewhat unclear; working to relax (2)
may be an interesting area for future research. In this section, we discuss some
of the issues that may arise in pursuing such work.

If the data are non-Gaussian, then the exact risk formula for James-Stein
estimators given in Proposition 2 will not hold in general (among other things,
Proposition 2 relies on the fact that EI{tr(XTX)−1} = d/(n − d − 1)). Fur-
thermore, in the absence of normality, it may be more challenging to obtain
exact decision theoretic results for LiSc estimators, such as Theorem 1 (a)-
(b), which rely on orthogonal invariance of the multivariate normal distribution
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(note, however, that Theorem 1 (c) continues to hold regardless of distributional

assumptions: β̂null = 0 is the only LiSc estimator when d > n).
The challenges discussed in the previous paragraph may be complemented by

more encouraging observations. For instance, Stein-type estimators are known
to have desirable finite sample properties in related problems with non-Gaussian
data (see, for example, the review article (Brandwein and Strawderman, 1990)
on estimating a location parameter in the presence of orthogonally invariant
noise); these results may be relevant for generalizing the results in this paper
to settings where the data are non-normal. Additionally, it seems reasonable
to expect that many of the asymptotic results in this paper (or close variants)
will continue to hold under weaker distributional assumptions – even in settings
where the underlying distributions are not orthogonally invariant. Basic numer-
ical experiments conducted by the author seem to support this hypothesis when
the entries ofX are binary random variables (detailed results not reported here).
Existing theoretical work on high-dimensional data analysis with non-Gaussian
design matrices may also be useful for establishing extensions in this direction,
e.g. (Bunea et al., 2007a).

6.2. Practical implications

We have argued that LiSc estimators are a reasonable class of estimators for
settings where little is known about how the given predictor basis relates to the
outcome of interest. In these settings, if d < n and no reliable estimate of Cov(xi)
is available, then the results in this paper suggest that James-Stein estimators
may be an effective option for out-of-sample prediction; if Cov(xi) is known (or if
a norm-consistent estimator is available), then results in Section 5.2 and (Dicker,
2013) imply that ridge regression may be more appropriate. On the other hand,
if β is known to be sparse (i.e. if the outcome has a sparse representation in
the given predictor basis) or some other significant prior information about β

is available, then sparse methods, such as lasso, or Bayesian methods may be
indicated (it is worth pointing out that β̂js(t) is a Bayes estimator under the

prior distribution β|X ∼ N{0, ν2(XTX)−1}, where ν2 = t(n− d− 1)σ2/d).

If d ≥ n, then Theorem 1 (b)-(c) imply that β̂null = 0 is the optimal LiSc
estimator. Thus, one can argue that if d ≥ n, then requiring an estimator to be
LiSc is “asking too much.” On the other hand, given the high-level discussion
of LiSc estimators in the previous paragraph and in Section 3, an alternative
interpretation of Theorem 1 (b)-(c) is as follows: if d ≥ n, Cov(xi) is unknown,
and little is known about how the predictor basis relates to the outcome, then
non-trivial prediction may be impossible and, consequently, more information
is needed for effective out-of-sample prediction. This interpretation may guide
one’s view towards identifying and understanding additional information about
the model and the data that may help to improve performance in settings where
d ≥ n.

Various types of information about the model (1) may potentially be lever-
aged to develop better prediction methods. The discussion of ridge regression in
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Section 5.2 implies that if Cov(xi) is known, then an equivariant version of ridge

regression (14) may perform well (significantly better than β̂null) when d ≥ n.
However, to obtain more substantial improvements in out-of-sample prediction
error, it appears that additional information about β (such as sparsity) must be
utilized. Indeed, the predictive risk of ridge regression is roughly of order d/n;
if β is sparse, then the risk of lasso may be of order log(d)/n (Bunea et al.,
2007b). Slightly recasting these observations, we conclude that while ridge re-

gression outperforms β̂null = 0 when d/n → ρ ∈ (0,∞), additional information
about β must be utilized in order to obtain vanishing risk in these asymptotic
settings and, a fortiori, in settings where d/n → ∞.
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Appendices

Appendix A

Proof of Proposition 1. Suppose that β̂ is linearly equivariant. To prove part
(a), observe that

σ2RV (β̂) = EV

[

{β̂(y,X,Σ)− β}TΣ{β̂(y,X,Σ)− β}
]

= EV

{

||β̂(y,XΣ−1/2, I)− Σ1/2β||2
}

= EV0

{

||β̂(y,X, I)− β(V0)||2
}

= σ2RV0
(β̂),

where β(V0) = Σ1/2β, and we have used linear equivariance of β̂, along with
the fact that if xi ∼ N(0,Σ), then Σ−1/2xi ∼ N(0, I).

Now suppose that β̂ is LiSc, let u ∈ R
d be a unit vector, and let U be a d×d

orthogonal matrix such that UΣ1/2β/σ = ηu , β(Vu). Then

RV (β̂) = σ−2EV0

(

||β̂ − Σ1/2β||2
)

= EV0

{

||σ−1U β̂(y,X, I)− ηu||2
}

= EV0

{

||β̂(XUTηu+ ǫ/σ,XUT , I)− ηu||2
}

= EVu

{

||β̂(y,X, I)− β(Vu)||2
}

= RVu
(β̂).
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Proof of Theorem 1. Let β̂ = β̂(y, X) be an LiSc estimator. Let O(n) denote

the group of n×n orthogonal matrices. Since β̂(y, X) and β̂(Uy, UX) have the
same distribution for all U ∈ O(n), for parts (a)-(b) of the theorem we may
assume without loss of generality that

β̂(y, X) = β̂(Uy, UX) for all U ∈ O(n). (20)

To prove part (a), suppose that d < n. Then

β̂ = h(η̂2)β̂ols

for some measurable function h : R → R. Now suppose that V ∈ Θd(η2). Then,

RV (β̂) = σ−2EV

[

{h(η̂2)β̂ols − β}TΣ{h(η̂2)β̂ols − β}
]

= E
{

h2(η̂2)σ−2EV (β̂
T

olsΣ β̂ols|η̂2)
}

−2σ−2E
{

h(η̂2)EV (β
TΣ β̂ols|η̂2)

}

+ η2. (21)

Taking h(η̂2) = hopt(η̂
2), where hopt(η̂

2) is given in (7), minimizes the integrand
in (21). Since η̂2(y, X) = η̂2(ty, tXA) for all t > 0 and invertible d × d ma-

trices A, it follows as in the proof of Proposition 1 that σ−2EV (β̂
T

olsΣ β̂ols|η̂2)
and σ−2h(η̂2)EV (β

TΣ β̂ols|η̂2) are constant over V ∈ Θd(η2). Thus, hopt(η̂
2)

depends only on η2, d, and n. Part (a) of Theorem 1 follows.

To prove part (b) of the theorem, suppose that d = n. Then β̂(y, X) =

X−1β̂(y, I). Furthermore, if U ∈ O(d), then

β̂(Uy, I) = β̂(y, UT ) = U β̂(y, I).

It follows that β̂(y, I) = h(||y||2)y for some function h : R → R and

β̂(y, X) = h(||y||2)X−1y.

Since β̂(y, X) = β̂(ty, tX) for all t > 0, it follows that h(||y||2) = h(t||y||2).
Thus, h(||y||2) = c is constant. Part (b) of the theorem follows because
EI [tr{(XTX)−1}] = ∞.

Finally, to prove part (c), we no longer require (20), but we assume that
d > n. Let XT = Q1S

T be the QR decomposition of XT , where Q1 is a d × n
matrix with orthonormal columns and S is an n × n lower triangular matrix.
Let

A = (Q1 Q2)

(

S−1 0
C D

)

= Q1(S
−1 0) +Q2(C D),

where (Q1 Q2) ∈ O(d), C is a (d− n)× n matrix, and D ∈ GL(d− n). Then

β̂(y, X) = Aβ̂(y, XA) = Q1(S
−1 0)β̂(y, (I 0)) +Q2(C D)β̂(y, (I 0)).

Since the above equality must hold for any (d − n) × n matrix C and any

D ∈ GL(d− n), it follows that β̂(y, X) = 0. Part (c) follows immediately.
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Proof of Proposition 2. Note that (XTX)−1 follows an inverse Wishart distri-
bution and EI(X

TX)−1 = (n− d− 1)−1I (see Chapter 3 of (Muirhead, 1982),
for instance). It follows that if V ∈ Θd(η2), then

RV {β̂js(t)} =

{

t

t+ d/(n− d− 1)

}2

EItr{(XTX)−1}

+

{

d/(n− d− 1)

t+ d/(n− d− 1)

}2

η2

=

{

t

t+ d/(n− d− 1)

}2
d

n− d− 1
+

{

d/(n− d− 1)

t+ d/(n− d− 1)

}2

η2.

Thus, (8). The rest of the proposition follows by basic calculus.

Proof of Theorem 2. Suppose that V ∈ Θd(η2) and let β̂opt = hopt(η̂
2)β̂ols be

the optimal LiSc estimator derived in Theorem 1 (a). Then r(η2) = RV (β̂opt). To

prove the theorem, we bound |RV {β̂js(η)}−RV {β̂opt(η)}|. Since RV {β̂opt(η)} ≤
RV {β̂js(η)}, we have the following decomposition:

0 ≤ RV {β̂js(η)} −RV {β̂mm(η)} = EV (L1) + EV (L2) + 2EV (L3), (22)

where

L1 =
1

σ2

[

h2
opt(η̂

2)−
{

η2

η2 + d/(n− d− 1)

}2
]

||Σ1/2(XTX)−1XT ǫ||2

L2 = η2

[

{1− hopt(η̂
2)}2 −

{

d/(n− d− 1)

η2 + d/(n− d− 1)

}2
]

L3 =
1

σ2
hopt(η̂

2){1− hopt(η̂
2)}βTΣ(XTX)−1XT ǫ.

We bound EV (L1), EV (L2), and EV (L3) separately.
To bound EV (L1) and EV (L2), we have

EV |L1| ≤
{

EV

∣

∣

∣

∣

hopt(η̂
2)− η2

η2 + d/(n− d− 1)

∣

∣

∣

∣

3
}1/3

·
{

EV

∣

∣

∣

∣

hopt(η̂
2) +

η2

η2 + d/(n− d− 1)

∣

∣

∣

∣

3
}1/3

·
{

1

σ6
EV ||Σ1/2(XTX)−1XT ǫ||6

}1/3

,

EV |L2| ≤
{

EV

∣

∣

∣

∣

hopt(η̂
2)− η2

η2 + d/(n− d− 1)

∣

∣

∣

∣

2
}1/2

· η2
{

EV

∣

∣

∣

∣

hopt(η̂
2)− 1− d/(n− d− 1)

η2 + d/(n− d− 1)

∣

∣

∣

∣

2
}1/2

.



1826 L.H. Dicker

Thus, Lemma B5 implies that

sup
V ∈Θd(η2)

EV |L1|, sup
V ∈Θd(η2)

EV |L2| = O

(

η2d/n

η2 + d/n
d−1/2

)

. (23)

To bound EV (L3), notice that

EV (L3) =
1

σ2
EV

[

hopt(η̂
2){1− hopt(η̂

2)}βTΣ(XTX)−1XT ǫ
]

− 1

σ2
EV

[

η2d/(n− d− 1)

{η2 + d/(n− d− 1)}2β
TΣ(XTX)−1XTǫ

]

≤
[

EV

∣

∣

∣

∣

hopt(η̂
2){1− hopt(η̂

2)} − η2d/(n− d− 1)

{η2 + d/(n− d− 1)}2
∣

∣

∣

∣

2
]1/2

·
{

1

σ6
EV |βTΣ(XTX)−1XTǫ|2

}1/2

≤ 2

[

EV

∣

∣

∣

∣

{

hopt(η̂
2)− η2

η2 + d/(n− d− 1)

}

{

1− hopt(η̂
2)
}

∣

∣

∣

∣

2

+
η2

η2 + d/(n− d− 1)
EV

∣

∣

∣

∣

hopt(η̂
2)− η2

η2 + d/(n− d− 1)

∣

∣

∣

∣

2
]1/2

·
{

1

σ4
EV |βTΣ(XTX)−1XTǫ|2

}1/2

and, by Lemma B5,

sup
V ∈Θd(η2)

EV (L3) = O

{(

η2d/n

η2 + d/n

)

d−1/2

}

.

The theorem follows by combining this with (22)-(23).

Proof of Theorem 3. Suppose that V ∈ Θd(η2) and consider the following de-
composition of the absolute difference between the predictive risk of the oracle
and adaptive James-Stein estimators, notice that

∣

∣

∣
RV {β̂js(η

2)} −RV {β̂js(η̂
2
+)}
∣

∣

∣
= |EV (J1 + J2 − 2J3)|
≤ |EV (J1)|+ |EV (J2)|+ 2|EV (J3)|,(24)

where

J1 =
1

σ2

[

{

η2

η2 + d/(n− d− 1)

}2

−
{

η̂2+
η̂2+ + d/(n− d− 1)

}2
]

·||Σ1/2(XTX)−1XTǫ||2,

J2 = η2

[

{

d/(n− d− 1)

η2 + d/(n− d− 1)

}2

−
{

d/(n− d− 1)

η̂2+ + d/(n− d− 1)

}2
]

,
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J3 =
1

σ2

η̂2+d/(n− d− 1)

{η̂2+ + d/(n− d− 1)}2β
TΣ(XTX)−1XTǫ.

Similar to the proof of Theorem 2, we bound |EV (J1)|, |EV (J2)|, and |EV (J3)|
separately.

If V ∈ Θd(η2), then

|EV (J1)| ≤ EV |J1|

=
d

n− d− 1
EV

∣

∣

∣

∣

[

η2 − η̂2+
{η2 + d/(n− d− 1)}{η̂2+ + d/(n− d− 1)}

]

·
{

η2

η2 + d/(n− d− 1)
+

η̂2+
η̂2+ + d/(n− d− 1)

}

· 1
σ2

||Σ1/2(XTX)−1XTǫ||2
∣

∣

∣

∣

,

|EV (J2)| ≤ EV |J2|

= η2
(

d

n− d− 1

)2

·EV

∣

∣

∣

∣

[

η2 − η̂2+
{η2 + d/(n− d− 1)}{η̂2+ + d/(n− d− 1)}

]

·
{

1

η2 + d/(n− d− 1)
+

1

η̂2+ + d/(n− d− 1)

}
∣

∣

∣

∣

.

Repeatedly applying the Cauchy-Schwarz inequality and Lemmas B2 and B4,
it follows that

sup
V ∈Θd(η2)

|EV (J1)|, sup
V ∈Θd(η2)

|EV (J2)| = O

{(

d/n

η2 + d/n

)

n−1/2

}

. (25)

To bound |EV (J3)|, we use Stein’s lemma (integration by parts). We have,

EV (J3) =
1

σ2
EV

[

η̂2+d/(n− d− 1)

{η̂2+ + d/(n− d− 1)}2β
TΣ(XTX)−1XT ǫ

]

=
2

n
EV

[

{

d/(n− d− 1)

η̂2+ + d/(n− d− 1)

}2
1

σ̂2
βTΣ(XTX)−1XTy; η̂2+ > 0

]

=
2η2

n
EV

[

{

d/(n− d− 1)

η̂2+ + d/(n− d− 1)

}2
σ2

σ̂2
; η̂2+ > 0

]

+
2

n
EV

[

{

d/(n− d− 1)

η̂2+ + d/(n− d− 1)

}2
1

σ̂2
βTΣ(XTX)−1XT ǫ; η̂2+ > 0

]

.

Using Lemmas B2-B4, one easily checks that

sup
V ∈Θd(η2)

2η2

n
EV

∣

∣

∣

∣

∣

{

d/(n− d− 1)

η̂2+ + d/(n− d− 1)

}2
σ2

σ̂2

∣

∣

∣

∣

∣

= O

{(

d/n

η2 + d/n

)

n−1/2

}
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sup
V ∈Θd(η2)

2

n
EV

∣

∣

∣

∣

∣

{

d/(n− d− 1)

η̂2+ + d/(n− d− 1)

}2

· 1

σ̂2
βTΣ(XTX)−1XTǫ

∣

∣

∣

∣

∣

= O

{(

d/n

η2 + d/n

)

n−1/2

}

.

We conclude that

sup
V ∈Θd(η2)

|EV (J3)| = O

{(

d/n

η2 + d/n

)

n−1/2

}

.

The theorem follows by combining this with (24)-(25).

Proof of Proposition 3. Let V ∈ Θd(η2) and suppose that Σ−1 = USUT , where
U ∈ O(d) and diag(s1, . . . , sd) is a diagonal matrix. Then

RV {β̂r(λI)} = σ−2EV

[

{β̂r(λI) − β}TΣ{β̂r(λI) − β}
]

= σ−2EV

∣

∣

∣

∣

∣

∣
Σ1/2{(XTX + nλI)−1XTX − I}β

∣

∣

∣

∣

∣

∣

2

+ σ−2EV

∣

∣

∣

∣

∣

∣
Σ1/2(XTX + nλI)−1XT ǫ

∣

∣

∣

∣

∣

∣

2

= σ−2EI

∣

∣

∣

∣

∣

∣
nλ(XTX + nλS)−1SUTΣ1/2β

∣

∣

∣

∣

∣

∣

2

+ EI

[

tr
{

(XTX + nλS)−2XTX
}]

.

Taking s1 > 0 sufficiently large, s2, . . . , sd = 1, and β ∈ R
d such that σ−1UTΣ1/2β =

(η, 0, . . . , 0) ∈ R
d, one can ensure that

σ−2EI

∣

∣

∣

∣

∣

∣
nλ(XTX + nλS)−1SUTΣ1/2β

∣

∣

∣

∣

∣

∣

2

≥ η2.

The proposition follows.

Proof of Proposition 5. Let s1 ≥ · · · ≥ sd ≥ 0 denote the eigenvalues of n−1XTX
and suppose that V ∈ Θd(η2). Then, by Jensen’s inequality and Proposition 4
(a),

RV

[

β̂r{d/(nη2)Σ}
]

= EI

[

tr
{

(XTX + d/η2I)−1
}]

= EI







1

n

d
∑

j=1

1

sj + d/(nη2)







= η2EI







1

d

d
∑

j=1

s−1
j

nη2/d+ s−1
j







≤ η2
EItr(X

TX)−1

η2 + EItr(XTX)−1
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=
η2d

η2(n− d− 1) + d

= RV (β̂
∗

js),

where the inequality is strict unless η2 = 0.

Appendix B

Lemma B1. Suppose that κ ≥ 1 is a fixed constant. Then

sup
V ∈Θd(η2)

σ2κEV ||Xβ̂ols||−2κ = O

{(

1

η2 + d/n

)κ

n−κ

}

.

Proof. Conditional on X , the random variable ||Xβ̂ols||2/σ2 follows a noncen-
tral χ2 distribution with d degrees of freedom and noncentrality parameter
||Xβ||2/σ2. Thus, the distribution of ||Xβ̂ols||2/σ2 is the same as that of a
central χ2 random variable with 2N + d degrees of freedom, where N |X ∼
Poisson(ζ) and ζ = ||Xβ||2/(2σ2). Since the κ-th inverse moment of a (central)
χ2 random with l degrees of freedom is 2−κΓ(l/2−κ)/Γ(l/2), provided κ < l/2,
it follows that

σ2κEV ||Xβ̂ols||−2κ = 2−κEV

{

Γ(N + d/2− κ)

Γ(N + d/2)

}

By Theorem 2.4 of (Ismail et al., 1986),

Γ(m− κ)

Γ(m)
≤ (m− κ)−κ

m− κ > 0. Thus,

σ2κEV ||Xβ̂ols||−2κ ≤ 2−κEV (N + d/2− κ)−κ ≤ (d− 2κ)−κ

and

sup
V ∈Θd(η2)

σ2κEV ||Xβ̂ols||−2κ ≤ sup
V ∈Θd(η2)

2−κEV (N + d/2− κ)−κ

= O

{

sup
V ∈Θd(η2)

σ2κEV ||Xβ||−2κ

}

= O(η−2κn−κ).

The lemma follows.

Lemma B2. Suppose that κ ≥ 1 is a fixed constant and let η̂2+ be as in (11).
Suppose further that 0 < d/n ≤ ρ+ < 1 for some fixed constant ρ+ ∈ R. Then

sup
V ∈Θd(η2)

EV

(

1

η̂2+ + d/n

)κ

= O

{(

1

η2 + d/n

)κ}

.
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Proof. Notice that

EV

(

1

η̂2+ + d/n

)κ

≤ EV

{

σ̂2/σ2

||Xβ̂ols||2/(nσ2)

}κ

= EV

(

σ̂2

σ2

)κ

EV

{

1

||Xβ̂ols||2/(nσ2)

}κ

.

The result follows from Lemma B1.

Lemma B3. Suppose that 0 < d/n ≤ ρ+ < 1 for some fixed constant ρ+ ∈ R

and let κ > 0 be fixed. Then

sup
V ∈Θd(η2)

PV (η̂
2
+ = 0) = O

(

dκ/2

η2κnκ

)

.

Proof. Let U = ||Xβ̂ols||2/σ2 and let W = ||y −Xβ̂ols||2/σ2 = (n − p)σ̂2/σ2.
Then W ∼ χ2

n−d has a χ2 distribution with n − d degrees of freedom and,
conditional on X , U ∼ χ2

||Xβ||2/σ2,d has a noncentral χ2 distribution with non-

centrality parameter ||Xβ||2/σ2 and d degrees of freedom. Furthermore, U and
W are independent and

η̂2+ = max

{

d

n

[

U/d

W/(n− d)
− 1

]

, 0

}

.

Thus, for V ∈ Θd(η2),

PV (η̂
2
+ = 0) = PV

(

1

d
U ≤ 1

n− d
W

)

≤ EV exp

(

r

n− d
W

)

EV

(

− r

d
U
)

=

(

1

1− 2r
n−d

)(n−d)/2
(

1

1 + 2r
d

)d/2

· EV exp

(

− r

d+ 2r
||Xβ||2/σ2

)

=

(

n− d

n− d− 2r

)(n−d)/2(
d

d+ 2r

)d/2{
d+ 2r

d+ 2(η2 + 1)r

}n/2

≤ exp

{

2r2n

(n− d− 2r)(d+ 2r)

}{

d+ 2r

d+ 2(η2 + 1)r

}n/2

,

provided r < (n− d)/2. Now, basic calculus implies that

sup
η2≥0

η2k
{

d+ 2r

d+ 2(η2 + 1)r

}n/2

≤ e−k

{

(d+ 2r)k

r(n − 2k)

}k

.

The lemma follows by taking r = α
√
d for α > 0 sufficiently small.
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Lemma B4. Suppose that ρ+, κ > 0 are fixed constants and that 0 < d/n ≤
ρ+ < 1. Then

sup
V ∈Θd(η2)

EV |η̂2+ − η2|κ = O

{

(d/n)κ/2 + ηκ + η2κ

nκ/2

}

.

Proof. Using Lemma B3, we have

EV |η̂2+ − η2|κ ≤ EV

∣

∣

∣

∣

∣

||Xβ̂ols||2
nσ̂2

−
(

d

n
+ η2

)

∣

∣

∣

∣

∣

κ

+ η2κPV (η̂
2
+ = 0)

= EV

∣

∣

∣

∣

∣

||Xβ̂ols||2
nσ̂2

−
(

d

n
+ η2

)

∣

∣

∣

∣

∣

κ

+O

(

dκ/2

nκ

)

. (26)

Since (n− d)σ̂2 = ||y −Xβ̂ols||2 and ||Xβ̂ols||2 are independent,

EV

∣

∣

∣

∣

∣

||Xβ̂ols||2
nσ̂2

−
(

d

n
+ η2

)

∣

∣

∣

∣

∣

κ

≤ 2κEV

∣

∣

∣

∣

∣

||Xβ̂ols||2
nσ̂2

−
(

η2 +
d

n

)

σ2

σ̂2

∣

∣

∣

∣

∣

κ

+ 2κ
(

η2 +
d

n

)κ

EV

∣

∣

∣

∣

σ2

σ̂2
− 1

∣

∣

∣

∣

κ

≤ 2κEV

(

σ2

σ̂2

)κ

EV

∣

∣

∣

∣

∣

||Xβ̂ols||2
nσ2

−
(

η2 +
d

n

)

∣

∣

∣

∣

∣

κ

+ 2κ
(

η2 +
d

n

)κ

EV

∣

∣

∣

∣

σ2

σ̂2
− 1

∣

∣

∣

∣

κ

.

As in the proof of Lemma B1, let N ∼ Poisson{||Xβ||2/(2σ2)}. Then, since
||Xβ̂ols||2/σ2 ∼ χ2

2N+d,

EV

∣

∣

∣

∣

∣

||Xβ̂ols||2
nσ2

−
(

η2 +
d

n

)

∣

∣

∣

∣

∣

κ

≤ 2κEV

∣

∣

∣

∣

∣

||Xβ̂ols||2
nσ2

− 2N + d

n

∣

∣

∣

∣

∣

κ

+ 2κEV

∣

∣

∣

∣

2N

n
− η2

∣

∣

∣

∣

κ

.

Thus,

sup
V ∈Θd(η2)

EV

∣

∣

∣

∣

∣

||Xβ̂ols||2
nσ2

−
(

η2 +
d

n

)

∣

∣

∣

∣

∣

κ

= O

{

n−κ/2

(

η2 +
d

n

)κ/2
}

Additionally, one can check that

sup
V ∈Θd(η2)

EV

∣

∣

∣

∣

σ2

σ̂2
− 1

∣

∣

∣

∣

κ

= O(n−κ/2).
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It follows that

sup
V ∈Θd(η2)

EV

∣

∣

∣

∣

∣

||Xβ̂ols||2
nσ̂2

−
(

d

n
+ η2

)

∣

∣

∣

∣

∣

κ

= O

{

(d/n)κ/2 + ηκ + η2κ

nκ/2

}

.

The lemma follows by combining this with (26).

Lemma B5. Suppose that ρ+, κ > 0 are fixed constants. Suppose further that
0 < d/n ≤ ρ+ < 1 and let hopt(η̂

2) be as in (7). Then

sup
V ∈Θd(η2)

EV

∣

∣

∣

∣

hopt(η̂
2)− η2

η2 + d/(n− d− 1)

∣

∣

∣

∣

k

= O

{

(

η

η2 + d/n

)k

n−κ/2

}

.

Proof. Let

H =

∣

∣

∣

∣

hopt(η̂
2)− η2

η2 + d/(n− d− 1)

∣

∣

∣

∣

κ

.

Then

H ≤ 2κ

∣

∣

∣

∣

∣

∣

EV

(

βTΣ β̂ols

∣

∣

∣
η̂2
)

− η2σ2

EV

(

||Σ1/2β̂ols||2
∣

∣

∣
η̂2
)

∣

∣

∣

∣

∣

∣

κ

+ 2κ

∣

∣

∣

∣

∣

∣

η2
{

EV

(

||Σ1/2β̂ols||2
∣

∣

∣
η̂2
)

− η2σ2 − dσ2/(n− d− 1)
}

{η2 + d/(n− d− 1)}EV

(

||Σ1/2β̂ols||2
∣

∣

∣
η̂2
)

∣

∣

∣

∣

∣

∣

κ

and, using the Cauchy-Schwarz and Jensen’s inequalities,

EV (H) ≤ 2κ
{

σ4κEV ||Σ1/2β̂ols||−4κ
}1/2

·













EV

∣

∣

∣

∣

∣

βTΣ β̂ols

σ2
− η2

∣

∣

∣

∣

∣

2κ






1/2

+

{

η2

η2 + d/(n− d− 1)

}κ

·







EV

∣

∣

∣

∣

∣

||Σ1/2β̂ols||2
σ2

− η2 − d

n− d− 1

∣

∣

∣

∣

∣

2κ






1/2






≤ 2κ
{

σ4κEV ||Σ1/2β̂ols||−4κ
}1/2






(4κ + 1)

·







EV

∣

∣

∣

∣

∣

βTΣ(XTX)−1XTǫ

σ2

∣

∣

∣

∣

∣

2κ






1/2

+

{

2η2

η2 + d/(n− d− 1)

}κ

·
{

EV

∣

∣

∣

∣

||Σ1/2(XTX)−1XT ǫ||2
σ2

− d

n− d− 1

∣

∣

∣

∣

2κ
}1/2






. (27)
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Since EI ||XTX ||r = O(nr) for fixed r > 0, where ||XTX || denotes the operator
norm of XTX (see, for instance, Lemma C2 of (Dicker, 2013)), Lemma B1
implies that

sup
V ∈Θd(η2)

σ4κEV ||Σ1/2β̂ols||−4κ = O

{

(

1

η2 + d/n

)2κ
}

. (28)

Furthermore, since EI ||(XTX)−1||r = O(n−r) for fixed r > 0 (see, again,
Lemma C2 of (Dicker, 2013)), it follows that

sup
V ∈Θd(η2)

EV

∣

∣

∣

∣

∣

βTΣ(XTX)−1XT ǫ

σ2

∣

∣

∣

∣

∣

2κ

= O(η2κn−κ) (29)

and

sup
V ∈Θd(η2)

EV

∣

∣

∣

∣

||Σ1/2(XTX)−1XT ǫ||2
σ2

− d

n− d− 1

∣

∣

∣

∣

2κ

= O(n−κ). (30)

Combining (27)-(30) yields

sup
V ∈Θd(η2)

EV (H) = O

[(

1

η2 + d/n

)κ{

ηκn−κ/2 +

(

η2

η2 + d/n

)κ

n−κ/2

}]

= O

{(

η

η2 + d/n

)κ

n−κ/2

}

,

which proves the lemma.
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