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Abstract: In probabilistic forecasting combination formulas for the ag-
gregation of predictive distributions need to be estimated based on past
experience and training data. We study combination formulas and aggrega-
tion methods for predictive cumulative distribution functions from the per-
spectives of calibration and dispersion, taking an original prediction space
approach that applies to discrete, mixed discrete-continuous and continu-
ous predictive distributions alike. The key idea is that aggregation methods
ought to be parsimonious, yet sufficiently flexible to accommodate any type
of dispersion in the component distributions. Both linear and non-linear ag-
gregation methods are investigated, including generalized, spread-adjusted
and beta-transformed linear pools. The effects and techniques are demon-
strated theoretically, in simulation examples, and in case studies, where we
fit combination formulas for density forecasts of S&P 500 returns and daily
maximum temperature at Seattle-Tacoma Airport.
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1. Introduction

Probabilistic forecasts aim to provide calibrated and sharp predictive distribu-
tions for future quantities or events of interest. As they admit the assessment of
forecast uncertainty and allow for optimal decision making, probabilistic fore-
casts continue to gain prominence in a wealth of applications, ranging from
economics and finance to meteorology and climatology (Gneiting, 2008). The
general goal is to maximize the sharpness of the predictive distributions sub-
ject to calibration (Murphy and Winkler, 1987; Gneiting et al., 2007). For a
real-valued outcome, a probabilistic forecast can be represented in the form of
a predictive cumulative distribution function, which might be discrete, mixed
discrete-continuous or continuous, with the latter case corresponding to density
forecasts.

In many situations, complementary or competing probabilistic forecasts from
dependent or independent information sources are available. For example, the
individual forecasts might stem from distinct experts, organizations, or statis-
tical models. The prevalent method for aggregating the individual predictive
distributions into a single combined forecast is the linear pool (Stone, 1961).
While other methods for combining predictive distributions are available (Gen-
est and Zidek, 1986; Clemen and Winkler, 2007), the linear pool is typically the
method of choice, with the pioneering work of Winkler (1968) and Zarnowitz
(1969), and recent papers by Mitchell and Hall (2004), Wallis (2005), Hall and
Mitchell (2007), Jore et al. (2010), Kascha and Ravazzolo (2007) and Garratt et
al. (2011) being examples in the case of density forecasts. Similarly, linear pools
have been applied successfully to combine discrete predictive distributions; for
recent reviews, see Ranjan and Gneiting (2010), Clements and Harvey (2011)
and Allard et al. (2012).

In practice, combination formulas need to be estimated based on past ex-
perience and training data. To fix the idea, we consider a general real-valued
outcome, so that the training data are of the form

{(F1j , . . . , Fkj , yj) : j = 1, . . . , J}, (1)
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where there are J cases in the training set, with the first k arguments denoting
the individual predictive cumulative distribution functions, and the final argu-
ment the realizing observation. To aggregate the individual predictive cumula-
tive distribution functions in out-of-sample cases, one specifies an aggregation

method, that is, a family G = {Gθ : θ ∈ Θ} of combination formulas of the form

Gθ : Fk = F × · · · × F → F , (F1, . . . , Fk) 7→ Gθ(F1, . . . , Fk).

where F is a suitable class of cumulative distribution functions. For example,
if G is the traditional linear pool, we can take F to be any convex class of
cumulative distribution functions, and we may identify the index set Θ with
the unit simplex in Rk. The goal then is to estimate an optimal combination
formula based on training data of the form (1).

Despite the ubiquitous success of the linear pool in a vast number of ap-
plications, for which Krüger (2013) provides an appealing partial explanation,
fragmented recent work points at shortcomings and limitations. Hora (2004)
and Ranjan and Gneiting (2010) showed in special cases that if each of the in-
dividual predictive distributions is calibrated, any nontrivial linear combination
is necessarily uncalibrated. As calibration is a critical requirement for a prob-
abilistic forecast to be practically useful (Dawid, 1984; Diebold et al., 1998),
these results suggest that linear pooling might be suboptimal, in that nonlin-
ear combination formulas might outperform linear methods, as demonstrated
empirically by Ranjan and Gneiting (2010) and Allard et al. (2012).

Our initial goal here is to unify and extend the aforementioned results. To-
wards this end, we develop novel theoretical approaches to studying combination
formulas and aggregation methods. Technically, we operate in terms of cumula-
tive distribution functions, which permits a unified treatment of all real-valued
predictands, including the cases of density forecasts, mixed discrete-continuous
predictive distributions, probability mass functions for count data, and prob-
ability forecasts of a dichotomous event. The extant literature compares com-
bination formulas by examining whether or not they possess certain analytic
characteristics, such as the strong setwise function and external Bayes proper-
ties (Genest and Zidek, 1986; French and Rı́os Insua, 2000). In contrast to the
earlier work, we assess combination formulas and aggregation methods from the
perspectives of calibration and dispersion.

Section 2 sets the stage by introducing the key tool of a prediction space,
which is a probability space tailored to the study of forecasts and combination
formulas. In this framework, training data of the form (1) are interpreted as
a sample from the underlying joint distribution of the forecasts and the obser-
vations. We revisit the work of Gneiting et al. (2007) and Ranjan and Gneit-
ing (2010) in the prediction space setting and show, perhaps surprisingly, that
if the outcome is binary, conditional calibration is equivalent to probabilistic
calibration. Section 3 is devoted to the study of specific, linear and non-linear
combination formulas and aggregation methods. A major result is, roughly, that
dispersion tends to increase under linear pooling. This helps explain the suc-
cess of linear combination formulas in aggregating underdispersed component
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distributions, and allows us to show that the traditional linear pool fails to be
flexibly dispersive. Parsimonious nonlinear alternatives include generalized lin-
ear pools, the spread-adjusted linear pool, which has been used successfully in
meteorological applications, and the beta-transformed linear pool proposed by
Ranjan and Gneiting (2010), which we demonstrate to be flexibly dispersive.
Section 4 turns to a simulation study and data examples, where we fit combi-
nation formulas for aggregating density forecasts of S&P 500 returns and daily
maximum temperature at Seattle-Tacoma Airport. The paper ends in Section
5, where we discuss our findings and suggest directions for future work.

2. Prediction spaces, combination formulas and aggregation
methods

In a seminal paper, Murphy and Winkler (1987) proposed a general framework
for the evaluation of point forecasts, which is based on the joint distribution
of the forecast and the observation. Dawid et al. (1995) developed and used a
related framework in studying multiple probability forecasts for a binary event.
Here we respond to the call of Dawid et al. (1995, p. 28) for an extension,
and we start with an informal sketch of a fully general approach, in which the
observations take values in just any space.

The most general setting considers the joint distribution of multiple prob-
abilistic forecasts and the observation on a probability space (Ω,A,Q). More
explicitly, we assume that the elements of the sample space Ω can be identified
with tuples of the form

(P1, . . . , Pk, Y ),

where each of P1, . . . , Pk is a probability measure on the outcome space of the
observation, Y . For i = 1, . . . , k, we require the random probability measure
Pi to be measurable with respect to the sub-σ-algebra Ai ⊆ A that encodes
the forecast’s information set or information basis, consisting of data, expertise,
theories and assumptions at hand. The probability measureQ on (Ω,A) specifies
the joint distribution of the probabilistic forecasts and the observation.

In this setting, the probabilistic forecasts P1, . . . , Pk might stem from dis-
tinct experts, organizations or statistical models, as commonly encountered in
the practice of forecasting. In aggregating them, the ideal strategy is to com-
bine information sets, that is, to issue the conditional distribution of the obser-
vation Y given the σ-algebra σ(A1, . . . ,Ak) generated by the information sets
A1, . . . ,Ak. However, as Dawid et al. (1995, p. 264) note,

“this ideal will almost always be rendered unattainable, by the extent

of the data, company confidentiality, or the inability of the experts to

identify clearly the empirical basis and background knowledge leading to

their intuitive opinions.“

The best that we can hope for in practice is to find the conditional distribution
of the observation Y given the σ-algebra σ(P1, . . . , Pk) generated by the random
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probability measures P1, . . . , Pk. Of course, it is always true that

σ(P1, . . . , Pk) ⊆ σ(A1, . . . ,Ak),

and in most cases of practical interest the left-hand side constitutes a substan-
tially lesser information basis than the right-hand side.

2.1. Prediction spaces

In what follows, we restrict the discussion to the case of a real-valued observa-
tion. A probabilistic forecast then corresponds to a Lebesgue-Stieltjes measure
on the real line, R, which we identify with the associated right-continuous cumu-
lative distribution function (CDF). We use the symbol L generically to denote
an unconditional or conditional law or distribution and follow standard conven-
tions in identifying the sub-σ-algebras on which we condition. In particular, we
write σ(A1, . . . ,Am) and σ(X1, . . . , Xn) to denote the σ-algebra generated by
the families A1, . . . ,Am of subsets of Ω, and the random variables X1, . . . , Xn,
respectively.

We now introduce the key tool of a prediction space, which is a probability
space tailored to the study of combination formulas for real-valued outcomes,
though we allow the case k = 1 of a single probabilistic forecast.

Definition 2.1. Let k ≥ 1 be an integer. A prediction space is a probability
space (Ω,A,Q) together with sub-σ-algebras A1, . . . ,Ak ⊆ A, where the ele-
ments of the sample space Ω can be identified with tuples (F1, . . . , Fk, Y, V )
such that

(P1) for i = 1, . . . , k, Fi is a CDF-valued random quantity that is measurable
with respect to the sub-σ-algebra Ai,

1

(P2) Y is a real-valued random variable,
(P3) V is a random variable that is uniformly distributed on the unit interval

and independent of A1, . . . ,Ak and Y .

All subsequent definitions and results are within the prediction space setting.
Phrases such as almost surely or with positive probability refer to the probability
measure Q on (Ω,A) that determines the joint distribution of the probabilistic
forecasts and the observations. While (P1) and (P2) formalize the predictive
distributions and the observation, assumption (P3) is purely technical, allowing
us to define a generalized version of the classical probability integral transform.
The sub-σ-algebra Ai encodes the information set for the CDF-valued random
quantity Fi which may, but need not, be ideal in the following sense.2

Definition 2.2. The CDF-valued random quantity Fi is ideal relative to the
sub-σ-algebra Ai if Fi = L(Y |Ai ) almost surely.

1That is, {Fi(xj) ∈ Bj for j = 1, . . . , n} ∈ A for all finite collections x1, . . . , xn of real
numbers and B1, . . . , Bn of Borel sets.

2In independent work, Tsyplakov (2011, 2013) proposes the same terminology.
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The subsequent examples serve to illustrate the notions of prediction spaces
and ideal forecasts. We write N (µ, σ2) for the univariate normal distribution
with mean µ and variance σ2, and we use the symbols Φ and φ to denote the
standard normal cumulative distribution function and density function, respec-
tively.

Example 2.3 (probability forecasts of a binary event). We consider a slight
generalization of the simulation experiment of Ranjan and Gneiting (2010). In
this setting, three forecasters issue the probability forecasts

p1 = Φ

(

ω1
√

1 + σ2
2

)

, p2 = Φ

(

ω2
√

1 + σ2
1

)

and p3 = Φ(ω1 + ω2) (2)

for a binary event with success probability Φ(ω1 + ω2), where ω1 and ω2 are
independent normal random variables with mean zero and variance σ2

1 and σ2
2 .

To construct a suitable prediction space, let

Ω = R× R× {0, 1} × (0, 1),

write ω = (ω1, ω2, ω3, ω4) ∈ Ω for an elementary event, and let A be the corre-
sponding Borel-σ-algebra. We define Q to be the product of N (0, σ2

1), N (0, σ2
2)

and a standard uniform measure on the first, second and fourth coordinate
projections, respectively, and let

Q(B1×B2×{1}×(0, 1)) =
1

σ1σ2

∫

B1

∫

B2

Φ(ω1+ω2)φ

(
ω1

σ1

)

φ

(
ω2

σ2

)

dλ(ω1) dλ(ω2)

for Borel sets B1, B2 ⊆ R, where λ denotes the Lebesgue measure. Having
defined the triple (Ω,A,Q), we construct the probability forecasts p1(ω), p2(ω)
and p3(ω) as in (2), and define the observation Y (ω) = ω3 as well as the auxiliary
variable V (ω) = ω4. The CDF-valued random quantities Fi then are of the form
Fi(y) = (1−pi)1(y ≥ 0)+pi1(y ≥ 1) for i = 1, 2 and 3, where F1 is measurable
with respect to the sub-σ-algebra A1 = σ(ω1), F2 is measurable with respect to
A2 = σ(ω2) and F3 is measurable with respect to A3 = σ(ω1, ω2). Moreover, F1

is ideal relative to A1, F2 is ideal relative to A2 and F3 is ideal relative to A3.

Typically, it suffices to consider the joint distribution of the tuple (F1, . . . ,
Fk, Y ), without any need to explicitly specify other facets of the prediction
space, as illustrated in the following example.

Example 2.4 (density forecasts). To define a prediction space, let

Y | µ ∼ N (µ, 1) where µ ∼ N (0, 1).

In this simplified version of the simulation example in Gneiting et al. (2007), the
perfect forecast F1 = N (µ, 1) is ideal relative to the sub-σ-algebra generated by
the random variable µ. The climatological forecast F2 = N (0, 2) is ideal relative
to the trivial sub-σ-algebra.
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Readers interested in further examples might wish to look ahead to Sec-
tion 4.1, where we describe a regression setting, in which the density forecasts
are ideal relative to sub-σ-algebras that represent both public and proprietary
information.

2.2. Calibration and dispersion

If F denotes a fixed, non-random predictive cumulative distribution function
for an observation Y , the probability integral transform is the random variable
ZF = F (Y ). It is well known that if F is continuous and Y ∼ F then ZF is
standard uniform (Rosenblatt, 1952). If the more general, randomized version
of the probability integral transform studied by Rüschendorf (1981) is used, the
uniformity result applies to arbitrary, not necessarily continuous, but still fixed,
non-random cumulative distribution functions.

In the prediction space setting, we need the following, further extension that
allows for F to be a CDF-valued random quantity.

Definition 2.5. In the prediction space setting, the random variable

ZF = lim y↑Y F (y) + V
(

F (Y )− lim y↑Y F (y)
)

is the probability integral transform of the CDF-valued random quantity F .

In a nutshell, the probability integral transform is the value that the predic-
tive cumulative distribution function attains at the observation, with suitable
adaptations at any points of discontinuity. The probability integral transform
takes values in the unit interval, and so the possible values of its variance are con-
strained to the closed interval [0, 1

4 ]. A variance of 1
12 corresponds to a uniform

distribution and continues to be the most desirable, as evidenced by Theorem
2.8 below.

We are now ready to define and study notions of calibration and disper-
sion. In doing so, we use the terms CDF-valued random quantity and forecast
interchangeably.

Definition 2.6. In the prediction space setting, let F and G be CDF-valued
random quantities with probability integral transforms ZF and ZG.

(a) The forecast F is marginally calibrated if EQ[F (y)] = Q(Y ≤ y) for all
y ∈ R.

(b) The forecast F is probabilistically calibrated if its probability integral trans-
form ZF is uniformly distributed on the unit interval.

(c) The forecast F is overdispersed if var(ZF ) < 1
12 , neutrally dispersed if

var(ZF ) =
1
12 , and underdispersed if var(ZF ) >

1
12 .

(d) The forecast F is at least as dispersed as the forecast G if var(ZF ) ≤
var(ZG). It is more dispersed than G if var(ZF ) < var(ZG).

(e) The forecast F is regular if the support of the distribution of ZF is the
unit interval.
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Dawid (1984), Diebold et al. (1998), Gneiting et al. (2007) and Czado et al.
(2009), among others, have argued powerfully that marginal and probabilistic
calibration are critical requirements for a probabilistic forecast to be practically
useful. In the defining equality EQ[F (y)] = Q(Y ≤ y) for marginal calibration,
the left-hand side depends on the law of the predictive distribution, whereas the
right-hand side depends on the law of the observation. In parts (c) and (d) of
Definition 2.6, we define dispersion in terms of the variance of the probability
integral transform, thus involving the joint law of the predictive distribution
and the observation. In contrast, the spread of the predictive distribution itself
is a measure of sharpness that does not consider the observation.

Our current setting of prediction spaces differs from, but relates closely to,
the approach of Gneiting et al. (2007), who studied notions of calibration from
a prequential perspective. Specifically, if the CDF-valued random quantity F is
probabilistically calibrated in the sense of Definition 2.6 and we sample from
the joint law of F and Y , the resulting sequence is probabilistically calibrated in
the sense of Gneiting et al. (2007). An analogous statement applies to marginal
calibration.

Returning to the prediction space setting, the following result is immediate.

Proposition 2.7. A probabilistically calibrated forecast is neutrally dispersed

and regular.

The converse is not necessarily true, in that a forecast which is neutrally
dispersed need not be calibrated nor regular. However, an ideal forecast is always
calibrated.

Theorem 2.8. A forecast that is ideal relative to a σ-algebra is both marginally

calibrated and probabilistically calibrated.

Proof. Suppose that F = L(Y |A0) is ideal relative to the σ-algebra A0, so that
F (y) = Q(Y ≤ y |A0) almost surely for all y ∈ R. Then

EQ[F (y)] = EQ[Q(Y ≤ y |A0)] = EQ EQ [1(Y ≤ y) |A0 ] = Q(Y ≤ y),

where 1 denotes an indicator function, thereby proving the statement about
marginal calibration. Turning to probabilistic calibration, let Q0 denote the
marginal law of Y under Q, so that ZF = Q0((−∞, Y ) |A0) + V Q0({Y }|A0)
and

Q(ZF ≤ z) = EQ EQ [1(ZF ≤ z) |A0 ] = z

for z ∈ (0, 1), where the final equality uses the uniformity of the traditional ran-
domized probability integral transform, as proved in Lemma 3 of Rüschendorf
(1981).

In the special case of marginal calibration and discrete predictive distribu-
tions, the statement of Theorem 2.8 is due to Bröcker (2009, Appendix B).
An interesting open question is whether there are any forecasts that are both
probabilistically calibrated and marginally calibrated, but are not ideal. While
we conjecture that the answer is in the positive, we do not know of any such
examples.
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Table 1

Probabilistic forecasts in Examples 2.4 and 2.9. The observation Y is normal with mean µ
and variance 1, where µ is standard normal. The random variable τ attains the values −1

and 1 with probability 1

2
, independently of µ and Y

Forecast Predictive Distribution Marginally Probabilistically Ideal
Calibrated Calibrated

Perfect F1 = N (µ, 1) Yes Yes Yes

Climatological F2 = N (0, 2) Yes Yes Yes

Unfocused F3 = 1

2
(N (µ, 1) +N (µ + τ, 1)) No Yes No

Sign-reversed F4 = N (−µ, 1) Yes No No

We now revisit and extend Example 2.4.

Example 2.9. Let

Y | µ ∼ N (µ, 1) where µ ∼ N (0, 1),

and let τ attain the values 1 and −1 with equal probability, independently of µ
and Y . Table 1 places the density forecasts in the simulation example of Gneit-
ing et al. (2007) in this setting. By Example 2.4 the perfect forecast and the
climatological forecast are ideal, and so by Theorem 2.8 they are both proba-
bilistically calibrated and marginally calibrated. Arguments nearly identical to
those in Gneiting et al. (2007) show that the unfocused forecast is probabilisti-
cally calibrated but not marginally calibrated, and that the sign-biased forecast
is marginally calibrated but not probabilistically calibrated. Hence, there is no
sub-σ-algebra or information set relative to which the unfocused or the sign-
biased forecast is ideal.

As noted, probabilistic calibration is a critical requirement for probabilistic
forecasts that take the form of predictive cumulative distribution functions, with
Theorem 2.8 lending further support to this approach. Indeed, checks for the
uniformity of the probability integral transform have formed a cornerstone of
density forecast evaluation. In practice, one observes a sample from the joint
distribution Q of the probabilistic forecasts and the observation, and the unifor-
mity of the probability integral transform is assessed empirically. The prevalent
way of doing this is by plotting histograms of the probability integral trans-
form values for the various forecasting methods, which show the corresponding
frequency distribution over an evaluation or test set. U-shaped histograms cor-
respond to underdispersed predictive distributions with prediction intervals that
are too narrow on average, while hump or inverse U-shaped histograms indicate
overdispersed predictive distributions.

Example 2.10. Let Y = X + ǫ, where X and ǫ are independent, standard
normal random variables, and consider the Gaussian predictive distribution
Fσ = N (X, σ2). A stochastic domination argument, the details of which we
give in Appendix A, shows that Fσ is underdispersed if σ < 1, neutrally dis-
persed if σ = 1 and overdispersed if σ > 1. If σ = 1 then Fσ is ideal and thus
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Fig 1. The variance (3) of the probability integral transform Zσ = Fσ(Y ) for the predictive
distribution Fσ in Example 2.10 as a function of the predictive standard deviation, σ. The
dashed horizontal line at 1
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indicates a neutrally dispersed forecast.
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Fig 2. Probability integral transform histograms for the predictive distribution Fσ in Example
2.10, where σ = 3

4
(underdispersed), σ = 1 (neutrally dispersed and calibrated) and σ = 5

4

(overdispersed).

both marginally calibrated and probabilistically calibrated. A more detailed cal-
culation, which is also given in Appendix A, shows that the probability integral
transform Zσ = Fσ(Y ) satisfies

var(Zσ) = 2

∫ 1

0

z
(
1− Φ(σ(Φ−1(z)))

)
dz −

(∫ 1

0

(
1− Φ(σ(Φ−1(z)))

)
dz

)2

.

(3)
In Figure 1 we plot var(Zσ) as a function of the predictive standard deviation,
σ. Figure 2 shows probability integral transform histograms for a Monte Carlo
sample of size 10, 000 from the joint distribution of the observation Y and the
forecasts Fσ , where σ = 3

4 , 1 and 5
4 . The histograms are U-shaped, uniform, and

inverse U-shaped, reflecting underdispersion, neutral dispersion and calibration,
and overdispersion, respectively.
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In the case of a binary outcome Y , we identify a CDF-valued random quantity
F (y) = (1−p)1(y ≥ 0)+p1(y ≥ 1) with the probability forecast p for a success,
that is, Y = 1. The extant literature, including Schervish (1989) and Ranjan
and Gneiting (2010) and the references therein, calls p calibrated if

Q(Y = 1 | p) = p almost surely. (4)

Here we refer to this natural property as conditional calibration. Perhaps sur-
prisingly, our next result shows that if the outcome is binary, the notions of
conditional calibration and probabilistic calibration are equivalent. Thus, the
general notion of probabilistic calibration nests the traditional concept of con-
ditional calibration.

Theorem 2.11. Consider a prediction space (Ω,A,Q) with a binary outcome

Y , where Y = 1 corresponds to a success and Y = 0 to a failure, and a CDF-

valued random quantity F (y) = (1 − p)1(y ≥ 0) + p1(y ≥ 1), which can be

identified with the probability forecast p for a success. Then the following state-

ments are equivalent:

(i) The probability forecast p is conditionally calibrated, that is, Q(Y = 1 | p) =
p almost surely.

(ii) The forecast F is probabilistically calibrated, that is, its probability integral

transform ZF is uniformly distributed on the unit interval.

(iii) The forecast F is ideal relative to the σ-algebra generated by the probability

forecast p.

Proof. It is clear that (i) and (iii) are equivalent, and by Theorem 2.8 the state-
ment (iii) implies (ii). To conclude the proof, we show that statement (ii) implies
(i). To this end, suppose that the forecast F is probabilistically calibrated. By
standard properties of conditional expectations, there exists a measurable func-
tion q : [0, 1] → [0, 1] such that Q(Y = 1 | p) = q(p) almost surely. Let H denote
the marginal law of p under Q. If H has a point mass at 0 or 1, it is readily seen
that q(0) = 0 or q(1) = 1, respectively.

A version of the conditional density u(z |x) of the probability integral trans-
form ZF given that p = x ∈ [0, 1] satisfies u(z |x) = (1 − q(x))/(1 − x) for
z ∈ [0, 1− x] and u(z |x) = q(x)/x for z ∈ (1 − x, 1]. The marginal density u of
ZF is standard uniform, so that

u(z + δ)− u(z) =

∫

[0,1]

(

u(z + δ |x)− u(z |x)
)

dH(x)

=

∫

(1−z−δ,1−z]

q(x)− x

x(1− x)
dH(x) = 0

for Lebesgue-almost all z ∈ (0, 1) and δ ∈ (0, 1 − y). Let 0 < a < b < 1, and
consider the signed measure defined by

µ(A) =

∫

A

q(x) − x

x(1− x)
dH(x)
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Table 2

Example of a probabilistically calibrated, but not auto-calibrated CDF-valued random
quantity F for a ternary outcome Y

Q-probability F (x) Q(Y = i |F )

x < 0 0 ≤ x < 1 1 ≤ x < 2 x ≥ 2 i = 0 i = 1 i = 2

1

2
0 1

2
1 1 3

4

1

4
0

1

2
0 1

2

3

4
1 1

4

3

8

3

8

for Borel sets A ⊆ [a, b]. We have just shown that µ(A) = 0 for all intervals
(c, d] ⊆ [a, b], except possibly for c or d in a Lebesgue null set. Since the family
of such intervals generates the Borel-σ-algebra, this is only possible if µ is the
null measure, so that µ(A) = 0 for all Borel sets A in [a, b]. In particular,
µ(A) = 0 for A = {x ∈ [a, b] : q(x) > x} and A = {x ∈ [a, b] : q(x) < x}, which
implies that q(x) = x almost surely with respect to the restriction of H to [a, b].
To summarize, we have shown that q(x) = x almost surely with respect to H ,
whence Q(Y = 1 | p) = p almost surely with respect to Q, as desired.

Theorem 2.11 draws a connection from the probability integral transform
histogram to the reliability diagram or calibration curve, which is the key di-
agnostic tool for assessing the calibration of probability forecasts for a binary
event (Dawid, 1986; Murphy and Winkler, 1992; Ranjan and Gneiting, 2010).
A reliability diagram plots conditional event frequencies against binned fore-
cast probabilities, with deviations from the diagonal indicating violations of the
conditional calibration condition (4).

For non-binary outcomes Y and the natural generalization of the conditional
calibration criterion, namely the auto-calibration property

L(Y |F ) = F Q-almost surely

introduced by Tsyplakov (2011, 2013), the equivalence to probabilistic calibra-
tion fails, as demonstrated in Table 2 for a ternary outcome. For general real-
valued outcomes, auto-calibration implies both probabilistic and marginal cal-
ibration, while probabilistic calibration and marginal calibration are logically
independent of each other, as illustrated in Table 1. Empirical tests of auto-
calibration are unlikely to be feasible, except for very special circumstances,
when forecasters constrain themselves to providing a small number of distinct
predictive distributions only, or when attention focuses on certain distributional
features, with some of these facets having been explored by Hamill (2001), Ma-
son et al. (2007) and Held et al. (2010).

Generally, probabilistic calibration continues to be the most practically useful
and most practically relevant notion of calibration. It is possible for a forecast
to be probabilistically calibrated but not marginally calibrated, as we have seen,
and probabilistic calibration may be sufficient in many situations. In other set-
tings, such as climate prediction, ideas closely related to marginal calibration
play crucial roles, as recently emphasized by DelSole and Shukla (2010), Arnold
et al. (2013) and Fricker et al. (2013).
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Table 3

Some classes of fixed, non-random cumulative distribution functions, where the subscript
refers to an interval I ⊆ R. In the case of Bernoulli measures, we identify a success with 1
and a non-success with 0, so that the corresponding cumulative distribution function has

jump discontinuities at these values, and otherwise is constant

Class Characterization of the Members

FI support in I

F+

I
support in I; strictly increasing on I

CI support in I; continuous

C+

I
support in I; continuous; strictly increasing on I

DI support in I; admits Lebesgue density

D+

I
support in I; admits Lebesgue density; strictly increasing on I

B Bernoulli measure
B+ Bernoulli measure with nondegenerate success probability

2.3. Combination formulas and aggregation methods

As noted, in aggregating predictive cumulative distribution functions, the ideal
strategy is to combine information sets, that is, to issue the conditional dis-
tribution of the observation Y given the σ-algebra σ(A1, . . . ,Ak) generated by
the information sets A1, . . . ,Ak. However, information aggregation often is not
feasible in practice, when individual sources of expertise reveal predictive dis-
tributions, rather than information sets. What we can realistically aim at is
to model the conditional distribution of the observation Y given the σ-algebra
generated by the predictive cumulative distribution functions, namely

G = L (Y |F1, . . . , Fk ),

where we define

L (Y |F1, . . . , Fk ) = L (Y |Fi(x) : i = 1, . . . , k, x ∈ Q),

with Q being the set of the rational numbers.
In practice, one resorts to parametric families of combination formulas, which

are then fitted on the basis of past experience and training data. Specifically, let
F be a class of fixed, non-random cumulative distribution functions such that
F1, . . . , Fk ∈ F almost surely. For example, if we are concerned with density
forecasts on the real line R, we consider the class DR of the cumulative distribu-
tion functions that admit a Lebesgue density. Further classes F of interest are
listed in Table 3. A combination formula then is a mapping of the form

G : Fk = F × · · · × F
︸ ︷︷ ︸

k times

→ F , (F1, . . . , Fk) 7→ G(F1, . . . , Fk). (5)

Following French and Rı́os Insua (2000, p. 113) we say that the combination
formula G is anonymous if

G(Fπ(1), . . . , Fπ(k)) = G(F1, . . . , Fk)
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for all F1, . . . , Fk ∈ F and all permutations π on k elements. For example, the
only linear anonymous combination formula is the equally weighted sum. We al-
low the case k = 1, where the mapping Gmay provide calibration and dispersion
adjustments for a single predictive distribution, as discussed in Section 5.

An aggregation method is a family

G = {Gθ : θ ∈ Θ}

of combination formulas Gθ of the form (5) that share a common value of k and
a common class F of fixed, non-random cumulative distribution functions. For
example, if G is the traditional linear pool, we can take F to be any convex class
of cumulative distribution functions, and we may identify the index set Θ with
the unit simplex in Rk.

The extant literature studies individual combination formulas by examin-
ing whether or not they possess certain analytic characteristics, such as the
strong setwise function and external Bayes properties (McConway, 1981; Gen-
est, 1984a,b; Genest and Zidek, 1986; Genest et al., 1986; French and Rı́os Insua,
2000). In contrast, we share the recent perspective of Hora (2010) and put the
focus on calibration and dispersion. In particular, we study aggregation meth-
ods in terms of the behavior of the probability integral transform under the
corresponding family G = {Gθ : θ ∈ Θ} of combination formulas. The proba-
bility integral takes values in the unit interval, and so the possible values of its
variance lie between 0 and 1

4 . The value 1
12 corresponds to neutral dispersion

and is the most desirable.

We are now ready to define notions of flexibility for aggregation methods.

Definition 2.12. Consider a family G = {Gθ : θ ∈ Θ} of combination formulas
of the form (5) that share a common k ≥ 1 and a common class F of fixed,
non-random cumulative distribution functions.

(a) The aggregation method G is flexibly dispersive relative to the class F if for
all F0 ∈ F and F1, . . . , Fk ∈ F there exists a parameter value θ ∈ Θ such
that if L(Y ) = F0 then Gθ(F1, . . . , Fk) is a neutrally dispersed forecast
for Y .

(b) The aggregation method G is exchangeably flexibly dispersive relative to
the class F if for all F0 ∈ F and F1, . . . , Fk ∈ F there exists a param-
eter value θ ∈ Θ such that Gθ is anonymous and if L(Y ) = F0 then
Gθ(F1, . . . , Fk) is a neutrally dispersed forecast for Y .

The applied relevance of the definitions is appreciated as follows. Suppose that
the aggregation method G is flexibly dispersive relative to F . Then, given any
marginal law F0 ∈ F for the observation Y and any collection F1, . . . , Fk ∈ F
of probabilistic forecasts for Y , we can find a combination formula Gθ ∈ G such
that the aggregated predictive distribution, namely Gθ(F1, . . . , Fk), is neutrally
dispersed. If G is exchangeably flexibly dispersive, we can do so while treating
F1, . . . , Fk exchangeably, which is a frequent requirement in the practice of the
combination of expert judgements (Jouini and Clemen, 1996).



Combining predictive distributions 1761

In a nutshell, aggregation methods ought to be sufficiently flexible to ac-
commodate situations typically encountered in practice. Evidently, a positive
statement about flexible dispersivity is the stronger, the larger the class F .
Conversely, a statement about the lack of flexible dispersivity is the stronger,
the smaller the class F .

3. Linear and nonlinear aggregation methods

In this section we study specific combination formulas and aggregation meth-
ods from the perspectives of calibration and dispersion. First, we consider the
traditional linear pool, then we move on to discuss non-linear ramifications,
namely generalized linear pools, the spread-adjusted linear pool, and the beta-
transformed linear pool, along with optimum score techniques for the estimation
of combination formulas.

3.1. Linear and generalized linear pools

We proceed to state and prove a simple but powerful result about linear combi-
nation formulas that generalizes earlier findings by Hora (2004) and Ranjan and
Gneiting (2010). The gist of the statement is that dispersion tends to increase
under linear aggregation.

Theorem 3.1. In the prediction space setting, suppose that k ≥ 2 and con-

sider any linearly combined probabilistic forecast F =
∑k

i=1 wiFi with weights

w1, . . . , wk that are strictly positive and sum to 1. For i 6= j, suppose that

Fi 6= Fj with positive probability. Then the following holds:

(a) The linearly combined forecast F is at least as dispersed as the least dis-

persed of the components F1, . . . , Fk.

(b) If the component forecasts F1, . . . , Fk are regular, then F is more dispersed

than the least dispersed of the components.

(c) If the components are neutrally dispersed and regular, then F is overdis-

persed. In particular, if the components are probabilistically calibrated, then

F is overdispersed.

Proof. For i = 1, . . . , k, let Zi denote the probability integral transform of Fi.
The probability integral transform of F =

∑k

i=1 wiFi is Z =
∑k

i=1 wiZi, whence

var(Z) =

k∑

i=1

k∑

j=1

wiwj cov(Zi, Zj)

≤
k∑

i=1

wi

k∑

j=1

wj

(

max
1≤i≤k

var(Zi)

)

= max
1≤i≤k

var(Zi),

which demonstrates part (a). To prove part (b) suppose, for a contradiction,
that F1, . . . , Fk are regular and var(Z) = max1≤i≤k var(Zi). Then Zi and Zj
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are perfectly correlated for i, j = 1, . . . , k, and we conclude that there exist
constants aij > 0 and bij ∈ R such that Zi = aijZj + bij almost surely. By
the assumption of regularity, Zi and Zj are supported on the unit interval,
whence aij = 1 and bij = 0. Therefore, Zi = Zj almost surely, contrary to the
assumption that Fi 6= Fj with positive probability. Part (c) concerns the special
case of part (b) in which var(Zi) =

1
12 for i = 1, . . . , k.

As noted, Theorem 3.1 yields various extant results as corollaries. For in-
stance, Hora (2004) applied Fourier analytic tools to show that if two distinct
density forecasts are probabilistically calibrated, then any nontrivial linear com-
bination is uncalibrated, which is an immediate consequence of part (c). How-
ever, the first statement in part (c) is considerably stronger, in that it substitutes
the weaker condition of neutral dispersion and regularity for the assumption of
probabilistic calibration, allows for any number k ≥ 2 of components, allows for
cumulative distribution functions rather than the special case of densities, and
exposes the direction of the deviation, in that the linearly combined forecast is
overdispersed. Each of the four facets is useful in practice. For instance, there
are real data situations where density forecasts are approximately neutrally
dispersed and regular, but clearly not calibrated. Discrete and mixed discrete-
continuous predictive cumulative distribution functions also occur frequently
in practice, such as in quantitative precipitation forecasting (Sloughter et al.,
2007) and for count data (Czado et al., 2009). Finally, the tendency to increase
dispersion helps explain the success of linear pooling in applications, where the
component distributions are frequently underdispersed. For a prominent exam-
ple, see Table 10 of Hoeting et al. (1999).

Thus far, we have considered individual linear combination formulas. The
following result views the traditional linear pool as an aggregation method G =
{Gθ : θ ∈ Θ}, where we may identify the parameter space Θ = ∆k−1 with the
unit simplex in Rk. We state the theorem relative to the full class FR, even
though it remains valid relative to much smaller classes.

Theorem 3.2. The linear pool fails to be flexibly dispersive relative to the

class FR.

Proof. In view of part (a) of Theorem 3.1 it suffices to find an F0 and distinct
F1, . . . , Fk, each of which is an overdispersed forecast for an observation Y with
L(Y ) = F0. For example, we can take F0 to be standard normal and Fi to be
normal with mean zero and variance i+ 1 for i = 1, . . . , k.

Dawid et al. (1995) introduced and studied generalized linear combination
formulas for combining probability forecasts of a binary event. Here we apply the
approach to cumulative distribution functions to obtain combination formulas
of the form

G(y) = h−1

(
k∑

i=1

wi h(Fi(y))

)

or h(G(y)) =

k∑

i=1

wi h(Fi(y)), (6)
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Table 4

Specifics of the generalized linear combination formula in equation (6). The table states
assumptions on the weights, w1, . . . , wk, and instances of classes F , such that the

combination formula maps Fk into F . The conditions depend on the domain and the range
of the link function, h, which we assume to be continuous and strictly monotone

Type Domain Range Weights Class F Example

A [0, 1] any wi ≥ 0;
∑k

i=1
wi = 1 FR h(x) = x

B (0, 1) (1,∞) wi ≥ 0;
∑k

i=1
wi = 1 F+

I
or B+ h(x) = 1/x

C (0, 1) (−∞, 0) wi ≥ 0;
∑k

i=1
wi > 0 F+

I
or B+ h(x) = log x

D (0, 1) R wi ≥ 0;
∑k

i=1
wi > 0 F+

I
or B+ h(x) = Φ−1(x)

where h is a continuous and strictly monotone link function. Table 4 shows
conditions on the weights, w1, . . . , wk, along with instances of classes F , so that
the generalized linear combination formula (6) maps Fk into F . Link functions
of the first type are defined on the closed unit interval, and the combination
formula operates on the full class FR, with the traditional linear pool, for which
h(x) = x is the identity function, being the most prominent example. Link
functions of the other types are defined on the open unit interval only, and we
need to restrict attention to F+

I or B+, with the harmonic pool and the geometric
pool being examples, occuring when h(x) = 1/x and h(x) = log x, respectively.
While not being exhaustive, the listing in the table is comprehensive, in that
most link functions can be adapted to fit one of the types considered. The
defining equation (6) implies that

var(h(G(Y ))) ≤

(
k∑

i=1

wi

)2

max
1≤i≤k

var(h(Fi(Y ))). (7)

In the case of the identity link the inequality yields the results in Theorems 3.1
and 3.2. In the general case it suggests that generalized linear pools with link
functions of types A and B, for which the first factor on the right-hand side of
(7) reduces to the constant 1, may fail to be flexibly dispersive.

3.2. Spread-adjusted linear pool

The aforementioned limitations of linear and generalized linear pools suggest
that we consider more flexible, nonlinear aggregation methods. In this section,
we focus on the class D+

R , so that we may identify the cumulative distribution
functions F1, . . . , Fk with the corresponding Lebesgue densities f1, . . . , fk.

In the context of probabilistic weather forecasts and approximately neutrally
dispersed Gaussian components f1, . . . , fk, Berrocal et al. (2007), Glahn et al.
(2009) and Kleiber et al. (2011) observed empirically that linearly combined
predictive distributions are overdispersed, as confirmed by Theorem 3.1. In an
ad hoc approach, they proposed a nonlinear aggregation method which we now
generalize and refer to as the spread-adjusted linear pool (SLP).
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To describe this technique, it is convenient to write Fi(y) = F 0
i (y − µi) and

fi(y) = f0
i (y − µi), where µi is the unique median of Fi ∈ D+

R , for i = 1, . . . , k.
The SLP combined predictive distribution then has cumulative distribution
function and Lebesgue density

Gc(y) =

k∑

i=1

wiF
0
i

(
y − µi

c

)

and gc(y) =
1

c

k∑

i=1

wif
0
i

(
y − µi

c

)

, (8)

respectively, where w1, . . . , wk are nonnegative weights that sum to 1, and c
is a strictly positive spread adjustment parameter. For neutrally dispersed or
overdispersed components values of c < 1 are appropriate; for example, Table 2
of Berrocal et al. (2007) reports estimates ranging from 0.65 to 1.03. Underdis-
persed components may suggest values of c ≥ 1, and the traditional linear pool
arises when c = 1.

The SLP method performs well in the aforementioned applications, and the
following result serves to quantify its flexibility.

Proposition 3.3. Suppose that L(Y ) = F0 ∈ D+
R and that F1, . . . , Fk ∈ D+

R

have medians µ1 ≤ · · · ≤ µk. Let Zc = Gc(Y ) denote the probability integral

transform of the SLP aggregated predictive cumulative distribution function. Let

v0 = 0 and p0 = F0(µ1), let vi =
∑i

j=1 wj and pi = F0(µi+1) − F0(µi) for

i = 1, . . . , k − 1, and let vk = 1 and pk = 1 − F0(µk). Then as the spread

adjustment parameter c > 0 varies, the variance of Zc attains any positive

value less than

k∑

i=0

pi



vi −
k∑

j=0

pj vj





2

. (9)

Proof. As c → 0, the function Gc converges to the cumulative distribution
function of the discrete probability measure with mass w1, . . . , wk at µ1, . . . , µk,
respectively. Since the distribution of Y is F0, the law of Zc = Gc(Y ) converges
weakly to the discrete probability measure with mass p0 = F0(µ1) at v0 = 0,

mass pi = F0(µi+1) − F0(µi) at vi =
∑i

j=1 wj for i = 1, . . . , k − 1, and mass
pk = 1 − F0(µk) at vk = 1. Hence as c → 0 the variance of Zc converges to
(9). As c → ∞, the law of Zc = Gc(Y ) converges weakly to the Dirac measure
in 1

2 . In view of the variance of Zc being a continuous function of the spread
adjustment parameter c > 0, this proves the claim.

Our next result views the spread-adjusted linear pool as an aggregation
method with parameter space Θ = ∆k−1 × R+. While the SLP approach is
sufficiently rich in typical applications, where the individual predictive distribu-
tions are neutrally dispersed or underdispersed, its flexibility is limited.

Theorem 3.4. The spread-adjusted linear pool fails to be flexibly dispersive

relative to the class D+
R .

Proof. Let F0 be standard normal, and for i = 1, . . . , k let Fi be normal with
mean m + i

m
and variance 1. As m → ∞, the probability integral transform
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of the SLP combined forecast Gc attains values less than 1
2 with probability

tending to one, irrespectively of the values of the SLP weights w1, . . . , wk and
the spread adjustment parameter c. Thus, if m is sufficiently large, the variance
of the PIT remains below the critical value of 1

12 that corresponds to neutral
dispersion.

The SLP combination formula (8) can be generalized to allow for distinct
spread adjustment parameters for the individual components. However, such
an extension does not allow for flexible dispersivity either, and tends not to
be beneficial in applications, unless the component densities have drastically
varying degrees of dispersion. The assumption of a common spread adjustment
parameter yields a more parsimonious model and stabilizes the estimation.

3.3. Beta-transformed linear pool

The beta-transformed linear pool (BLP) composites the traditional linear pool
with a beta transform. Introduced by Ranjan and Gneiting (2010) in the con-
text of probability forecasts for a binary event, it generalizes readily to the full
class FR of the cumulative distribution functions on R. Specifically, the BLP
combination formula maps F1, . . . , Fk ∈ FR to Gα,β ∈ FR, where

Gα,β(y) = Bα,β

(
k∑

i=1

wiFi(y)

)

(10)

for y ∈ R. Here, w1, . . . , wk are nonnegative weights that sum to 1, and Bα,β

denotes the cumulative distribution function of the beta density with parameters
α > 0 and β > 0. In contrast to the spread-adjusted linear pool, the value of
the BLP aggregated predictive cumulative distribution function Gα,β at y ∈ R

depends on F1, . . . , Fk only through the values F1(y), . . . , Fk(y), in a locality
characteristic that resembles the strong setwise function property of McConway
(1981). If Fi has Lebesgue density fi for i = 1, . . . , k, the aggregated cumulative
distribution function Gα,β is absolutely continuous with Lebesgue density

gα,β(y) =

(
k∑

i=1

wi fi(y)

)

bα,β

(
k∑

i=1

wiFi(y)

)

,

where bα,β denotes the beta density with parameters α > 0 and β > 0. This
nests the traditional linear pool that arises when α = β = 1.

The following result concerns the flexibility of the BLP combination formula
(10) when the cumulative distribution functions F0 ∈ CR and F1, . . . , Fk ∈ CR are
continuous and the weights w1, . . . , wk ≥ 0 are fixed, while the transformation
parameters vary.

Proposition 3.5. Let Y have distribution F0 ∈ CR and suppose that F1, . . . , Fk ∈
CR are such that

supp(F1) ∪ · · · ∪ supp(Fk) = supp(F0). (11)
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Let Zα,β = Gα,β(Y ) denote the probability integral transform of the BLP ag-

gregated predictice cumulative distribution function, where the weights are fixed

at strictly positive values that sum to 1. Then as the transformation parameters

α > 0 and β > 0 vary, the variance of Zα,β attains any value in the open

interval (0, 1
4 ).

Proof. The variance of Zα,β depends continuously on the transformation pa-
rameters α > 0 and β > 0, with Zα,α converging weakly to the Dirac measure
in 1

2 as α → ∞, so that var(Zα,α) → 0 as α → ∞. If we can demonstrate the
existence of a sequence (α, β(α)) → (0, 0) such that Gα,β(α)(y0) = 1

2 , where
y0 is any median of F0, the proof is complete, as the corresponding probabil-
ity integral transform Zα,β(α) converges weakly to the Bernoulli measure with

success probability 1
2 , so that var(Zα,β(α)) →

1
4 as α → 0.

We thus strive to find a sequence (α, β(α)) → (0, 0) such that

Gα,β(α)(y0) = Bα,β(α)(u0) =
1

2
,

where u0 =
∑k

i=1 wiFi(y0) ∈ (0, 1) by the support condition (11). First we show
that for every α > 0 there exists a unique β(α) > 0 such that Bα, β(α)(u0) =

1
2 ;

then we prove that β(α) → 0 as α → 0. As regards the first claim, three cases
are to be distinguished. If u0 < 1

2 then Bα,α(u0) < 1
2 and Bα,β(u0) → 1 as

β → ∞, and continuity and monotonicity with respect to β imply the existence
of a unique β(α) > α such that Bα,β(α)(u0) =

1
2 . If u0 =

1
2 the choice β(α) = α

is unique. If u0 > 1
2 then Bα,α(u0) > 1

2 and Bα,β(u0) → 0 monotonically as
β → 0, and thus there exists a unique β(α) < α such that Bα,β(α)(u0) = 1

2 .
To prove the second claim, suppose that β(α) > β0 > 0 for a sequence α → 0.
Then as α → 0 the beta distribution with parameters α and β(α) has mean
α/(α + β(α)) → 0, whereas its median u0 remains fixed and strictly positive,
for the desired contradiction.

The next result views the beta-transformed linear pool as an aggregation
method with parameter space Θ = ∆k−1 × R2

+.

Theorem 3.6. The beta-transformed linear pool is exchangeably flexibly disper-

sive relative to the class C+
I , for every interval I ⊆ R.

Proof. If F0 ∈ C+
I and F1, . . . , Fk ∈ C+

I , the support condition (11) is satisfied.
We may thus apply Proposition 3.5 with weights w1 = · · · = wk = 1

k
.

In practices, the BLP weights w1, . . . , wk and transformation parameters
α, β > 0 need to be estimated from training data {(F1j , . . . , Fkj , yj) : j =
1, . . . , J} of the form (1). If the predictive cumulative distribution functions
F1j , . . . , Fkj are absolutely continuous with Lebesgue densities f1j, . . . , fkj for
j = 1, . . . , J , the aggregated predictive distributions are also absolutely contin-
uous, and our preferred estimation technique is to maximize the mean (or sum)
of the logarithmic score (Gneiting and Raftery, 2007) over the training data,
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namely

ℓ(w1, . . . , wk;α, β) =

J∑

j=1

log(gα,β(yj)) (12)

=

J∑

j=1

log

(
k∑

i=1

wifij(yj)

)

+

J∑

j=1

log

(

bα,β

(
k∑

i=1

wiFij(yj)

))

=

J∑

j=1

(

(α− 1) log

(
k∑

i=1

wiFij(yj)

)

+ (β − 1) log

(

1−
k∑

i=1

wiFij(yj)

))

+
J∑

j=1

log

(
k∑

i=1

wifij(yj)

)

− J log B(α, β),

where B denotes the classical beta function. The logarithmic score is simply
the logarithm of the value that the density forecast attains at the realizing
observation. It is positively oriented, that is, the higher the score, the better,
and it is proper, in the sense that truth telling is an expectation maximizing
strategy.

The optimization can be carried out numerically using the method of scoring,
for which we give details in Appendix B. Approximate standard errors for the
estimates can be obtained in the usual way, by evaluating and inverting the Hes-
sian matrix for the mean logarithmic score or log likelihood function. However,
the estimates of the weights w1, . . . , wk need to be nonnegative. Thus, if uncon-
strained optimization results in negative weights, we turn to the active barrier
algorithm implemented in the constrained optimization routine constrOptim

in R (R Development Core Team, 2011). Similarly, linear, generalized linear
and spread-adjusted linear combination formulas can be fitted by maximizing
the mean logarithmic score over training data. The corresponding optimum score
estimates can be viewed as maximum likelihood estimates under the assumption
of independence between the training cases, and for reasons of simplicity and
tradition, we refer to them as maximum likelihood estimates.

4. Simulation and data examples

We now illustrate and complement our theoretical results in simulation and data
examples on density forecasts. This corresponds to the prediction space setting,
where the CDF-valued random quantities F1, . . . , Fk are absolutely continu-
ous almost surely, and thus can be identified with random Lebesgue densities
f1, . . . , fk. Throughout the section, we fit combination formulas by maximizing
the mean logarithmic score over training data, in the ways described in Section
3.3 and Appendix B. To lighten the notation, we use the acronyms PIT, TLP,
SLP and BLP to refer to the probability integral transform and the traditional,
spread-adjusted and beta-transformed linear pool, respectively.

The recent work of Ranjan and Gneiting (2010), Clements and Harvey (2011)
and Allard et al. (2012) contains a wealth of simulation and data examples on
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the combination of probability forecasts for a binary event. In the concluding
Section 5 we summarize these experiences and relate them to the findings in the
case studies hereinafter.

4.1. Simulation example

In this simulation example, the data generating process for the observation, Y ,
is the regression model

Y = X0 + a1X1 + a2X2 + a3X3 + ǫ, (13)

where a1, a2 and a3 are real constants, and X0, X1, X2, X3 and ǫ are indepen-
dent, standard normal random variables. The individual predictive distributions
rest on partial knowledge of the data generating process, in that density forecast
f1 has access to the covariates X0 and X1, but not to X2 or X3, and similarly
for f2 and f3. Thus, we seek to combine the density forecasts

f1 = N (X0 + a1X1, 1 + a22 + a23),

f2 = N (X0 + a2X2, 1 + a21 + a23) and f3 = N (X0 + a3X3, 1 + a21 + a22),

where X0 stands for shared, public information, while X1, X2 and X3 rep-
resent proprietary information sets. The density forecasts represent the true
conditional distributions under the regression model (13), given the correspond-
ing partial information, as represented by the σ-algebras A1 = σ(X0, X1),
A2 = σ(X0, X2) and A3 = σ(X0, X3), respectively. Hence, the forecasts are
ideal in the sense of Definition 2.2, and by Theorem 2.8 they are both proba-
bilistically calibrated and marginally calibrated.

We estimate the TLP, SLP and BLP combination formulas on a simple ran-
dom sample {(f1j , f2j , f3j, Yj) : j = 1, . . . , J} of size J = 500 from the joint dis-
tribution of the forecasts and the observation, and evaluate on an independent
test sample of the same size. The regression coefficients in the data generating
model (13) are taken to be a1 = a2 = 1 and a3 = 1.1, so that f3 is a more
concentrated, sharper density forecast than f1 and f2.

Table 5 shows maximum likelihood estimates, along with approximate stan-
dard errors, for TLP, SLP and BLP combination formulas. For all three methods,
the weight estimate is highest for f3, whereas the estimates for f1 and f2 are
smaller and not significantly different from each other. The SLP spread adjust-
ment parameter c is estimated at 0.78, and the BLP transformation parameters
α and β at 1.49 and 1.44, respectively.

The PIT histograms for the various types of density forecasts over the test
set are displayed in Figure 3, with complementary results shown in Table 6. In
addition to the variance of the PIT, which is our standard measure of disper-
sion, the table quantifies sharpness in terms of the root mean variance (RMV),
that is, the square root of the average of the variance of the predictive density
over the evaluation set. The component forecasts f1, f2 and f3 are probabilisti-
cally calibrated and thus show uniform empirical PIT histograms, up to sample
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Table 5

Maximum likelihood estimates with approximate standard errors (in brackets) for the
parameters of the combined density forecasts in the simulation example

w1 w2 w3 c α β
TLP 0.212 (0.083) 0.254 (0.084) 0.534 (0.080) — — —
SLP 0.257 (0.060) 0.283 (0.061) 0.460 (0.059) 0.783 (0.030) — —
BLP 0.256 (0.057) 0.293 (0.057) 0.451 (0.054) — 1.492 (0.062) 1.440 (0.059)

Table 6

Variance of the PIT (dispersion) and root mean variance of the density forecast (sharpness)
in the simulation example, for the test set. A value of 1

12
or about 0.083 for the variance of

the PIT indicates neutral dispersion

var(PIT) RMV
f1 0.081 1.79
f2 0.086 1.79
f3 0.085 1.73
TLP 0.066 1.94
SLP 0.081 1.62
BLP 0.084 1.57
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Fig 3. PIT histograms for the individual and combined density forecasts in the simulation
example, for the test set.
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Table 7

Mean logarithmic score for the individual and combined density forecasts in the simulation
example, for the training set and the test set

Training Test
f1 −2.025 −2.018
f2 −2.017 −2.022
f3 −1.956 −1.992
TLP −1.907 −1.922
SLP −1.871 −1.892
BLP −1.865 −1.886

fluctuations. As mandated by Theorem 3.1, the linearly combined TLP density
forecast is overdispersed and lacks sharpness. The SLP and BLP aggregated
density forecasts show nearly uniform PIT histograms; they are approximately
neutrally dispersed and much sharper than their competitors.

Table 7 shows the mean logarithmic score for the various types of density
forecasts. The best individual density forecast is f3, because it is sharper than
f1 and f2. The linearly combined density forecast outperforms the individual
density forecasts, even though it is overdispersed. The nonlinearly aggregated
SLP and BLP density forecasts show higher scores than any of the individual
or linearly combined forecasts, both for the training data, where this is trivially
true, as the nonlinear methods nest the traditional linear pool, and for the test
data, where such cannot be guaranteed.

4.2. Density forecasts for daily maximum temperature at

Seattle-Tacoma Airport

With estimates of some one-third of the economy, as well as much of human ac-
tivity in general, being weather sensitive (Dutton, 2002), there is a critical need
for calibrated and sharp probabilistic weather forecasts, to allow for optimal
decision making under inherent environmental uncertainty.

In practice, probabilistic weather forecasts rely on ensemble prediction sys-
tems. An ensemble system comprises multiple runs of a numerical weather pre-
diction model, with the runs differing in the initial conditions and/or the details
of the mathematical representation of the atmosphere (Gneiting and Raftery,
2005). Here we consider two-days ahead forecasts of daily maximum temperature
at Seattle-Tacoma Airport, based on the University of Washington Mesoscale
Ensemble (Eckel and Mass, 2005), which employs a regional numerical weather
prediction model over the Pacific Northwest, with initial and lateral bound-
ary conditions supplied by eight distinct weather centers. A description of the
ensemble members is given in Table 8.

Our training period ranges from January 1, 2006 to August 12, 2007, with
a few days missing in the data record, for a total of 500 training cases. The
test period extends from August 13, 2007 to June 30, 2009, for a total of 559
cases. Each ensemble member is a point forecast, which can be viewed as the
most extreme form of an underdispersed density forecast. To address the un-
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derdispersion and obtain approximately neutrally dispersed components, we use
the maximum likelihood method on the training data to fit, for each ensemble
member i = 1, . . . , 8 individually, a Gaussian predictive density of the form

fi = N (ai + bixij , σ
2
i ).

Here xij is the point forecast from the ith ensemble member on day j, ai and
bi are member specific linear bias correction parameters, and σi is the member
specific predictive standard deviation. From Table 9 we see that the estimates
for σ1, . . . , σ8 range from 1.958 to 2.214.

Next we combine the eight individual density forecasts. Table 10 shows max-
imum likelihood estimates for TLP, SLP and BLP combination formulas. For
all three methods, the GFS member, f1, obtains the highest weight and the
ETA member, f3, the lowest weight. This can readily be explained, in that both
members have a common institutional origin, and thus are highly correlated,
whence the more competitive GFS member subsumes the weight of the ETA
member. The SLP spread adjustment parameter is estimated at 0.768, and the
BLP transformation parameters both at 1.467.

Figure 4 illustrates the various density forecasts for June 28, 2008, an unusu-
ally hot day at Seattle-Tacoma Airport with a verifying maximum temperature
of 32.8 degrees Celsius or 91 degrees Fahrenheit. The member specific individual
density forecasts are shown by the dotted lines, and the linearly combined TLP
forecast by the dash-dotted line. The nonlinearly aggregated SLP and BLP den-
sity forecasts, which are shown by the solid and dashed line, respectively, are
sharper than the TLP density.

PIT histograms for the test period are shown in Figure 5, along with sum-
mary measures of dispersion and sharpness in Table 11. The individual, member
specific density forecasts tend to be a bit overdispersed. The linearly aggregated
TLP density forecast is much more severely overdispersed, as reflected by an
inverse U-shaped and skewed PIT histogram. Of course, the overdispersion is
not surprising, as it is a direct consequence of Theorem 3.1. The SLP and BLP
aggregated density forecasts show somewhat rough and skewed, yet more nearly
uniform PIT histograms.

These results are corroborated by Table 12, which shows the mean logarithmic
score for the various types of density forecasts, both for the training period
and the test period. The linearly combined TLP forecast shows a higher score
than any of the individual density forecasts, which attests to the benefits of
aggregation. Nevertheless, the linearly combined density forecast is suboptimal,
because it is overdispersed and lacks sharpness, and thus it is outperformed by
the nonlinearly aggregated SLP and BLP density forecasts.

Finally, we compare to the Bayesianmodel averaging (BMA) technique (Raftery
et al., 2005), which is a state of the art approach to generating density forecasts
from forecast ensembles. The BMA density forecast for day j is of the form

g =

8∑

i=1

wi N (ai + bixij , σ
2), (14)
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Table 8

Composition of the eight-member University of Washington Mesoscale Ensemble (Eckel and
Mass, 2005), with member acronyms and organizational sources for initial and lateral
boundary conditions. The United States National Centers for Environmental Prediction

supply two distinct sets of initial and lateral boundary conditions, namely, from its Global
Forecast System (GFS) and Limited-Area Mesoscale Model (ETA)

Index Acronym Source of Initial and Lateral Boundary Conditions
1 GFS National Centers for Environmental Prediction
2 CMCG Canadian Meteorological Centre
3 ETA National Centers for Environmental Prediction
4 GASP Australian Bureau of Meteorology
5 JMA Japanese Meteorological Agency
6 NGPS Fleet Numerical Meteorology and Oceanography Center
7 TCWB Taiwan Central Weather Bureau
8 UKMO United Kingdom Met Office

Table 9

Maximum likelihood estimates for the predictive standard deviation, σi, for the individual,
member specific density forecasts in the temperature example

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

1.966 2.051 2.119 2.214 1.958 2.055 2.084 1.995

Table 10

Maximum likelihood estimates for the parameters of the combined density forecasts in the
temperature example, including the Bayesian model averaging (BMA) approach of

Raftery et al. (2005)

w1 w2 w3 w4 w5 w6 w7 w8 c α β σ
TLP 0.394 0.005 0.000 0.000 0.317 0.030 0.144 0.109 — — — —
SLP 0.304 0.080 0.000 0.085 0.216 0.051 0.172 0.090 0.768 — — —
BLP 0.295 0.079 0.000 0.083 0.230 0.062 0.173 0.076 — 1.467 1.467 —
BMA 0.305 0.075 0.000 0.081 0.216 0.056 0.170 0.098 — — — 1.566

Table 11

Variance of the PIT (dispersion) and root mean variance of the density forecast (sharpness)
in the temperature example, for the test period. A value of 1

12
or about 0.083 for the

variance of the PIT indicates neutral dispersion

var(PIT) RMV
f1 0.070 1.97
f2 0.067 2.05
f3 0.069 2.12
f4 0.068 2.21
f5 0.070 1.96
f6 0.073 2.06
f7 0.074 2.08
f8 0.069 2.00
TLP 0.057 2.15
SLP 0.070 1.79
BLP 0.072 1.77
BMA 0.070 1.80
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Fig 4. Two-day ahead density forecasts for the maximum temperature at Seattle-Tacoma
Airport on June 28, 2008. The vertical line is at the verifying realization, at 32.8 degrees
Celsius or 91 degrees Fahrenheit.
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Fig 5. PIT histograms for the individual and combined density forecasts in the temperature
example, for the test period.
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Table 12

Mean logarithmic score for the individual and combined density forecasts in the temperature
example, for the training period and the test period

Training Test
f1 −2.091 −2.088
f2 −2.134 −2.071
f3 −2.167 −2.093
f4 −2.211 −2.172
f5 −2.088 −2.043
f6 −2.136 −2.143
f7 −2.150 −2.131
f8 −2.107 −2.041
TLP −2.027 −2.010
SLP −1.990 −1.961
BLP −1.988 −1.960
BMA −1.992 −1.963

with BMA weights, w1, . . . , w8, that are nonnegative and sum to 1, member
specific bias parameters ai and bi for i = 1, . . . , 8, and a common variance
parameter, σ2. In view of our individual density forecasts being Gaussian, the
TLP and BMA densities are of the same functional form. However, there is
a conceptual difference, in that the TLP weights are fitted conditionally on
the individual density forecasts. Thus, a two-stage procedure is used, in which
the member specific component densities are estimated first, and only then
the weights, with the components held fixed. In contrast, the BMA method
estimates the weights, w1, . . . , w8, and the common spread parameter, σ, for the
component forecasts in the Gaussian mixture model (14) simultaneously. While
the BMA method can be employed with member specific spread parameters, the
assumption of a common spread parameter stabilizes the estimation algorithm
and does not appreciably deteriorate the predictive performance (Raftery et al.,
2005).

Table 10 shows maximum likelihood estimates for the BMA parameters, ob-
tained with the R package ensembleBMA (Fraley et al., 2011). The BMA
weights echo the SLP weights. The BMA spread parameter σ is estimated at
1.566 and differs from the predictive standard deviations for the member specific
density forecasts in Table 9 by factors ranging from 0.707 to 0.800, much in line
with our estimate of 0.768 for the SLP spread adjustment parameter, c. Thus,
the SLP and BMA density forecasts are very much alike, which is confirmed
by the PIT histograms in Figure 5, the summary measures in Table 11 and the
logarithmic scores in Table 12. In Figure 4 the graphs for the SLP and BMA
density forecasts are nearly identical and lie essentially on top of each other,
and so we refrain from plotting the BMA density.

4.3. Density forecasts for S&P 500 returns

In this final data example, we follow Diebold et al. (1998) in considering S&P
500 log returns for the period of July 3, 1962 to December 29, 1995. The data
record through December 1978 is used as training set, for a total of 4,133 training
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Table 13

Maximum likelihood estimates of the parameters for the combined density forecasts in the
S&P 500 example

w1 w2 c α β
TLP 0.821 0.179 — — —
SLP 0.756 0.244 0.940 — —
BLP 0.758 0.242 — 1.100 1.081

Table 14

Mean logarithmic score for the individual and combined density forecasts in the S&P 500
example, for the training period and the test period

Training Test
f1 3.606 3.458
f2 3.492 3.247
TLP 3.612 3.469
SLP 3.614 3.470
BLP 3.614 3.470

cases. All estimates reported are maximum likelihood fits on the training period
obtained with the R package fGarch (Wuertz, 2007). The balance of the record
is used as test period, for a total of 4,298 one-day ahead density forecasts.

The first component forecast, f1, is based on a generalized autoregressive
conditional heteroscedasticity (GARCH) specification Bollerslev (1986) for the
variance structure. With rt denoting the log return on day t, our GARCH(1,1)
model assumes that rt = σtǫt, where ǫt is Student-t distributed with ν degrees
of freedom and variance 1, while σt evolves dynamically as

σ2
t = ω + αr2t−1 + βσ2

t−1.

The maximum likelihood estimates for the GARCH parameters are ω = 0.000,
α = 0.089, β = 0.903 and ν = 9.25.

The second component forecast, f2, is based on a standard moving average
(MA) model for the mean dynamics, which assumes that rt = Zt + θZt−1,
where {Zt} is a Gaussian white noise process with mean zero and variance σ2.
The maximum likelihood estimates for the MA parameters are θ = 0.252 and
σ = 0.00736.

Our goal now is to combine the density forecasts f1 and f2. Table 13 shows
maximum likelihood estimates for TLP, SLP and BLP combination formulas.
For all three methods, the conditionally heteroscedastic density forecast f1 ob-
tains a much higher weight than the simplistic density forecast f2. The SLP
spread adjustment parameter is estimated at 0.940, and the BLP transforma-
tion parameters α and β at 1.100 and 1.081.

Table 14 shows the mean logarithmic score for the various types of proba-
bilistic forecasts. The TLP density forecast performs slightly better than the
individual component f1, with a score that is very slightly lower than for the
nonlinearly aggregated SLP and BLP density forecasts, both for the training
and the test period. As also observed by Geweke and Amisano (2011), there is



1776 T. Gneiting and R. Ranjan

little reward for using more elaborate, less parsimonious aggregation methods
for density forecasts of S&P 500 returns.3

Finally, we consider the predictive performance of a more comprehensive pre-
dictive model, which addresses both the first and the second order dynamics, in
that rt = µt + ǫt where {µt} and {ǫt} are MA(1) and Student-t GARCH(1,1)
processes, respectively. The maximum likelihood estimates in this mixed speci-
fication are θ = 0.269 and σ = 0.00736 for the MA parameters, and ω = 0.000,
α = 0.098, β = 0.892 and ν = 8.284 for the GARCH parameters. The resulting
density forecast can be thought of as combining information sets with respect to
the first and second order dynamics, as opposed to combining the correspond-
ing component forecasts f1 and f2. It outperforms the other types of density
forecasts and achieves a mean logarithmic score of 3.638 for the training period
and 3.473 for the test period.

5. Discussion

We have studied methods for combining predictive distributions. From a the-
oretical perspective, our approach departs from previous work in major ways.
Technically, we operate in terms of prediction spaces and cumulative distribu-
tion functions, which allows for a unified treatment of all real-valued predictands
including, for example, density forecasts for continuous variables and probability
forecasts of a binary event. In this latter context, Theorem 2.11 is an analytic
result of independent interest, in that the general notion of probabilistic cali-
bration embeds the traditional concept of conditional calibration.

Conceptually, our work is motivated by applications in probabilistic forecast-
ing, and thus we assess combination formulas and aggregation methods from
the perspective of calibration and dispersion, the key idea being that aggre-
gation methods ought to be parsimonious, yet sufficiently flexible to allow for
neutrally dispersed combined forecasts. In typical practice, underdispersed or
approximately neutrally dispersed predictive distributions are to be aggregated.
In the case of underdispersed components, the tendency of linear combination
formulas to increase dispersion can be beneficial, and helps explain the success
of linear pooling in applications (Madigan and Raftery, 1994). However, if the
components are neutrally dispersed, the failure of the traditional linear pool
to be flexibly dispersive is a serious limitation. Berrocal et al. (2007), Glahn
et al. (2009) and Kleiber et al. (2011) observed this empirically in the context
of probabilistic weather forecasts, and proposed a special case of the spread-
adjusted linear pool as an ad hoc remedy. Our theoretical results document the
increased flexibility of the spread-adjusted linear pool, and demonstrate that
the beta-transformed linear pool is exchangeably flexibly dispersive.

Not surprisingly, the parsimonity principle and the bias-variance tradeoff ap-
ply in the practice of the combination of predictive distributions. Thus, in data

3The logarithmic scores reported by Geweke and Amisano (2011) are summed, rather
than averaged, and apply to percent log returns, rather than log returns. Adjusted for these
differences, they are comparable to the scores in Table 14.
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poor settings, where training data are scarce, the parsimonious traditional lin-
ear pool might be the method of choice, despite its theoretical shortcomings,
as demonstrated persuasively in the recent simulation study of Clements and
Harvey (2011). In data rich settings, where predictive models can reliably be
estimated, linear aggregation tends to be suboptimal. Hence, we have studied
parsimonious nonlinear alternatives, including the spread-adjusted linear pool
(SLP) and the beta-transformed linear pool (BLP). Further options include
generalized linear pools, consensus methods (Winkler, 1968) and nonparamet-
ric approaches, including but not limited to isotonic recursive partitioning (Luss
et al., 2012). As Winkler (1986, p. 139) noted, “different combining rules are
suitable for different situations”.

The SLP and BLP approaches can also be used to provide calibration and
dispersion corrections to a single predictive distribution, similar to the methods
described by Cox (1958), Platt (1999), Zadrozny and Elkan (2002) and Primo
et al. (2009) in the context of probability forecasts of a binary event. An in-
teresting question then is whether dispersion adjustments ought to be applied
to the individual components prior to the aggregation. In situations in which
the components show substantially differing degrees of dispersion, or are uni-
formly under- or overdispersed, we indeed see potential benefits in doing this,
with (here unreported) simulation experiments providing partial support to this
view. In our temperature example, the components derive from point forecasts,
which is the most extreme form of underdispersion, and prior to aggregating the
components we apply a simple Gaussian technique that obtains approximately
neutrally dispersed individual density forecasts.

Appendix A: Details for Example 2.10

Let Zσ = Fσ(Y ) denote the probability integral transform of the CDF-valued
random quantity Fσ. Then the random variable Zσ has expectation 1

2 and its
cumulative distribution function is Hσ(z) = Φ(σΦ−1(z)). In particular, Z1 is
uniformly distributed. If σ < 1 then |Zσ−

1
2 | is stochastically larger than |Z1−

1
2 |

and therefore

var(Zσ) = E(Zσ − E[Zσ])
2 = E|Zσ − 1

2 |
2 > E|Z1 −

1
2 |

2 =
1

12
.

An analogous argument applies when σ > 1. To prove the variance formula (3),
we use the fact that var(Zσ) = E[Z2

σ] − (E[Zσ])
2 and invoke the well-known

expectation equality E[Zr] = r
∫∞

0
zr−1(1−H(z)) dz for a nonnegative random

variable Z with cumulative distribution function H , where r > 0.

Appendix B: Method of scoring

Here we give details for the method of scoring (see, for example, Ferguson (1986))
for numerically maximizing the mean logarithmic score or log likelihood function
(12) of the BLP model as a function of the nonnegative weights w1, . . . , wk that
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sum to 1, and transformation parameters α, β > 0. Let Y denote a random
variable that has a beta distribution with parameters α and β. Then

∂ℓ

∂α
=

J∑

j=1

log

(
k∑

i=1

wiFij(yj)

)

− J E[log Y ],

∂ℓ

∂β
=

J∑

j=1

log

(

1−
k∑

i=1

wiFij(yj)

)

− J E[log(1 − Y )]

and

∂ℓ

∂wi

=

J∑

j=1

(

(α− 1)(Fij(yj)− Fkj(yj))
∑k

l=1 wlFlj(yj)
−

(β − 1)(Fij(yj)− Fkj(yj))

1−
∑k

l=1 wlFlj(yj)

+
fij(yj)− fkj(yj)
∑k

l=1 wlflj(yj)

)

for i = 1, . . . , k − 1. The second derivatives are

∂2ℓ

∂α2
= − J var(log(Y )),

∂2ℓ

∂β2
= − J var(log(1− Y )),

∂2ℓ

∂α∂β
= − J cov(log(Y ), log(1− Y ))

and

∂2ℓ

∂α ∂wi

=

J∑

j=1

Fij(yj)− Fkj(yj)
∑k

l=1 wlFlj(yj)
,

∂2ℓ

∂β ∂wi

=

J∑

j=1

Fkj(yj)− Fij(yj)

1−
∑k

l=1 wlFlj(yj)

for i = 1, . . . , k − 1, while

∂2ℓ

∂wi1∂wi2

= −
J∑

j=1

(fi1j(yj)− fkj(yj))(fi2j(yj)− fkj(yj))

(
∑k

l=1 wlflj(yj))2

−
J∑

j=1

(

α− 1

(
∑k

l=1 wlFlj(yj))2
+

β − 1

(1 −
∑k

l=1 wlFlj(yj))2

)

× (Fi1j(yj)− Fkj(yj)) (Fi2j(yj)− Fkj(yj))

for i1 = 1, . . . , k − 1 and i2 = 1, . . . , k − 1. The method of scoring now applies
Newton’s algorithm to optimize the likelihood as a function of the parameter
vector.
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Rüschendorf, L. (1981). Stochastically ordered distributions and monotonic-
ity of the OC-function of sequential probability ratio tests. Mathematische

Operationsforschung Ser. Statistics, 12, 327–338. MR0640553
Schervish, M. J. (1989). A general method for comparing probability asses-
sors. Annals of Statistics, 17, 1856–1879. MR1026316

Sloughter, J. M., Raftery, A. E., Gneiting, T. and Fraley, C. (2007).
Probabilistic quantitative precipitation forecasting using Bayesian model av-
eraging. Monthly Weather Review, 135, 3209–3220.

Stone, M. (1961). The linear pool. Annals of Mathematical Statistics, 32, 1339–
1342. MR0135190

Tsyplakov, A. (2011). Evaluating density forecasts: a comment. MPRA paper
no. 31233, http://mpra.ub.uni-muenchen.de/32728.

Tsyplakov, A. (2013). Evaluation of probabilistic forecasts: proper scoring
rules and moments. Preprint, http://dx.doi.org/10.2139/ssrn.2236605.

Wallis, K. F. (2005). Combining density and interval forecasts: A modest
proposal. Oxford Bulletin of Economics and Statistics, 67, 983–994.

Winkler, R. L. (1968). The consensus of subjective probability distributions.
Management Science, 15, B61–B75.

Winkler, R. L. (1986). Comment on “Combining probability distributions:
A critique and an annotated bibliography”. Statistical Science, 1, 138–140.
MR0833278

Wuertz, D. and Rmetrics Core Team (2007). The fGarch Package. Ref-
erence manual, available at http://www.mirrorservice.org/sites/lib.

stat.cmu.edu/R/CRAN/doc/packages/f Garch.pdf.
Zadrozny, B. and Elkan, C. (2002). Transforming classifier scores into
accurate multiclass probability estimates. Proceedings of the eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 694–699.

Zarnowitz, V. (1969). The new ASA-NBER survey of forecasts by economic
statisticians. American Statistician, 23, 12–16.

http://www.ams.org/mathscinet-getitem?mr=2751244
http://www.R-project.org
http://www.ams.org/mathscinet-getitem?mr=0049525
http://www.ams.org/mathscinet-getitem?mr=0640553
http://www.ams.org/mathscinet-getitem?mr=1026316
http://www.ams.org/mathscinet-getitem?mr=0135190
http://mpra.ub.uni-muenchen.de/32728
http://dx.doi.org/10.2139/ssrn.2236605
http://www.ams.org/mathscinet-getitem?mr=0833278
http://www.mirrorservice.org/sites/lib.stat.cmu.edu/R/CRAN/doc/packages/f
http://www.mirrorservice.org/sites/lib.stat.cmu.edu/R/CRAN/doc/packages/f
Garch.pdf

	Introduction
	Prediction spaces, combination formulas and aggregation methods
	Prediction spaces
	Calibration and dispersion
	Combination formulas and aggregation methods

	Linear and nonlinear aggregation methods
	Linear and generalized linear pools
	Spread-adjusted linear pool
	Beta-transformed linear pool

	Simulation and data examples
	Simulation example
	Density forecasts for daily maximum temperature at Seattle-Tacoma Airport
	Density forecasts for S&P 500 returns

	Discussion
	Appendix A: Details for Example 2.10
	Appendix B: Method of scoring
	References

