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Abstract: One main focus of learning theory is to find optimal rates of
convergence. In classification, it is possible to obtain optimal fast rates
(faster than n

−1/2) in a minimax sense. Moreover, using an aggregation
procedure, the algorithms are adaptive to the parameters of the class of
distributions. Here, we investigate this issue in the bipartite ranking frame-
work. We design a ranking rule by aggregating estimators of the regression
function. We use exponential weights based on the empirical ranking risk.
Under several assumptions on the class of distribution, we show that this
procedure is adaptive to the margin parameter and smoothness parameter
and achieves the same rates as in the classification framework. Moreover,
we state a minimax lower bound that establishes the optimality of the
aggregation procedure in a specific case.
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1. Introduction

The design of estimators that achieve optimal rates of convergence is a major
topic in statistical learning. It has been investigated in many situations such as
regression, density estimation and classification. The rates depend on the prop-
erties of the considered class of distributions. Classical conditions are on the
distribution of the observations and the regularity of the regression function.
In that case, the best rates are slower than n−1/2 and the estimators depend
on the regularity of the regression function. There exist adaptive estimators to
get rid of the knowledge of this parameter (see [21, 17, 28, 3, 19, 4, 27]). In
classification, when adding an assumption on the distribution of the regression
function, rates faster than n−1/2 and even faster than n−1 are achieved. The
rates were obtained for plug-in classification rules in two papers. In [3], the
authors estimate the regression function using the locally polynomial estima-
tor. Moreover, the optimal rates are achieved without knowing the regularity
and the margin parameters by aggregating the plug-in rules (see [18]). More
recently, the local multi-resolution estimation method (see [24]) combined with
the Lepski’s method (see [20]), achieves the optimal and adaptive minimax rates.
Both approaches firstly estimate the regression function and then threshold the
estimated function at level 1/2.

In the last decade, the bipartite ranking problem, a supervised learning task,
has received the attention of the statistical learning community (see [15, 26, 10]
for instance). Its probabilistic framework is the same as the classification frame-
work but the task is of a really different nature. Indeed, to solve this problem
one has to order all the observations and understand the whole feature space.
This task is important for many applications such as the anomaly detection in
signal processing, information retrieval, design of diagnosis tools in medicine
and credit-scoring in finance. The problem can be formulated as a pairwise clas-
sification problem (see [8]) where the goal is to minimize a loss based on a pair of
observations called the ranking risk. In this paper, the authors show that, under
a low noise assumption, the rates of convergence of the excess of ranking risk can
be really close to n−1. To this end, they use a procedure based on the minimiza-
tion of the empirical ranking risk over a class of candidate ranking rules. The
main drawback of their setup is that the target function has to belong to the
class of ranking rules. In [9], minimax rates faster than n−1/2 are achieved over
class of distributions controlled by a smoothing parameter and a margin param-
eter. They used the same estimator of the regression function as in classification
but this estimator needs the knowledge of the regularity parameter.

Here, we investigate the performance of the aggregation with exponential
weights in the bipartite ranking framework in order to obtain a method that can
be adaptive to the parameters. The main result is that this procedure satisfies
an oracle inequality. Then we study the impact of this inequality in two settings,
one with the mild density assumption over the marginal of the observation and
the other with the strong assumption (see [3]). When adding assumptions on the
regression function, we obtain a new adaptive upper bound in the case of the
mild density assumption. Moreover, when aggregating the plug-in estimators
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of [9], the procedure is adaptive to the parameters of the class of distributions
under the strong density assumption.

The rest of the paper is organized as follows. In section 2, we explain the
notations and the bipartite ranking task. We define the ranking risk and a con-
vexification of it using the hinge loss. Several margin assumptions are presented
and equivalence links are stated. In section 3, we describe the aggregation es-
timator using the convexified ranking risk and we show the oracle inequalities
satisfied by the procedure of aggregation. In section 4, we present two adap-
tive minimax upper bounds for the excess ranking risk using the aggregated
estimator. Finally, we extend the minimax lower bound obtained in [9] to all
dimensions. The proofs are deferred in appendix.

2. Theoretical background

Here, we introduce the main assumptions involved in the formulation of the
bipartite ranking problem and recall the important results which are used in
the following analysis, giving an idea of the nature of the ranking problem.

2.1. Probabilistic setup and first notations

Here and throughout, (X,Y ) denotes a pair of random variables, taking its
values in the product space X × {−1,+1} where X is typically a subset of an
Euclidean space of (very) large dimension d ≥ 1, Rd say. The r.v. X is a vector
of features for predicting the binary label Y . Let p = P{Y = +1} be the rate of
positive instances. The joint distribution of (X,Y ) is denoted by P ,X ’s marginal
distribution by µ and the posterior probability by η(x) = P{Y = +1 | X = x},
x ∈ X . For the sake of simplicity and with no loss of generality, we assume that
X coincides with µ(dx)’s support. Additionally, the r.v. η(X) is supposed to be
absolutely continuous w.r.t. the Lebesgue measure.

The indicator function of any event E is denoted by I{E} and the range of any
mapping Φ by Im(Φ). We also denote by B(x, r) the closed Euclidean ball in R

d

centered in x ∈ R
d and of radius r > 0. For any multi-index s = (s1, . . . , sd) ∈ N

d

and any x = (x1, . . . , xd) ∈ R
d, we set |s| =

∑d
i=1 si, s! = s1! . . . sd!, x

s =
xs11 . . . xsdd and ‖x‖ = (x21 + · · ·+ x2d)

1/2. Let Ds denote the differential operator

Ds = ∂s1+···+sd

∂x
s1
1 ...∂x

sd
d

and ⌊β⌋ the largest integer that is strictly less than β ∈ R. For

any x ∈ R
d and any ⌊β⌋-times continuously differentiable real-valued function g

on R
d, we denote by gx its Taylor polynomial expansion of degree ⌊β⌋ at point x,

gx(x
′) =

∑

|s|≤⌊β⌋

(x − x′)s

s!
Dsg(x).

2.2. Bipartite ranking

The bipartite ranking task consists in learning how to order the observations ac-
cording to the label Y . Specifically, from a sample D = {(X1, Y1), . . . , (Xn, Yn)}
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with distribution P , we want to learn a scoring function s : X → R such as
the order induced by s is the same as the order induced by η. In this case, the
observations with label “+1” should have large values whereas the observations
with label “−1” should have small values. The most popular tool to evaluate
the accuracy of a scoring function is the ROC curve [13]. It is the plot of the
false positive rate against the true positive rate

t 7→ (P{s(X) > t | Y = −1}, P{s(X) > t | Y = +1})

that corresponds to the performance of all the classifiers one can create by
thresholding the scoring function s.

Pairwise classification. However, this is a functional tool and for this reason,
it is complex to optimize from a theoretical and a computational perspective.
For this reason, several authors have reformulated this problem as a pairwise
classification problem (see [15, 1, 8]). In this setup, the goal is, given (X,Y )
and (X ′, Y ′) two random couples with distribution P , to determine whether
Y > Y ′ or not. In this context, the predictor takes the form of ranking rule,
namely a (measurable) function r : X 2 → {−1,+1} such that r(x, x′) = 1 when
x′ is ranked higher than x: the more pertinent a ranking rule r, the smaller
the probability that it incorrectly ranks two instances drawn independently at
random. Formally, optimal ranking rules are those that minimize the ranking
risk :

L(r)
def
= P {r(X,X ′) · (Y ′ − Y ) < 0} . (2.1)

A ranking rule r is said to be transitive iff ∀(x, x′, x′′) ∈ X 3: “r(x, x′) = +1
and r(x′, x′′) = +1” ⇒ “r(x, x′′) = +1”. Observe that, by standard quotient
set arguments, one can see that transitive ranking rules are those induced by
scoring functions: rs(x, x

′) = 2 · I{s(x′) ≥ s(x)} − 1 with s : X → measurable.
With a slight abuse of notation, we set L(rs) = L(s) for ranking rules defined
through a scoring function s.

Optimality. It is easy to see that an optimal ranking rule is

r∗(x, x′) = 2 · I{η(x′)>η(x)} − 1 (2.2)

defined thanks to the regression function η, see Example 1 in [8] for further
details. Additionally, it should be noticed that one may derive a closed analytical
form for the excess of ranking risk E(r) = L(r)−L∗, with L∗ = L(r∗). For clarity,
we recall the following result.

Lemma 1 (Ranking risk excess - [8]). For any ranking rule r, we have:

E(r) = E [|η(X)− η(X ′)| I{r(X,X ′)(η(X ′)− η(X)) < 0}] .

The accuracy of a ranking rule is here characterized by the excess of ranking
risk E(r), the challenge from a statistical learning perspective being to build a
ranking rule, based on a training sample (X1, Y1), . . . , (Xn, Yn) of i.i.d. copies
of the pair (X,Y ), with asymptotically small excess of ranking risk for large n.
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We highlight the fact that, using a basic conditioning argument, the minimum
ranking risk L∗ can be expressed as a function of η(X)’s Gini mean difference
(where p = P{Y = +1}):

L∗ = p(1− p)− 1

2
E[|η(X)− η(X ′)|]. (2.3)

In binary classification, it is well-known folklore that the learning problem is all
the easier when η(X) is bounded away from 1/2. In bipartite ranking, Eq. (2.3)
roughly says that the more the r.v. η(X) is spread, the easier is the optimal
ranking of X ’s elements. Hence, the two problems are very different from this
perspective.

A continuum of classification problems. In addition, we emphasize the
fact that the optimal ranking rule r∗(x, x′) can be seen as a (nested) collection of
optimal cost-sensitive classifiers: the binary rule r∗(x,X) = 2 ·I{η(X) > η(x)}−
1, related to the (regression) level setG∗

t = {x′ ∈ X : η(x′) > t} with t = η(x), is
optimal when considering the cost-sensitive risk Rω(C) = 2(1−p)ω ·P{C(X) =
+1 | Y = −1} + 2p(1 − ω) · P{C(X) = −1 | Y = −1} with cost ω = η(x),
see Proposition 15 in [11] for instance. Hence, while binary classification only
aims at recovering the single level set G∗

1/2, which is made easier when η(X) is

far from 1/2 with large probability (see [23] or [28]), the ranking task consists
in finding the whole collection {G∗

t : t ∈ Im(η(X))}. Though of disarming
simplicity, this observation describes well the main barrier for extending fast-
rate analysis to the ranking setup. Indeed, the random variable η(X) cannot be
far with arbitrarily high probability from all elements of its range.

Convexification of the ranking risk. From a practical angle, optimizing
the ranking risk is a real difficulty because the involved loss is not convex.
In the classification framework where convex surrogates are widely used for
practical purposes, it has also been used for theoretical issues ([5, 29] and [18]
for instance). Here, we propose to convexify the pairwise loss and we use this loss
in our aggregation procedure (see 3). Notice that minimization of convexified
pairwise loss was studied in [8]. We call any measurable function f : X ×X ′ →
[−1, 1] a decision rule and we set the random variable Z = (Y − Y ′)/2. With
this notation, we now present the convexification of the ranking risk that we
use in this paper.

Definition 2 (Hinge ranking risk). For any decision function f , the hinge
ranking risk is defined by

A(f)
def
= Eφ (−f(X,X ′) · Z) , (2.4)

where φ(x) = max(0, 1 + x).

Notice that a ranking rule is a specific kind of decision rule. The next propo-
sition gives a justification to strategies based on the minimization of the hinge
ranking risk in order to obtain accurate ranking rules.
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Proposition 3. The minimizer of the ranking risk r∗ is a minimizer of the
hinge ranking risk A. We call A∗ = A(r∗).

As for the ranking risk, there exists a close analytical form for the hinge
ranking risk. This is the purpose of the next proposition.

Lemma 4 (Hinge ranking risk excess). For any decision rule f : X ×X →
[−1, 1], we have:

A(f)−A∗ = E [|η(X)− η(X ′)| |f(X,X ′)− f∗(X,X ′)|] .

The specific use of this surrogate is not fortunate and is due to its linearity.
Using this property, we see that, for any ranking rule r : X × X → {−1, 1}, we
have:

A(r) −A∗ = 2(L(r)− L∗). (2.5)

By thresholding a decision function, we can obtain a ranking rule. More
precisely, for any decision rule f , we set rf (x, x

′) = 2I{f(x, x′) ≥ 0} − 1. We
now link the excess of hinge ranking risk of a decision function f with the excess
of ranking risk of its associated ranking rule. Using this definition, one can easily
show that, for any decision rules f : X × X → [−1, 1], we have:

L(rf )− L∗ ≤ A(f)−A∗. (2.6)

Thus, the minimization of the excess of hinge ranking risk provides a reason-
able alternative to the minimization of the excess of ranking risk.

Plug-in ranking functions. Given the form of the Bayes ranking rule
r∗(X,X ′), it is natural to consider plug-in ranking rules, that is to say ranking
rules obtained by “plugging-in” a nonparametric estimator η̂n(x) of the regres-
sion function η, based on a data sample (X1, Y1), . . . , (Xn, Yn), instead of η(x)
into Eq. (2.2):

r̂n(x, x
′)
def
= rη̂n(x, x

′), (x, x′) ∈ X 2.

The performance of predictive rules built via the plug-in principle has been
extensively studied in the classification/regression context, under mild assump-
tions on the behavior of η(X) in the vicinity of 1/2 (see the references in [3] for
instance) and on η’s smoothness in particular. Similarly in the ranking situation,
since one obtains as immediate corollary of Lemma 1 that E(r̂n) is bounded by
E[|η̂n(X)−η(X)|], one should investigate under which conditions nonparametric
estimators η̂n lead to ranking rules with fast rates of convergence of E(r̂n) as
the training sample size n increases to infinity.

2.3. Additional assumptions

Optimal ranking rules can be defined as those having the best possible rate of
convergence of E(r̂n) towards 0, as n → +∞. Therefore, the latter naturally
depends on (X,Y )’s distribution. Following the footsteps of [3], we embrace
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the minimax point of view, which consists in considering a specific class P of
joint distributions P of (X,Y ) and to declare r̂n optimal if it achieves the best
minimax rate of convergence over this class:

sup
P∈P

E [E(r̂n)] ∼ min
rn

sup
P∈P

E [E(rn)] as n→ ∞,

where the infimum is taken over all possible ranking rules rn depending on
(X1, Y1), . . . , (Xn, Yn). In order to carry out such a study, mainly three types
of hypotheses shall be used. Here, smoothness conditions related to the real-
valued function η : X ⊂ R

d → (0, 1) together with regularity conditions on the
marginal µ(dx) and assumptions that we shall interpret as “spread” conditions
for η(X)’s distribution are stipulated.

Complexity assumption. In the plug-in approach, the goal is to link close-
ness of η̂n(x) to η(x) to the rate at which E(r̂n) vanishes. Complexity assump-
tions for the regression function (CAR) stipulating a certain degree of smooth-
ness for η are thus quite tailored for such a study. Here, focus is on regression
functions η(x) that belong to the (β, L,Rd)-Hölder class of functions, denoted
Σ(β, L,Rd), with β > 0 and 0 < L < ∞. The latter is defined as the set of
functions g : Rd → R that are β times continuously differentiable and satisfy,
for any x, x′ in R

d, the inequality

|g(x′)− gx(x
′)| ≤ L‖x− x′‖β .

Remark 1 (Alternative assumptions). We point out that more general
CAR assumptions could be considered (see [14] for instance), involving metric
entropies or combinatorial quantities such as the VC dimension, more adapted
to the study of the performance of empirical risk minimizers. Owing to space
limitations, the analysis is here restricted to the Hölder assumption.

Marginal density assumption. In this paper, we use the same terminol-
ogy as in [3] to define the assumption over the density of the marginal of X .
Let strictly positive constants c0 and r0 be fixed. Recall first that a Lebesgue
measurable set A ⊂ R

d is said to be (c0, r0)-regular iff ∀r ∈]0, r0[, ∀x ∈ A:

λ(A ∩ B(x, r)) ≥ c0λ(B(x, r)),
where λ(B) denotes the Lebesgue measure of any Lebesgue measurable set B ⊂
R
d. The following assumption on the marginal distribution µ will be used in the

sequel. Fix constants c0, r0 > 0 and 0 < µmin < µmax < ∞ and suppose that a
compact set C ⊂ R

d is given.
The strong density assumption is said to be satisfied if the marginal distri-

bution µ(dx) is supported on a compact and (c0, r0)-regular set A ⊂ C and has
a density f (w.r.t. the Lebesgue measure) bounded away from zero and infinity
on A: µmin ≤ f(x) ≤ µmax if x ∈ A and µ(x) = 0 otherwise.

Themild density assumption is said to be satisfied if the marginal distribution
µ(dx) is supported on a compact and (c0, r0)-regular set A ⊂ C and has a density
f (w.r.t. the Lebesgue measure) bounded away from infinity on A: f(x) ≤ µmax
for all x ∈ A.
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Global low noise assumption. Here, we introduce an additional assumption
for the function η. In classification, to obtain rates faster than n1/2, one has
to assume that the regression function η satisfies a low noise assumption in
addition to the classical properties of the space of the distribution. In ranking,
such assumption was used in [8] and [9]. We introduce two margin assumptions
in the context of bipartite ranking and we make the link with the assumption
previously made. Let α ∈ [0, 1]. The following conditions describe the behavior
of the r.v. η(X).

AssumptionMA(α). The distribution P verifies the margin assumptionMA(α)
with parameter 0 ≤ α ≤ 1 if there exists C <∞ such that:

E [|I{r(X,X ′) 6= r∗(X,X ′)}|] ≤ C(L(r)− L∗)α/(1+α), (2.7)

for all measurable ranking rules r : X × X → {−1,+1}.

Assumption MAK(α). The distribution P verifies the margin assumption
MAK(α) with parameter 0 ≤ α ≤ 1 if there exists C <∞ such that:

E [|f(X,X ′)− r∗(X,X ′)|] ≤ C(A(f) −A∗)α/(1+α), (2.8)

for all measurable decision functions f : X × X → [−1,+1].

These conditions are introduced to control the variance of I{r(X,X ′) 6= (Y −
Y ′)} − I{r∗(X,X ′) 6= (Y − Y ′)}. In particular, we use this control to state the
oracle inequality 8. This type of conditions have been studied in classification
in order to obtain fast rate (see [6] for further details).

In the bipartite ranking framework, a condition was introduced in [9].

Assumption NA(α). We have: ∀(t, x) ∈ [0, 1]×X ,

P {|η(X)− η(x)| ≤ t} ≤ C · tα, (2.9)

for some constant C <∞.

Equipped with these notations, we state the link between these assumptions.

Proposition 5. If η(X) fulfills Assumption NA(α) for α ∈ [0, 1] then Assump-
tion MA(α) and MAK(α) hold.

The theoretical results of this paper are always stated using the condition
NA(α). This is why, we do not need the inverse statement. Since in classifica-
tion, such conditions are equivalent, it may be the same in ranking. Condition
(2.9) above is void for α = 0 and more and more restrictive as α grows. It clearly
echoes Tsybakov’s noise condition, introduced in [28], which boils down to (2.9)
with 1/2 instead of η(x). Whereas Tsybakov’s noise condition is related to the
behavior of η(X) near the level 1/2, condition (2.9) implies global properties for
η(X)’s distribution, as shown by the following result.
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Lemma 6 (Low noise and continuity). [9] Let α ∈]0, 1]. Suppose that
assumption NA(α) is fulfilled, η(X)’s distribution is then absolutely continuous
w.r.t. the Lebesgue measure on [0, 1]. In addition, in the case where α = 1, the
related density is bounded by C/2.

It is important to note that, in ranking, Assumption NA(α) can be fulfilled
for α ≤ 1 solely (see the proof in [9]), whereas, in classification, α in Tsybakov’s
noise condition can be very large, up to +∞, recovering in the limit Massart’s
margin condition [21]. Indeed, as may be shown by a careful examination of
Lemma 6’s proof, bound (2.9) for α > 1 implies that F ′(η(x)) = 0, denoting by
F the cdf of η(X). Therefore, it is obvious that the (probability) density of the
r.v. η(X) cannot be zero on its whole range Im(η) = {η(x), x ∈ X}.

In the context of binary classification, by combining the CAR assumptions
described above and Tsybakov’s noise condition, optimal rates of convergence
were obtained in [3] and adaptive optimal rates in [19]. In particular, it was
shown that, with the additional assumption that µ(dx) satisfies the mild den-
sity assumption, the minimax rate of convergence is n−β(1+α)/(d+β(2+α)) and
may be thus faster than n−1/2 or even very close to n−1, depending on the
values taken by the parameters α and β. With the additional assumption that
µ(dx) satisfies the strong density assumption, the minimax rate of convergence
is n−β(1+α)/(2β+d) and may be thus faster than n−1/2 or even than n−1. We shall
now attempt to determine whether similar results hold in the ranking setup.

3. Oracle inequalities for the aggregation procedure

In this section, we describe how to aggregate ranking rules into an accurate
decision rule for the hinge ranking risk. We propose a procedure that uses ex-
ponentials weights. This kind of procedure is very popular in machine learning
and was studied in many contexts such as regression (see [25, 12] and [2]), ag-
gregation of experts (see [7] for instance) and classification (see [18]). We show
that the obtained decision rule satisfies an oracle inequality which can be used
to achieve minimax upper bounds (see 4). The proof of the theorem is an adap-
tation to the ranking case of the one in [18].

3.1. Aggregation via exponential weights

The ranking rules r1, . . . , rM are given and the goal of the aggregation method
is to mimic the performance of the best of them according to the excess risk and
under the low noise assumption. We define the exponential aggregate decision
rule as

f̃n =

M∑

m=1

w(n)
m rm (3.1)

where the weights wnj are

w(n)
m =

exp(
∑

i6=j −Zijrm(Xi, Xj))
∑M

k=1 exp(
∑

i6=j −Zijrm(Xi, Xj))
, ∀j = 1, . . .M.
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Notice that we call it f̃n because this function takes its values in [−1, 1]. The
functions r1, . . . , rM take their values in {1;−1}, we have,

w(n)
m =

exp(−n(n− 1)An(rm))
∑M

k=1 exp(−n(n− 1)An(rk))
, ∀j = 1, . . .M, (3.2)

where An(rm) = 1
n(n−1)

∑
i6=j max(0, 1− Zijrm(Xi, Xj)) is the empirical hinge

ranking risk of the ranking rule rm. Using the equality (2.5), the weights can be
rewritten in terms of the empirical risks of rm’s

w(n)
m =

exp(−2n(n− 1)2Ln(rm))
∑M

k=1 exp(−2n(n− 1)Ln(rk))
, ∀j = 1, . . .M,

We call this procedure aggregation with exponential weights (AEW). The
idea behind this procedure is to give more weight to the ranking rules that
have the smaller empirical performance in order to mimic the accuracy of the
empirical (hinge ranking) risk minimizer (ERM). The next result states that the
AEW has similar performance as the ERM estimator up to a (logM)/n term.

Proposition 7. Let M ≥ 2 be an integer, f1, . . . , fM be M decision rules on
X ×X . For any n ∈ N ∗, the aggregate f̃n estimator defined in 3.1 with weights
3.2 satisfies

An(f̃n) ≤ min
j=1,...,M

An(fj) +
logM

n
.

The main benefits of the AEW procedure are that it does not need a mini-
mization algorithm and is less sensitive to overfitting because the output decision
rule is a mixture of several ranking rules whereas ERM only involves one ranking
rule.

3.2. An oracle inequality

We now provide the main tool of this paper, an oracle inequality for the excess of
hinge ranking risk. The goal of an oracle inequality is to show that an estimator
is nearly as good as the best one of a given collection (see [22] for example in
model selection). Here, the goal of this oracle inequality is to state that the
procedure AEW 3.1 has asymptotically the same performance as the best one
among the convex hull formed by a finite set of decision functions.

Theorem 8 (Oracle inequality). Let α ∈ (0, 1]. We assume that NA(α) holds.
We denote by C the convex hull of a finite set F of functions f1, . . . , fM with
values in [−1, 1]. Let f̃n be the aggregate estimator introduced in 3.1. Then, for
any integers M ≥ 3, n ≥ 1 and any a > 0, f̃n satisfies the inequality

E[A(f̃n)−A∗] ≤ (1 + a)min
f∈C

(A(f)−A∗) + C

(
logM

n

)α+1
α+2

,

where C > 0 is a constant depending only on a.
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In [18], the author shows that the rate
(
logM
n

)α+1
α+2 is optimal in a minimax

sense. For the moment, we do not have such result of optimality, however, the
rate in the oracle inequality is the same. Using this tool, we can state an oracle
inequality for the excess of ranking risk.

Corollary 9 (Oracle inequality for the ranking risk). Let α ∈ (0, 1], M ≥ 3
and {r1, . . . , rM} be a finite set of prediction rules. We assume that NA(α)
holds. Let f̃n be the aggregate estimator introduced in 3.1. Then, for any integers
M ≥ 3, n ≥ 1 and any a > 0, f̃n satisfies the inequality

E[L(rf̃n)− L∗] ≤ 2(1 + a)min
f∈C

(L(rf )− L∗) + C

(
logM

n

)α+1
α+2

,

where C > 0 is a constant depending only on a.

Proof. Using inequalities 2.5 and 2.6 combine with Theorem 8, we immediately
get the desired result.

This oracle is the main tool to obtain the minimax rates in Theorem 11, 12
and 15 using an estimator based on the AEW procedure.

4. Minimax rates

Here, we present the adaptive minimax upper bounds in bipartite ranking in
two cases, specifically under the mild assumption and the strong assumption.
The estimators of the regression function used are the same as in classification
(see [18] and [3]).

4.1. The “mild” case

In this section, we assume that the regression function η belongs to a Hölder
class of functions. An important result from [16], on the complexity of Hölder
classes, says that:

N
(
Σ(β, L, [0, 1]d), ǫ, L∞([0, 1]d)

)
≤ Cǫ−

d
β , ∀ǫ > 0

where the left hand side is the ǫ-entropy of the (β, L, [0, 1]d)-Hölder class w.r.t.
to the L∞([0, 1]d) norm and C is a constant depending only on β and d. We
now introduce the first class of distributions for the random couple (X,Y ).

Definition 10. Let α ≤ 1, β and L be strictly positive constants. The collection
of probability distributions P (dx, dy) such that

1. the marginal µ(dx) =
∫
y
P (dx, dy) satisfies the mild density assumption

with µmax,
2. the global noise assumption NA(α) holds,
3. the regression function belongs to Hölder class Σ(β, L,Rd),
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is denoted by Pα,β,µmax
(omitting to index it by the constants involved in the

noise assumption for notational simplicity).

Let α ≤ 1, β > 0. For ǫ > 0, Λǫ(β) is an ǫ-net on Σ(β, L, [0; 1]d) for the
L∞-norm, such that ln(Card(Λǫ(β))) ≤ Cǫ−d/β. We use the procedure 3.1 over
the net Λǫ(β) to define the estimator:

f̃ ǫ,βn =
∑

g∈Λǫ(β)

wn(rg)rg (4.1)

where rg(x, x
′) = 2I{g(x) > g(x′)} − 1 and we call the associated ranking rule

r̃ǫ,βn . This is an adaptation to the ranking case of the estimator in [18]. We now
state the minimax upper bound for the excess of ranking risk over the class of
distributions that satisfy the mild assumption.

Theorem 11 (Upper bound: mild case). There exists a constant C > 0
such that for all n ≥ 1, the maximum expected excess of ranking risk of the
aggregation rule defines in 4.1 ǫn = n−αβ/(d+β(2+α)), is bounded as follows:

sup
P∈Pα,β,µmax

E(r̃ǫ,βn ) ≤ C · n− β(1+α)
d+β(2+α) . (4.2)

where C depends on d, β and α.

To obtain an estimator adaptive to the smoothness and the margin coeffi-

cients, we aggregate classifiers r̃
(ǫ,β)
n for (ǫ, β) in a finite grid. We split the sample

in two sets, the first set D
(1)
m of size m = n−⌊n/ lnn⌋ is used to build the plug-in

classifiers and the second one D
(2)
l of size l = ⌊n/ lnn⌋ to obtain the weights.

We define the grid G of values for (ǫ, β):

G =

{
(ǫk, βp) =

(
m−φk ,

p

lnn

)
|φk =

k

lnn
, k ∈ {1, . . . , ⌊ln(n)/2⌋} ,

p ∈
{
1, . . . , ⌊ln(n)⌋2

}}
.

We propose the ranking rule r̃adpn which is the sign of the decision function

f̃adpn =
∑

(ǫ,β)∈G

w(l)(rǫ,βm )rǫ,βm

where the weights w(l)(r) are those defined in 3.2 using the dataset D
(2)
l and rǫ,βm

is the ranking rule associated to the decision function introduced in equation

4.1 using the dataset D
(1)
m .

Theorem 12 (Adaptivity in α and β). Let K be a compact subset of
]0; 1[×]0;∞[. There exists a constant C > 0 such that for all n ≥ 1, for any
(α, β) ∈ K, the maximum expected excess of ranking risk of the estimator r̃adpn

is bounded as follows:

sup
P∈Pα,β,µmax

E(r̃adpn ) ≤ C · n− β(1+α)
d+(2+α)β . (4.3)



Upper bounds and aggregation in bipartite ranking 1261

The cardinality of Σǫn is an exponential of n so the estimators r̃ǫn,β, for
a given (ǫn, β), are not easily implementable. However the procedure is very
interesting from a theoretical standpoint since it is adaptive to the parameters
and it achieves fast rates when αβ > d. Finally, notice that this estimator can
achieve fast rates when αβ > d i.e. when the regression function is very smooth.

4.2. The “strong” case

Now, we introduce the second case, namely the strong density assumption. The
class of distributions is given in the next definition.

Definition 13. Let α ≤ 1, β and L be strictly positive constants. The collection
of distributions probabilities P (dx, dy) such that

1. the marginal µ(dx) =
∫
y
P (dx, dy) satisfies the strong density assumption

with µmax and with µmin,
2. the global noise assumption NA(α) holds,
3. the regression function belongs to Hölder class Σ(β, L,Rd),

is denoted by Pα,β,µmax,µmin
(omitting to index it by the constant involved in

the noise assumption for notational simplicity).

We recall the non-adaptive upper bound for the excess of ranking risk.

Theorem 14 ([9]). There exists a constant C > 0 such that for all n ≥ 1,

the maximum expected excess of ranking risk of the plug-in rule r̂
(β)
n (x, x′) =

2 · I{η̂n,hn
(x′) > η̂n,hn

(x)}− 1, with hn = n−1/(2β+d) and l = ⌊β⌋, is bounded as
follows:

sup
P∈Pα,β,µmax,µmin

E(r̂βn) ≤ C · n−β(1+α)
d+2β . (4.4)

The plug-in estimator defined in the last theorem depends only on β. To
obtain an estimator adaptive to the smoothness coefficient, we aggregate clas-

sifiers r̂
(β)
n for β in a finite grid. We split the sample in two sets, the first set

of size m = n− ⌊n/ lnn⌋ is used to build the plug-in classifiers and the second
one of size l = ⌊n/ lnn⌋to obtain the weights. We define the set F of of plug-in
classifiers using the training sample D1

m = (Xi, Yi)1≤i≤m:

F =

{
r̂(βk)
n |βk =

kd

ln(n)− 2k
, k ∈ {1, . . . , ⌊ln(n)/2⌋}

}
.

Using the validation sample D2
l = (Xi, Yi)m+1≤i≤n, we build the weights, for

all r ∈ F
w(l)
n (r) =

exp(
∑n

i=m+1 Yir(Xi))∑
r̄∈F exp(

∑n
i=m+1 Yir̄(Xi))

Finally, our ranking rule is r̂adp = sign(̂fadp), where f̂adp =
∑

r∈F w
(l)
n (r)r.
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Theorem 15 (Adaptivity in β). Let K be a compact subset of ]0; 1[×]0;∞[.
There exists a constant C > 0 such that for all n ≥ 1, for any (α, β) ∈ K such
that αβ ≤ d, the maximum expected excess of ranking risk of the estimator r̃adp

is bounded as follows:

sup
P∈Pα,β,µmax,µmin

E(r̂adp) ≤ C · n− β(1+α)
d+2β . (4.5)

5. Lower bounds

For completeness, we now state a lower bound for the minimax rate of the
expected excess of ranking risk in the strong density case. It holds in a specific
situation, namely when αβ ≤ 1. When d = 1, the result can be found in [9].

Theorem 16 (A minimax lower bound). Let (α, β) ∈]0, 1] × R
∗
+ such that

αβ ≤ 1. There exists a constant C > 0 such that, for any ranking rule rn based
on n independent copies of the pair (X,Y ), we have: ∀n ≥ 1,

sup
P∈Pα,β,µmax,µmin

E(rn) ≥ C · n− β(1+α)
d+2β .

When d ≥ 2 the rate of convergence is always slower than n−1/2. That means
that we are not able to prove optimal fast rates for the excess ranking risk. In
classification, the limitation is αβ ≤ d, so optimal fast rates can be achieved in
this situation (but not hyper fast).

For the mild case and the oracle inequality, mimicking the proof of theorem
16 does not give the same rates as the upper bounds. An explanation of the
difficulties as well as the rates are given in Appendix B.

6. Conclusion

In this paper, we investigate the aggregation with exponential weights of ranking
rules. In order to aggregate, we convexify the ranking loss using the hinge loss.
We state an oracle inequality for the aggregation procedure under a low noise
assumption that achieves the same rate as in classification. This is the crucial
point to obtain the adaptive upper bounds for the excess of ranking risk. In the
mild density case, we establish a new upper bound that is adaptive to the mar-
gin and the regularity parameters, with the same rates as in classification. In the
strong density case, we aggregate plug-in classifiers in order to obtain minimax
adaptive rates of convergence, under a restrictive assumption over the param-
eters for all dimensions. Moreover, in dimension 1, the aggregation procedure
attains minimax adaptive fast rates. These results are in the continuity of [9]
and there are still a lot of issues, in particular to obtain the lower bounds, that
require a better understanding of the nature of the bipartite ranking problem.
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Appendix A: Proofs

Proof of Proposition 3

Proof.

A(f) = E[1 − (f(X,X ′) · Z)]
= 1− E[f(X,X ′)(η(X)(1 − η(X ′)))− f(X,X ′)(η(X ′)(1− η(X)))]
= 1− E[f(X,X ′)(η(X)− η(X ′))]

Finally to minimize A, we have to set f∗(x, x′) = 1 when η(x) ≥ η(x′) and
f∗(x, x′) = −1 otherwise.

Proof of Lemma 4

Proof. Because f values are in [−1, 1]

A(f)−A∗ = E [−f(X,X ′) · Z + f∗(X,X ′) · Z]
= E [−f(X,X ′)η(X) + f(X,X ′)η(X ′) + f∗(X,X ′)η(X)− f∗(X,X ′)η(X ′)]

= E [(f(X,X ′)− f∗(X,X ′))(η(X ′)− η(X))]

By definition of f∗(X,X ′), we get the desired result.

Proof of Proposition 5

Proof. Recall that

(L(r)− L∗) = E [|η(X)− η(X ′)| I{r(X,X ′)(η(X ′)− η(X)) < 0}]

Lower bounding η(X)− η(X ′) by t we obtain the lower bound

tEI{r(X,X ′)(η(X ′)− η(X)) < 0}I{η(X ′)− η(X) > t}

which is greater (using the noise assumption) than

tE[I{r(X,X ′) 6= r∗(X,X ′)}]− Ct1+α

Optimizing in the parameter t, we obtain (for t0 =
(
EI{r(X,X′) 6=r∗(X,X′)}

C(1+α)

)1/α
):

E[I{r(X,X ′) 6= r∗(X,X ′)}] ≤ C(1 + α)

Cαα/(1+α)
(L(r)− L∗)α/(1+α)

Proof of Proposition 7

Proof. Using the convexity of the hinge loss, we have An(f̃n) ≤
∑j=1

M ωjAn(fj).
Let j0 = argminj=1,...,M An(fj), we have An(fj) = An(fj0) +

1
n (log(ωj0) −
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log(ωj)) for all j = 1, . . . ,M and by averaging over the ωj, we obtain:

An(f̃n) ≤ min
j=1,...,M

An(fj) +
1

n

M∑

j=1

ωj(log(ωj0)− log(ωj)),

Using that
∑j=1

M ωj
log ωj

1/M = K(w|u) ≥ 0 where K(w|u) denotes the Kullback-

Leiber divergence between the weights ω = (ωj)j=1,...,M and the uniform weights
u = (1/M)j=1,...,M and wj0 ≤ 1, we obtain the desired result.

Proof of Theorem 8

Proof. Let a > 0. Adding and subtracting (1+a)(An(f̃n)−An(f∗) to A(f̃n)−A∗

and then using proposition 7, we have for any f ∈ F :

A(f̃n)−A∗ ≤ (1+a)(An(f)−An(f∗+
logM

n
)+A(f̃n)−A∗−(1+a)(An(f̃n)−An(f∗).

Taking the expectation, we upper bound E[A(f̃n)−A∗] by

(1+a)min
f∈F

(A(f)−A(f∗))+
logM

n
+E[A(f̃n)−A∗− (1+a)(An(f̃n)−An(f∗))].

Now the goal is to control the expectation in the RHS. For that we use the
Bernstein’s inequality. First, notice that, using the linearity of the hinge loss on
[−1, 1] we have:

A(f̃n)−A∗−(1+a)(An(f̃n)−An(f∗)) ≤ max
f∈F

A(f)−A∗−(1+a)(An(f)−An(f∗)),

using the union bound we deduce that, for all δ ∈]0, 4 + 2a[, the probabil-
ity P{A(f̃n) − A∗ − (1 + a)(An(f̃n) − An(f

∗))} ≥ δ} is bounded by the sum∑
f∈F P{A(f) − A∗ − (1 + a)(An(f) − An(f

∗)) ≥ δ}. The MA(α) assumption
implies that the variance of I{Z 6= f(X,X ′)}−I{Z 6= f∗(X,X ′)} is bounded by
(A(f)−A∗)

α
1+α . Now, using the Bernstein’s inequality on P{A(f)−A∗−(An(f)−

An(f
∗)) ≥ δ+a(A(f)−A∗)

1+a δ}, P{A(f̃n) − A∗ − (1 + a)(An(f̃n) − An(f
∗)) ≥ δ} is

bounded for all by δ ∈]0, 4 + 2a[

∑

f∈F

exp

(
− n(δ + a(A(f)−A∗))2

2(1 + a)2(A(f)−A∗)
α

1+α + 2(1 + a)(δ + a(A(f)−A∗))/3

)
.

The quantity inside the exponential is lower for all δ ∈]0, 4 + 2a[ and f ∈ F
than−cδ2− α

1+α where c depends only on a. Using the fact that
∫ +∞

u exp(−btκ)dt ≤
exp(−buκ)
κbuκ−1 and the inequality obtained, we get

E[A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f
∗))] ≤ 2t+M

exp(−nct 2+α
2+2α )

ncbt
1

1+α

Optimizing in t the RHS, we obtain the desired result.
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Proof of Theorem 11

Proof. Using Corollary 9 with a = 1, we get, for any ǫ > 0:

E(rf̃ǫ,n) ≤ 4 min
g∈Λǫ(β)

(L(rg − L∗) + C

(
log Λǫ(β)

n

)α+1
α+2

.

Using that L(rg)− L∗ ≤ C‖g − η‖1+αL∞ (see [9]) we obtain that

E(rf̃ǫ,n) ≤ D


ǫ1+α +

(
ǫ−d/β

n

)α+1
α+2


 .

Taking ǫn = n−αβ/(d+β(2+α)), we obtain the result.

Proof of Theorem 12

Proof. We introduce the function φ :]0; 1[×]0;∞[→]0; 1/2[, (α, β) 7→ β
d+β(2+α) .

There exists n1 depending on K such that for any n greater than n1 we have,
for all (α, β) ∈ K

ln(n)−1 ≤ φ(α, β) ≤ ⌊ln(n)/2⌋ ln(n)−1.

Let (α0, β0) ∈ K. For n ≥ n1, we denote a0 ∈ {1, . . . , ⌊ln(n)/2⌋} the in-
teger such that φa0 = a0 ln(n)

−1 ≤ φ(α0, β0) ≤ (a0 + 1) ln(n)−1 and q0 ∈
{1, . . . , ⌊ln(n)⌋2−1} such that βq0 = q0 ln(n)

−1 ≤ β0 ≤ (q0+1) ln(n)−1. Denote
by gβq0

(.) the decreasing function φ(., βq0 ) from [0, 1] to [0, 1/2] and we set α0,n =

g−1
βq0

(φa0). There exists A such that A|α0,n − α0| ≤ |gβq0
(α0,n) − gβq0

(α0)| ≤
ln(n)−1. Let P be a probability distribution belonging to Pα0,β0,µmax

. Applying
the Corollary 9 with a = 1, we get

E

[
E(rf̃adp)|D1

m

]
≤ 4 min

(ǫ,β)∈G
(L(r) − L∗) + C

(
lnCard(G)

l

)α+1
α+2

Using that l = n/ ln(n) and that Card(G) ≤ ln(n)3 combined with the definition

of a0 and ǫ0m = m−
a0
lnn , we have

EP

[
E(r̃adp)

]
≤ C


EP

[
E
(
r
ǫ0m,βa0
m

)]
+ C

(
ln2 n

n

)α+1
α+2




where C is independent of n. Since βa0 ≤ β0 and that there exists a constant A1

such that α0 > α0,n −A1 ln(n)
−1 = α′

0,n, we have Pα0,β0,µmax
⊂ Pα′

0,n,βa0 ,µmax
.

Using theorem 11 we can upper bound EP [E(rǫ
0
mβa0 )] by Cm−ψ(α0,βk0

) where

C depend on K and d and ψ(α, β) = β(1+α)
β(2+α)+d . By construction, there exist A2
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such that |ψ(α0, βa0)−ψ(α0, β0)| ≤ A2 ln(n)
−1 and using that nA2/ ln(n) = eA2 ,

we get

EP [E(r̃adp)] ≤ C


n−ψ(α0,β0) + C

(
ln2 n

n

)α0+1
α0+2




We conclude the proof using that ψ(α0, β0) ≤ α0+1
α0+2 .

Proof of Theorem 15

Proof. We introduce the function Θ :]0; 1[×]0;∞[→]0; 1/2[, (α, β) 7→ β(1+α)
d+2β .

There exists n1 depending on K such that for any n greater than n1 we have,
for all (α, β) ∈ K

min
(α,β)∈K

(1 + α) ln(n)−1 ≤ Θ(α, β) ≤ max
(α,β)∈K

(1 + α) ⌊ln(n)/2⌋ ln(n)−1.

Let (α0, β0) ∈ K be such that α0β0 ≤ d. For n ≥ n1, we denote k0 ∈
{1, . . . , ⌊ln(n)/2⌋} the integer such that

(1 + α0)k0 ln(n)
−1 ≤ Θ(α, β) ≤ (1 + α0)(k0 + 1) ln(n)−1.

Let P be a probability distribution belonging to Pα0,β0,µmax,µmin
. Applying the

Corollary 9 with a = 1, we get

E

[
E(rf̃adp)|D1

m

]
≤ 4min

r∈F
(L(r) − L∗) + C

(
lnCard(F)

l

)α+1
α+2

Using that l = n/ ln(n) and that Card(F) ≤ ln(n) combined with the definition
of k0, we have

EP

[
E(rf̃adp)

]
≤ C


EP

[
E
(
r
βk0
m

)]
+ C

(
ln2 n

n

)α+1
α+2




where C is independent of n. Since βk0 ≤ β0, we have Pα0,β0,µmax,µmin
⊂

Pα0,βk0
,µmax,µmin

. Using theorem 14 we can upper bound EP [E(rβk0
m )] by

Cm−Θ(α0,βk0
) where C depend onK and d. By construction, we have |Θ(α0, βk0)−

Θ(α0, β0)| ≤ ln(n)−1 and using that n1/ ln(n) = e, we get

EP [E(rf̃adp)] ≤ C


n−Θ(α0,β0) + C

(
ln2 n

n

)α0+1
α0+2




We conclude the proof using that Θ(α0, β0) ≤ α0+1
α0+2 when α0β0 ≤ d.
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Proof of Theorem 16

Proof. The proof is classically based on Assouad’s lemma. For q ≥ 1, consider
the regular grid on [0; 1]d defined as

G(q) =

{(
2k1 + 1

2q
, . . . ,

2kd + 1

2q

)
such as k1, . . . , kd ∈ {0, . . . , q − 1}

}
.

Let ηq(x) ∈ G(q) be the closest point to x ∈ [0; 1]d in G(q) (uniqueness of ηq(x)
is assumed: if it does not hold, define ηq(x) as the one which is moreover closest
to 0). Consider the partition X ′

1, . . . ,X ′
qd of [0, 1]d canonically defined using the

grid G(q)(x and y belong to the same subset iff ηq(x) = ηq(y)). Obviously, X =

[0, 1]d = ∪q
d

i=1X ′
i . Let u1 : R+ → R+ be a non increasing infinitely differentiable

function as in [3]. Let u2 : R+ → R+ be an infinitely differentiable bump function
such as u′2 = 1 on [1/12, 1/6]. Let φ1, φ2 : Rd → R+ be function defined as

φi(x) = Cφui(‖x‖), (A.1)

where the positive constant Cφ is taken small enough to ensure that |φi(x) −
φi,x(x

′)| ≤ L‖x′ − x‖β for any x, x′ ∈ R. Thus φ1, φ2 ∈ Σ(β, L,R). Now we
define the hypercube H. For this purpose, we merge together intervals: Gk =
[(k−1)K/q; kK/q]× [0, 1]d−1, k ∈ {1, . . . , H} where K is the number of intervals
we bring together relatively to the first coordinate (and it will play a role in the
proof), m = Kqd−1 is the number of cubes in a group and H = ⌊q/K⌋. Define
the hypercube H = {P~σ, ~σ ∈ SHm}, where Sm is the symmetric group of order
m, of probability distributions P~σ of (X,Y ) as follows.

We design the marginal distribution of X that does not depend on σ and
has a density µ w.r.t Lebesgue measure on R

d. For fixed 0 < W , we take µ as
µ(x) =W/λd(B(z, 1/4q)) if x belongs to a set B(z, 1/6q)\B(z, 1/12q) for some
z ∈ G(q), and µ(x) = 0 for all other x. We call Xi = Xi∩B(z, 1/6q)\B(z, 1/12q)
for i = 1, . . . ,m. Next, the distribution of Y given X for Pσ,k ∈ H is determined
by the regression function, if x ∈ X ′

i with i ∈ {1, . . . ,m},

η~σ(x) = k(x)K/q + σk(x)(x)h̃φ1 (q|x− ηq(x)|) + h̃φ2 (q|x− ηq(x)|) .

where h̃ is a function of q and k(x) = ⌊xK/q⌋.
We now check the assumptions. Because of the design Hölder condition holds

for x, x′ ∈ Xi ([3]). In contrast of classification situation, we have to check
whether Hölder condition holds for x ∈ Xi, x′ ∈ Xj when i 6= j belong to a

same group Gk. One can see that Hölder condition holds as soon as mh̃ ≤ Lq−β

(i.e Kh̃ ≤ Lq1−d−β). Consider now the margin assumption. For t = O(h̃) the
margin condition implies W ≤ Ch̃α. A constraint on K is also induced by
the margin assumption: restricted to a group, the range of η has a measure of
order q−β (because of the Hölder assumption). Hence, the margin assumption is
satisfied ifmW = O(q−αβ) because of the strong density assumptionW ≥ C/qd.
Coupling the two last inequalities leads to αβ ≤ 1, guaranteeing K ≥ 2. So we
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take h̃ = C′q−d−β+αβ and we verify that the margin condition holds. Indeed, if
αβ ≤ d, there exists C′ > 0 such as h̃α = C′q−αd−αβ+α

2β ≥ C/qd.
We denoteG(j), the set of cubes in the same group of j and for i ∈ G(j), i 6= j,

σi,j = +1 if for all x ∈ Xi, x′ ∈ Xj , η~σ(x) > η~σ(x
′) and σi,j = −1 otherwise.

Using lemma 1, we have

E~σL(rn)−L∗ =
1

2
E~σ


E~σ



qd∑

j=1

|η~σ(X)− η~σ(X
′)||r~σ(X,X ′)− r̂(X,X ′)|IX′∈Xj




.

Using that X =
⊔Xi (i.e the disjoint union of the Xi) combined with the

definition of the margin law of X , we lower bound the excess risk by

W

2
E~σ



qd∑

j=1

IX′∈Xj
E~σ


 ∑

i∈G(j),i6=j

∫

Xi

|η~σ(x) − η~σ(X
′)||r~σ(x,X ′)− r̂(x,X ′)| dx

λ(Xi)




.

We denote dη(Xi,Xj) = min(x,x′)∈(Xi,Xj0)
|ησ(x) − ησ(x

′)|. Now, using the
definition of σi,j and G(i), the last expression is lower than

W

2
E~σ



qd∑

j=1

IX′∈Xj


E~σ[

∑

i∈G(j),i6=j

dη(Xi,Xj)
∣∣∣∣σi,j −

∫

Xi

r̂(x,X ′)
dx

λ(Xi)

∣∣∣∣






We denote by σ̂i,j =
∫
Xi
rn(x,X

′)IX′∈Xj
dx

λ(Xi)
. So it remains to lower bound,

sup
~σ∈SH

m

E~σ


 ∑

i∈G(j),i6=j

dη(Xi,Xj)|σi,j − σ̂i,j |


 .

Using that the sup is always greater than the mean and the linearity of the
expectation, we lower bound by

1

m!H

∑

i∈G(j),i6=j

∑

~σ∈SH
m

E~σ [dη(Xi,Xj)|σi,j − σ̂i,j |]

Restricting the sum to ~σ’s such that the σ corresponding at the group G(j)
satisfies σ(i) − σ(j) > m/2 or σ(j) − σ(i) > m/2, we have dη(Xi,Xj) ≥ C/qβ.
Combining this with the triangular inequality we obtain the following lower
bound

1

m!H

∑

i∈G(j),i6=j

∑

~σ∈SH
m|σi,j=1,σ(i)−σ(j)>m/2

1

2qβ
Eπσ ,πτi,jσ

[|σi,j − τi,jσi,j |]

where τi,j is the transposition (i, j). Using inequality between the divergence
and the Hellinger’s distance, the last expression is greater than

1

m!H

∑

i∈G(j),i6=j

∑

σ∈SH
m |σi,j=1,σ(i)−σ(j)>m/2

1

2qβ
(1−

√
1− (1−H2(P⊗n

~σ , P⊗n
τi,j~σ

)/2)2
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A straightforward calculus shows that H2(P~σ, Pτi,j~σ) ≤ 4W (1−
√
1− q−2β ≤

4Wq−2β. Using argument of [4] we have,

1−
√
1− (1 −H2(P⊗n

σ ,P⊗n
τi,i−σ

)/2)2) ≥ 1−
√
2n(W/q2β)

The number of σ ∈ SHm such that σ(i) − σ(j) > m/2 is greater than m!H/8, so
finally we have

inf
rn

sup
P∈Pα,β,µmin,µmax

L(rn)− L∗ ≥ C
Wm

qβ
(1− q−β

√
2nW )

Now, we take q = C1n
1/(2β+d) combined with W = C2q

−d and m = C3q
d−αβ

with some positive constants C1, C2, C3, to conclude the proof.

Appendix B: Lower bounds

Basically, the idea of the proof of 16 is the following: first fix X1 ⊂ X a part
of the space such that X ∈ X1 then create a classification problem as in [3]
around X1. Doing that gives the rates of convergence of classification multiplied
by the measure of X1. So the next step is to create classification problems for a
union of part of the space with a measure independent of n. For the mild case in
classification (see the proof in [3]), the classification problem uses the all space
X i.e. all the important parts of the space have an η close to 1/2 and a density
close to zero. So with our strategy we obtain the rates of classification times the
measure of the space X1 (i.e.W in the previous proof) which is not independent
of n. For information only, we give the lower bounds that are achievable with
this strategy. Since we believe they are not optimal, we do not give the proofs.

Oracle inequality. Adapting the proof of Theorem 3 in [19], one can get the
next proposition. Let Pα be the set of all probability distributions such that
NA(α) holds.

Proposition 17 (Lower bound). For any integers M and n such that M ≤
exp(n), there exist M prediction rules f1, . . . , fM such that for any decision

function f̂n and any a > 0, we have

sup
P∈Pα

[
E[L(f̂n)− L∗]− (1 + a) min

j=1,...,M
(L(fj)− L∗)

]
≥ C1

(
logM

n log logM

) 2α+2
α+2

,

where C > 0 is a constant depending only on α and c0.

Notice that the power of n is half the power of n in the upper bound. Moreover
a term in log log(M) appears and comes from the fact that, we use permutations
instead of the hypercube {−1,+1}log(M).



1270 S. Robbiano

Mild assumption. In that case, using directly the same proof as in the strong
case with the choice of the parameters as in [3], one can prove the following
proposition.

Proposition 18. Let (α, β) ∈]0, 1] × R
∗
+. There exists a constant C > 0 such

that, for any ranking rule rn based on n independent copies of the pair (X,Y ),
we have: ∀n ≥ 1,

sup
P∈Pα,β,µmax,µmin

E(rn) ≥ C · n− β(1+2α)
d+(2+α)β .

Notice that the only change here is the factor 2 in front of the α.
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[9] S. Clémençon and S. Robbiano. Minimax learning rates for bipartite
ranking and plug-in rules. In Proceedings of the 28th international Confer-
ence on Machine Learning, ICML’11, pages 441–448, 2011.
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[23] P. Massart and E. Nédélec. Risk bounds for statistical learning. Ann.
Statist., 34(5), 2006. MR2291502

[24] J.-B Monnier. Classification via local multi-resolution projections. EJS,
6:382–420, 2012. MR2988413

[25] P. Rigollet and A. Tsybakov. Sparse estimation by exponential
weighting. Statistical Science, 27:558–575, 2011.

[26] C. Rudin. Ranking with a P-Norm Push. In Proceedings of COLT, 2006.
[27] N. Srebro, K. Sridharan, and A. Tewari. Smoothness, low noise and

fast rates. In Proceedings of NIPS. 2010.
[28] A. Tsybakov. Optimal aggregation of classifiers in statistical learning.

Ann. Statist., 32(1):135–166, 2004. MR2051002
[29] T. Zhang. Statistical behavior and consistency of classification methods

based on convex risk minimization (with discussion). Annals of Statistics,
32:56–85, 2004. MR2051001

http://www.ams.org/mathscinet-getitem?mr=1720712
http://www.ams.org/mathscinet-getitem?mr=2125342
http://www.ams.org/mathscinet-getitem?mr=0124720
http://www.ams.org/mathscinet-getitem?mr=2203269
http://www.ams.org/mathscinet-getitem?mr=2280618
http://www.ams.org/mathscinet-getitem?mr=2430253
http://www.ams.org/mathscinet-getitem?mr=1447734
http://www.ams.org/mathscinet-getitem?mr=1813803
http://www.ams.org/mathscinet-getitem?mr=2319879
http://www.ams.org/mathscinet-getitem?mr=2291502
http://www.ams.org/mathscinet-getitem?mr=2988413
http://www.ams.org/mathscinet-getitem?mr=2051002
http://www.ams.org/mathscinet-getitem?mr=2051001

	Introduction
	Theoretical background
	Probabilistic setup and first notations
	Bipartite ranking
	Additional assumptions

	Oracle inequalities for the aggregation procedure
	Aggregation via exponential weights
	An oracle inequality

	Minimax rates
	The ``mild" case
	The ``strong" case

	Lower bounds
	Conclusion
	Proofs
	Lower bounds
	References

