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Abstract: A new time series clustering method based on comparing fore-
cast densities for a sequence of k > 1 consecutive horizons is proposed.
The unknown k-dimensional forecast densities can be non-parametrically
approximated by using bootstrap procedures that mimic the generating
processes without parametric restrictions. However, the difficulty of con-
structing accurate kernel estimators of multivariate densities is well known.
To circumvent the high dimensionality problem, the bootstrap prediction
vectors are projected onto a lower-dimensional space using principal com-
ponents analysis, and then the densities are estimated in this new space.
Proper distances between pairs of estimated densities are computed and
used to generate an initial dissimilarity matrix, and hence a standard hier-
archical clustering is performed. The clustering procedure is examined via
simulation and is applied to a real dataset involving electricity prices series.
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1. Introduction

Clustering is an unsupervised learning process aimed to find similarities and
differences among data objects to classify them into a small number of homo-
geneous groups. When the objects are time series data, this classification might
be useful to detect a few representative patterns, quantify the affinity through
the time, forecast future performances, find out unknown temporal patterns,
etc. In particular, the problem of grouping together similar time series arises
in a broad range of fields such as economics, finance, medicine, bioinformatics,
ecology, geology, environmental studies, engineering, and many others. Some il-
lustrative examples reported in the literature are: comparison of seismological
data as the case of distinguishing between earthquake and nuclear explosions
waveforms [19], clustering of industrialized countries according to historical data
of CO2 emissions [1], detection of similar immune response behaviors of CD4+
cell number progression over patients affected by immune deficiency virus (HIV)
[7], clustering of banks on the basis of their weekly share price series [37], cluster-
ing of industrial production indices [34], the automatic identification of groups
of rail switching operations by analyzing time series of electrical power con-
sumption acquired during these operations [31], and many others. Note that
time series data present specific features that make difficult the clustering task.
First, time series data are dynamic in their nature, with an underlying autocor-
relation structure, and hence the analysis of similarities between series should
regard their evolution in time. In addition, time series database are usually
formed by large amounts of records and most of the standard clustering al-
gorithms do not work efficiently on high-dimensional data. Previous arguments
motivate that the number of contributions on time series clustering has increased
substantially in recent years, becoming a very active research area nowadays. A
detailed and extensive review on time series clustering is given by Liao [24], who
introduces the basics of this topic and provides a set of interesting references
and some specific application areas along with the sources of data used.

One key issue in time series clustering is the choice of a suitable dissimilarity
measure between two time series. Most conventional metrics used in cluster anal-
ysis are inherently static because they assess the closeness of the values observed
in specific instants of time, ignoring the interdependence relationship between
values. In fact, the concept of similarity between time series is not simple and it
can be established in different ways. Corduas and Piccolo [9] (see Introduction
and references therein) provide a valuable overview on the different approaches
considered in the literature to construct dissimilarity measures between time se-
ries. One way is to directly compare observations or specific features extracted
from raw data (see [23, 32, 11, 5, 7], among others). An alternative approach
is to assess the discrepancy between the underlying generating processes (some
references following this approach are [29, 25, 26, 19, 35], among many oth-
ers). Thus, there exist a broad range of metrics to compare time series, but the
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question is: “which dissimilarity measure is the best?”. Although some works
have compared the performance of some of these metrics via simulation studies
[20, 3, 5, 28], it is clear that the choice of a suitable metric heavily relies on the
nature of the clustering, i.e. on determining what the purpose of the grouping is.

In this work, the notion of dissimilarity is governed by the performance of
future forecasts. More precisely, two time series are similar if their forecasts for
a specific sequence of future times are close. This similarity concept could pro-
duce results very different to the ones coming from a cluster procedure based
on the generating models or on the last observed values. For instance, two time
series coming from the same generating process can lead to different forecasts
at pre-specified time points, and hence they might not be clustered together.
However, there are many practical situations where the real interest of the clus-
tering relies directly on the properties of the predictions, as in the case of any
sustainable development problem or in situations where the concern is to reach
target values on pre-specified future time periods. Alonso et al. [1] consider this
similarity notion and assume that there is just one future time point of interest,
say T + h, where T denotes the length of the observed series and h is the hori-
zon of interest. The dissimilarity measure between two time series is defined by
the L2 distance between their full forecast densities at the pre-specified horizon
T + h. They argue that comparing the forecast densities allows us to take into
account the variability of the predictions, which is completely ignored when the
comparison is based on the point forecasts. The forecast densities are approxi-
mated using kernel-type density estimators based on a sufficiently large set of
sieve-bootstrap predictions, which requires to assume that the series admit an
AR(∞) representation. To overcome this limitation, Vilar et al. [34] extend their
results to cover the case of nonparametric models of arbitrary autoregressions.
In this new scenario, the sieve bootstrap is not valid, and hence the forecast
densities are approximated using a bootstrap procedure that mimics the under-
lying generating processes without assuming any parametric model for the true
autoregressive structure of the series. Furthermore, it is also shown that the L1

distance presents better properties than the L2 distance in this clustering setup.
Works by Alonso et al. [1] and Vilar et al. [34] focused on the case of only one

forecast horizon, but in practice, the horizon of interest to perform clustering
is frequently a period of k > 1 future times. For instance, the classification of
European countries based on the future behavior of some economic indicators
(inflation, real interest rate, trade balance, domestic credit growth, public debt,
. . . ) should be useful to gain knowledge on the evolution of the current financial
crisis in the European Union. However, a realistic classification should be based
on a reasonable forecast period of two or more years. Analogously, classifying
some stock market companies according to the predictions of their daily stock
prices should be also of great interest for investors, as long as the predictions
involve a period of several days or weeks and not just one future day. Grouping
countries with similar forecasts of mortality rates for a range of years ahead,
clustering regions in accordance with predictions of monthly temperature for
the next annual cycle (i.e. k = 12), and many others real examples justify the
interest of time series clustering based on a set of k > 1 predictions. Thus, the
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main goal in this work is to extend the methodology proposed by Vilar et al. [34]
to the case of considering forecasts on a set of k > 1 consecutive future times,
i.e. the similarity notion is now governed by the proximity between k-variate
forecast densities. The resampling algorithms used in [34] are also valid to ob-
tain bootstrap replications of sequences of k predictions, simply lengthening the
bootstrap prediction-paths (see Section 2.1). Here, the main drawback is to con-
struct adequate kernel estimators of the multivariate forecast densities. There
exist well-known problems related to the multivariate kernel density estimation:
high computational effort, specification of several bandwidth parameters, and
mainly that it is complex to obtain accurate estimators in more than three or
four dimensions due to the so-called curse of dimensionality. To circumvent the
high dimensionality problem, we propose to transform the prediction vectors
into a new set of outputs confined in a low-dimensional space, and then to
compare the estimated densities in this new space.

The rest of the paper is organized as follows. Section 2 presents the steps of
our clustering method and includes three subsections where basic aspects of the
procedure are discussed in detail. Specifically, the approaches to obtain samples
of bootstrap predictions are described in Section 2.1, the problem of reducing
the dimensionality of the forecasts is addressed in Section 2.2, and the metrics to
construct a pairwise dissimilarity matrix are introduced in Section 2.3. Section 3
reports the results from a complete simulation study designed to evaluate the
performance of our clustering procedure. In Section 4, our clustering method-
ology is applied to real time series concerning electricity price in the Spanish
electricity market. The dataset is formed by a collection of 24 series such that
the i-th series contains the historical daily prices at hour i, for i = 1, . . . , 24,
and the purpose is to identify groups of hours with a similar behaviour of their
one-week-ahead predictions. Some concluding remarks are stated in Section 5.

2. Description of the clustering procedure

Consider a set of time series S =
{

XXX(1),XXX(2), . . . ,XXX(s)
}

, where each element

XXX(i) =
(

X
(i)
1 , . . . , X

(i)
T

)

is a partial realization from a real valued stationary

process {X
(i)
t , t ∈ Z} that admits a general autoregressive representation of the

form
X

(i)
t = mi(X

(i)
t−j1

, X
(i)
t−j2

, . . . , X
(i)
t−jd

) + ε
(i)
t , (2.1)

where (X
(i)
t−j1

, X
(i)
t−j2

, . . . , X
(i)
t−jd

), j1 < j2 < . . . < jd, is a d-dimensional vector of

known lagged variables and {ε
(i)
t } is a sequence of i.i.d. random variables. The

unknown autoregressive functions mi(·) are assumed to be smooth functions
but they are not restricted to any pre-specified parametric model. Hence, both
linear and nonlinear autoregressive processes might be included in S.

We are interested in performing cluster analysis on S in such a way that se-
ries showing a similar behaviour for their first k predictions, k > 1, are grouped
together, i.e. our clustering must be governed by the performance of the predic-

tors XXX
(i)
k =

(

X
(i)
T+1, . . . , X

(i)
T+k

)

. In practice, the number k of point predictions
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is known and previously fixed by practitioners according to the nature and the
goals of the analyzed problem.

In this context, we adopt the dissimilarity concept considered in [1] and [34],
namely the distance between two seriesXXX(i) andXXX(j) is measured in terms of the

discrepancy between the bootstrap forecast densities of their predictorsXXX
(i)
k and

XXX
(j)
k . However, this discrepancy is here evaluated in a lower-dimensional space

where the bootstrap replicates of the predictors are previously projected. Specif-
ically, we propose a clustering procedure involving the five steps indicated below.

Step 1. Generate a large set of bootstrap predictions for each series.
Step 2. Determine a low-dimensional space where the bootstrap predictions

are projected.
Step 3. Obtain a multivariate kernel density estimate from each set of pro-

jected bootstrap predictions.
Step 4. Construct a dissimilarity matrix based on pairwise distances between

the density estimates obtained in Step 3.
Step 5. Apply a standard hierarchical clustering method to the dissimilarity

matrix.

As the forecast densities are unknown in practice, a large number of boot-
strap predictors is obtained in Step 1 to estimate these densities. Under more
restrictive parametric assumptions, e.g. that the generating processes are AR(p)
with Gaussian errors, the conditional density for the predictions h-steps-ahead,

X
(i)
T+h

∣

∣

X
(i)
1 ,...,X

(i)
T

is asymptotically normal and can be directly estimated with-

out using bootstrap. However, we seek a more general procedure that can be
applied to a broad range of models. In particular it is desirable to overcome the
normality and linearity restrictions, and bootstrap is a very useful device in this
scenario. Although different resampling mechanisms can be used, we have se-
lected three methods that allow us to relax gradually these restrictions and that
are based on the common idea of mimicking the underlying dependence struc-
ture by resampling residuals (see Section 2.1 for details). Once the bootstrap
samples are obtained, we could proceed as in [34], that is approximating the
unknown forecast densities by means of kernel density estimators and comput-
ing the distances between each pair of estimators. However, as mentioned in the
previous section, it is difficult to obtain accurate density estimators in more than
three or four dimensions and hence this approach is inadequate for moderate or
large values of k. For this reason, Step 2 of the algorithm consists in projecting
the bootstrap prediction vectors onto a lower-dimensional space. In particular,
an approach based in principal components analysis (PCA) is considered to
construct this new space of dimension as small as possible (see Section 2.2).
In Step 3, the coordinates of the transformed bootstrap prediction vectors, i.e.
the principal components scores, are used to obtain kernel estimators of the
prediction densities in the new low-dimensional space. Step 4 allows us to con-
struct a pairwise dissimilarity matrix by computing the distances between each
pair of estimators. Several metrics are proposed in Section 2.3 to assess these
distances. Taking as starting point the dissimilarity matrix obtained in Step 4,
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a conventional hierarchical clustering method is finally performed in Step 5 to
obtain the required cluster solution.

The following subsections deal more in detail with the key points of the
clustering algorithm: the resampling procedure required in Step 1, the approach
to solving the dimensionality reduction problem considered in Step 2, and the
metric used to assess the distance between two multivariate density estimators
in Step 4.

2.1. Obtaining samples of bootstrap predictions

The first step of our algorithm consists in obtaining a large number of bootstrap

replicates of the predictors XXX
(i)
k =

(

X
(i)
T+1, . . . , X

(i)
T+k

)

, i = 1, . . . , s, in order to
gain knowledge on their distributions. There are several approaches to perform
bootstrap for prediction in a time series setup. If a particular structure is ex-
plicitly stated for the dependence (for instance, an ARIMA model), then the
general idea is to construct a tailor designed resampling mechanism that takes
into account the explicit way in which some observation depends on its past. The
aim is that the bootstrap sample exhibits approximately the same pattern of
dependence. Following this criterion and according to (2.1), we have considered
three bootstrap methods based on mimicking an autoregressive structure.

Consider a partial realization (X1, . . . , XT ) from a stationary process {Xt}t∈Z

satisfying (2.1). The first resampling scheme, so-called autoregression bootstrap,
proceeds as follows.

AB.1 Estimate the unknown autoregressive function m(·) from the original se-
quence (X1, . . . , XT ) by using a truncated Nadaraya-Watson smoother
with bandwidth g1, say m̂g1(·).

AB.2 Compute nonparametric residuals, ε̂t = Xt − m̂g1(XXXt−1), for t = d +
1, . . . , T .

AB.3 Construct the kernel density estimate with bandwidth h of the centered
residuals, f̂ε̃,h, where ε̃t = ε̂t − ε̂·, with ε̂· being the mean of the ε̂t.

AB.4 Draw a sufficiently large bootstrap-resample ε∗t of i.i.d. observations from

f̂ε̃,h.
AB.5 Using the estimator m̂g1 introduced in AB.2, define the bootstrap series

X∗
t , t = 1, . . . , T , by the recursion

X∗
t = m̂g1(XXX

∗
t−1) + ε∗t .

AB.6 Estimate the bootstrap autoregressive function, m∗, using again a trun-
cated smoother m̂g2(·), with bandwidth g2, based on the bootstrap series
(X∗

1 , . . . , X
∗
T ).

AB.7 Compute bootstrap prediction-paths of length k by setting

X∗
t = m̂∗

g2(XXX
∗
t−1) + ε∗t ,

for t = T + 1, T + 2, . . . , T + k, and X∗
t = Xt, for t ≤ T .

AB.8 Repeat steps AB.1-AB.7 a large number (B) of times to obtain bootstrap
replications of the predictors XXXk = (XT+1, . . . , XT+k).
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A more detailed description of this bootstrap procedure can be seen in [10],
where the consistency of the method is established and the choice of the pilot
estimate m̂g1(·) and the auxiliary bandwidths g1 and g2 is also discussed. In our
experiments, the cross-validation bandwidth selector introduced by Hart [15]
was used to obtain g1 because this automatic selector is specifically designed to
deal with dependent data. Following the suggestion by Franke et al. [10], g2 was
taken to be larger than g1, such as g2 = 1.5g1 or g2 = 2g1.

Unlike other residual-based resampling mechanisms, such as the called sieve
bootstrap (see e.g. [4, 2]), the autoregression bootstrap does not assume a para-
metric structure for the underlying autoregressive function, which results in a
great versatility that enables it to be applied to a broad range of models. The
sieve bootstrap, in contrast, assumes a linear structure for the underlying au-
toregressive process, m(xxx) = φφφtxxx, and hence the residuals are generated from
an estimator of a stationary AR(d) process. In this way, the sieve bootstrap
can be adversely affected by departures of the linearity assumption. To assess
this effect, the sieve bootstrap was also considered in our simulation study in
Section 3. Briefly, the sieve bootstrap algorithm can be outlined as follows.

SB.1 Obtain the least squares estimates of the autoregressive coefficients φ̂φφ =
(

φ̂1, . . . , φ̂d

)

.

SB.2 Compute the least square residuals given by ε̂t =
∑d

j=0 φ̂jL
jXt, where L

denotes the lag operator, i.e. LjXt = Xt−j .
SB.3 Construct the kernel density estimate with bandwidth h of the centered

residuals, f̂ε̃,h, where ε̃t = ε̂t − ε̂·, with ε̂· being the mean of the ε̂t.
SB.4 Draw a sufficiently large bootstrap-resample ε∗t of i.i.d. observations from

f̂ε̃,h.
SB.5 Define the bootstrap series X∗

t , t = 1, . . . , T , by the recursion

d
∑

j=0

φ̂jL
jX∗

t = ε∗t .

SB.6 Using the bootstrap resample obtained in SB.5, compute the least squares

estimates of the bootstrap autoregressive coefficients φ̂φφ
∗
=

(

φ̂∗
1, . . . , φ̂

∗
d

)

.
SB.7 Compute the bootstrap prediction-paths of length k by setting

d
∑

j=0

φ̂⋆
jL

jX∗
t = ε∗t ,

for t = T + 1, T + 2, . . . , T + k, and X∗
t = Xt, for t ≤ T .

SB.8 Repeat steps SB.1-SB.7 a large number (B) of times to obtain bootstrap
replications of the predictors XXXk = (XT+1, . . . , XT+k).

The third resampling plan considered in the present work is a conditional
bootstrap method proposed in Cao et al. [6]. The idea consists in modifying
the autoregression bootstrap algorithm as follows: (i) steps AB.5 and AB.6 are
omitted, and (ii) the bootstrap prediction-paths computed in AB.7 are generated
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using m̂g1 instead of m̂g2 . Equivalently, the resamples of the future values are
obtained conditionally to the original series. The conditional bootstrap is also
consistent and presents the advantage of being computationally much faster
than the autoregression bootstrap. For this reason, we are specially interested
in analyzing its performance in our clustering algorithm. The three resampling
procedures, the autoregression bootstrap (AB), the sieve bootstrap (SB) and
the conditional bootstrap (CB), are discussed and compared in the Monte Carlo
study of Section 3.

Hereafter, XXX
(i)⋆j
k =

(

X
(i)⋆j
T+1 , . . . , X

(i)⋆j
T+k

)

denotes the j-th bootstrap replicate

of the predictor XXX
(i)
k =

(

X
(i)
T+1, . . . , X

(i)
T+k

)

, for j = 1, . . . , B, i = 1, . . . , s, re-
gardless of the considered bootstrap mechanism.

2.2. Dimension reduction using a PCA-based approach

Step 2 of the clustering algorithm is aimed at determining a low-dimensional

space where all the bootstrap predictors XXX
(i)⋆j
k are projected. The objective

is simply determining a smaller set of variables that retain as much informa-
tion from the predictions as possible, and therefore a dimension reduction de-
vice is required. Among the available dimension reduction methods (principal
component analysis, factor analysis, independent component analysis, . . . ), we
have considered an approach based on principal components analysis (PCA) for
several reasons. PCA constructs mutually orthogonal linear combinations of k
variables, called principal components, in such a way that a small number p

(p < k) of these combinations account for most of the variation in the set of
original variables. It is the most used dimensionality reduction method due to
its simplicity and good properties. Although most inference procedures based on
principal components rely on the assumption of independence, PCA may still be
performed with dependent data. Furthermore, when the main objective of PCA
is descriptive, not inferential, the dependence of the observations does not se-
riously affect this objective ([18], chapter 12). Several examples applying PCA
to time series data can be seen in [18] and references therein. An alternative
approach under dependence conditions is factor analysis (FA). However, FA is
aimed to model the correlations structure among the original variables and this
is not actually our objective. Further, PCA is less sensible to the dimensionality
of the model and computationally simpler than common FA. In our particular
problem, PCA is conducted as follows.

First, each of the original series XXX(i) =
(

X
(i)
1 , . . . , X

(i)
T

)

is split into non-
overlapping blocks of k consecutive values. Then, the set S of original series is

rearranged to construct the n × k matrix given by ΛΛΛ =
(

ΛΛΛ(1),ΛΛΛ(2), . . . ,ΛΛΛ(s)
)t
,

with

ΛΛΛ(i) =













X
(i)
T X

(i)
T−1 . . . X

(i)
T−k+1

X
(i)
T−k X

(i)
T−k−1 . . . X

(i)
T−2k+1

...
...

. . .
...

X
(i)
T−rk X

(i)
T−rk−1 . . . X

(i)
T−rk+1













, (2.2)
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for i = 1, . . . , s, with r being the largest integer such that rk < T + 1 and
n = (r + 1)s.

Matrix ΛΛΛ is used as the input data matrix to carry out the principal compo-
nents analysis. As each row of ΛΛΛ(i) consists of a realization of k consecutive values
of XXX(i), the covariance matrix associated with the columns of ΛΛΛ estimates the
pooled auto-covariance structure for consecutive time lags 1, 2, . . . , k. Hence, the
principal components are strongly influenced by the first k lagged correlations
of the original series, and therefore the components provide additional insight

into the dependence structure of the prediction vectorsXXX
(i)
k . For instance, if the

generating processes of the seriesXXX(i) andXXX(j), i 6= j, have different covariance
structures, then the rows from ΛΛΛ(i) and ΛΛΛ(j) will be projected onto different
areas of the low-dimensional space defined by the first few components. Such
behaviour is certainly desirable to properly classify the prediction vectors.

A small number p of principal components, C = {C1, . . . , Cp}, accounting for
as much of the variability as possible, is then retained. The value of p should
lead to a reasonable trade-off between a small number of components and a high
explained variance, but its choice must be carefully examined bearing in mind
the need of constructing kernel estimators of p-variate densities and the high
computational cost of the procedure.

The bootstrap predictionsXXX
(i)⋆j
k are then projected to the new p-dimensional

space determined by the components in C, thus obtaining their scores on this

new coordinate system, which are denoted by ZZZ
(i)⋆j
p =

(

Z
(i)⋆j
1 , . . . , Z

(i)⋆j
p

)

, for
j = 1, . . . , B and i = 1, . . . , s. These sets of scores are used in the following step
of the clustering algorithm to compute kernel-type non-parametric estimators

of the unknown p-dimensional densities of ZZZ
(i)
p , for i = 1, . . . , s. Specifically, we

consider the standard p-dimensional kernel density estimator given by

f̂
(i)
HHH (zzzp) =

1

B

B
∑

j=1

Kp,HHH

(

zzzp −ZZZ(i)⋆j
p

)

, (2.3)

where HHH is a symmetric positive definite p× p matrix (bandwidth matrix) and

Kp,HHH (zzzp) = |HHH |−1/2
K

(

HHH−1/2zzzp

)

,

with K being a p-variate kernel function.

2.3. Computation of an initial dissimilarity matrix

In accordance with our proposal, the distance between two seriesXXX(i) and XXX(j)

must assess the discrepancy between the p-variate densities of ZZZ
(i)
p and ZZZ

(j)
p ,

where ZZZ
(i)
p denotes the projection onto the principal components space of the

predictorXXX
(i)
k . As these p-variate densities are unknown, the chosen metric must

be based on their kernel approximations f̂
(i)
HHHi

and f̂
(j)
HHHj

, introduced in (2.3). In



1028 J. A. Vilar and J. M. Vilar

particular, two metrics have been considered. First, the L1 functional distance
given by

D
(1)
ij =

∫

Rp

∣

∣

∣f̂
(i)
HHHi

(zzzp)− f̂
(j)
HHHj

(zzzp)
∣

∣

∣ dzzzp. (2.4)

Although classical multivariate methods are based on the use of the L2 dis-
tance, mainly by its analytical tractability, Vilar et al. [34] have obtained best
results with the L1 distance in a similar clustering setup. They argue that if a
pair of densities are very far apart, with disjoint supports, then the L2 distance
removes the effect of the distance between their centroids and it is only governed
by the shape of the densities. This feature may substantially distort the initial
dissimilarity matrix, and hence yield a poor performance in the clustering task.
Unlike the L2 distance, the L1 distance between two densities with disjoint sup-

ports is exactly equal to two, regardless of the shape of the densities. Thus, D
(1)
ij

allows us to correctly identify the most distant series and leads to a reasonable
cluster solution. Also it is well-known that L1 distance is less sensitive to outliers
compared to the L2 distance.

On the other hand, even though our algorithm is aimed at reducing the
dimension of the space where the full multivariate forecast densities are es-
timated, we have considered an alternative distance based on the univariate
marginal densities, thus avoiding the problems derived from the multivariate
density estimation. Such a distance is defined by

D
(2)
ij =

∫

Rp

∣

∣

∣

∣

∣

p
∏

l=1

f̂
(i)
l,hl,i

(zl)−

p
∏

l=1

f̂
(j)
l,hl,j

(zl)

∣

∣

∣

∣

∣

dz1 . . . dzp, (2.5)

where f̂
(i)
l,hl,i

, i = 1, . . . , p, is an univariate kernel estimator of the l-th univari-

ate marginal density of the random vector ZZZ
(i)
p , constructed with bandwidth

hl,i. Note that the one-dimensional approach used by distance (2.5) is only use-

ful when the components of ZZZ
(i)
p are independent. However, since the principal

components are uncorrelated, the independence of the Zis is ensured when the

original series have Gaussian innovations. Furthermore, unlike D
(1)
ij , distance

D
(2)
ij allows us to use a large number p of principal components without increas-

ing the computational effort in a substantial way.

Any of these metrics, D
(1)
ij or D

(2)
ij , allows us to construct a dissimilarity ma-

trix that can be taken as starting point to perform an agglomerative hierarchical
clustering. In this way, clustering will be governed by a dissimilarity measure
based on the behavior of the predictions, as we intended. Other standard clus-
tering methods do not satisfy this property. For instance, the k-means algorithm
moves each series to the cluster whose centroid is closest (usually in terms of
the Euclidean distance), recalculates the cluster centroid and repeats the as-
signment procedure until no time series is reassigned. Therefore, the k-means
does not work with the proposed metrics. Further, it is complex to introduce
here the concept of centroid. A centroid would be a kernel prediction density
generated from an averaging of different series, and this is not reasonable at all.
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Other partitioning procedures, such as the k-medoids algorithm, could be used.
However, unlike the partitioning procedures, the hierarchical methods produce
a complete set of cluster solutions, ranging from single-member clusters to the
one-cluster solution, thus enabling us to analyze how close two nested partitions
are. Considering these arguments, we decide to perform hierarchical clustering
in our experiments. Several criteria to link two clusters in an intermediate stage
of the hierarchical process are available. The average linkage or Ward’s methods
are usually preferable to others, such as the single linkage and the complete
linkage methods, because the former tend to generate clusters with small and
similar within-cluster variation and are less affected by the presence of outliers.
Nevertheless, as the k-means algorithm, the Ward’s method is not well suited
to our problem because it is based on Euclidean distances between centroids,

and thus distances D
(1)
ij and D

(2)
ij would not be used to link clusters. For it, the

Ward’s method is not considered in our experiments.

3. Simulation study

Some results from a simulation study carried out to analyze the performance
of our clustering methodology are shown in the present section. Our first set
of experiments was conducted to analyze the accuracy of the bootstrap-based
distances introduced in (2.4) and (2.5), and simultaneously to compare the three
considered bootstrap methods. Then, a new set of experiments was designed to
assess the quality of the cluster solutions obtained with our clustering procedure.

3.1. Analyzing the accuracy of the bootstrap-based distances

Let S =
{

XXX(1), . . . ,XXX(s)
}

be a set of T -length series subjected to the clustering
algorithm proposed in Section 2. According to the notation used so far, k de-

notes the length of the forecast vectorsXXX
(i)
k =

(

X
(i)
T+1, . . . , X

(i)
T+k

)

governing the

clustering and p is the number of selected principal components. Now, let f (i)

and f
(i)
l , l = 1, . . . , p, be the joint density and the l-th univariate marginal den-

sity associated with ZZZ
(i)
p , the random vector of principal component scores for

XXX
(i)
k . We are particularly interested in studying the behavior of the quantities

given by

d
(1)
i,k,p =

∫

Rp

∣

∣

∣
f̂
(i)
HHHi

(zzzp)− f (i) (zzzp)
∣

∣

∣
dzzzp, (3.1)

d
(2)
i,k,p =

∫

Rp

∣

∣

∣

∣

∣

p
∏

l=1

f̂
(i)
l,hl,i

(zl)−

p
∏

l=1

f
(i)
l (zl)

∣

∣

∣

∣

∣

dz1 . . . dzp, (3.2)

for i = 1, . . . , s, where f̂
(i)
HHHi

and f̂
(i)
l,hl,i

, l = 1, . . . , p, are kernel estimators based

on the bootstrap samples of f (i) and f
(i)
l , respectively.
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If quantities d
(u)
i,k,p, with u = 1 or 2, are close to zero for all i = 1, . . . , s,

then the bootstrap-based distances D
(u)
ij , given in (2.4) and (2.5), approximate

correctly their theoretical versions, say D
(u)
ij , where D

(u)
ij is constructed as D

(u)
ij

but using the true densities f
(i)
p and f

(i)
l , l = 1, . . . , s. Otherwise, D

(u)
ij and D

(u)
ij

should lead to different cluster solutions, thus concluding the inefficacy of our
bootstrap-based clustering.

Our first experiments are then conducted to examine the performance with

finite samples of quantities d
(u)
i,k,p, u = 1, 2. Unfortunately, these quantities are

not feasible in practice because f (i) and f
(i)
l are unknown. This problem is

overcome by considering kernel estimators based on the principal component
scores of Monte Carlo forecasts. These estimators will be denoted by f (i),MC and

f
(i),MC
l , and they can be considered as a benchmark in our experiments because
Monte Carlo results are based on the true generating model (model’s structure,

parameters and innovations distribution). In this way, feasible versions of d
(u)
i,k,p

can be obtained by setting

d
(1),•
i,k,p =

∫

Rp

∣

∣

∣f̂
(i),•
HHHi

(zzzp)− f (i),MC (zzzp)
∣

∣

∣ dzzzp, (3.3)

d
(2),•
i,k,p =

∫

Rp

∣

∣

∣

∣

∣

p
∏

l=1

f̂
(i),•
l,hl,i

(zl)−

p
∏

l=1

f
(i),MC
l (zl)

∣

∣

∣

∣

∣

dz1 . . . dzp, (3.4)

with • taking values in {SB,AB,CB} according to the bootstrap procedure

used to obtain f̂
(i),•
HHHi

and f̂
(i),•
l,hl

, namely the sieve bootstrap (SB), the autore-
gression bootstrap (AB) and the conditional bootstrap (CB).

The main features of our first set of experiments are detailed below. For
each replication of the experiment, the dataset S subjected to clustering was
formed by one partial realization of length T = 200 simulated from each of the
autoregressive models enumerated in Table 1.

In all cases, εt are i.i.d. zero-mean Gaussian random variables with variance
σ2. Model M1 is an AR(1) process with moderate autocorrelation. Models M2-
M6 form an interesting class of parametric nonlinear autoregressive processes.
All of them show different nonlinear structures for the conditional mean, moving
from weak to strong non-linearity, and thus providing a valuable scenario to
perform our algorithm. These models were also considered in [34] and by other
authors in previous works.

Table 1

Autoregressive models considered in the simulation study

M1 AR Xt = 0.6Xt−1 + εt
M2 Bilinear Xt = (0.3− 0.2εt−1)Xt−1 + 1.0 + εt
M3 EXPAR Xt =

(

0.9 exp
(

−X2
t−1

)

− 0.6
)

Xt−1 + 1.0 + εt

M4 SETAR Xt = (0.3Xt−1 + 1.0) I (Xt−1 ≥ 0.2)−
(0.3Xt−1 − 1.0) I (Xt−1 < 0.2) + εt

M5 NLAR Xt = 0.7 |Xt−1| (2 + |Xt−1|)
−1 + εt

M6 STAR Xt = 0.8Xt−1 − 0.8Xt−1 (1 + exp (−10Xt−1))
−1 + εt
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Different values for the length of the forecasts vectors were used, namely

k = 3, k = 5 and k = 10. Univariate kernel estimators f̂
(i),•
l,hl

were constructed
with bandwidths hi,l obtained by using the plug-in selector by Wand and Jones
[38]. A generalization of this selector to the multivariate case was also considered

to constructHHHi, the bandwidth matrix for the multivariate estimator f̂
(i),•
HHHi

. The
number of bootstrap replicates was always B = 1, 000. Standard PCA based on
the covariance matrix was carried out and the number p of retained principal
components was fixed to be p = 2. The proportion of explained variance with
the retained components was recorded in each case. Under these simulation
features, each experiment was replicated a total of N = 200 times, so that 200

values of d
(u),•
i,k,p were computed for each u = 1, 2 and • = SB, AB and CB.

Figure 1 shows the boxplots constructed with these values for k = 5.

Boxplots in Figure 1 show that the sieve bootstrap (SB) only works well with
data generated from the linear model M1, while the autoregression bootstrap

0.
0

0.
5

1.
0

1.
5

2.
0

M1 M2 M3 M4 M5 M6

SB
AB
CB
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0.
0
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1.
0
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5

2.
0

M1 M2 M3 M4 M5 M6
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AB
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(b)

Fig 1. Boxplots of values d
(u),SB
i,5,2 , d

(u),AB
i,5,2 and d

(u),CB
i,5,2 for (a) u = 1 (using bidimensional

densities) and (b) u = 2 (using univariate marginal densities).
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60 70 80 90 100

p = 1
p = 2

Fig 2. Boxplots of proportions of cumulative variance explained by the first (p = 1) and the
first two (p = 2) principal components with k = 5.

(AB) and the conditional bootstrap (CB) clearly outperform the sieve bootstrap
when the underlying model presents non-linearity. SB also yields poor results
with models presenting a weak non-linear structure, such as M5 and M6 where
the underlying processes can be well approximated by linear processes in the
short time. Therefore, it is evident that the nonparametric bootstrap methods
show a great versatility, thus permitting to extend the range of applicability of
the clustering algorithm. On the other hand, similar results are obtained with
AB and CB, although a slight improvement seems to be observed with CB.
Note that, except for Model M6, where the worst results are observed, both AB
and CB lead to very similar results for all the models, which shows that these
algorithms are not severely affected by departures from the data generating
model.

Comparison of both panels in Figure 1 allows us to conclude that d(1),• and
d(2),• yield results close to zero when an appropriate bootstrap procedure is
considered. Furthermore, both quantities perform in a very similar way, which
is expected because Gaussian innovations were used to simulate all the series.

It is also worth stressing that only p = 2 principal components allowing us to
explain a high percentage of the original variability. Boxplots of the proportions
of cumulative variance explained by the principal components at each trial of the
experiment are shown in Figure 2. Both boxplots are located on short ranges
of high cumulative variance proportions, thus showing the ability of PCA to
achieve a substantial dimension reduction.

Contour diagrams of the kernel density estimators for some arbitrary trials
are displayed in Figure 3 to illustrate as the bootstrap forecasts of each series
are projected onto the space formed by the first two principal components.

Figure 3 suggests that the series from Model M6 should be easily identified
as an isolated group in the clustering because their contour diagrams show a
different covariance pattern and centroids located far from the rest of centroids.
Densities associated with series generated from Model M3 present a more spheri-
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Fig 3. Contour diagrams of kernel density estimators based on the 1, 000 CB-bootstrap fore-
casts projected onto the principal components space (p = 2) for three trials of the simulation
experiment.

cal shape, and hence it is expected that these series are grouped forming a cluster
that will remain separate from the rest until very late in the hierarchical process.
Series from the remaining four models seem to determine two clusters: {M1,M5}
and {M2,M4}. In fact, series from models M1 and M5, and analogously those
from M2 and M4, show contour diagrams very similar and with high amount
of overlapping, thus both clusters should be formed at an early stage of the
hierarchical process. Note that the first principal component allows us to sepa-
rate series from Model M6, while the differences between clusters {M1,M5} and
{M2,M4} become evident on the second principal component.

3.2. Evaluating the hierarchical solutions

Once observed that the bootstrap-based distances approximate correctly their
corresponding Monte Carlo versions, a new experiment is carried out to examine
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the quality of the cluster solutions generated with our procedure. The objective
is to measure the agreement between the experimental solution and the true
cluster partition by using different cluster similarity indexes.

According to our clustering principle, the “true” cluster solution must be con-
structed taking as starting point the dissimilarity between the forecast densities

for the next k future times, say f
(i)
(XXX

(i)
k ), for i = 1, . . . , S. As these densities are

unknown, kernel estimators based on Monte Carlo forecasts f̂
(i),MC

are previ-
ously constructed for i = 1, . . . , S. Then, the true cluster solution corresponds to

the output of a hierarchical clustering based on the dissimilarity matrix D
MC

,

whose (i, j)-th element measures the L1 distance between f̂
(i),MC

and f̂
(j),MC

.
Basically, the idea is to perform clustering without reducing the dimension of
the space where the forecast densities are estimated. Therefore, our experiments
in this section must be limited to scenarios with small values of k in order to
overcome the adverse impact of the curse of dimensionality on the kernel den-
sity estimators (this drawback is, in fact, the main motivation to perform PCA
in our methodology).

Once the experimental cluster solution (obtained by applying our method)
and the true cluster solution are available, we focus on comparing the r-cluster
solutions of both hierarchies for different values of r. Three cluster similarity
indexes are considered and presented below.

Denote by Tr = {T1, . . . , Tr} and Er = {E1, . . . , Er} the true and experi-
mental r-cluster solutions, respectively. The first considered cluster similarity
measure was introduced by Gavrilov et al. [13] and is defined by

GI (Tr, Er) =
1

r

r
∑

i=1

max
1≤j≤r

GI (Ti, Ej) , (3.5)

where

GI (Ti, Ej) =
2 |Ti ∩ Ej |

|Ti|+ |Ej |

and |·| denotes the cardinality of the elements in each set. Note that GI is 0 if
both partitions are completely dissimilar and 1 if they are identical.

An alternative index frequently used to measure the agreement between two
partitions is the Rand index (RI) [30], which calculates the proportion of the
number of pairs of series that are either into the same cluster or into different
clusters by both partitions. RI varies in the range [0, 1]. The greater RI, the
higher is the agreement between both partitions. The third index is the Ad-
justed Rand index (ARI) [16], a corrected-for-chance version of the Rand index
satisfying that its expected value is zero when the partitions are selected at
random. ARI lies between −1 and 1 and is exactly 1 when the two partitions
agree perfectly.

The new simulation experiment was conducted as follows. At each trial of the
experiment, three series of length T = 200 were generated from each of mod-
els M1 to M6. The resulting set of S = 18 series was subjected to hierarchical
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Fig 4. Dendrograms for one particular trial obtained as follows: (a) without reducing the
dimension of the problem and using Monte Carlo replicates, and (b) applying our methodology
with CB bootstrap. The average linkage is used as agglomerative method.

clustering based on grouping series with similar behavior for their first two pre-
dictions, i.e. k = 2. Two hierarchies of clusters or dendrograms were obtained.
Once of them is the experimental hierarchical solution generated by applying

our clustering methodology with p = 1 and distances D
(2),CB
ij , given in (2.5),

with density estimators based on CB predictions. The other cluster solution is
the true hierarchical solution obtained by performing clustering without reduc-
ing the dimension of the problem, i.e. starting from the L1 distances between
forecast densities estimated with Monte Carlo replicates in the original space of
dimension k = 2. Both clustering processes are carried out for several measures
of proximity between groups, including single linkage, complete linkage and av-
erage linkage. The cluster similarity indexes GI, RI and ARI, were computed
for partitions of different sizes. This process was replicated a total of N = 200
times.

To gain insight into the structure of the clustering solutions, the dendrograms
obtained using the average linkage for a particular trial are shown in Figure 4.

The dendrogram generated with our procedure (Figure 4(b)) allows us to
identify four reasonably homogeneous clusters formed by series from models M1-
M5, M2-M4, M3 and M6. This classification is consistent with our discussion
in Section 3.1 for k = 5 y p = 2. The dendrogram corresponding to the true
clustering in Figure 4(a) shows a high concordance level with the experimental



1036 J. A. Vilar and J. M. Vilar

Table 2

Averages of the cluster similarity indexes for several partition sizes with different
agglomerative algorithms

r-cluster solution
2 3 4 5 6 7 8 9 10

Average Linkage
GI 0.734 0.727 0.711 0.705 0.693 0.689 0.695 0.710 0.724
RI 0.716 0.737 0.790 0.824 0.837 0.847 0.860 0.876 0.892
ARI 0.397 0.470 0.516 0.517 0.478 0.417 0.370 0.340 0.301

Complete Linkage
GI 0.777 0.754 0.726 0.704 0.681 0.683 0.693 0.705 0.719
RI 0.719 0.762 0.805 0.825 0.835 0.853 0.868 0.884 0.897
ARI 0.421 0.499 0.515 0.486 0.423 0.387 0.350 0.321 0.282

Single Linkage
GI 0.673 0.610 0.644 0.670 0.683 0.688 0.697 0.711 0.728
RI 0.706 0.617 0.682 0.754 0.800 0.823 0.843 0.863 0.878
ARI 0.328 0.273 0.368 0.441 0.452 0.430 0.396 0.367 0.321

dendrogram. In this particular case, the cluster similarity indexes for the 4-
cluster solutions take the values GI = 0.780, RI = 0.856 and ARI = 0.629. The
most significant changes are that M6-1 appears to be isolated point until very
late in the agglomerative process and M2-1 is placed in the group of series M3.

To obtain an overall evaluation of the agreement between the outputs from
both clustering processes, the cluster similarity indexes were averaged over the
200 trials. The corresponding mean values are provided in Table 2.

Table 2 shows that high agreement levels are achieved with all considered
linkage methods and for different partition sizes. For instance, if we focus on the
results for the 4- and 5-cluster solutions obtained with the complete and average
linkages, then it is observed that Gavrilov and Rand indexes take always values
above 0.7 and 0.8, respectively. The Adjusted Rand index is typically lower than
the Rand index but, in any case, a high value of 0.515 is achieved for this index.
If the single linkage procedure is used, the results are also satisfactory although
somewhat worse.

4. Case study: Clustering forecasts of electricity prices

In this section the proposed clustering algorithm is applied to a set of series of
electricity prices. Prediction of electricity price is an important issue in competi-
tive electric power markets. If producers and consumers have reliable predictions
of electricity price, they can develop their bidding strategies and establish a pool
bidding technique to achieve a maximum benefit. However, price series exhibit
features that make their analysis difficult (calendar effect on weekends and hol-
idays, outliers in periods of high demand, high volatility . . . ). The monograph
by Weron [39] provides an interesting survey of modern tools for modeling and
forecasting electricity loads and prices. An issue of particular interest is the
short term price prediction and, in particular, many references have treated
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Fig 5. Daily series (weekends excluded) of electricity price for each hour of the day from
December 31, 2007 to May 25, 2009 (T = 365 observations).

with the problem of the one-day-ahead forecasting (see [22, 8, 12, 36], among
many others). As the electricity prices vary throughout the time of day, one of
the strategies considered to face this problem consists in building 24 models to
compute one-day-ahead hourly predictions, using a different time series for each
hour. This is the approach that we follow in the present section. In connection
with our clustering proposal, our specific interest is to group hours with similar
several-days-ahead predictions.

The dataset in study consists of hourly electricity prices in the Spanish market
during the period December 31, 2007 - May 25, 2009. Data are available at
http://www.omel.es, the official website of Operador del Mercado Ibérico de
Enerǵıa. Records corresponding to Saturdays and Sundays are excluded from
the database because electricity demand, and hence electricity price, are lower

on the weekends. In this way, we have 24 time series XXX(i) =
(

X
(i)
1 , . . . , X

(i)
T

)

,
i = 1, . . . , 24, of length T = 365, where the i-th series provides the daily sequence
(weekends excluded) of electricity prices at hour i. A lattice plot of the series in
study is given in Figure 5.
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Table 3

Component loadings from PCA based on the transformed series

PC 1 PC 2 PC 3 PC 4 PC 5
1-step-ahead -0.02543 -0.05906 0.88189 -0.4574 -0.09465
2-step-ahead 0.34408 -0.34448 0.34970 0.7548 -0.26634
3-step-ahead 0.03813 0.76043 0.02965 0.0896 -0.64139
4-step-ahead -0.53812 -0.49550 -0.18228 -0.1240 -0.64521
5-step-ahead 0.76807 -0.23254 -0.25665 -0.4446 -0.30402

Table 4

Importance of the components derived from the PCA based on the transformed series

PC 1 PC 2 PC 3 PC 4 PC 5
Standard deviation 0.226 0.189 0.132 0.127 0.063
Proportion of variance 0.411 0.287 0.141 0.129 0.032
Cumulative proportion 0.411 0.698 0.839 0.968 1.000

The 24 series are subjected to our clustering algorithm by taking a horizon
from length k = 5 days, i.e. series are grouped together whether their predic-
tions for the next five days perform similarly. Note that all series are clearly
non-stationary and hence the clustering algorithm cannot be directly applied
because of the bootstrap predictions in Step 1 are computed under stationary
assumption. Then we proceeded as follows.

First, each of the time series is transformed using logarithms and taking
an appropriate number of regular differences. The software package TRAMO
(Time series Regression with ARIMA noise, Missing observations and Outliers)
developed by Gómez and Maravall [14] was used to determine the order of
regular differences. Steps 1 and 2 of the procedure are then applied to the
transformed series, sayYYY (i). From Step 1, bootstrap prediction vectors of length

k = 5, YYY
(i)⋆j
k , j = 1, . . . , B = 1000, i = 1, . . . , 24, are obtained by using any of

the resampling procedures considered in Section 2, namely AB, CB or SB. PCA
carried out in Step 2 leads to a lower-dimensional space where the bootstrap
predictors are projected. The component loadings and the amount of variance
explained by each component are shown in Tables 3 and 4, respectively. In this
case, p = 2 or p = 3 principal components must be retained to achieve for a
reasonable percentage of explained variance.

Now, according to Step 3, component scores ZZZ
(i)⋆j
p generated in Step 2

should be used to construct the required density estimators. However, the den-

sity estimators based on ZZZ
(i)⋆j
p differ in shape but not in location, since the

distances between their centroids have been canceled by working with the trans-
formed series. To correct this undesirable effect, the z-scores are shifted as
follows. The 1000 bootstrap predictors of each series are back-transformed to
obtain bootstrap predictors for the original series, and the centroid of each re-

sulting group is projected onto the principal components space. If MMM
(i)
p denotes

the coordinates in the principal components space of the i-th centroid, then

scores ZZZ
(i)⋆j
p are shifted by setting ZZZ

(i)⋆j
p + MMM

(i)
p , for i = 1, . . . , 24. Vectors

MMM
(i)
p and scatter-plots of shifted scores ZZZ

(i)⋆j
p +MMM

(i)
p are depicted in Figures 6
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Fig 6. Centroids of each group of back-transformed bootstrap predictors projected onto the
first two principal components. Results when the conditioned bootstrap procedure is used.

and 7 respectively, for the case where p = 2 and the conditioned bootstrap are
considered.

Shifted scores ZZZ
(i)⋆j
p +MMM

(i)
p are then used to carry out Step 3 of the cluster-

ing algorithm, i.e. the dissimilarity between two series is measured by the dis-
tance between the kernel approximations to the densities of their corresponding
shifted component scores. The rest of steps of the clustering algorithm are then
completed as were described in previous sections. Figure 8 shows the resulting
dendrogram when p = 2 principal components are considered and the clustering
is carried out with the average linkage method.

The dendrogram in Figure 8 provides a sequence of nested cluster solutions
and the appropriate partition must be determined. Two selection criteria based
on choosing the partition that maximizes the value of a specific validation statis-
tic are considered. Both criteria are described below.

Average Silhouette Width (ASW) (Kaufman and Rousseeuw [21]) For a
particular partition of S objects into clusters G1, . . . , Gr, the silhouette
width sr(i) for each object i is defined by

sr(i) =
br(i)− ar(i)

max{ar(i), br(i)}

where

ar(i) =
1

|Gs| − 1

∑

j∈Gs,j 6=i

di,j
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Fig 7. Scatter plots of shifted scores ZZZ
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(i)
p . Results when the conditioned bootstrap

procedure is used.

is the average dissimilarity between i and all other objects of the cluster
Gs to which i has been assigned, and

br(i) = min
l 6=s

1

|Gl|

∑

j∈Gl

di,j

is the average dissimilarity between i and all objects in the closest cluster
Gu, u 6= s, i.e. Gu is the second-best choice for object i. The silhouette
width always takes values between -1 and 1 and admits a simple interpre-
tation: objects with sr(i) close to one are very well clustered, a small sr(i)
(around 0) means that the object lies between two clusters, and objects
with a sr(i) close to −1 are probably placed in the wrong cluster.

The average silhouette width, ASW(r) = 1
S

∑S
i=1 s(i, r), provides an over-

all measure of clustering performance and a useful criterion for assessing
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Fig 8. Dendrogram based on data depicted in Figure 7 by using the average linkage algorithm
as proximity measure between groups.

the number of clusters by choosing the partition that maximizes ASW(r),
for r = 2, . . . , S − 1.

Pearson version of Hubert’s Γ (PH) (Jain and Dubes [17]) For a parti-
tion with r groups, the PH statistic is given by the Pearson correlation
ρ(ddd,mmm(r)) between the vector of pairwise dissimilarities ddd and the binary
vectormmm(r) that is 0 for every pair of observations in the same cluster and
1 for every pair of observations in different clusters. PH measures, in some
sense, how good the clustering is as an approximation of the dissimilarity
matrix. As before, the objective is to determine the partition maximizing
PH(r), for r = 2, . . . , S − 1.

Figure 9 shows the values of statistics ASW and PH as function of the number
of clusters for the dendrogram in Figure 8.

Both criteria lead to select the 3-cluster solution, with clusters formed by
G2 = {H2, H4, H5, H6, H7, H24}, G3 = {H11, H12, H13} and G1 grouping
the rest of series. The average silhouette width for r = 3 is 0.554, which sug-
gests a reasonably accurate clustering. In fact, the three clusters have an average
silhouette width greater than 0.5, and only five series in G1, namely H3, H8,
H10, H14 and H22, present individual silhouette widths close to zero (below
0.3) and could be not properly classified (see silhouette plot in Figure 10(a)).
More specifically, H3 and H8 lie very close to cluster G2 and H10, H14 and
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Fig 10. Two-dimensional representation of the locations of the series based on classical mul-
tidimensional scaling of the dissimilarity matrix.

H22 are close to G3. Classical multidimensional scaling (MDS) [27] of the dis-
similarity matrix based on two dimensions was also performed to obtain a visual
representation of the proximity among the series. Figure 10(b) shows the plot
provided by MDS, and, in addition, the points representing each series are con-
nected to the corresponding cluster centroid with segments. It is observed that
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Table 5

Some computing times (in hours) as a function of the number of series subjected to
clustering

Number of series
10 20 50 100

Computing time (in hours) 0.21 0.87 6.17 22.01

the three clusters formed are well separated. Clusters G2 and G3 are clearly
compacts, but even G1 seems to be reasonably stable as well. The obtained
3-cluster solution is consistent with the location of centroids (Figure 6) and the
low dispersion of the scatter-plots (Figure 7). In general, distances between cen-
troids determine the clustering but not in all cases. For instance, H4 is closest to
H2 than to H5 according to the location of their centroids (see Figure 6), how-
ever H4 and H5 are grouped together in an earlier stage due to the similarity
between their densities (see Figure 7).

Finally, it is worth stressing that our procedure has a high computational
cost because of each distance between a pair of series involves the calculation of
a multiple integral. To provide accurate information to the reader on this point,
we have measured the computing times required for our procedure as a function
of the number of series. Our clustering algorithm was run on a PC with the
system specifications given by: Intel Core I7 - 2600 processor, 3.46 to 3.7 Ghz
CPU, 32 GB HDD, 24 GB of RAM, Windows XP. Series of length T = 200,

k = 5, 2 principal components and the distance D
(2)
ij given in (2.5) were always

considered. The double integrals were estimated using a Monte Carlo algorithm
for multidimensional numerical integration and, in addition, integrands were
previously approximated by bivariate interpolation onto a 15 × 15 grid of the
integration domain. All our code was implemented in the R language [33] and
it is available upon request. Results are shown in Table 5.

5. Concluding remarks

The problem of clustering time series is studied for a general class of autoregres-
sive models. A clustering procedure aimed to group series with similar forecasts
for a specific sequence of future times is proposed. Specifically, the proposed
procedure evaluates the affinity between two series in terms of the distance be-
tween their multidimensional forecast densities. The idea is to approximate the
forecast densities by using kernel density estimators based on bootstrap replica-
tions of the prediction vectors. However, to circumvent the high dimensionality
problem, these densities are constructed in a lower-dimensional space where the
bootstrap predictors are previously projected. The transformed space is deter-
mined by following a PCA-based approach. Three resampling procedures and
two different metrics are examined and compared in a simulation study, where a
wide variety of autoregressive models is considered. Simulation results show the
good behavior of the two nonparametric bootstrap methods in all situations,
that is with linear and nonlinear autoregressive models. The approach proposed
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to develop PCA also yields satisfactory results since an optimal dimension reduc-
tion is attained and the experimental hierarchical cluster solutions are consistent
with those based on Monte Carlo (the benchmark in our numerical study). The
usefulness of the clustering methodology is illustrated through an application to
a real data set involving electricity prices series. In this particular case, slight
modifications of the clustering procedure are required because the data set is
formed by non stationary time series.

An interesting issue to address in future research is to extend this clustering
methodology to the case of more complex dynamic models, which would require
considering alternative resampling techniques.
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[12] Garćıa-Martos, C., Rodŕıguez, J. and Sánchez, M. J. (2007). Mixed
models for short-run forecasting of electricity prices: Application for the
Spanish market. IEEE Trans. Power Syst. 22 544–552.

[13] Gavrilov, M., Anguelov, D., Indyk, P. and Motwani, R. (2000).
Mining the stock market (extended abstract): which measure is best?
In Proceedings of the sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD’00 487–496. ACM, New York,
USA.
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