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1. Introduction

We consider a heteroscedastic linear regression model in which the response
variable Y is linked to a (one-dimensional) covariate X by the formula

Y = θ⊤m(X) + ε,

where θ is an unknown vector in Rd, m is a known measurable function from
R to Rd, the error variable ε is conditionally centered, i.e., E[ε|X ] = 0, and its
conditional variance σ2(X) = E[ε2|X ] is bounded and bounded away from zero.
We assume that the matrix

M = E[m(X)m⊤(X)]

is well defined and positive definite. This identifies θ as M−1E[m(X)Y ] and
implies that E[‖m(X)‖2] is finite. The model contains as special cases,

1. regression through the origin: m(X) = X ;
2. simple linear regression: m(X) = (1, X)⊤;
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3. polynomial regression: m(X) = (1, X, . . . , Xd−1)⊤;
4. linear regression with a change in the slope at a known point a: m(X) =

(1, X,max(0, X − a))⊤; and
5. linear regression with a change in intercept and slope at a known point a:
m(X) = (1[X ≤ a], X1[X ≤ a],1[X > a], X1[X > a])⊤.

In the ideal situation one observes the pair (X,Y ). In real life data sets,
however, one frequently encounters missing values. Here we allow the response
to be missing. Then one observes (δ,X, δY ) with δ an indicator random variable.
The interpretation is that for δ = 1 one observes the full pair (X,Y ), while for
δ = 0 one observes only the covariateX . We make the common assumption that
the response is missing at random. This means that the conditional probability
of δ = 1 given (X,Y ) depends on X alone,

P (δ = 1|X,Y ) = P (δ = 1|X).

Monographs on missing data are Little and Rubin (2002 [6]) and Tsiatis (2006
[17]). We assume throughout that the conditional probability π(X) = P (δ =
1|X) is bounded away from zero. This implies that E[δ] is positive.

The data in our model are (δ1, X1, δ1Y1), . . . (δn, Xn, δnYn) which are inde-
pendent copies of the triple (δ,X, δY ). We denote the unobserved errors by

εj = Yj − θ⊤m(Xj), j = 1, . . . , n.

A possible estimator of the regression parameter θ is the weighted least squares
estimator θ̂w which minimizes the weighted sum of squares

Qw(ϑ) =

n
∑

j=1

δjw(Xj)(Yj − ϑ⊤m(Xj))
2, ϑ ∈ R

d,

for some nonnegative measurable weight function w which we require to be
bounded and bounded away from zero. The ordinary least squares estimator
corresponds to the choice w = 1. It is easy to see that the estimator θ̂w satisfies
the stochastic expansion

θ̂w = θ +
1

n

n
∑

j=1

M−1
w δjw(Xj)m(Xj)εj + oP (n

−1/2)

with
Mw = E[δw(X)m(X)m⊤(X)] = E[π(X)w(X)m(X)m⊤(X)].

Note that this matrix is well defined and positive definite by the properties of
π, w andM . This implies that n1/2(θ̂w−θ) is asymptotically normal with mean
vector 0 and dispersion matrix Dw =M−1

w SwM
−1
w with

Sw = E[δw2(X)ε2m(X)m⊤(X)] = E[π(X)w2(X)σ2(X)m(X)m⊤(X)].

With ζ = δm(X)ε/σ2(X) and ξ = δw(x)m(X)ε, we can writeMw = E[ζξ⊤] and
Sw = E[ξξ⊤]. It follows from the Cauchy-Schwarz inequality that the difference



934 A. Schick

E[ζζ⊤] − D−1
w is nonnegative definite and equals the zero matrix for ξ = ζ.

This shows that the asymptotic dispersion matrix Dw is minimal for the choice
w = 1/σ2. Thus the (asymptotically) best estimator θ̂∗ in the class of weighted
least squares estimators minimizes the weighted sum of squares

Q(ϑ) =
n
∑

j=1

δj(Yj − ϑ⊤m(Xj))
2

σ2(Xj)
, ϑ ∈ R

d,

and satisfies the stochastic expansion

θ̂∗ = θ +
1

n

n
∑

j=1

H−1δjh(Xj)εj + oP (n
−1/2)

with

h(X) =
1

σ2(x)
m(X) and H = E[δε2h(X)h⊤(X)].

This implies that n1/2(θ̂∗ − θ) is asymptotically normal with mean vector 0 and
dispersion matrix H−1. Since σ2 is unknown, the best weighted least squares
estimator θ̂∗ is not available. For this reason we call θ̂∗ the oracle weighted least
squares estimator.

Since σ2 is unknown, a natural approach is to minimize instead of Q(ϑ) the
weighted sum of squares

Q̂(ϑ) =

n
∑

j=1

δj(Yj − ϑ⊤m(Xj))
2

σ̂2(Xj)
, ϑ ∈ R

d,

in which an estimator σ̂2 replaces the unknown σ2. What is the behavior of such
an estimator?

Carroll (1982 [1]) was the first to consider this problem. He treated the case
of simple linear regression and with the responses fully observed, i.e, the case
with d = 2, m(X) = (1, X)⊤, and δ = 1. He used a regression kernel estimator
based on the squared residuals from a least squares fit and showed that the
resulting estimator θ̂ also satisfies the asymptotic expansion

θ̂ = θ +
1

n

n
∑

j=1

(E[ε2h(X)h⊤(X)])−1h(Xj)εj + oP (n
−1/2),

and hence is asymptotically equivalent to the oracle weighted least squares es-
timator θ̂∗ in the case δ = 1. He proved this result under the assumptions that
the covariate X has a density which has compact support and is positive and
twice continuously differentiable on its support, that σ2 is continuously differ-
entiable on this support, and that ε has a finite sixth moment. Similar results
were obtained by Müller and Stadtmüller (1987 [7]), Robinson (1987 [15]) and
Schick (1987 [16]) for different estimators of σ2 and under weaker conditions, all
for the case δ = 1. By the transfer principle for asymptotically linear estimators
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of Koul, Müller and Schick (2012 [5]) these results immediately carry to the

present case with responses missing at random and yield that a minimizer θ̂ of
ϑ 7→ Q̂(ϑ) satisfies the expansion

θ̂ = θ +
1

n

n
∑

j=1

H−1δjh(Xj)εj + oP (n
−1/2). (1.1)

Müller and Van Keilegom (2012 [8]) have demonstrated this expansion in the
present setting by a direct argument using a kernel estimator of σ̂2. Their results
show that an estimator θ̂ that satisfies (1.1) is even semiparametrically efficient
in the sense of being a least dispersed regular estimator. This was already known
in the case without missing responses, see Chamberlain (1987 [2]).

The goal of this paper is to show that one can construct an estimator that is
asymptotically equivalent to the oracle weighted least squares estimator without
constructing an estimator of the variance function σ2. Indeed such an estimator
can be constructed as a maximum empirical likelihood estimator of the empirical
likelihood introduced by Peng and Schick (2012a [12]) modified to allow for
missing responses. Let ϕ0, ϕ1, . . . denote the trigonometric basis of L2(U ) with
U the uniform distribution on [0, 1] defined by ϕ0(x) = 1 and

ϕk(x) =
√
2 cos(kπx), x ∈ R, k = 1, 2, . . . .

The modified version of the empirical likelihood of Peng and Schick (2012a [12])
is

Rn(ϑ) = sup
{

n
∏

j=1

nπj : π1 ≥ 0, . . . , πn ≥ 0,

n
∑

j=1

πj = 1,

n
∑

j=1

πjδj(Yj − ϑ⊤m(Xj))vn(G(Xj)) = 0
}

, ϑ ∈ R
d,

where vn = (ϕ0, ϕ1, . . . , ϕrn)
⊤ is the vector consisting of the first 1 + rn basis

functions, rn ≥ d is an integer tending to infinity slowly with the sample size
n, and G is the empirical distribution function based on the covariates with
observed responses only, i.e.,

G(x) =

∑n
j=1 δj1[Xj ≤ x]

∑n
j=1 δj

, x ∈ R.

Note that G is an estimator of the conditional distribution function G1 of X
given δ = 1. The constraints in the above empirical likelihood try to capture
the model assumption E[ε|X ] = 0 which is equivalent to the linear constraints
E[δεa(X)] = 0, a ∈ L2(G1). The latter is equivalent to the countably many
constraints E[δεai(X)] = 0, i = 0, 1, 2, . . . , with a0, a1, . . . an orthonormal basis
of L2(G1). If G1 is continuous, such a basis is given by {ai = ϕi ◦ G1, i =
0, 1, 2, . . .}. The above empirical likelihood uses the empirical versions of the
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first 1 + rn linear constraints, with the unknown G1 replaced by the estimator
G. By our assumption on π, the continuity of G1 is equivalent to that of the
distribution function G of X .

To be precise, our estimator θ̂ is a guided maximum empirical likelihood
estimator defined as a maximizer of the restriction of Rn to the random ball
centered at the least squares estimator θ̂L of radius C(log n/n)1/2 for some
constant C,

θ̂ = argmax
n1/2‖ϑ−θ̂L‖≤C log1/2 n

Rn(ϑ).

Guided maximum empirical likelihood estimation was introduced and studied
by Peng and Schick (2012b [13]). We shall prove the following result.

Theorem 1. Suppose the distribution function G of X is continuous, the error
variable ε has a finite fourth moment, and rn satisfies r5n logn = o(n). Then the

guided maximum empirical likelihood estimator θ̂ satisfies the expansion (1.1)
and hence is asymptotically efficient.

As demonstrated in Peng and Schick (2012b [13]), this result follows if one
shows that the local log-empirical likelihood ratio

Ln(t) = log
Rn(θ + n−1/2t)

Rn(θ)
, t ∈ R

d,

satisfies the expansion

sup
‖t‖≤2C log1/2 n

|Ln(t)− t⊤Γn + (1/2)t⊤Ht|
(1 + ‖t‖)2 = oP (1), (1.2)

with

Γn =
1√
n

n
∑

j=1

δjh(Xj)εj .

Indeed, as Γn is asymptotically normal with mean vector zero and dispersion
matrix H , we obtain the desired result (1.1) as in Peng and Schick (2012b [13]).
Thus Theorem 1 is a consequence of the following result.

Theorem 2. Under the assumptions of Theorem 1, the uniform expansion (1.2)
holds for every C.

The empirical likelihood was introduced by Owen (1988 [9], 1990 [10]) to con-
struct nonparametric confidence regions and tests, see also Owen (2001 [11]). Its
scope has recently been extended. Hjort, McKeague and Van Keilegom (2009
[4]) treat constraints with nuisance parameters and also investigate the case
when the number of constraints goes to infinity, but without nuisance param-
eters. The latter case was also considered by Chen, Peng and Qin (2009 [3]).
Peng and Schick (2012a [12]) allow for nuisance parameters and for the number
of constraints to go to infinity. Maximum empirical likelihood estimation was
studied by Qin and Lawless (1994 [14]) and extended by Peng and Schick (2012b
[13]) to allow for irregular constraints and nuisance parameters.
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Remark 1. Fix ϑ in Rd. Set

Wj(ϑ) = (Yj − ϑ⊤m(Xj))vn(G(Xj)), j = 1, . . . , n.

It follows from Owen’s work that Rn(ϑ) equals

n
∏

j=1

1

1 + ζ(ϑ)⊤δjWj(ϑ)

if there is a random vector ζ(ϑ) for which 1+ζ(ϑ)⊤δjWj(ϑ) is positive for every
j and the identity

1

n

n
∑

j=1

δjWj(ϑ)

1 + ζ(ϑ)⊤δjWj(ϑ)
= 0

holds, and equals zero otherwise. Moreover, such a random vector ζ(ϑ) exists
precisely on the event where the convex hull of the random vectors δ1W1(ϑ), . . . ,
δnWn(ϑ) contains the origin as an interior point. For a subset S of {1, . . . , n},
let Sn denote the event that δj equals 1 for j in S and 0 for j not in S. On the
event Sn, Rn(ϑ) equals

∏

j∈S

1

1 + ζ(ϑ)⊤Wj(ϑ)

if the convex hull of Wj(ϑ), j ∈ S, contains the origin as interior point and
equals zero otherwise. Thus, on Sn, the empirical likelihood Rn(ϑ) equals

RS(ϑ) = sup{
∏

j∈S

nπj : πj ≥ 0,
∑

j∈S

πj = 1,
∑

j∈S

πjWj(ϑ)}.

On the event Sn, we also have G(x) =
∑

j∈S 1[Xj ≤ x]/card(S). This shows
that the present empirical likelihood is the complete case version (as defined in
Koul, Müller and Schick (2012 [5])) of the empirical likelihood in Peng and Schick
(2012a [12]). Thus it can be calculated using the same program as in the case
δ = 1, but using only the fully observed data, i.e., the pairs (Xj , Yj) with δj = 1.

Remark 2. One can show that the conclusions of our theorems remain true if
we replace G by the empirical distribution function based on all the covariates.
However, simulations not reported here show that our estimator behaves better
in moderate sample sizes with the present choice G.

Remark 3. The conclusions of our theorems remain true for choices of vn other
than vn = (φ0, . . . , φrn)

⊤. Indeed, in the proofs we rely only on the following
properties of vn.

(C1) There are positive constants c0, c1, c2, c3 such that the inequalities

‖vn(x)‖2 ≤ c0rn,

‖vn(x) − vn(y)‖2 ≤ c1r
3
n|y − x|2,

c2 ≤
∫

(u⊤vn)
2 dU ≤ c3,

hold for all x and y in [0, 1] and all unit vectors u in Rrn+1.
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(C2) For every g in L2(U ),

inf
b∈Rrn+1

∫

(b⊤vn − g)2 dU → 0.

Thus any other choice of vn with these properties can be used. One possible
choice is vn = (ψrn,0, . . . , ψrn,rn)

⊤, where

ψr,i(x) = r1/2 max(0, 1− |rx − i|), i = 0, . . . , r, 0 ≤ x ≤ 1.

For this choice, (C1) holds with c0 = 1, c1 = 2, c2 = 1/6 and c3 = 1. For
example, to obtain the last inequality in (C1), we observe that

∫

ψ2
r,i dU equals

1/3 for i = 0, r and 2/3 for i = 1, . . . , r − 1, and
∫

ψr,iψr,jdU equals 1/6 for
|i− j| = 1 and 0 for |i− j| > 1. From this we conclude the identity

6

∫

(u⊤vn)
2 dU = u20 + u2rn +

rn−1
∑

i=1

2u2i +

rn
∑

i=1

(ui−1 + ui)
2,

for any vector u = (u0, . . . , urn)
⊤ in Rrn+1, and see that

∫

(u⊤vn)
2 dU is

bounded from above by |u|2 and from below by |u|2/6. Note that the func-
tions ψr,0, . . . , ψr,r form a basis for the set of linear splines with knots at the
equidistant points 0/r, 1/r, . . . , 1. We obtain (C2) because the continuous func-
tions are dense in L2(U ) and because for every continuous function g on [0, 1]
the inequality

inf
b∈Rr+1

∣

∣

∣
g(x)−

r
∑

i=0

biψr,i(x)
∣

∣

∣
≤ sup{|g(y)− g(x)| : |y − x| ≤ 1/r}

holds for all x in [0, 1]. To see the latter chose bi such that
∑r

i=0 biψr,i(x) = g(x)
holds for x = 0, 1/r, . . . , 1.

As an illustration of our method we performed a small simulation study
using R and compared several estimators, the OLSE, the oracle WLSE, and
the GMELE for the choices rn = 2, 3, 4, which we denote by GS(2), GS(3) and
GS(3). We report the results for vn = (ψrn,0, . . . , ψrn,rn)

⊤ as they are slightly
better than those for the choice vn = (ϕ0, . . . , ϕrn)

⊤. Following Müller and Van
Keilegom (2012 [8]), we took X uniformly distributed on (−1, 1), m(X) = X ,
θ = 2, π(X) = 1/(1 + exp(−X)), and ε = σ(X)Z, with Z standard normal
and independent of X . In addition to the choices (a) σ2(X) = .6− .5X and (b)
σ2(X) = (X − .4)2 + .1 used in Müller and van Keilegom (2012 [8]), we also
looked at (c) σ2(X) = exp(−2X). We took the constant C in the definition of
the GMELE to be the product of (n/ logn)1/2/(N/ logN)1/2 with N =

∑n
j=1 δj

and an estimator of the asymptotic standard deviation of the OLSE, namely

(

1
N

∑n
j=1 δj(Yj − θ̂LXj)

2X2
j

)1/2

1
N

∑n
j=1 δjX

2
j

.
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Table 1

Simulated Mean Square Errors

n OLSE WLSE GS(2) GS(3) GS(4)
(a) 50 0.0597 0.0342 0.0488 0.0520 0.0588

100 0.0284 0.0158 0.0186 0.0189 0.0201
200 0.0138 0.0075 0.0083 0.0082 0.0082

(b) 50 0.0796 0.0376 0.0523 0.0543 0.0638
100 0.0387 0.0183 0.0247 0.0223 0.0238
200 0.0187 0.0088 0.0114 0.0097 0.0100

(c) 50 0.2079 0.0396 0.0588 0.0655 0.0833
100 0.0980 0.0185 0.0208 0.0212 0.0224
200 0.0491 0.0093 0.0098 0.0098 0.0100

Each entry is the simulated mean square error of the corresponding estimator, for
three sample sizes and three choices of σ2: (a) σ2(X) = .6 − .5X; (b) σ2(X) =
(X − .4)2 + .1; (c) σ

2(X) = exp(−2X).

Table 1 reports the simulated mean square errors for the sample sizes n = 50,
n = 100 and n = 200 based on 10000 simulations. We observe that our proposed
estimator performs better than the OLSE in all cases considered. This is also
true for the estimator with vn = (ϕ0, . . . , ϕrn). The performance of our estima-
tor comes closer to that of the oracle WLSE as the sample sizes increases. As
expected, the performance is better for smaller rn if the sample size is small. Our
results for the first two cases are similar to the ones reported by Müller and van
Keilegom (2012 [8]). Case (c) shows that the improvements over the OLSE pro-
vided by the oracle WLSE estimator and our estimator can be quite dramatic.

2. Proof of Theorem 2

Let G1 denote the conditional distribution function of X given δ = 1. It has
density π/E[δ] with respect to G and is hence continuous. Since Y is missing
at random, the conditional distribution of Y given X and δ = 1 equals the
conditional distribution of Y given X . Thus

E[ε|X, δ = 1] = E[ε|X ] = 0 and E[ε2|X, δ = 1] = E[ε2|X ] = σ2(X).

For t ∈ Rd, we set

Ẑj(t) = δj(Yj − (θ + n−1/2t)⊤m(Xj))vn(G(Xj))

= δjεjvn(G(Xj))− n−1/2δjvn(G(Xj))m
⊤(Xj)t, j = 1, . . . , n,

Ûn,t =
1√
n

n
∑

j=1

Ẑj(t) and V̂n,t =
1

n

n
∑

j=1

Ẑj(t)Ẑ
⊤
j (t).

We also set

Un =
1√
n

n
∑

j=1

δjεjvn(G1(Xj)),

Vn = E[δε2vn(G1(X))v⊤n (G1(X))] = E[δσ2(X)vn(G1(X))v⊤n (G1(X))]
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and

An = E[δvn(G1(X))m⊤(X)] = E[δε2vn(G1(X))h⊤(X)].

The functions ϕ0, ϕ1, . . . form an orthonormal basis of L2(U ). By the continuity
of G1, the random variable G1(X) has conditional distribution U given δ = 1.
This shows that the matrix E[δvn(G1(X))v⊤n (G1(X))] equals E[δ]I1+rn , where
Im denotes the m ×m identity matrix. Since σ2(X) is bounded and bounded
away from zero, there are constants 0 < k < K < ∞ such that ku⊤I1+rnu <
u⊤Vnu < Ku⊤I1+rnu for u ∈ R1+rn . Thus we have

k ≤ inf
‖u‖=1

u⊤Vnu ≤ sup
‖u‖=1

u⊤Vnu ≤ K, (2.1)

i.e., the eigenvalues of Vn belong to [k,K], and Vn is invertible.

Let Cn = 2C log1/2 n. We begin by proving that the desired result follows
from the following three statements.

sup
‖t‖≤Cn

‖Ûn,t − Un +Ant‖
1 + ‖t‖ = Op(r

3/2
n n−1/2), (2.2)

sup
‖t‖≤Cn

sup
‖u‖=1

|u⊤V̂n,tu− u⊤Vnu| = op(1/rn), (2.3)

sup
‖t‖≤Cn

| − 2 logRn(θ + n−1/2t)− Û⊤
n,tV̂

−1
n,t Ûn,t|

(1 + ‖t‖)2 = oP (1). (2.4)

In view of the inequalities E[‖Un‖2] = trace(Vn) ≤ K(1 + rn) and

|u⊤Ant|2 ≤ E[‖δu⊤vn(G1(X))‖2]E[‖m(X)‖2]‖t‖2 ≤ K‖u‖2E[‖m(X)‖2]‖t‖2,

we have the rate

sup
‖t‖≤Cn

‖Un −Ant‖2
(1 + ‖t‖)2 = OP (rn). (2.5)

This and (2.2) give the rate

sup
‖t‖≤Cn

‖Ûn,t‖2
(1 + ‖t‖)2 = OP (rn). (2.6)

From (2.1) and (2.3) we derive

sup
‖t‖≤Cn

sup
‖u‖=1

|u⊤V̂ −1
n,t u− u⊤V −1

n u| = op(1/rn). (2.7)

The statements (2.6) and (2.7) imply

sup
‖t‖≤Cn

|Û⊤
n,tV̂

−1
n,t Ûn,t − Û⊤

n,tV
−1
n Ûn,t|

(1 + ‖t‖)2 = oP (1). (2.8)
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From (2.1), (2.2), (2.5) and (2.6) we derive

sup
‖t‖≤Cn

|Û⊤
n,tV

−1
n Ûn,t − (Un −Ant)

⊤V −1
n (Un −Ant)|

(1 + ‖t‖)2 = oP (1). (2.9)

The statements (2.4), (2.8) and (2.9) yield

sup
‖t‖≤Cn

|Ln(t)− t⊤A⊤
n V

−1
n Un + (1/2)t⊤A⊤

n V
−1
n Ant|

(1 + ‖t‖)2 = oP (1). (2.10)

Let g be in L2(G1). Then g◦G−1
1 belongs to L2(U ) where G−1

1 is the left-inverse
of G1. Conditioning first on X and δ and then on δ we find

E[(δεb⊤vn(G1(X))− δεg(X)))2] ≤ BE[δ]

∫

(b⊤vn ◦G1 − g)2 dG1.

Here B is a bound on σ2. Since the functions ϕ0, ϕ1, . . . form an orthonormal
basis of L2(U ), we have

inf
b∈Rrn+1

∫

(b⊤vn ◦G1 − g)2 dG1 = inf
b∈Rrn+1

∫

(b⊤vn − g ◦G−1
1 )2 dU → 0.

This implies
inf

b∈Rrn+1
E[(δεb⊤vn(G1(X))− δεg(X)))2] → 0.

The left hand side is minimized by b = V −1
n E[δε2g(X)vn(G1(X))]. Thus we

obtain
E[‖δεA⊤

n V
−1
n vn(G1(X))− δεh(X)‖2] → 0.

From this we conclude A⊤
n V

−1
n Un = Γn+op(1) and A

⊤
n V

−1
n An → H and obtain

the desired result (1.2) in view of (2.10). This completes the proof that the
statements (2.2)–(2.4) imply the desired result.

Proof of (2.2). It is easy to check that ‖vn‖2 ≤ 1+2rn and ‖v′n‖2 ≤ 2π2r3n.
Let N =

∑n
i=1 δi. We have E[δj/N ] ≤ 1/n for j = 1, . . . , n. Using this we obtain

the inequalities

E[δja
2(Xj)(G(Xj)−G1(Xj))

2] ≤
∫

a2 dG1/n, j = 1, . . . , n,

valid for a ∈ L2(G1). Indeed, conditioning on δ1, . . . , δn and Xj we derive that
the left-hand side equals

E[δja
2(Xj)[(1 −G1(Xj))

2 + (N − δj)G1(Xj)(1−G1(Xj))]/N
2]

and is therefore bounded by E[δja
2(Xj)/N ] ≤

∫

a2 dG1/n.
Using these inequalities we verify the statements

Tn1 =
1

n

n
∑

j=1

δjε
2
j‖vn(G(Xj))− vn(G1(Xj))‖2 = Op(r

3
n/n),
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Tn2 =
1√
n

n
∑

j=1

δjεj

[

vn(G(Xj))− vn(G1(Xj))
]

= Op(r
3/2
n n−1/2),

Tn3 =
1

n

n
∑

j=1

δjvn(G(Xj))m
⊤(Xj)−An = Op(r

3/2
n n−1/2).

Indeed, we find E[‖Tn2‖2] = E[Tn1] ≤ 2π2r3n
∫

σ2 dG1/n and

E(‖Tn3‖2) ≤ 2E
[ 1

n

n
∑

j=1

δj‖m(Xj)‖2‖vn(G(Xj))− vn(G1(Xj))‖2
]

+ 2E
[∥

∥

∥

1

n

n
∑

j=1

δjvn(G1(Xj))m
⊤(Xj)− E[δvn(G1(X)m⊤(X)])

∥

∥

∥

2]

≤ 4π2r3n
1

n

n
∑

j=1

E[δj‖m(Xj)‖2(G(Xj))−G1(Xj))
2]

+
2

n
E[δ‖m(X)‖2‖vn(G1(X))‖2]

≤ (4π2r3n + 2 + 4rn)

∫

‖m‖2 dG1/n.

Verify that Ûn,t−Un+Ant equals Tn2+Tn3t. Thus (2.2) follows from the bound

sup
‖t‖≤Cn

‖Ûn,t − Un +Ant‖2
(1 + ‖t‖)2 ≤ 2‖Tn2‖2 + 2‖Tn3‖2 = Op(r

3
n/n).

Proof of (2.3). We verify (2.3) by establishing

sup
‖u‖=1

|u⊤V̄nu− u⊤Vnu| = Op(rnn
−1/2) (2.11)

and

sup
‖t‖≤Cn

sup
‖u‖=1

|u⊤V̂n,tu− u⊤V̄nu| = Op(r
3/2
n n−1/2 + Cnr

1/2
n n−1/2) (2.12)

with

V̄n =
1

n

n
∑

j=1

ZjZ
⊤
j and Zj = δjεjvn(G1(Xj)).

We obtain (2.11) since its left-hand side is bounded by the euclidean norm
‖V̄n − Vn‖ of V̄n − Vn and since we have the bound

nE[‖V̄n − Vn‖2] ≤
rn
∑

k=0

rn
∑

l=0

E[δε4ϕ2
k(G1(X))ϕ2

l (G1(X))]

= E[δε4‖vn(G1(X))‖4] ≤ (1 + 2rn)
2E[δε4] = O(r2n).
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In view of the identity u⊤V̂n,tu − u⊤V̄nu = 1
n

∑n
j=1[(u

⊤Ẑj(t))
2 − (u⊤Zj)

2], we

see that the left-hand side of (2.12) is bounded by 2(DnLn)
1/2 +Dn with

Ln = sup
‖u‖=1

u⊤V̄nu and Dn = sup
‖t‖≤Cn

1

n

n
∑

j=1

‖Ẑj(t)− Zj‖2.

We have Ln = Op(1) by (2.1) and (2.11), and

Dn ≤ 2Tn1 +
2C2

n(1 + 2rn)

n2

n
∑

j=1

δj‖m(Xj)‖2 = Op(r
3
n/n) +Op(C

2
nrn/n).

Thus (2.12) holds.

Proof of (2.4). To verify (2.4) we shall use the following result which is a
special case of Lemma 5.2 of Peng and Schick (2012a [12]).

Lemma 1. Let x1, . . . , xn be m-dimensional vectors. Set

x̄ =
1

n

n
∑

j=1

xj , x∗ = max
1≤j≤n

‖xj‖, ν4 =
1

n

n
∑

j=1

‖xj‖4, S =
1

n

n
∑

j=1

xjx
⊤
j ,

and let λ denote the smallest and Λ the largest eigenvalue of the matrix S. Then
the inequality λ > 5|x̄|x∗ implies

∣

∣

∣
− 2 log(R)− nx̄⊤S−1x̄

∣

∣

∣
≤ n‖x̄‖3(Λν4)1/2

(λ− ‖x̄‖x∗)3 +
4nΛ2‖x̄‖4ν4

λ2(λ− ‖x̄‖x∗)4 (2.13)

where

R = sup
{

n
∏

j=1

nπj : π1 ≥ 0, . . . , πn ≥ 0,

n
∑

j=1

π = 1,

n
∑

i=1

πixi = 0
}

.

The bound (2.13) is derived from (5.7) in Peng and Schick (2012a [12]) and
the inequalities (x(3))2 ≤ Λx(4) and nx(4) ≤ ∑n

j=1 ‖xj‖4.
Let λ̂n,t denote the smallest, and Λ̂n,t the largest eigenvalue of V̂n,t. Let us

also set

λ̂n = inf
‖t‖≤Cn

λ̂n,t, Λ̂n = sup
‖t‖≤Cn

Λ̂n,t, and Ẑ∗
n = sup

‖t‖≤Cn

max
1≤j≤n

‖Ẑj(t)‖.

It follows from (2.1) and (2.3) that

P (λ̂n > k/2) → 1 and P (Λ̂n < 2K) → 1.

Since ε has a finite fourth moment and ‖m(X)‖ has a finite second moment, we
have

Mn1 = max
1≤j≤n

|εj| = op(n
1/4) and Mn2 = max

1≤j≤n
‖m(Xj)‖ = op(n

1/2)
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and find

Ẑ∗
n ≤ (1 + 2rn)

1/2(Mn1 + Cnn
−1/2Mn2) = op(r

1/2
n n1/4).

From (2.6) we obtain

ξn = sup
‖t‖≤Cn

∥

∥

∥

1

n

n
∑

j=1

Ẑj(t)
∥

∥

∥
= n−1/2 sup

‖t‖≤Cn

‖Ûn,t‖ = Op(Cnr
1/2
n n−1/2).

The bound

Tn = sup
‖t‖≤Cn

1

n

n
∑

j=1

‖Ẑj(t)‖4 ≤ (1 + 2rn)
2 1

n

n
∑

j=1

(

|εj|+ Cnn
−1/2‖m(Xj)‖

)4

yields Tn = Op(r
2
n). The above show that

P (λ̂n − 5Ẑ∗
nξn > k/4) → 1.

Thus the event {λ̂n > 5Ẑ∗
nξn} has probability tending to 1. On this event the

left-hand side of (2.4) is bounded by

sup
‖t‖≤Cn

‖Ûn,t‖2
(1 + ‖t‖)2

[

ξn(Λ̂nTn)
1/2

(λ̂n − ξnẐ∗
n)

3
+

4Λ̂2
nξ

2
nTn

λ̂2n(λ̂n − ξnZ̄∗
n)

4

]

which is of order OP (Cnr
5/2
n n−1/2 + C2

nr
4/n) = oP (1). This gives the desired

result (2.4).
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