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Abstract: I consider the use of Markov random fields (MRFs) on a fine
grid to represent latent spatial processes when modeling point-level and
areal data, including situations with spatial misalignment. Point observa-
tions are related to the grid cell in which they reside, while areal observa-
tions are related to the (approximate) integral over the latent process within
the area of interest. I review several approaches to specifying the neigh-
borhood structure for constructing the MRF precision matrix, presenting
results comparing these MRF representations analytically, in simulations,
and in two examples. The results provide practical guidance for choosing a
spatial process representation and highlight the importance of this choice.
In particular, the results demonstrate that, and explain why, standard CAR
models can behave strangely for point-level data. They show that various
neighborhood weighting approaches based on higher-order neighbors that
have been suggested for MRF models do not produce smooth fields, which
raises doubts about their utility. Finally, they indicate that an MRF that
approximates a thin plate spline compares favorably to standard CAR mod-
els and to kriging under many circumstances.
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1. Introduction

Markov random field (MRF) models (also called conditional autoregressive (CAR)
models) are the dominant approach to analyzing areally-aggregated spatial data,
such as disease counts in administrative units. In contrast, point-referenced data
are generally modeled using Gaussian process (GP) models that posit a contin-
uous latent underlying spatial surface, of which the popular approach of kriging
for spatial prediction is one variant.

GP models are computationally challenging for large datasets because of ma-
nipulations involving large covariance matrices, and there has been a large body
of recent work attempting to reduce the computational burden through reduced
rank approximations (Kammann and Wand, 2003; Banerjee et al., 2008; Sang
and Huang, 2012), inducing sparseness in the covariance (covariance tapering)
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(Furrer et al., 2006; Kaufman et al., 2008; Sang and Huang, 2012), and ap-
proximate likelihood approaches (Stein et al., 2004), among others. In contrast,
MRF models work with the precision matrix directly, so calculation of the like-
lihood is computationally simple. In MCMC implementations, one can exploit
the Markovian structure to sample the value of the field for each area sequen-
tially or exploit the sparsity of the precision matrix when sampling the field
values jointly (Rue and Held, 2005).

Given the computational attractiveness of the MRF approach, it is appealing
to consider its use for point-referenced data as well. One issue lies in how to
define the neighborhood structure for a set of point-referenced observations, but
a second more fundamental issue lies in the fact that the model structure changes
when one changes the number of sites under consideration. The solution that
I highlight here is to relate the point-referenced observations to an underlying
regularly-gridded surface modeled as an MRF.

Considering an underlying gridded surface for areally-aggregated data is also
appealing. Kelsall and Wakefield (2002) argue for the use of a smooth under-
lying surface to model areal data, with each areal observation related to the
average of the surface over the defined area. They found approximations to the
integrals involved and worked with an underlying GP representation; related
work includes Fuentes and Raftery (2005) and Hund et al. (2012). Here I re-
late areal observations to an underlying MRF on a fine grid, approximating the
necessary integrals as a simple weighted average of the MRF values for the grid
cells that overlap each area. Such an approach also allows one to model multi-
ple areally-aggregated datasets with different boundary structures. In summary,
the approach of using an MRF on a fine grid provides an aggregation-consistent
model for point or areal data (or a mix of both) and is a strategy also suggested
in Besag and Mondal (2005).

The most common form of MRF represents the spatial dependence structure
such that areas that share a boundary are considered neighbors, with an area
conditionally independent (given its neighbors) of any non-neighboring areas,
a so-called first-order neighborhood structure. Fig. 1 shows the results of using
this MRF structure on a fine regular grid to model point-referenced data. The
fitted smooth surface is not visually appealing, in contrast to an MRF that
approximates a thin plate spline (Rue and Held, 2005) and to kriging. The
results are consistent with Besag and Mondal (2005), who show that the intrinsic
(i.e., improper) first-order MRF on a two-dimensional regular grid produces
spatial fields whose distribution approaches two-dimensional Brownian motion
(the de Wijs process) asymptotically as the grid resolution increases. Given this
continuous but non-differentiable representation of the underlying surface, the
local heterogeneity of the surface estimate in Fig. 1 is not surprising. However,
note that Besag and Mondal (2005) and Besag in his comments on Diggle et al.
(2010) argue that the de Wijs process is preferable to GPs in the Matérn class.

A common alternative to this standard nearest-neighbor structure is to ex-
tend the neighborhood structure beyond bordering areas (Pettitt et al., 2002;
Hrafnkelsson and Cressie, 2003; Song et al., 2008). Such higher-order neigh-
borhood structure might be expected to produce more smooth process repre-
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(a) PM obser vations (b) Standar d ICAR

(c) Thin plate spline−based MRF (d) Kriging

Fig 1. Example fits to particulate matter (PM) air pollution point observations (a) using the
standard first-order MRF on a fine regular grid (b), an MRF approximation to a thin plate
spline, again represented on a fine regular grid (c), and using kriging with an exponential
covariance (d).

sentations, but I show that straightforward higher-order neighborhoods do not
achieve this. An alternative that I highlight here is an MRF approximation to
a thin plate spline (TPS) that involves only nearby grid cells as neighbors (Rue
and Held, 2005; Yue and Speckman, 2010). Finally, Lindgren et al. (2011) have
recently developed a powerful theory and methodology for approximating GPs
in the Matérn class that will likely be widely used. The thin plate spline approx-
imation is a limiting case of the Lindgren et al. (2011) representation, and my
results shed light on the distinctions between standard first-order MRF models,
the thin plate spline approximation, and GP representations.

In this paper, I present a general model for both areal and point-referenced
data that deals simply with spatial misalignment by using an MRF on a fine
regular grid (Section 2.1). In the literature, first-order MRF representations are
widely-used for areal data, generally with little consideration of the properties
of the latent process or resulting suitability for a given application. In light
of this and of the lack of smoothness of the popular first-order MRF seen in
Fig. 1, I compare several existing approaches for the MRF neighborhood struc-
ture (Section 2.2) using both analytic calculations and simulations (Section 3)
in the context of the general model presented here. The results suggest that
the thin plate spline approximation often performs well and help to explain the
strange behavior of the first-order MRF. Importantly for situations in which a
smooth process representation is desired, higher-order neighborhood structures
can have unappealing properties when they are not constructed as approxima-
tions to particular spatial surface representations. Finally, MRF models perform
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as well as kriging under a variety of circumstances for both point and areal data.
I close by discussing computation (Section 4) and presenting two examples, one
with point data and one with areal data (Section 5). Online supplementary ma-
terial (Paciorek, 2013) contains the R code for all analyses and figures as well as
the data for the pollution data only, as the breast cancer data are not publicly
available.

2. Spatial model for point and areal data

2.1. Model structure

Here I present a basic model for exponential family data. Let µi = E(Yi|Xi, g)
be related via a link function, h(·), to a linear predictor:

h(µi) = X⊤
i β +Kig, (1)

where Ki is the ith row of a mapping matrix, K, discussed further below.
I represent the unknown, latent spatial process, g(·), as a piecewise constant
surface on a fine rectangular grid,

g ∼ N (0, (κQ)−), (2)

where Q is an MRF precision matrix and κ a precision parameter, recogniz-
ing the potential singularity of Q by using the generalized inverse notation.
Computational issues related to the singularity are discussed in Section 4.

For a point-referenced datum, Ki will be a sparse vector with a single 1
that matches the location of the observation to the grid cell in which it falls.
Note that one may include covariates in X that can help to account for within
grid cell heterogeneity. For an areally-aggregated datum, I consider the relevant
functional of the surface to be the average value of the underlying surface over
the area Ai: g

∗(Ai) ≡
∫

Ai

g(s)ds. Using the piecewise representation, this can

be approximated as g∗(Ai) ≈
∑

j∈Ai
wjgj where j ∈ Ai indexes the grid cells

that the Ai overlaps and wj is the proportion of Ai that falls in the jth grid
cell. Hence the non-zero elements of Ki contain the proportions, {wj}, as the
appropriate elements. If desired, one could interpolate between the values of g
at the grid cell centroids for a more accurate approximation.

2.2. Potential MRF models

Here I present the MRF models that I consider for g and their corresponding
precision matrices, Q. I consider only intrinsic models with singular precision
matrices. These specify improper priors with respect to one or more linear com-
binations of the process values, as the eigenvectors of Q with zero eigenvalues
have infinite prior variance (Banerjee et al., 2003). My focus on intrinsic models
is motivated by noting that proper first-order MRF models tend not to allow
high correlations between neighbors unless the precision matrices are close to
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singular (Banerjee et al., 2003; Wall, 2004). Furthermore, intrinsic models rep-
resent the conditional mean for the process in a given area as a weighted average
of the process values of the neighboring areas with weights summing one, while
proper models have weights summing to less than one.

1. Traditional intrinsic CAR model (ICAR): The most commonly-used MRF
model is a simple first-order model that treats any two areas that share
a border as neighbors. The corresponding precision matrix has diagonal
elements, Qii, equal to the number of neighbors for the ith area, while
Qij = −1 (the negative of a weight of one) when areas i and j are neigh-
bors and Qij = 0 when they are not. On a grid, the simplest version of
this model treats the four nearest grid cells as neighbors (i.e., cardinal
neighbors). Besag and Mondal (2005) show that the model is asymptoti-
cally equivalent to two-dimensional Brownian motion, and Lindgren et al.
(2011) show that this model approximates a GP in the Matérn class (3)
with the spatial range parameter ρ → ∞ and differentiability parameter
ν → 0.

2. Extended neighborhood model (DICAR and HICAR): One might gener-
alize the first-order Markovian structure of the ICAR model to allow for
higher-order dependence by considering areas that do not share a border
but are close in some sense to be neighbors. At its simplest, this simply
introduces additional values of −1 off the diagonal of Q as in Song et al.
(2008). I will call this model the higher-order ICAR (HICAR). A more nu-
anced version would have the weight for a pair of areas depend on the dis-
tance between the two areas (usually declining with distance), such as Eu-
clidean distance or the number of intervening cells between the two areas
(Pettitt et al., 2002; Hrafnkelsson and Cressie, 2003). Then Qij = −δ(i, j)
where δ(·, ·) is the chosen weight or distance function. I will term this
model the distance-based ICAR (DICAR) and implement the model using

the function in Hrafnkelsson and Cressie (2003), δ(i, j) = −d
log .05/ log r
ij ,

where dij is the distance between area centroids and r is the (user-chosen)
maximum distance at which the weight is non-zero.

3. Thin plate spline approximation (TPS-MRF): Rue and Held (2005,
Sec. 3.4.2) present a second-order model where the weights on neighbors
of different orders are constructed so the model approximates a thin plate
spline. The approach considers a discretized approximation of the penalty
function used in deriving the thin plate spline solution. This penalty func-
tion is an integral of second partial derivatives of the unknown surface, so
the discretization produces a prior precision matrix based on second or-
der difference operators. In the discretized approach, the nearest cardinal
neighbors have a weight of 8 (Qij = −8), the nearest diagonal neighbors
a weight of −2 (Qij = 2) and the second nearest cardinal neighbors a
weight of −1 (Qij = 1). Note the presence of negative weights, unlike in
most MRF models with higher order neighborhood structures. Paciorek
and Liu (2012, App. C) describe the derivation of the fullQmatrix, includ-
ing boundary effects, in detail. In one dimension, this model corresponds
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to the widely-used second-order auto-regressive model (an IID model on
second differences) (Breslow and Clayton, 1993). Lindgren et al. (2011)
show that this model approximates a GP in the Matérn class (3) with
ν = 1 and the spatial range parameter ρ → ∞.

In this work I compare MRF models to GPs in the Matérn class, where I
parameterize the Matérn correlation function as

R(d) =
1

Γ(ν)2ν−1

(

2
√
νd

ρ

)ν

Kν

(

2
√
νd

ρ

)

, (3)

where d is Euclidean distance, ρ is the spatial range parameter, and Kν(·) is the
modified Bessel function of the second kind, whose order is the smoothness (dif-
ferentiability) parameter, ν > 0. ν = 0.5 gives the exponential covariance. Note
that the Lindgren et al. (2011) approach provides a computational strategy for
fitting an approximate GP model via a MRF representation but in the material
that follows I consider the explicit GP rather than an MRF approximation to it.

3. Comparing MRF Structures

This section compares the different MRF models using a variety of tools, starting
with an assessment of the implied eigenstructure and smoothing kernels of the
models (Section 3.1). The comparison sheds light on the smoothing behavior
of the ICAR model and shows that the extended neighborhood models have
unappealing properties. In Section 3.2 I compare predictive performance of the
models, both under an oracle setting with the optimal choice of smoothing
parameter and in simulations in which all parameters are estimated.

3.1. Covariance and smoothing properties

3.1.1. Eigenstructure

To better understand the spatial dependence structures implied by the various
MRF precision matrices, I quantify the magnitude of the variability for different
scales (frequencies) of spatial variability by considering the eigendecomposition
of Q. Given the model g ∼ N (0,Q−), we can consider the eigendecomposition,
Q− = ΓΛ−Γ⊤. To generate realizations of g, we have g = Γu for u ∼ N (0,Λ−).
Thus the inverse eigenvalues quantify the magnitude of variability associated
with patterns or modes of variability represented by the eigenvectors.

Empirical exploration indicates that the inverse eigenvalues decline as the
frequency of variability represented in the eigenvectors increases. Therefore to
visualize how different MRF models weight variability at different frequencies,
I plot the ordered inverse eigenvalues. Because the matrix Q is multiplied by
a scalar precision, only the relative magnitudes are of interest, so I scale the
inverse eigenvalues such that the 100th largest inverse eigenvalue for each pre-
cision matrix is taken to be equal to one. While the eigenvectors for the various
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Fig 2. (a) Log inverse eigenvalues (relative to the 100th largest inverse eigenvalue) for the
ICAR and TPS-MRF models, in comparison with the log inverse eigenvalues for the Matérn
covariance (with ν = 2) and exponential covariance models. The yellow-orange shading,
bounded by orange lines, indicates the range of eigenvalue curves obtained for the Matérn
as the range parameter, ρ, varies from the size of the full domain in one dimension to 1/25
of the domain in one dimension. Similarly, the blue shading, bounded by dark blue lines, is for
the exponential covariance as the range varies from the full domain to 1/25 of the domain.
(b) Log inverse eigenvalues (relative to the 100th largest inverse eigenvalue) for the ICAR
and TPS-MRF models, both repeated from (a); the HICAR model with grid cells up to and
including three units in distance considered neighbors; and the DICAR model with non-zero
weights that decay with distance up to and including five units in distance. Only the first 1000
inverse eigenvalues are plotted, as by the 1000th, the features represented in the eigenvectors
occur within groups of 5-10 grid cells, near the limit of scales that could be resolved in a
gridded representation.

precision matrices are not the same, empirical exploration shows that they are
quite similar and represent very similar spatial scales of variation for a given
position in the ordering of the eigenvector/value pairs. Furthermore, projec-
tion onto a common set of eigenvectors (from the ICAR model) confirms that
the slight differences in eigenvectors between models do not impact the results
shown next.

In the comparisons, I compare the TPS-MRF model to a GP with Matérn
correlation with ν = 2, rather than ν = 1 as would be natural given the Lindgren
et al. (2011) relationship. I do this because thin plate splines represent smooth
functions and the Matérn has M mean square derivatives when ν > M (Stein,
1999, p. 32). I compare the ICAR model to a GP with an exponential correlation
(Matérn with ν = 0.5) despite the Lindgren et al. (2011) result relating the
ICAR model to a Matérn covariance with ν → 0 because the Matérn covariance
is only valid for ν > 0.

Fig. 2 plots the size of the ordered inverse eigenvalues for different MRF pre-
cision matrices and in comparison to GP models for a regular spatial grid of di-
mension 75×75. The TPS-MRF puts more weight on the lower frequency eigen-
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vectors and less weight on the higher frequency eigenvectors than the ICAR. This
is not surprising given the relationship of the ICAR model to Brownian motion
and the smoothness of splines. The TPS-MRF eigenvalue curve lies within the
set of eigenvalue curves (for varying values of the range parameter, ρ) from
the Matérn model with ν = 2. At low frequencies, the ICAR eigenvalue curve
lies within the set of eigenvalue curves from the exponential model, while the
ICAR model puts more weight on high frequency eigenvectors than the expo-
nential model, consistent with the ICAR approximating a Matérn covariance
with ν → 0 (Lindgren et al., 2011).

Particularly interesting is the behavior of the higher-order and distance-based
ICAR variations, which behave similarly to the ICAR model (Fig. 2b). At low
frequency, the curves coincide, while the HICAR and DICAR models put more
weight on the higher frequencies than the ICAR model. This indicates that
one cannot use these approaches to represent surfaces smoother than those
represented by the ICAR model. In fact, based on this analysis, it is unclear
why one would use these representations, given that the motivation for their use
has been to provide more smoothness than the ICAR model.

3.1.2. Equivalent kernels

To understand the smoothing behavior of the various models, I next consider
their equivalent kernels, which quantify the local averaging that the models
do to make predictions. Under a normal likelihood and ignoring covariates for
simplicity, Y ∼ N (Kg, τ2I). When there are observations at all the grid cells,
the smoothing matrix, S, in ĝ = Sy can be expressed as

S =
1

τ2

(

κQ+
1

τ2
I

)−1

= (λQ+ I)−1,

where λ ≡ τ2κ. For the GP models, we have ĝ = µ̂1+σ2Rθ(σ
2Rθ+τ2I)−1(y−

µ̂1) so

S = σ2Rθ(σ
2Rθ + τ2I)−1 = (λR−1

θ + I)−1,

where τ2 is the error variance, σ2 is the marginal variance of the GP, and Rθ is
the correlation matrix, a function of parameter(s), θ. λ ≡ τ2/σ2 can be thought
of as a smoothing parameter, as in the MRF model. Note that the sum of the
weights is not one when expressing S as above, because it ignores µ̂, which is
also linear in the observations. I ignore this component of the prediction as it
involves adding and subtracting a constant that does not vary by location.

Fig. 3 shows the various kernels, plotted as a function of one of the cardinal
directions, with the other direction held fixed, for two values of the smoothing
parameter, λ. Fig. 3a,d shows that the ICAR kernel puts less weight near the
focal cell and more further from the focal cell, compared to the TPS-MRF,
but with a spike at the focal cell. This behavior helps to explain the bulls-eye
effect and the greater shrinkage towards an overall mean in the gaps between
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Fig 3. Equivalent kernel cross-sections in one of the cardinal directions for various models
with (a-c) λ = exp(4). which produces less localized weighting and (d-f) λ = exp(2), which
produces more localized weighting. In (b) and (e), the HICAR model has grid cells up to and
including three units in distance considered neighbors, and the DICAR model has decaying
non-zero weights up to and including five units in distance. In (c) and (f), the Matérn (with
ν = 2) and exponential covariance models have range, ρ, set to one-tenth of the domain size
in one dimension.

observations seen for the ICAR model in Fig. 1. The TPS-MRF kernel shows
some small-magnitude negative weights, which is consistent with the negative
weights in the equivalent kernels for spline smoothing and Gaussian process
smoothing (Silverman, 1984; Sollich and Williams, 2005). In Fig. 3b,e, we see
that the HICAR (with neighbors within three units) and DICAR (with non-
zero weights within five units) models place very little weight near the focal
observation and spread their weight very widely. The result is that their kernels
are even more extreme than the ICAR kernel in making predictions that heavily
weight observations far from the focal location. Results are similar but not as
extreme for HICAR and DICAR models with smaller neighborhoods. As with
the eigenvector analysis, this suggests the HICAR and DICAR models have little
practical appeal. Fig. 3c,f compares the ICAR and TPS-MRF to the equivalent
kernels for GP models with ρ set to one-tenth of the size of the domain in one
dimension. The ICAR model shows some similarity to the exponential-based
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(a) ICAR (b) TPS−MRF (c) exponential (d) Matern, v=2
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Fig 4. Equivalent kernels in two dimensions for λ = exp(4): (a) ICAR, (b) TPS-MRF, (c)
exponential covariance with range, ρ, equal to one-tenth of the domain in one dimension, and
(d) Matérn covariance with ν = 2 and that same range.

GP in terms of tail behavior and the spike at the focal cell. The TPS-MRF
equivalent kernels are rather different than the Matérn-based GP model with
ν = 2, but more similar in terms of tail behavior than when compared to the
exponential-based model.

Fig. 4 reinforces these points, showing image plots of the equivalent kernels
in two dimensions for the ICAR and TPS-MRF models, as well as the Matérn
and exponential covariance models. The ICAR kernel puts little weight near
the focal cell but spreads positive weight further from the focal cell than the
other approaches. The exponential is qualitatively similar, but less extreme than
the ICAR. The TPS-MRF and Matérn models are somewhat similar, but the
TPS-MRF puts more weight near the focal cells.

3.2. Assessment of predictive ability

Here I compare predictive performance of the ICAR and TPS-MRF models with
GP models, via analytic calculation of squared error (using an oracle estimator
of the smoothing parameter) and in simulations in which all parameters are
estimated.

3.2.1. Data-generating scenarios

I consider the simple generative model for Y = {Y1, . . . , Yn}:

Y ∼ N (g, τ2I)

g ∼ N (Xβ,C), (4)

with C = σ2Rθ, where Rθ is a correlation matrix based on the Matérn cor-
relation function with ν ∈ {0.5, 2} (ν = 0.5 is equivalent to the exponential
correlation function). Here X represents spatial basis functions, including an
overall mean and possibly linear and higher-order functions of the spatial co-
ordinates, as in ordinary kriging and universal kriging. Using the unit square
as the domain, I consider five scenarios: n = 100 with locations uniformly sam-
pled, n = 100 with observations sampled according to a Poisson cluster process
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(PCP) with parent intensity of 25 and standard normal kernels with standard
deviation of 0.05, n = 1000 with uniform and PCP sampling, and n = 100
areal observations on a coarse 10 × 10 grid overlaid on a regular 100 × 100
grid. For each scenario, I use a full factorial design with respect to ν ∈ {0.5, 2},
ρ ∈ {0.005, 0.02, 0.08, 0.32, 1.28, 2.56}, and τ2 ∈ {0.052, 0.152, 0.452, 1.352}. For
n = 100 and n = 1000, I use 10 replicates to average over the random sampling
of locations; the resulting Monte Carlo standard errors are small relative to the
point estimates of the reported sum of squared errors (SSE) values. Data are
simulated over the unit square in a continuous fashion, while predictions are
considered at the grid cell centroids. For simplicity, I simulate with σ2 = 1 and
β = 0.

3.2.2. Model fitting

I consider fitting the data using either the ICAR or TPS-MRF models on a
regular 100× 100 grid:

Y ∼ N (Kg, τ2I),

g ∼ N (Xβ, (κQ)−)

where K is a mapping matrix that relates observation locations/areas to grid
cells. Xβ represents the overall mean in the ICAR model and the mean plus
linear functions of the spatial coordinates in the TPS-MRF model. One can
express the best prediction for g as

ĝ = E(g|Y , ·) = (K⊤K + λQ)−1(K⊤Y + λQXβ̂)

= (K⊤K + λQ)−1(K⊤ + λQX((KX)⊤Σ∗−1KX)−1(KX)⊤Σ∗−1)Y

= (K⊤K + λQ)−1K⊤Y

≡ SλY . (5)

where Σ∗ ≡ I +K(λQ)−K⊤, λ ≡ τ2κ, and the terms involving X drop out,
with estimation of β absorbed into g, thereby avoiding non-identifiability.

The expected SSE, averaging over randomness in observations and random-
ness in latent spatial process realizations, can be expressed in terms of a single
parameter, λ, that needs to be estimated, plus the parameters of the data-
generating model:

SSE(λ) = EgEY ((ĝ − g)⊤(ĝ − g))

= EgEY (Y
⊤S⊤

λ SλY − 2g⊤SλY + g⊤g)

= Eg(τ
2S⊤

λ Sλ − 2g⊤SλKg + g⊤g + g⊤K⊤S⊤
λ SλKg)

= τ2tr(S⊤
λ Sλ)− 2tr(SλKC) + tr(C) + tr(K⊤S⊤

λ SλKC)

−2(Xβ)⊤SλKXβ + (Xβ)⊤Xβ + (Xβ)⊤K⊤S⊤
λ SλKXβ

= τ2tr(S⊤
λ Sλ)− 2tr(SλKC) + tr(C) + tr(K⊤S⊤

λ SλKC). (6)

In the derivation, I make use of the fact that SλKX = X (because QX = 0

when the columns of X are in the space spanned by the eigenvectors of Q).
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To simplify the presentation of results, I consider an oracle result based on
optimizing the SSE (6) across all possible values of λ for each of the ICAR
and TPS-MRF models, thereby using the best overall λ for a given generative
setting. In this, I assume that τ2 and σ2 are known.

Analogous calculations for SSE can be done when fitting the model using the
GP approach (thereby fitting with the same model used to generate observa-
tions). For the GP approach, I consider predictions at the grid centroids but
take the data locations to be the actual locations. As a result the expected SSE
can be expressed in similar form to (6), but with S involving R−1

θ in place of

Q, λ ≡ τ2

σ2 , and a slight bit of additional complexity to account for the corre-
lation between the process values at the data locations and those at the grid
cell centroids. Since the GP is the generating model, it provides a baseline for

comparison with the MRF models, so I also assume that λ = τ2

σ2 is known, as
are θ = {ρ, ν} and β = 0.

The oracle assessment just described presumes good choices of the penalty
parameter for each representation and does not assess the effect of hyperpa-
rameter estimation on performance. Therefore, I also present basic simulation
results under the data-generating scenarios described above, with the exception
that for the areal scenario, I do not fit the GP model because of computational
constraints. I use 100 simulations; the resulting Monte Carlo standard errors
are small relative to the reported SSE results. The unknowns are g, τ2, β (for
the GP model), and λ = κτ2 (for the MRF) or λ = τ2/σ2 (for a GP model).
Integrating over g to obtain a marginal likelihood in terms of τ2 and λ and
profiling over τ2 (and β for the GP) gives a likelihood that can be numerically
maximized with respect to λ. One can then use (5) to estimate g (with the
analogous quantity for the GP case). In fitting the GP model, I use the true ν.

3.2.3. Results for point observations

For n = 100 and n = 1000, respectively, Figs. 5-6 show the ratio of the SSE
using the ICAR to that using the TPS-MRF as well as the ratio of the SSE using
the true GP model to that using the TPS-MRF. We see that with uniformly
distributed locations, in general the TPS-MRF either matches the SSE of the
ICAR or improves upon it. The TPS-MRF strongly outperforms the ICAR when
ν = 2, the range is moderate to large, and the noise variance is not too large.
The one case in which the ICAR generally beats the TPS-MRF is for ρ = 0.08
for n = 100 and ρ = 0.02 for n = 1000, particularly for smaller values of τ2

and ν = 2, but note that in these cases the absolute SSE (red lines) is close to
the SSE of an intercept-only null model for both models. For ν = 0.5, which
produces locally heterogeneous surfaces for which we would expect the ICAR
model to perform well, we see that the two MRF models perform fairly similarly.
Clustering appears to decrease the ratio of SSE of the ICAR relative to the
TPS-MRF. This is likely a result of the fact that the TPS-MRF approximates a
spline, with no constraint on the spline fit in any large gaps with no observations.
Unlike a Gaussian process, a spline does not revert to an overall estimate of the
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(b) simulation results

Fig 5. Predictive performance for n = 100 point observations: (a) oracle results and (b)
simulation results. Plots show the log (base 2) of the ratio of SSE for the ICAR (black) and
GP (blue) models relative to the TPS-MRF and absolute SSE for the TPS-MRF for reference
(in red, with axis labels on the right side). In each subplot, ν varies with the row and τ2 with
the column. The horizontal grey line corresponds to the SSE being 90% of the SSE of the
TPS-MRF as an informal cutoff below which other models perform substantially better. The
SSE in (b) is computed for locations within the convex hull of the observations in a given
simulation.

mean when it is far from any observations, which may lead to poor interpolation.
Comparing the TPS-MRF to the GP, the GP generally performs better, which is
not surprising given that it is the generative model and is fit based on the true
hyperparameter values, but particularly for uniformly-sampled locations, the
TPS-MRF is competitive. For larger values of both ρ and τ2, with ν = 2, we see
that the TPS-MRF actually outperforms the GP in the simulations, despite the
GP being the generative model, suggesting that for smooth surfaces there is a



Spatial models using Markov random fields 959

●

●

●
● ● ●

−
1.

0
0.

0
1.

0
2.

0

●

●
● ● ● ●●

●

●

●
● ●●

●

●

●
● ●

ICAR, uniform sampling
ICAR, clustered sampling
GP, uniform sampling
GP, clustered sampling

● ●

●

●

●

●

● ●

●

●

●

●

ν
=

0.
5

τ2 = 0.052
(a) oracle results

●

●

●
● ● ●

●

●
● ● ● ●●

●

●

●
● ●●

●

●

●
● ●

● ●

●

●

●

●

● ●
●

●

●

●

τ2 = 0.152

●

●
●

● ● ●
●

●
● ● ● ●●

●

●

●
● ●●

●

●

●
● ●

● ●

●

●

●

●

● ●
●

●

●

●

τ2 = 0.452

●
● ●

● ● ●●
● ● ● ● ●

●
●

●
●

● ●●
●

●
●

● ●

● ●

●

●

●

●

● ●
●

●

●

●

1
10

10
0

10
00

0τ2 = 1.352

●

●

●

●

●

●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0

●

●
●

● ● ●
●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

● ●

●

●

●

●

lo
g2

 o
f S

S
E

 r
el

at
iv

e 
to

 T
P

S
−

M
R

F

ρ

ν
=

2

●

●

●
●

●

●

0.005 0.050 0.500

●

●

● ● ● ●
●

● ●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

0.005 0.050 0.500

●

●

● ● ● ●
●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

0.005 0.050 0.500

●

●
● ● ● ●

●
●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

● ●
●

●

●

●

1
10

10
0

10
00

0

T
P

S
−

M
R

F
 S

S
E

●

●

●
● ● ●

−
1.

0
0.

0
1.

0
2.

0

●

●

● ● ● ●
●

●
●

●
● ●

●

● ●

● ● ●

ν
=

0.
5

τ2 = 0.052

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ● ●

●

●

● ● ● ●
●

●
●

●
● ●

●

● ●

● ● ●

τ2 = 0.152

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

● ● ●
●

● ●

● ● ●
●

● ●

● ● ●

τ2 = 0.452

● ●

●

●

●

● ●

●

●

●

●

● ●
●

● ● ●●
●

●
●

● ●●
●

●

●
● ●●

●
●

●
●

●

τ2 = 1.352

● ●

●

●

●

●

● ●
●

●

●

●

1
10

10
0

10
00

0

●

●

●

●

●

●

0.005 0.050 0.500

−
1.

0
0.

0
1.

0
2.

0

●

●

● ●

● ●

●

●

●

●

●

●

●

●
● ●

ν
=

2

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

0.005 0.050 0.500

●

●

●
● ●

●●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

0.005 0.050 0.500

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

● ●

0.005 0.050 0.500

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

1
10

10
0

10
00

0

ρ

lo
g2

 o
f S

S
E

 r
el

at
iv

e 
to

 T
P

S
−

M
R

F

T
P

S
−

M
R

F
 S

S
E

(b) simulation results

Fig 6. Predictive performance for n = 1000 point observations: (a) oracle results and (b)
simulation results. Details are as in Fig. 5.

cost to having to estimate ρ (in particular the GP tends to underestimate ρ and
therefore undersmooth), as indicated by the fact that using a GP with known
parameter values for these same simulations results in the GP outperforming
the TPS-MRF (not shown).

I now interpret these results further in the context of some example fits. For
small values of the range, the oracle fit is a constant surface, and both MRF
models do this and perform similarly, with SSE approximately equal to Egg

⊤g,
the SSE of ĝ = 0; see the example fits in Fig. 7, first column. Neither model has
any predictive ability, and SSE is essentially squared bias. For slightly larger
range values, the ICAR model does modestly better (example fits in Fig. 7,
second column), with the TPS-MRF oversmoothing (and experiencing some
boundary issues) and the more local behavior and mean reversion of the ICAR



960 C. J. Paciorek

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Scenario 1

O
bs

er
va

tio
ns

Tr
ue

 s
ur

fa
ce

IC
A

R
 fi

t
T

P
S

−
M

R
F

 fi
t

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Scenario 2

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Scenario 4

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Scenario 3

Fig 7. Example ICAR and TPS-MRF fits (rows) for four generative scenarios (columns) with
uniform sampling of locations: (1) ν = 0.5, ρ = 0.02, τ2 = 0.152, (2) ν = 2, ρ = 0.08, τ2 =
0.152, (3) ν = 2, ρ = 1.28, τ2 = 0.152, (4) ν = 2, ρ = 1.28, τ2 = 1.352.

model (recall the results in Section 3.1.2) being beneficial. Then, as the range
increases the TPS improves upon the ICAR, most notably when the true surface
is smooth (ν = 2) (Fig. 7, third column), with the ICAR showing the bulls-eyes
seen in Fig. 1. If the noise variance is also very large, then the advantage of
the TPS when ν = 2 moderates, with the TPS oversmoothing (Fig. 7, fourth
column). When ν = 0.5, performance of the ICAR and TPS-MRF are compa-
rable because the TPS oversmooths, but follows the larger-scale patterns better
than the ICAR, while the ICAR more closely follows the local variability in the
vicinity of the observations (not shown).

In terms of uncertainty characterization, in the simulations both the ICAR
and TPS-MRF give the nominal 95% coverage for prediction intervals (not
shown). However, coverage for the true function, g, is quite low in some sit-
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uations (not shown). In particular, coverage is well below the nominal coverage
levels for both the ICAR and TPS-MRF for ρ ≤ 0.02, the settings in which both
models estimate a constant surface. The TPS-MRF also shows undercoverage
for larger values of ρ when ν = 0.5. The good predictive coverage but poor
function coverage of the TPS-MRF occurs because the model assumes a smooth
underlying surface and attributes some of the true variability in the function
surface to the error component, thereby giving standard errors for the func-
tion values that are too small. Banerjee et al. (2010) noted a similar problem
for reduced rank kriging, with an inflation in the estimated nugget variance.
This suggests that one interpret the TPS-MRF uncertainty as relating to the
larger-scale spatial variability and accept that one is not able to characterize
uncertainty about finer-scale variation.

3.2.4. Results for areal observations

Finally, for areal data, the TPS-MRF model outperforms the ICAR model in
some cases, primarily for larger values of ρ, while the ICAR outperforms the
TPS-MRF at ρ = 0.08 in the simulations but not the oracle results (Fig. 8). The
relative advantages and disadvantages of the two models are more pronounced
in the simulations, suggesting the difficulty of parameter estimation in the areal
context. The primary setting in which the TPS-MRF performs poorly is at
ρ = 0.08, particularly when the noise level is low. In these settings, at the
aggregated resolution of the observations the true surface is fairly heterogeneous
between neighboring areas and the ICAR follows the data more closely, while
the TPS-MRF oversmooths. However, note that in these settings, the SSE is
large, indicating that neither model is able to fit the data well.

Coverage of the TPS-MRF prediction intervals is at the nominal 95% level
(with the exception of one setting), but for large values of ρ and smaller values of
τ2, the ICAR model often follows the data exactly, estimating τ2 = 0 and giving
very low coverage (not shown). Considering coverage for the true g, results are
similar to the situation for point observations for both models, with nominal
coverage maintained only for larger values of ρ, with the ICAR model showing
somewhat more settings that maintain nominal coverage (not shown).

4. Computational considerations

4.1. Normal data

Consider an MRF model for g, g ∼ Nm(0, (κQ)−), where the zero mean is
justified by (5). If the observations are normally distributed, Y ∼ Nn(Xβ +
Kg, τ2I), we have conjugacy and can integrate g out of the model to obtain a
marginal likelihood with which to do maximization or MCMC on the hyperpa-
rameter space. Note that one could also use the INLA methodology to quickly
approximate the posterior without MCMC (Rue et al., 2009), but here I explore
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Fig 8. Predictive performance for areal data: (a) oracle results and (b) simulation results.
Plots show the log (base 2) of the ratio of SSE for the ICAR (black) and (for point observations
only) GP (blue) models relative to the TPS-MRF and absolute SSE for the TPS-MRF for
reference (in red, with axis labels on the right side). Solid lines show SSE for latent process
at the cell centroids of the fine grid, while dashed lines show SSE for the values of the latent
process averaged within each grid cell of the coarse grid. Additional details are as in Fig. 5.

the computations needed for maximum likelihood and for ‘exact’ inference via
MCMC.

The marginal precision for Y can be expressed, based on the Sherman-
Morrison-Woodbury formula, as

Σ−1
λ =

1

τ2
(

I −K(λQ+K⊤K)−1K⊤
)

.

For maximization, we can express the maxima for β and τ2 as functions of Σ−1
λ

and therefore of λ,
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β̂λ = (X⊤Σ−1
λ X)−1X⊤Σ−1

λ Y

τ̂2λ =
(Y −Xβ̂λ)

⊤Σ−1
λ (Y −Xβ̂λ)

n− c
,

where c is the number of zero eigenvalues of Q. Both of these quantities can be
calculated efficiently based on a sparse Cholesky decomposition of λQ+K⊤K

in the expression for Σ−1
λ , because K⊤K will generally be sparse. If all the

data are point locations, K⊤K is diagonal, with the diagonal entries counting
the number of observations falling in each grid cell. If all the data are areal
observations, only off-diagonal elements of K⊤K corresponding to pairs of grid
cells that are overlapped by a common areal observation are non-zero.

The marginal profile likelihood as a function of λ alone is proportional to

λ(m−c)/2

(τ̂2λ)
(n−c)/2|λQ+K⊤K|1/2

where the determinant can be calculated efficiently based on the already-computed
sparse Cholesky decomposition.

MCMC calculations rely on similar quantities that can be computed effi-
ciently. To draw from the posterior of g off-line, given κ, τ2, and β, we have

g ∼ N ((K⊤K + κτ2Q)−1K⊤(Y −Xβ), τ2(K⊤K + λQ)−1),

which can be done efficiently based on the same Cholesky decomposition as
above.

The computational limitation in the proposed MRF approach is the ability
to work with a sparse matrix K⊤K + λQ whose size scales with the number
of grid cells. Thus the approach is limited only by the resolution at which one
wishes to do prediction rather than by the sample size, which is similar to
the computational constraint in reduced rank kriging, where the computational
cost scales with the number of knots. For small n and large m, it may be more
computationally efficient to represent the data covariance as

Σ = τ2
(

I +
1

λ
KQ−K⊤

)

and precompute the n by n matrix KQ−K⊤, while in the iterations of an
MCMC or optimization computing the Cholesky of the dense matrix Σ. Note
that here we need to use the generalized inverse, thereby assigning zero variance
to the eigenvectors of Q corresponding to zero eigenvalues and hence necessi-
tating inclusion of the relevant terms in the mean of g.

4.2. Non-normal data

The general model (1-2) is a GLMM, where K and g play the roles of the
random effects design matrix and random effects, respectively. In this case the
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covariance of the random effects has spatial structure and is specified in terms
of a precision matrix. Both likelihood-based and Bayesian inference for GLMMs
is computationally challenging because inference involves a high-dimensional
integral with respect to the random effects that cannot be expressed in closed
form.

While the PQL approach (Breslow and Clayton, 1993; Wolfinger and O’Connell,
1993) is a standard approach for fitting GLMMs, existing implementations such
as the glmmPQL() function in the MASS package in R do not include MRF
specifications in two dimensions and are not written to take advantage of sparse
precision matrices. In contrast the INLA methodology has been implemented
specifically for MRF models.

4.2.1. Integrated Nested Laplace Approximation (INLA)

(Rue et al., 2009) present an approach to fitting GLMMs based on nested
Laplace approximations involving both the hyperparameters and the latent pro-
cess values. The result is estimation of the marginal posterior densities of the
random effects and the hyperparameters. Note that this accounts for uncer-
tainty in hyperparameters, in contrast to the maximization done with the PQL
approach. The INLA R package (http://www.r-inla.org) can make use of
sparsity in both Q and K and is therefore very computationally efficient. For
analyses using likelihood and prior models that are implemented in INLA and
for which one needs only marginal posteriors (or posteriors of linear combina-
tions), INLA is a promising option.

4.2.2. MCMC

While MCMC is a standard approach for Bayesian GLMMs, convergence and
mixing are often troublesome (Christensen and Waagepetersen, 2002; Chris-
tensen et al., 2006), because of the high-dimensionality of the random effects,
the dependence between random effects (particularly when these represent spa-
tial or temporal structure), and cross-level dependence between random effects
and their hyperparameters ({τ2, κ} in this work) (Rue and Held, 2005; Rue et al.,
2009). The sparse matrix calculations possible with MRF models improve com-
putational efficiency but do not directly address convergence and mixing issues.

Gamerman (1997) describes the use of a weighted least squares proposal for
the fixed and random effects, also suggested in Rue and Held (2005, pp. 167-
169) to deal with the dependence amongst the random effects, and Rue and Held
(2005) suggest combining this with a joint update of the hyperparameter and
the random effects to address the cross-level dependence. For high-dimensional
random effects vectors such as proposed here, using subblocks of g may also be
helpful. To simulate draws of g from the posterior, one might also use INLA to
estimate the hyperparameters and then conditionally draw samples of the fixed
and random effects using MCMC.

http://www.r-inla.org
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One disadvantage of the TPS-MRF compared to the ICAR may be that the
additional smoothness makes it more difficult to accept MCMC proposals for g
because the value of the process in one grid cell is more strongly constrained
by the values in the other grid cells. The Brownian motion-like behavior in the
ICAR (Besag and Mondal, 2005) may help to decouple values of g for different
grid cells, similar to the strategy of adding a small amount of white noise to the
latent process (e.g., Wikle, 2002), which Paciorek (2007) showed could improve
MCMC mixing in a GP context.

5. Examples

5.1. Point-level pollution modeling

This example is based on the work of Paciorek et al. (2009), who modeled spatio-
temporal variation in air pollution for the purpose of predicting concentrations
for use as the exposure values in a health analysis. The data are average fine
particulate matter over 2001-2002 at 339 monitoring stations in the northeast
U.S., from the US EPA’s Air Quality System database. For this analysis, I
averaged the 24 monthly average values and included only locations with at
least 22 months of data. I compare the use of the MRF approach for modeling
point-level data (based on a 4 km resolution grid) with an additive model built
on a reduced rank thin plate spline (using the gam() function from the mgcv
package in R) and to universal kriging with both an exponential covariance and a
Matérn covariance with ν = 2. For the MRF models, I fitted a model of the form
(1-2) with a linear link and normal likelihood (with independent, homoscedastic
errors) using the computational approach described in Section 4.1. I used the
same set of covariates (log of the distance to nearest road in two road size classes,
percent urban land use in a local buffer, log of elevation, and log of the estimated
fine PM emissions within a 10 km buffer) as in Paciorek et al. (2009). I included
the covariates as linear terms for simplicity and because Paciorek et al. (2009)
found only a minor improvement when considering an additive nonparametric
structure for the covariates. I used ten-fold cross-validation to assess hold-out
error for 219 stations, with 120 stations in boundary states forming a spatial
buffer and always used in the training set, to compare the models.

The models all gave very similar prediction results, with the square root of
the mean squared prediction errors being 1.30 for the gam() function, 1.34 and
1.29 for universal kriging with the Matérn (ν = 2) and exponential covariances
respectively, 1.32 for the TPS-MRF and 1.26 for the ICAR. These correspond
to cross-validation R2 values of about 0.8 (0.787-0.811). The slight apparent
advantage for kriging with an exponential covariance and for the ICAR model
suggests the presence of fine-scale variability that the other models smooth
over. Fig. 9 shows the estimates of residual spatial variability, not including
the effect of the spatially-varying covariates, illustrating that the ICAR model
fits local effects around the observations but also seems to generally follow the
large-scale pattern seen in the TPS-MRF. All the models showed good hold-
out prediction coverage, with the MRF models having larger standard errors
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Fig 9. PM observations (a) and fitted residual spatial surfaces (i.e., not including the effect
of covariates) for the ICAR (b) and TPS-MRF (c) models.

and therefore some overcoverage. The slight performance edge for the ICAR
model here occurs in a setting in which it appears there is variation at multiple
scales. In light of the scale dependence of the oracle and simulation results,
which showed smaller values of ρ and ν = 0.5 tending to favor the ICAR over
the TPS-MRF (Section 3.2.3), this suggests the importance of the fine-scale
variability to the predictive results here. The advantage for the ICAR may also
relate to the fact that the observations are clustered (in metropolitan areas), a
setting that the predictive results suggest works in favor of the ICAR model.

Paciorek and Liu (2012) considered more complicated models of fine PM over
a variety of spatial and temporal domains using the MRF approach outlined in
this paper, including combining point-level monitoring data with areal data from
remote sensing and fitting a spatio-temporal extension of the model proposed
here.

5.2. Area-level disease mapping

This example is based on the work of Krieger et al. (2006) and Hund et al. (2012),
who analyzed variation in breast cancer incidence in Los Angeles County, Cali-
fornia, US. Their analyses focused on the relationship between census tract-level
poverty and breast cancer incidence and changes over time in that relationship,
while accounting for residual spatial variation. Here I modeled breast cancer
incidence for data from 1998-2002 for white non-Hispanic women.

The data are counts of cancer incidence in the 5-year period. Following
Krieger et al. (2006) and Hund et al. (2012), I fitted Poisson models with a
log link, using the log of the expected counts as an offset term,

logµi = logEi + β0 + β⊤povi +K⊤
i g,

where µi and Ei are the Poisson mean and the expected number of cases in
the ith census tract (CT). The expected numbers were calculated based on
internal age standardization, described in Hund et al. (2012) and based on CT
population (multiplied by five, which assumes constant population over the 5-
year period) from the 2000 US Census. CT poverty was a five-level categorical
variable with povi being a vector of four indicator variables determining the
poverty category of the ith CT. The categorical poverty variable is defined as
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follows: (1) < 5% of residents living below the poverty line and more than 10%
of households having high income (at least four times the US median household
income), (2) < 5% of residents living below the poverty line and less than 10%
of households having high income, (3) 5.0-9.99% of residents living below the
poverty line, (4) 10.0-19.99% of residents living below the poverty line, and (5)
at least 20% of residents living below the poverty line, which was used as the
baseline category.

I used the INLA package in R to fit the ICAR and TPS-MRF models defined
on a fine grid with 99× 101 cells of size 1.252 km2 and compared the results to
a standard ICAR model based on the neighborhood structure of the irregular
census tracts, in all cases using the default hyperparameter priors specified in
INLA. The estimated coefficients for the categorical poverty variable were very
similar to those in Hund et al. (2012), with lower poverty CTs showing higher
breast cancer incidence. Fig. 10 shows the log of the raw incidence rate ratio
(observed counts divided by expected number), compared to the estimated log-
incidence rate ratios, ĝ, for the three models. Values of zero indicate no departure
from the expected number based on the population and age distribution in
the CT. The census-tract-based ICAR and fine grid-based ICAR models show
much more spatial variability, while the TPS-MRF smooths quite a bit. DIC and
the summed log conditional predictive ordinate (CPO) values,

∑

i logP (Yi|Y−i)
(provided by the INLA package) suggest that the census-tract based ICAR (DIC
of 8438, logCPO of -4227) outperforms the grid-based ICAR (8451, -4233) and
TPS-MRF models (8476, -4241). The advantage of the ICAR over the TPS-
MRF is consistent with the simulation results for areal data in which the ICAR
performed better for the moderate value of ρ (Section 3.2.4). Finally, using the
Lindgren et al. (2011) approach to approximate a Matérn-based GP on the same
fine grid gave results in between the grid-based MRF models, with a DIC of 8462
for ν = 1 (8467 for ν = 2) and logCPO of -4237 (-4239 for ν = 2).

6. Discussion

I have presented a straightforward modeling approach for both areal and point
data that relates observations to an underlying smooth spatial surface, repre-
sented as an MRF. One important result is that the analytic comparison of var-
ious MRF structures indicates that higher-order neighborhood structures that
do not have the weighting structure of the TPS-MRF do not produce smoother
processes than the standard ICAR model. This suggests that such models are
not appealing for spatial modeling. Given these results it would be useful to
investigate the smoothing properties of models that empirically choose neigh-
borhood structures (White and Ghosh, 2009; Zhu et al., 2010).

Based on the analytic and simulation assessment of predictive performance,
the TPS-MRF outperforms the ICAR model in many scenarios, in particular
with smoother surfaces (both in terms of the spatial range and differentiabil-
ity), as would be expected given that the TPS-MRF approximates a thin plate
spline. In both examples, however, the ICAR appeared to outperform the TPS-
MRF, perhaps because the true surface was relatively wiggly in those contexts.



968 C. J. Paciorek

−2

−1

0

1

2

(a) raw log rate ratio

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

(b) census tract−based ICAR

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

(c) ICAR on fine grid

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

(d) TPS−MRF on fine grid

Fig 10. (a) Raw log breast cancer incidence rate ratios by census tract in Los Angeles County
and estimated log incidence rate ratios for (b) a standard ICAR model based on the census
tract neighborhood structure, (c) the ICAR model on a fine grid, and (d) the TPS-MRF model
on a fine grid. Note that the scale in (a) is different than the other panels and that values
with magnitude greater than two are censored. Also note that the census tracts extend into
the Pacific Ocean in the southwestern portion of panels (a) and (b), while panels (c) and (d)
show only the land-based grid cells.

One open question is how the models would perform in a setting with variation
at multiple resolutions; these results suggest that the TPS-MRF better repre-
sents the large scale while the ICAR model better captures fine-scale variation.
How these balance in terms of overall error would likely depend on the relative
magnitude of the variation at the different scales.

Spline models can do poorly in situations with large spatial gaps (where large
is relative to the spatial range of dependence in the process being modeled) and
on the boundary of the domain, as the estimation of basis coefficients is poorly
constrained by the data and influenced by data at the extremes of the support
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of the basis functions. The TPS-MRF model, by virtue of approximating a thin
plate spline, can have this unappealing behavior. In contrast a GP model, being
a stationary model, gives predictions that revert to the overall mean for pre-
diction locations far (relative to the estimated spatial range) from observations.
In many large datasets, for which the computational efficiency of MRF models
is appealing, including deterministic model output and remote sensing obser-
vations, gaps are not present or tend to be small, so the issue of extrapolation
into large gaps may not be a concern. Furthermore, my ad hoc experience sug-
gests that gaps are less of a problem in two dimensions than in one dimension,
although the TPS-MRF can have problems at the boundaries of the domain.

An appealing alternative to the MRF models presented here is the MRF con-
struction of Lindgren et al. (2011), which approximates a Gaussian process with
Matérn covariance for integer values of the Matérn smoothness (differentiabil-
ity) parameter. I expect that much future work with MRFs will involve this
construction because of the added flexibility of a representation that includes
the GP range parameter. However, I note that the simulations suggest that the
TPS-MRF in some cases outperforms an exact GP representation, and in the
LA example, I found that the ICAR models outperformed the Lindgren et al.
(2011) model. Lindgren et al. (2011) focus on a triangulation rather than a rect-
angular grid, which has computational advantages when dealing with irregular
domains.

I have highlighted the advantages of using a smooth underlying surface for
areal data. These include the ability to deal with data aggregation in a consis-
tent manner and with spatial misalignment. Furthermore, in many situations,
the area boundaries are essentially arbitrary relative to the process being mea-
sured, so the resulting neighborhood structure is arbitrary as well. Rather, it is
appealing to imagine an smooth underlying surface, with the areal units merely
a measurement artefact that is represented in the measurement model through
the mapping matrix, K. In some cases, administrative units might actually have
a direct effect on the outcome, in which case more traditional MRF models based
on a single random effect per area and standard neighborhood structures may
be more appealing, although independent random effects may be appealing in
some cases.

Spatio-temporal modeling situations are of course very common. Paciorek and
Liu (2012) describe a spatio-temporal extension of the spatial models described
here that allows for autoregressive structure in time. In contrast to many spatio-
temporal models, the approach has a spatial mean that is shared across time
points, which Stein and Fang (1997) emphasize is important for allowing one to
properly characterize uncertainty when aggregating over time periods.
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Supplementary Material

Supplementary data and R code

(doi: 10.1214/13-EJS791SUPP; .zip). The supplementary materials contain the
data for the PM example as well as R code for all analyses and figures.
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