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Abstract: This paper develops two weighted measures for model selec-
tion by generalizing the Kullback-Leibler divergence measure. The concept
of a model selection process that takes into account the special features of
the underlying model is introduced using weighted measures. New informa-
tion criteria are defined using the bias correction of an expected weighted
loglikelihood estimator. Using weight functions that match the features of
interest in the underlying statistical models, the new information criteria
are applied to simulated studies of spline regression and copula model se-
lection. Real data applications are also given for predicting the incidence
of disease and for quantile modeling of environmental data.
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1. Introduction

An information theoretic approach (ref. [2]) for model selection expresses a sta-
tistical model in the form of a probability distribution. The model is evaluated
using an estimate of the Kullback-Leibler information (ref. [16]) as an overall
measure of the divergence of the fitted model from the true model, which is
generating the data. According to [2], if the specified model contains the true
model and the model is estimated by the maximum likelihood method, then
Akaike’s information criterion (AIC) can be used to evaluate the constructed
models. Previous studies have developed information criteria, as estimators of
the expected log-likelihood, under model mis-specification (e.g. [22]), and for
evaluating the mis-specified models constructed by various types of estimation
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procedures (e.g. [14, 20]). [21, 3, 4] extend the information criteria approach to
the Bayesian paradigm. These studies focus on the overall fitness of the con-
structed model to the true underlying structure. This paper proposes methods,
which will allow model selection to emphasize some features of the true model.

When selecting a model, we usually have well-defined purposes to guide our
selection of the class of models. For example, we may want to identify distri-
butions that can assess the probability of the occurrence of rare events. In a
bivariate setting, we may select a good copula model to capture the tail depen-
dence of two random variables. In medical disease prognosis, it is important to
develop statistical models that can accurately predict the incidence of a disease.
A common characteristic of the above examples is that prior to model selection
some key features of the true model have been identified. From both the practi-
cal and the statistical points of view, it is desirable for model selection schemes
to incorporate relevant features into the selection procedure. A feature capturing
concept was proposed by [23] who emphasized feature matching in time series
modeling. They suggested doing model estimation by treating the multiple-step
conditional mean forecasts and autocorrelation functions as features. In this
paper, we develop two information criteria which embed some pre-specified rel-
evant features that the true model should contain. We first define a weighted
Kullback-Leibler (KL) measure as follows.

Definition. Suppose G and F represent the true underlying distribution and
the fitted distribution of a random variable Y , respectively. Define a positive
real-valued function w(y) which is bounded and does not depend on the sample
size. Denote the expectations with respect to G and F by EG[·] and EF [·],
respectively. Under the regularity condition

EG[w(Y )] ≥ EF [w(Y )], (1.1)

a weighted KL measure is defined as

Kw(G,F ) = EG

[
w(Y ) log

g(Y )

f(Y )

]
, (1.2)

where g(y) and f(y) are probability densities or probability mass functions of
G and F , respectively.

The weighted KL measure is a measure satisfying (i) Kw(G,F ) ≥ 0; and (ii)
Kw(G,F ) = 0 if and only if G = F . A proof is given in the Appendix. Note that
an alternative weighted KL measure satisfying (i) and (ii) above is defined as

K̃w(G,F ) = EG

[
w(Y ) log

g(Y )

f(Y )

]
− (EG[w(Y )]− EF [w(Y )]). (1.3)

The weighted KL measures in Equations (1.2) and (1.3) reduce to the tradi-
tional KL measure, denoted by K(G,F ), when w(y) = 1. The main reason for
the construction of the weighted KL measures is to put more/less weight on the
feature region of G so that any discrepancy between G and F in the feature re-

gion will be emphasized/de-emphasized via EG

[
w(Y ) log g(Y )

f(Y )

]
. The constraint
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Fig 1. The plot of K(G,F ), Kw(G, F ) and K̃w(G, F ) against β, which represents the “dif-
ference” between the true logistic model G and the constant probability model F .

in Equation (1.1) is called the feature condition and is a core condition in con-
structing the weighted KL measure in Equation (1.2). We give examples below
to show how the feature condition is linked to the characteristics of the true
model that we want the selected model to match.

Example 1 Consider a discrete probability distribution G(y), where “y = 0”
represents a non-disease group and “y = 1” represents a disease group.
Assume that PG(Y = 1|X = x) = exp(−2+βx)/[1+exp(−2+βx)], β > 0.
The distribution F (x) can represent a screening test detecting the disease
and the fitted model is PF (Y = 1) = exp(−2)/[1 + exp(−2)] ≈ 0.12. If
the main focus of the model selection is the sensitivity of the screening
test, we can specify w(0) = 1 and w(1) > 1. In this case, EG[w(Y )] =
1+(w(1)−1)PG(Y = 1|X = x) and EF [w(Y )] = 1+(w(1)−1)PF (Y = 1).
So EG[w(Y )]−EF [w(Y )] = (w(1)− 1)[PG(Y = 1|X = x)−PF (Y = 1)] is
greater than or equal to 0 if PG(Y = 1|X = x) ≥ PF (Y = 1) or x ≥ 0. We

plot K(G,F ), Kw(G,F ) and K̃w(G,F ) versus β for w(1) = 2 in Figure 1.

We find that both Kw(G,F ) and K̃w(G,F ) increase faster than K(G,F )
with β if x ≥ 0. This is understandable because when x ≥ 0, the feature
condition in Equation (1.1) is satisfied. Even though when x < 0 where

Equation (1.1) does not hold andKw(G,F ) may not be positive, K̃w(G,F )

is still greater than K(G,F ) for all β, indicating that K̃w(G,F ) can have
higher discriminating power than K(G,F ) in practice.
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Fig 2. The plot of K(G,F ), Kw(G, F ) and K̃w(G, F ) against 2 − β, which represents the
‘difference” between the true exponential power distribution G and the standard normal dis-
tribution F .

Example 2 Suppose the true model G(y) is an exponential power distribution

with mean 0 and variance 1. Its density is g(x) = β
2αΓ(1/β)e

−(|y|/α)β with

α =
√

Γ(1/β)
Γ(3/β) , and the fitted model is the standard normal. If the feature

of interest is the tail part of the true model, we can set w(y)= 2 if |y| > 3
and w(y) = 1 otherwise. In this case, EG[w(Y )] = PG(|Y | > 3) + 1 and
EF [w(Y )] = PF (|Y | > 3) + 1 which satisfies the feature condition as
PG(|X | > 3) ≥ PF (|X | > 3). The heavy-tailed feature of the distribution
is emphasized with the choice of w(y) which puts higher weight on the “tail

discrepancy”. Figure 2 is the plot of K(G,F ), Kw(G,F ), and K̃w(G,F )

and shows that both Kw(G,F ) and K̃w(G,F ) are greater than K(G,F )
when β decreases from 2, or the exponential power distribution becomes
more heavy-tailed. We expect that our weighted KL measures will give a
larger discrepancy between the true and the fitted model if the fitted model
cannot capture the target feature. In practice, this property of Kw(G,F )

and K̃w(G,F ) can help to differentiate potential models with respect to
the target feature, as the divergence between the true model and the fitted
“wrong” model will be amplified by suitably defining the weights to match
the feature.

This paper has three objectives. First, two weighted KL measures, that allow
certain characteristics of the underlying model to be incorporated into the model
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selection are proposed. Second, we develop two new information criteria based
on the weighted KL measures to determine the best model among candidate
choices. Third, we demonstrate the advantage of having the weight function
w(y) in the model selection. The focus is on spline regression and copula model
selection. The remainder of the paper is organized as follows. In Section 2,
we develop two information criteria for model selection using the weighted KL
measures. Section 3 investigates the performance of the proposed information
criteria on spline regression and copula model selection, using Monte Carlo
simulations. In Section 4, we apply the developed approach to real data. Section
5 provides a discussion, including possibilities for future work.

2. Main result

Let y = (y1, . . . , yn)
T be a set of n observations from the true model G(y). For

α = 1, . . . , n, we express the fitted model density function of yα as f(yα; θ),
where θ is the model parameter. One can estimate the parameter θ by maxi-
mizing the penalized weighted log-likelihood:

ℓw(θ, y)− λp(θ), (2.1)

where

ℓw(θ, y) =
1

n

[
n∑

α=1

w(yα) log f(yα; θ)

]
, (2.2)

the weights w(yα) can be specified by decision makers to target for specific
features in G(y), λ is a regularization parameter and p(θ) is a penalty function.
As shown in Section 3.1, the penalty term can improve the performance in spline
regression. After obtaining the parameter estimate θ̂ by maximizing Equation
(2.1), we produce a model by replacing the parameter θ with the sample estimate

θ̂. The problem is how to choose the best model among the candidates. This
section constructs two information criteria for evaluating the fitted model for
possible model mis-specification from a predictive point of view.

Based on the definition of the weighted measure Kw(G,F ), we assess the
goodness of the fitted model based on the expected weighted log-likelihood given
by

∫
ℓw(θ̂, z)dG(z) =

∫ [ n∑

α=1

w(zα) log f(zα; θ̂)

]
dG(z1, . . . , zn), (2.3)

where z = (z1, . . . , zn)
T are replicates of the observations yα’s. Note that if we

specify the weight function as w(zα) = 1, α = 1, 2, . . . , Equation (2.3) will re-
duce to the expected log-likelihood extensively analyzed by [14]. We note here
that the expected weighted log-likelihood depends on the unknown true distri-
bution G(y) and on the observed data y1, . . . , yn. A natural estimator of the
expected weighted log-likelihood is the sample based weighted log-likelihood
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ℓw(θ̂, y), which is formally obtained by replacing the unknown true distribution
with the empirical distribution, putting probability mass 1/n on each observa-
tion. The weighted log-likelihood generally induces a positive bias as an esti-
mator of the expected weighted log-likelihood, because the same data are used
both to estimate the parameters of the model and to evaluate the expected log-
likelihood. We therefore consider the bias correction of the log-likelihood. The
bias is defined by

bias(G) =

∫ [
ℓw(θ̂, y)−

∫
ℓw(θ̂, z)dG(z)

]
G(y). (2.4)

Then an estimator of the expected weighted log-likelihood is given by

ℓw(θ̂, y)− b̂ias(G), (2.5)

where b̂ias(G) is an estimator of the bias of the empirical weighted log-likelihood
in estimating the expected weighted log-likelihood. The following theorem pro-
vides an expression of the bias term.

Theorem 2.1. Suppose that the specified model does not necessarily contain
the true model generating the data. Assume that θ ∈ Θ, where Θ is a compact
set of ℜq, q < n, for the expansion in Equation (5.1) to be valid. Then a bias
term is expressed as

bias(G) =
1

n
tr



∫
T (1)(z;G)

∂ℓw(θ, z)

∂θT

∣∣∣∣∣
T (G)

dG(z)


+ o(n−1),

where T (1)(z;G) is the first order derivative of the functional

T (1)(y;G) = R(G)−1 ∂ {w(z) log f(θ, z)− λp(θ)}
∂θ

∣∣∣∣∣
θ=T (G)

, (2.6)

with

R(G) = −
∫
∂2 {ℓw(θ, z)− λp(θ)}

∂θ∂θT
dG(z).

The Appendix gives the proof of Theorem 2.1 which relies on the innovative
idea of [14] who introduced the statistical functional framework to information
theoretic approach. By replacing the unknown distribution G with the empirical
distribution Ĝ, we can calculate the bias term. After correcting the bias of the
log-likelihood, we propose a new information criterion

IC = −2

n∑

α=1

w(yα) log f(yα; θ̂) + 2tr{R(Ĝ)−1K(Ĝ)}, (2.7)
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with

R(Ĝ) = − 1

n

n∑

α=1

∂2 {w(yα) log f(yα; θ)− λp(θ)}
∂θ∂θT

∣∣∣∣
θ=θ̂

,

(2.8)

K(Ĝ) =
1

n

n∑

α=1

∂ {w(yα) log f(yα; θ)− λp(θ)}
∂θ

.
∂ {w(yα) log f(yα; θ)}

∂θT

∣∣∣∣
θ=θ̂

.

We select the model that minimizes the IC score in Equation (2.7) with respect

to the models of interest defined by f(y; θ̂) and λ.

Corollary 1. If θ̂ is the maximum penalized likelihood estimator, i.e. it is ob-
tained by maximizing

1

n

[
n∑

α=1

log f(yα; θ)− λp(θ)

]
,

then the bias term in Equation (2.7) will become

R(Ĝ) = − 1

n

n∑

α=1

∂2{log f(yα; θ)− λp(θ)}
∂θ∂θT

∣∣∣∣
θ=θ̂

,

(2.9)

K(Ĝ) =
1

n

n∑

α=1

∂{log f(yα; θ)− λp(θ)}
∂θ

.
∂ {w(yα) log f(yα; θ)}

∂θT

∣∣∣∣
θ=θ̂

.

Note that the model estimated by the maximum likelihood can be handled by set-
ting λ = 0. See Section 3.2 for a consideration of the copula model selection. A
number of recent statistical packages (e.g., R software) implement the maximum
likelihood method to estimate various types of statistical models, including re-
gression, classification, time series and other models. Thus, the range of models
to which our criteria can be applied is very wide.

Corollary 2. If the weighted KL measure K̃w(G,F ) is used, an information
criterion is defined by

ĨC = −2

n∑

α=1

w(yα) log f(yα; θ̂) + 2n

∫
w(x)f(x|θ̂)dx (2.10)

+2tr{R(Ĝ)−1K(Ĝ)},

where the bias term R(Ĝ)−1K(Ĝ) follows Equations (2.8) and (2.9) when we use
a maximum penalized weighted likelihood estimator and a maximum penalized
likelihood estimator, respectively.

Remark. [1] also used weighted likelihood estimates, but for robust model selec-
tion using AIC rather than for developing new information criteria. Comparing
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with [6] who proposed focused information criterion to focus on some parame-
ters in competitive models, we do model selection with respect to feature events
which are matched by weight functions. If we set w(y) to be a constant, the

proposed criteria IC and ĨC reduce to GIC (ref. [14]), which further reduces

to AIC if the model f(y; θ) is correctly specified, giving R(Ĝ) = K(Ĝ). There-
fore, the proposed criterion can be regarded as an extension of the standard
information theoretic approach. The developed information criteria require an
i.i.d. framework. It is our conjecture that similar results, when the sample size
is large, can be proved under the time series context such as an AR(p) model.
See, for instance, one of the examples in [15].

3. Simulation study

3.1. Penalized B-spline regression

Monte Carlo experiments are conducted to compare the performance of our
method with the standard weighted likelihood approach and GIC. Suppose we
have n independent observations {(yα, xα);α = 1, 2, . . . , n}, where yα are re-
sponse variables and xα are explanatory variables. In generalized linear models
yα are assumed to follow the exponential family of distributions with densities
f(yα|xα; ξα, φ) = exp [{yαξα − u(ξα)} /φ+ v(yα, φ)] , where u(·) and v(·, ·) are
functions specific to each distribution, and φ is an unknown scale parameter.
The conditional expectation E(yα|xα) = µα = u′(ξα) is linked to the predictor
ηα = h(µα) with the link function h(·).

Using the basis expansion approach given in [8, 13], the unknown predictor ηα
is approximated by a linear combination of basis functions ηα =

∑m
j=1 βjbj(xα) =

βTb(xα), where β = (β1, . . . , βm)T is the m-dimensional coefficient vector and
b(x) = (b1(x), . . . , bm(x))T is the m-dimensional basis function vector. With the
basis expansion predictor, the probability density function of the generalized
linear model is given by

f(yα|xα; θ) = exp
([
yαr

{
βTb(xα)

}
− s

{
βTb(xα)

}]
/φ+ v(yα, φ)

)
, (3.1)

where θ = (βT, φ)T, r(·) = u′−1 ◦ h−1(·), s(·) = u ◦ u′−1 ◦ h−1(·) and ◦ is the
convolution operator. The penalty function in Equation (2.1) is defined by

p(θ) =
m∑

j=2

(∆2βj)
2 = βTDβ, (3.2)

where ∆ is the difference operator, i.e. ∆βj = βj − βj−1 and D is a matrix rep-
resentation of the difference operator. Putting these equations with the weight
function w(·), which is specified below, the unknown parameter θ is estimated
by maximizing Equation (2.1).

The remaining problem is how to choose the smoothing parameter λ. Sub-
stituting the density and penalty functions given by Equations (3.1) and (3.2)
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into Equation (2.7), we derive a tailor-made version of model selection criteria
for evaluating the generalized linear models using basis expansion predictor:

IC = −2

n∑

α=1

w(yα)
[
yαr

{
β̂Tb(xα)

}
/φ̂− s

{
β̂Tb(xα)

}
/φ̂+ v(yα, φ̂)

]

+ 2tr
{
R−1(θ̂)K(θ̂)

}
, (3.3)

where K(θ̂) and R(θ̂) are the (m+ 1)× (m+ 1) matrices given by

K(θ̂) =
1

n

(
BTWΛ/φ̂− λDβ̂eT

pT

)(
ΛWB/φ̂, p

)
,

R(θ̂) =
1

n

(
BTWΓB/φ̂+ nλD BTWΛe/φ̂2

eTΛWB/φ̂2 −qTe

)
,

respectively. Here B = (b(x1), . . . , b(xn))
T, W = diag{w(y1), . . . , w(yn)}, e =

(1, . . . , 1)T, Λ and Γ are n×n diagonal matrices and p and q are n-dimensional
vectors with the α-th diagonal elements and the α-th elements given by

Λαα =
yα − µ̂α

u′′(ξ̂α)h′(µ̂α)
,

Γαα =
(yα − µ̂α){u′′′(ξ̂α)h′(µ̂α) + u′′(ξ̂α)

2h′′(µ̂α)}
{u′′(ξ̂α)h′(µ̂α)}3

+
1

u′′(ξ̂α)h′(µ̂α)2
,

pα = w(yα)


−yαr{β̂

Tb(xα)}−s{β̂Tb(xα)}
φ̂2

+
∂

∂φ
v(yα, φ)

∣∣∣∣∣
φ=φ̂


, qα =

∂pα
∂φ

∣∣∣∣∣
φ=φ̂

.

We choose the smoothing parameter λ as the minimizer of the criteria.
To illustrate the use of Equation (3.3), we consider P -spline Gaussian re-

gression modeling in the simulation. Data sets {(xα, yα);α = 1, . . . , n} are
repeatedly generated from the true regression model yα = m(xα) + εα for
xα = (2α − 1)/(2n). The errors εα are assumed to be independently dis-
tributed according to the normal distribution with mean 0 and variance σ2.
Two true functions are studied in the simulation: m(x) = sin(5πx2.5) and
m(x) = 0.005(1 − 48x + 218x3 + 145x4) + cos(4π(x − 1)3). We estimate the
unknown function m(x) by using P -spline Gaussian regression model:

f(yα|xα; θ) =
1√
2πσ2

exp

[
− 1

2σ2

{
yα − βTb(xα)

}2]
, α = 1, . . . , n, (3.4)

with θ = (βT, σ2)T. Following the suggestion of Eilers & Marx (1996), we set a
large number of basis functions m = 20 and optimize the value of the smoothing
parameter λ in each Monte Carlo experiment. The candidates for the smoothing
parameter are chosen on a geometrical grid of 20 knots between log10(λ) = 0 and
log10(λ) = −9. Here we specify the weight function as wα = 1/3 if (xα < 0.5)
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Table 1

Comparison of the average weighted mean squared errors based on various criteria and
using 100 simulated datasets. Figures in the second line give estimated standard deviations.

MWL refers to the standard maximum weighted likelihood approach

m(x) = sin(5πx2.5)
σ2 n Our method MWL MWL MWL GIC

(m = 6) (m = 9) (m = 12)
0.2 50 0.0137 0.1019 0.1001 0.0446 0.0139

0.0050 0.0028 0.0034 0.0040 0.0052
0.2 100 0.0073 0.1000 0.0971 0.0408 0.0077

0.0025 0.0021 0.0024 0.0024 0.0026
0.5 50 0.0859 0.1289 0.1402 0.0944 0.0868

0.0411 0.0237 0.0354 0.0371 0.0415
0.5 100 0.0401 0.1107 0.1136 0.0639 0.0407

0.0151 0.0091 0.0108 0.0143 0.0153

m(x) = 0.005(1 − 48x+ 218x3 + 145x4) + cos(4π(x− 1)3)
σ2 n Our method MWL MWL MWL GIC

(m = 6) (m = 9) (m = 12)
0.2 50 0.0154 0.3789 0.1871 0.0302 0.0158

0.0061 0.0036 0.0047 0.0055 0.0063
0.2 100 0.0086 0.3737 0.1769 0.0263 0.0091

0.0030 0.0022 0.0026 0.0029 0.0030
0.5 50 0.0806 0.4075 0.2280 0.0821 0.0810

0.0377 0.0226 0.0286 0.0322 0.0379
0.5 100 0.0404 0.3857 0.1966 0.0509 0.0410

0.0229 0.0098 0.0159 0.0195 0.0230

and wα = 5/3 if (xα ≥ 0.5). This weight setting is considered when the relative
importance of prediction is different in a particular range of x. In this case,
we have more emphasis on the predictive performance on “large” x. Taking
u(ξα) = ξ2α/2, φ = σ2, v(yα, ψ) = −y2α/(2σ2) − log(2πσ2)/2 and h(µα) = µα in
the criteria of Equation (3.3), we obtain a tailor-made version of an information
criterion for evaluating the estimated P -spline Gaussian regression model.

Table 1 compares the averaged “weighted” mean squared error

WMSE =
1

n

n∑

α=1

wα {m(xα)− ŷ(xα)}2

between the true and estimated functions ŷ(xα) = β̂Tb(xα). Again, this WMSE
is set to align with the objective of emphasizing the prediction of y when x ≥ 0.5.
This performance measure is used because we want to be able to emphasize
specific features that are selected by users according to their research focus. We
also estimate the regression model by GIC and the standard weighted maximum
likelihood approach, which is implemented by setting the smoothing parameter
λ = 0 in Equation (2.1). As the parameter estimate for θ can not be obtained by
the weighted likelihood method when we set a large number of basis functions
such as m = 15, we prepare several values of the number of basis functions
m = {6, 9, 12} and then construct the regression model. In addition, by setting
w(yα) = 1, the model f(yα|xα; θ) in Equation (3.4) is also estimated by the
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usual maximum penalized likelihood approach. This approach is employed to
test the importance of the weight function. An optimal value of the smoothing
parameter λ is determined by GIC (ref. [14]). The simulation results are obtained
from 100 repeated Monte Carlo trials. It may be seen from the simulation results
in Table 1 that our method is superior to the competitors; it gives the smallest
value of the average WMSE in all combinations of n and σ2.

Finally, we note that our criteria can also be applied to P -spline logistic
regression modeling. It is easy to derive the information criteria for evaluating
the estimated P -spline logistic regression model by taking u(ξ̂α) = log{1 +

exp(ξ̂α)}, v(yα, φ) = 0, h(µ̂α) = log{µ̂α/(1 − µ̂α)}, and φ = 1 in Equation

(3.3). In a Poisson model, we shall take u(ξ̂α) = exp(ξ̂α), v(yα, φ) = − log(yα!),
h(µ̂α) = log(µ̂α) and φ = 1 in Equation (3.3).

3.2. Copula model selection

Recently, there has been active research on copula model selection; see for exam-
ple [5, 11, 19, 9]. We apply our IC in this section to find the best copula models
to explain certain dependence structure of the data. Let yα = (yα1, . . . , yαp)

T,
α = 1, . . . , n, be p-dimensional independent observations. With yαj , j = 1, . . . , p,
distributed as Uniform[0,1], the distribution of yα = (yα1, . . . , yαp)

T is speci-
fied by F (yα; θ) = C(yα1, . . . , yαp; θ), where C(·) is a copula function and θ is
the copula parameter. The main objective is to select an appropriate C(·). To
perform the copula model selection, we use the IC in Equation (2.7) with θ
estimated by MLE and the bias term in Equation (2.9) is adopted. As discussed
in the previous sections, a novelty of our approach is that we can choose the
weight function with respect to a special feature of the distribution of the ran-
dom variables of interest to do the model selection. Suppose p = 2 and we want
to select an appropriate copula function for yα1 and yα2, where a feature of at-
tention is their lower tail dependence structure. In this case, we use w(yα) = λ if
yα1, yα2 ≤ 0.1 and w(yα) = 1 otherwise, where λ > 0. The rationale of this choice
of w(yα) is to emphasize or de-emphasize the influence of the co-occurrence of
extreme observations, i.e. when both yα1 < 0.1 and yα2 < 0.1. To study the effect
of our approach, we simulate n = 100 observations from three copula functions
with different lower tail dependence behavior. They are the t copula with the

copula density c(u1, u2) = t
(2)
ρ (T−1(u1), T

−1(u2))/[t
(1)(T−1(u1))t

(1)(T−1(u2))],
the Clayton copula, C(u1, u2) = (u−θ

1 + u−θ
2 − 1)−1/θ, and the Gumbel copula,

C(u1, u2) = exp{−[(−logu1)
θ + (−logu2)

θ]1/θ}, where t(1) is the univariate t

density with degrees of freedom ν, t
(2)
ρ is the bivariate t density with correlation

ρ and degrees of freedom ν, and T (−1) is the inverse of the univariate t distribu-
tion. We choose ρ = 0.59 and ν = 8 in the t-copula, and θ = 0.67 and 1.67 for
the Clayton and Gumbel copulas, respectively to match their Kendall’s tau. By
construction, both t and Clayton copulas have positive lower tail dependence,
whereas the Gumbel copula has zero tail dependence. We select the best model
among the fitted t, Clayton and Gumbel copula models using the IC.
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Table 2

Simulation results of 100 replications of size n = 100 generated by the t, Clayton and
Gumbel copulas. The table shows the median ratios of the KL measure, the L1-norm, the
L2-norm and the Hellinger measure for different λ over that for the benchmark method

(λ = 1)

λ 0.2 0.4 0.6 0.8 1 2 4 6 8
t copula

KL 1.41 1.30 1.14 1.00 1.00 0.70 0.73 0.74 0.79
L1-norm 1.16 1.12 1.03 1.00 1.00 0.70 0.76 0.76 0.89
L2-norm 1.58 1.56 1.51 0.95 1.00 0.81 0.91 1.02 1.23
Hellinger 1.56 1.48 1.26 1.00 1.00 0.74 0.80 0.77 0.85

Clayton copula

KL 1.73 1.55 1.32 1.06 1.00 0.97 0.95 0.95 0.88
L1-norm 1.25 1.17 1.08 1.02 1.00 0.94 0.90 0.90 0.89
L2-norm 1.45 1.46 1.31 1.44 1.00 0.84 0.89 0.84 0.78
Hellinger 1.52 1.44 1.12 1.06 1.00 0.92 0.83 0.83 0.79

Gumbel copula

KL 0.74 0.93 0.97 0.98 1.00 1.40 13.58 27.32 31.72
L1-norm 0.86 0.88 0.94 0.97 1.00 1.16 3.48 5.28 5.80
L2-norm 0.77 0.78 0.94 0.90 1.00 1.39 21.22 61.59 75.82
Hellinger 0.76 0.79 0.88 0.94 1.00 1.36 12.50 28.92 35.32

As the target feature is the lower tail dependence, we want to see how fit-
ted models match the true model in A = {yα : yα1, yα2 ≤ 0.1}. Statistically,
we assess the performance by comparing the true tail distribution g(y|A) =
g(y)I(y ∈ A)/PG(y ∈ A) and the fitted tail distribution f(y|A) = f(y)I(y ∈
A)/PF (y ∈ A), where f and F are from a fitted model, and PG and PF are
probabilities evaluated under G and F , respectively. Four performance mea-

sures are adopted, namely, the KL measure,
∫
A g(y|A)log g(y|A)

f(y|A)dy; the L
1-norm,∫

A |g(y|A)−f(y|A)|dy; the L2-norm,
∫
A[g(y|A)−f(y|A)]2dy; and the Hellinger

measure,
∫
A
[
√
g(y|A) −

√
f(y|A)]2dy. The smaller the performance measures,

the better the fitted models.

The model selection results using the IC in Equation (2.7) with different λ are
produced for 100 replications of each of the three copula models. Table 2 shows
the ratio of the median of the KL measure based on 100 replications, for each λ,
over the median KL measure of the benchmark (λ = 1), and the respective ratio
of the median L1-norm, L2-norm and the Hellinger measure. The smaller-than-
one ratio of the median performance measure means that the model selection
based on the IC is better than that of the benchmark method. For the t-copula
data generating process, our method outperforms (most of the median ratios
are less than 1) the benchmark when λ > 1. For Clayton, we observe the same
pattern that for λ > 1, all median ratios are less than one. For Gumbel, the
outperformance appears in λ < 1, where the best-performed cases are λ =
0.2 and 0.4. The above findings suggest that when λ is appropriately chosen
to focus on one feature of the copula models, our IC based on the weighted
KL measure Kw(G,F ) is superior to that based on the usual KL measure.
For Clayton and t copulas, which have lower tail dependence, it is reasonable
to choose λ > 1 to emphasize the effect of extreme observations, whereas for
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Gumbel, which has zero lower tail dependence, λ < 1 is appropriate because we
want to de-emphasize the effect of extreme observations to match with the zero
or weak low tail dependence of the true model. In practice, whether we want to
emphasize or de-emphasize the extreme observations can depend on some prior
belief regarding the tail dependence property of the true model.

4. Real data analysis

4.1. Predicting the incidence of disease

A motivation for introducing the KL measures is that in medical research, the
proportion of disease cases, e.g., heart-disease and cancer, is much small relative
to the proportion of non-disease cases. If we can design a suitable weight function
that weighs more heavily on the disease cases, we expect that the accuracy rate
(i.e., the chance of correctly predicting a cancer patient to have cancer) can
be improved. We consider an analysis of South African heart disease data (ref.
[18]) studied in [10], pp. 122 to illustrate our method using a logistic regression
model. The data set consists of 160 heart-disease cases (y = 1) and a sample of
302 controls (y = 0). Using a set of four predictors, tobacco (cumulative tobacco
x1), ldl (low density lipoprotein cholesterol x2), famhist (family history of heart
disease x3), and age (age at onset x4), we model the conditional probability
Pr(y = 1|x) = π(x) by

log

{
π(x)

1− π(x)

}
= β0 +

4∑

j=1

βjxj ,

where x = (x1, . . . , x4)
T. Then the weighted log-likelihood function for (xα, yα),

α = 1, . . . , 462, in terms of β = (β0, . . . , β4)
T is

ℓw(β, y) =
1

462

462∑

α=1

w(yα){yα log π(xα) + (1− yα) log(1− π(xα))}.

Because our concern is to increase the chance of correctly predicting a heart-
disease patient to have heart disease, we set the weight values as w(1) = 4 and
w(0) = 1. The unknown parameter vector β = (β0, . . . , β4)

T is estimated by
maximizing the weighted log-likelihood ℓw(β, y). The corresponding IC criterion
in Equation (2.7) is then

IC = −2

462∑

α=1

w(yα)
[
yαβ̂

Txα − log
{
1 + exp(β̂Txα)

}]
+ 2tr

{
R−1(Ĝ)K(Ĝ)

}
,

where β̂ is the parameter estimate, K(Ĝ) and R(Ĝ) are 5 × 5 matrices given

by K(Ĝ) = XTΛ2X/462 and R(Ĝ) = XTΓX/462, with X = (x1, . . . , x462)
T, Λ

and Γ being 462× 462 diagonal matrices

Λ = diag [w(y1){y1 − π̂(x1)}, . . . , w(y462){y462 − π̂(x462)}] ,
Γ = diag [w(y1)π̂(x1)(1 − π̂(x1)), . . . , w(yn)π̂(x462)(1 − π̂(x462))] ,
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Fig 3. The ROC curves obtained using our IC score (thick line) and from the GIC (thin
line).

where π̂(xα) is the estimated conditional probability. As a result, we obtain the
minimum IC score as −1.052 with the model including all the four predictors.
The thick line in Figure 3 shows the receiver operating characteristic (ROC)
curve, obtained by plotting the fraction of true positives out of the positives
(TPR = true positive rate) versus the fraction of false positives out of the
negatives (FPR = false positive rate).

To compare the performance with the un-weighted method (w(yα) = 1 for
α = 1, . . . , 462), we use the GIC in [14] to do the model selection again. The
selected model contains only two predictors x1 and x2 with the ROC curve given
by the thin line in Figure 3. As this ROC curve lies below the curve obtained from
our approach, the former model obtained by the IC score is superior. We observe
an improved predictive power of the logistic regression model when it has more
weights on the disease cases and when the model is selected using our IC score.

4.2. Quantile modeling of environmental data

In contrast to classical linear regression models, where a conditional expectation
of the response variable is in focus, the quantile regression tries to estimate the
τ -th conditional quantile of y given x = (x1, . . . , xp)

T as

qτ (y|x) = β0(τ) +

p∑

j=1

βj(τ)xj ,
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where β0(τ), . . . , βp(τ) are coefficients dependent on the quantile τ . When we
set τ = 0.5, the model reduces to the conditional median regression, which is
more robust to outliers than the conditional mean regression. The unknown
parameters are estimated by maximizing

ℓw(β, y) = − 1

n

n∑

α=1

w(yα)ρτ (yα − β(τ)Txα)

with ρτ (u) = u(τ − I(u < 0)), the usual loss function for standard quantile re-
gression modeling and β(τ) = (β0(τ), . . . , βp(τ))

T . To evaluate estimated quan-
tile regression models, we use the IC score in Equation (2.7). The criterion is
then

IC = −2

n∑

α=1

w(yα)ρτ (yα − β̂(τ)Txα) + 2tr
{
R−1(Ĝ)K(Ĝ)

}
, (4.1)

with X = (x1, . . . , xn)
T, K(Ĝ) = 1

nτ(1 − τ)XTWX , and R(Ĝ) = 1
nX

TMX .
Here W = diag{w(y1), . . . , w(yn)}, M = diag{g(ξ1(τ)), . . . , g(ξn(τ))} is the
n-dimensional diagonal matrix with the α-th element of M being the τ -th
quantile of the density function g(ξα(τ)), ξα(τ) = G−1(τ |xα), and P (yα ≤
y|xα) = G(y|xα). Although our formulation in Equation (4.1) allows heteroge-
neous weights w(yα) for observations yα, the IC score with the equal weight
w(yt) = 1 alone, is new in the literature. In the study of precipitation data
discussed below, we set the weight function as w(yα) = 1 + I(yα ≥ au) for
upper quantiles and w(yα) = 1 + I(yα ≤ al) for lower quantiles, where au and
al are some thresholds. This setting is in line with the environmental issues like
drought, climate change, flooding, etc, in which the precipitation is either very
high or very low.

First, we apply our method to monthly precipitation data collected in one of
the meteorological stations of the Hong Kong Observatory. The data period is
from September, 1997 to December, 2010. The quantile autoregression model in
[12] is considered:

qτ (yα) = β0(τ) +

p∑

j=1

βj(τ)yα−j ,

where yα is the observed precipitation value at time α. Setting the value of τ
as 5% and 95%, we construct two quantile functions. To emphasize the effect of
extreme precipitations, we use the weighted functions w(yα) = 1 + I(yα ≥ 800)
for the 95% quantile and w(yα) = 1 + I(yα ≤ 20) for the 5% quantile. To
determine an optimal lag value of p, the IC score is used. We fit the candidate
models of lag p = {0, 1, . . . , 20} and then determine the best lag that minimizes
the IC score. When we construct the IC score in Equation (4.1), the values of the
τ -th quantile of the density function g(ξα(τ)) in the matrix M are estimated by
the adaptive kernel method in [17]. As a result, we find that the optimal lags for
the two quantile functions are p = 12. Figure 4(a) shows the estimation result.
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Fig 4. Precipitation data. The solid lines are the fitted quantile functions and circles are
realized values.

The solid lines are the fitted quantile functions qτ (yα) = β̂0(τ)+
∑p

j=1 β̂j(τ)yα−j

and circles are realized values.
Next we apply our method to hourly precipitation data, from 1:00 May 1,

2006 to 23:00 June 30, 2006. The same modeling procedure described above is
used. Here our focus is τ = 95% percentile which has implications for flooding,
and we use the weight function w(yα) = 1 + I(yα ≥ 10) for the 95% quantile.
The optimal lag is p = 1. Again this result seems to be very natural because the
most recent observation contains useful information for forecasting. Figure 4(b)
shows the estimation result.

5. Discussion

The concept of model selection with respect to some model features is intro-
duced in the information-theoretic paradigm. The standard KL measure is gen-
eralized to have a weight function designed for the specified features. The IC
score based on the weighted KL measure, Kw(G,F ), is defined in Theorem 2.1
by deriving the bias correction of the expected weighted loglikelihood estima-
tor,

∫
ℓw(θ̂, z)dG(z). The scope of applications of our IC score is very wide. In

real-life applications, there are many cases that allow us to use the weighted
KL measure. Examples are a logistic probability model (Example 1) and an
exponential power distribution (Example 2), described in Section 1. We show
the usefulness of our statistical modeling procedures through simulation studies,
including penalized B-spline regression (Section 3.1) and copula model selection
(Section 3.2). We also illustrate our information criteria by applying it to real
data, predicting the incidence of disease (Section 4.1) and quantile modeling of
monthly precipitation rate (Section 4.2). We believe that our statistical model-
ing would contribute to the advancement of empirical studies.
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The bias correction term can be computed using bootstrap methods (ref.
[7]) if their analytical forms are not tractable. As the bootstrap analogues of
the expected weighted log-likelihood of Equation (2.3) and the sample based

weighted log-likelihood are η
(b)
w = n−1

∑n
α=1 w(yα) log f(yα; θ̂

∗) and η̂
(b)
w =

n−1
∑n

α=1 w(y
∗
α) log f(y

∗
α; θ̂

∗), the bootstrap bias estimator, an estimator of Equa-

tion (2.4), is given by Ey∗(η
(b)
w − η̂

(b)
w ). Here y∗ = (y∗1 , . . . , y

∗
n)

T is the empirical
distribution based on bootstrap samples that has the probability n−1 at each
data point y∗α (α = 1, . . . , n), and θ̂∗ is the parameter estimate based on the
bootstrap sample y∗, i.e., the maximizer of the weighted penalized likelihood:
ℓw(θ, y

∗)−λp(θ). This approach provides a direct computational way of assess-
ing the constructed model. The numerical approach to constructing information
criteria has been examined by [14, 3].

We have given examples demonstrating how w(y) is designed to match any
model feature of interest. The superior performance is demonstrated in various
regression-type problems and in copula model selection. Determining how to
align w(y) with the purpose of the statistical modeling will be an interesting
topic for further research.

Appendix

Proof of the weighted KL measure

Assume without loss of generality that G and F are continuous. From Konishi
& Kitagawa (2008, pp. 30), we have

log
f(y)

g(y)
≤ f(y)

g(y)
− 1,

which implies that

−Kw(G,F ) =

∫
w(y) log

f(y)

g(y)
g(y)dy

≤
∫
w(y)

(
f(y)

g(y)
− 1

)
g(y)dy

=

∫
w(y)f(y)dy −

∫
w(y)g(y)dx

= EF [w(Y )]− EG[w(Y )] ≤ 0,

and so (i) is satisfied. It is obvious that Kw(G,G) = 0. When Kw(G,F ) = 0, the

above shows that both EF [w(Y )] − EG[w(Y )] = 0 and
∫
w(y) log f(y)

g(y) g(y)dy =
∫
w(y)

( f(y)
g(y) − 1

)
g(y)dy. Therefore, (ii) is satisfied. The above inequalities also

indicate that K̃w(G,F ) ≥ 0 for all fitted model F .
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Proof of Theorem 2.1

We denote the observed time series y1, . . . , yn and its replicates as y and z, re-
spectively. Note that the true estimate θ = T (G), which maximizes the penalized
weighted log-likelihood, can be expressed as a functional:

∫
∂{ℓw(θ, z)− λp(θ)}

∂θ

∣∣∣∣∣
θ=T (G)

dG(z) = 0.

Then the stochastic expansion of each of the elements of θ̂ = T (Ĝ) around T (G)
is expressed as

θ̂i = Ti(G) +
1

n

n∑

α=1

T
(1)
i (yα;G) (5.1)

+
1

2n2

n∑

α=1

n∑

β=1

T
(2)
i (yα, yβ;G) + op(n

−1),

where T
(1)
i (yα;G) and T

(2)
i (yα, yβ;G) are the first and second order derivatives

of the functional T (·). Putting Equation (5.1) into a Talyor expansion of ℓw(θ̂, z)
around θ = T (G) gives

EG(z)[ℓw(θ̂, z)]

≈
∫
ℓw(T (G), z)dG(z) +

p∑

i=1

(θ̂i − Ti(G))

∫
∂ℓw(θ, z)

∂θi

∣∣∣∣∣
θ=T (G)

dG(z)

+
1

2

p∑

i=1

p∑

j=1

(θ̂i − Ti(G))(θ̂j − Tj(G))

∫
∂2ℓw(θ̂, z)

∂θi∂θj

∣∣∣∣∣
θ=T (G)

dG(z)

=

∫
ℓw(T (G), z)dG(z) +

1

n

p∑

i=1

n∑

α=1

T
(1)
i (yα;G)

∫
∂ℓw(θ, z)

∂θi

∣∣∣∣∣
θ=T (G)

dG(z)

+
1

2n2

n∑

α=1

n∑

β=1

[
p∑

i=1

T
(2)
i (yα, yβ ;G)

∫
∂ℓw(θ, z)

∂θi

∣∣∣∣∣
θ=T (G)

dG(z)

+

p∑

i=1

p∑

j=1

T
(1)
i (yα;G)T

(1)
j (yβ ;G)

∫
∂2ℓw(θ, z)

∂θi∂θj

∣∣∣∣∣
θ=T (G)

dG(z)

]
+op(n

−1).

Also, we have

ℓw(θ̂, y) ≈ ℓw(T (G), y) +

p∑

i=1

(θ̂i − Ti(G))
∂ℓw(θ, y)

∂θi

∣∣∣∣∣
θ=T (G)

+
1

2

p∑

i=1

p∑

j=1

(θ̂i − Ti(G))(θ̂j − Tj(G))
∂2ℓw(θ, y)

∂θi∂θj

∣∣∣∣∣
θ=T (G)
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= ℓw(T (G), y) +
1

n

p∑

i=1

n∑

α=1

T
(1)
i (yα;G)

∂ℓw(θ, y)

∂θi

∣∣∣∣∣
θ=T (G)

+
1

2n2

n∑

α=1

n∑

β=1

[
p∑

i=1

T
(2)
i (yα, yβ;G)

∂ℓw(θ, y)

∂θi

∣∣∣∣∣
θ=T (G)

+

p∑

i=1

p∑

j=1

T
(1)
i (yα;G)T

(1)
j (yβ ;G)

∂2ℓw(θ, y)

∂θi∂θj

∣∣∣∣∣
θ=T (G)

]
+op(n

−1).

Taking the expectations yields

∫
ℓw(T (G), y)dG(y)

=

∫
ℓw(T (G), z)dG(z) +

1

n

[
bTa− 1

2
tr[Σ(G)J(G)]

]
+ o(n−1),

∫ [∫
ℓw(T (G), z)dG(z)

]
dG(y)

=

∫
ℓw(T (G), z)dG(z) +

1

n

[
bTa− 1

2
tr[Σ(G)J(G)]

]

+
1

n

p∑

i=1

∫
T

(1)
i (z;G)

∂ℓw(T (G), z)

∂θi

∣∣∣∣∣
θ=T (G)

dG(z) + o(n−1),

where a = (a1, . . . , ap)
T and b = (b1, . . . , bp)

T are given as

ai =

∫
∂ℓw(θ, z)

∂θi

∣∣∣∣∣
θ=T (G)

dG(z) and b =

∫
[θ̂ − T (G)]dG(z) + o(n−1),

respectively. The p× p matrix Σ = (σij) is the estimator of the variance covari-

ance matrix of
√
n(θ̂ − T (G)), and

J(G) = −
∫
∂2ℓw(θ, z)

∂θ∂θT

∣∣∣∣∣
θ=T (G)

dG(z).

Finally, we have

∫ [
ℓw(θ̂, y)−

∫
ℓw(θ̂, z)dG(z)

]
G(y)

=
1

n

p∑

i=1

∫
T

(1)
i (z;G)

∂ℓw(θ, z)

∂θi

∣∣∣∣∣
θ=T (G)

dG(z) + o(n−1)

=
1

n
tr



∫
T (1)(z;G)

∂ℓw(θ̂, z)

∂θT

∣∣∣∣∣
T (G)

dG(z)


+ o(n−1).
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The function T (1)(z;G) for the penalized weighted likelihood estimator is given
as

T (1)(z;G) = R(G)−1 ∂{w(z) log f(θ, z)− λp(θ)}
∂θ

∣∣∣∣∣
θ=T (G)

.

Then, replacing the expectation with the empirical distribution, the bias term
is obtained.
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