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1. Introduction

This paper considers the problem of estimating a multivariate binary density
from a number of independent observations. That is, we have n observations of
the form Xi ∈ {0, 1}d which are independent and identically distributed (i.i.d.)
samples from a population with a probability density f (with respect to the
counting measure on the d-dimensional binary hypercube {0, 1}d). We wish to
estimate f on the basis of these observations. Multivariate binary data arise in
a variety of applications:

• Biostatistics. Each Xi could represent a biochemical profile of a bacterial
strain, where every component is a “yes-no” indicator of a presence of
a particular biochemical marker [18, 38]. A recent paper [31] proposed a
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methodology for representing gene expression data using binary vectors.
More classical scenarios include recording the occurrence of a given symp-
tom or a medical condition in a patient over time [12] or outcomes of a
series of medical tests [1].

• Quantitative methods in social sciences. EachXi could represent a respon-
dent in a survey or a panel, where every component is a “yes-no” answer
to a question [6], describe a voting record of a legislator, or correspond to
co-occurrences of events in social networks [32].

• Artificial intelligence. Each Xi could represent a user query to a search
engine or a database, where every component corresponds to the presence
or absence of a particular keyword [13], or an image stored on a website
like Flickr1, where every component corresponds to a user-supplied tag
from a given list.

Many situations involving multivariate binary data have the following features:
(1) the number of covariates (or the dimension of the hypercube) d is such that
the number of possible values each observation could take (2d) is much larger
than the sample size n; (2) there is a “clustering effect” in the population, mean-
ing that the shape of the underlying density is strongly influenced mainly by a
small number of constellations of the d covariates. For example, a particular class
of bacterial strains may be reliably identified by looking at a particular subset of
the biomarkers; there may be several such classes in the population of interest,
each associated with a distinct subset of biomarkers. Similarly, when working
with panel data, it may be the case that the answers to some specific subset
of questions are highly correlated among a particular group of the panel par-
ticipants, and the responses of these participants to other questions are nearly
random; moreover, there may be several such distinct groups in the panel.

These considerations call for a density estimation procedure that can effec-
tively cope with “thin” samples (i.e., those samples for which n < 2d) in terms
of both estimation error and computational complexity, and at the same time
automatically adapt to the possible clustering in the population, in the sense
described above. We take the minimax point of view, where we assume that the
unknown density f comes from a particular function class F and seek an esti-
mator that exactly or approximately attains the minimax mean-squared error

R∗
n(F) = inf

f̂
sup
f∈F

E‖f̂ − f‖2L2 ,

where the infimum is over all estimators based on n i.i.d. samples from f . We
will choose the class F to model the “constellation effects” via a certain sparsity
condition. Our choice of the L2 risk, as opposed to other measures of risk more
commonly used in density estimation, such as Hellinger, Kullback–Leibler or
total variation risks, is dictated by the fact that the sparsity condition mentioned
above is most naturally stated in a Hilbert space framework, which in turn
facilitates the design of our estimation procedure, as well as the derivation of
both upper and lower bounds on R∗

n(f). We refer the reader to several other

1http://www.flickr.com

http://www.flickr.com
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works on density estimation that use L2 risk [24, 7, 10, 40, 20, 19, 11]. We
also note that, because the Euclidean L1 norm (which for probability densities
gives the total variation risk) dominates the Euclidean L2 norm, and because
the square of the Kullback–Leibler divergence dominates the total variation
distance [8], lower bounds on the squared L2 risk automatically translate into
lower bounds on the squared L1 (total variation) risk and on the Kullback–
Leibler risk.

Because of the host of applications in which multivariate binary data natu-
rally arise, several authors have investigated algorithms for estimation of their
probability densities (see, e.g., [1, 28, 24, 7]). However, existing approaches ei-
ther have very slow rates of error convergence or are computationally prohibitive
when the number of covariates is very large. For example, the kernel density es-
timation scheme proposed by Aitchison and Aitken [1] has computational com-
plexity O(nd) (where n is the number of observations and d the number of
covariates), yet its squared L2 error decays at the rate O(n−4/(4+d)) [33], which
is disastrously slow for large d. In contrast, orthogonal series methods, which
can potentially achieve near-minimax error decay rates, require the estimation
of 2d basis coefficients and do not easily admit computationally tractable esti-
mation methods for very large d. For instance, using the Fast Walsh–Hadamard
Transform to estimate the coefficients of a density in the Walsh basis (see be-
low) using n samples requires O(nd2d) operations (see Appendix B in [28] and
references therein).

In this paper we present a computationally tractable orthogonal series esti-
mation method based on recursive block thresholding of empirical Walsh coef-
ficients. In particular, the proposed method entails recursively examining em-
pirical estimates of whole blocks of the 2d different Walsh coefficients. At each
stage of the algorithm, the overall weight of basis coefficients computed at pre-
vious stages is used to decide which remaining coefficients are most likely to be
significant or insignificant, and computing resources are allocated accordingly.
It is shown that this decision is accurate with high probability, so that insignifi-
cant coefficients are not estimated, while the significant coefficients are. This ap-
proach is similar in spirit to the algorithm of Goldreich and Levin [17], originally
developed for applications to cryptography and later adopted by Kushilevitz and
Mansour [22, 25] to the problem of learning Boolean functions using member-
ship queries. Although there are significant differences between the problems
of density estimation and function learning which are reflected in our estima-
tion procedure, our algorithm inherits the computational tractability of the
Goldreich–Levin scheme: in particular, it runs in probabilistic polynomial time.

The proposed estimator adapts to unknown sparsity of the underlying density
in two distinct ways. First, it is near-minimax optimal for “moderate” sample
sizes d � n � 22d/p, with an L2 error decay rate of O(2−d(d/n)2r/(2r+1)), where
p ∈ (0, 1] is a measure of sparsity and r = 1/2−1/p. Moreover, the computational
complexity of our algorithm is automatically lower for sparser densities. Sparsity
has been recently recognized as a crucial enabler of accurate estimation in “big-d,
small-n” type problems [4, 5]. Specifically for densities on the binary hypercube,
sparsity in the Walsh basis has a natural qualitative interpretation that the
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shape of the density is influenced mainly by a small number of constellations
of the covariates. For example, if the components of a multidimensional binary
vector represent positive/negative outcomes in a series of medical tests, it is
often the case that the outcomes of certain small constellations of tests play the
determining role in the diagnosis.

There are several different series expansions on the binary hypercube pre-
sented in the literature, including the Rademacher–Walsh orthogonal series (see
Appendix A in [28] and references therein) and the Bahadur expansion [2, 18].
We focus in this paper on the Walsh system, which is derived from Fourier
analysis on finite groups (see, e.g., Chap. 4 of Tao and Vu [36]), for two reasons.
First, the coefficients of a particular function in the Walsh system give us infor-
mation about the influence of the various subsets of the d variables on the value
of the function [34, 9]. Second, the Walsh functions of a length-d vector can
be factorized into products of Walsh functions of multiple shorter vectors with
lengths summing to d; this is detailed in Section 2.2. This factorization is central
to the efficiency of the proposed coefficient estimation method. The Walsh
system is widely used in the context of learning Boolean functions [25], as well
as in harmonic analysis of real-valued functions on the binary hypercube [34, 9].

1.1. Organization of the paper

The remainder of the paper is organized as follows. Section 2 contains the pre-
liminaries on notation, the Walsh system, and sparsity classes on the binary
hypercube. Next, in Section 3 we describe the motivation behind the threshold-
ing methods in orthogonal series estimation on the binary hypercube, introduce
our recursive thresholded estimator, and analyze its MSE and computational
complexity. The theorems of Section 3 are proved in Section 4. Some illustrative
simulation results are given in Section 5. The contributions of the paper are
summarized in Section 6. Finally, some technical results are relegated to the
appendices.

2. Preliminaries

2.1. Notation

The basic set {0, 1} will be denoted by B. For any integer k > 1, the com-
ponents of binary strings x ∈ B

k will be denoted by x(j), 1 ≤ j ≤ k: for
any x ∈ B

k, we have x = (x(1), . . . , x(k)). We will use juxtaposition to denote
concatenation of strings: if y ∈ B

k and z ∈ B
l, then yz ∈ B

k+l is the string
x = (y(1), . . . , y(k), z(1), . . . , z(l)). For any 0 ≤ k ≤ d, we will define the prefix
mapping πk : Bd → B

k and the suffix mapping σk : Bd → B
d−k by

πk(x) , (x(1), . . . , x(k)), σk(x) , (x(k+1), . . . , x(d)), (1)

so that x = πk(x)σk(x) for any x ∈ B
d (note that both π0 and σd return an

empty string). Whenever we deal with vectors whose components are indexed
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by the elements of Bk for some k, we will always assume that the components
are arranged according to the lexicographic ordering of the binary strings in B

k.
Given two real numbers a, b, we let a∧ b denote min{a, b}. Also, throughout the
paper, C is used to denote a generic constant whose value may change from line
to line; specific absolute constants will be denoted by C1, C2, etc.

Throughout the paper, we let M ≡ 2d.

2.2. The Walsh system

For any integer k ≥ 1, denote by µk the counting measure on B
k and endow

the space of functions f : Bk → R with the structure of the real Hilbert space
L2(µk) via the standard inner product

〈f, g〉 ,
∑

x∈Bk

f(x)g(x).

The Walsh system (see references in the Introduction) in L2(µk) is an orthonor-
mal system Φk = {ϕs : s ∈ B

k}, defined by

ϕs(x) ,
1

2k/2
(−1)s·x, ∀x ∈ B

k (2)

where s · x ,
∑k

j=1 s
(j)x(j). Hence, any f ∈ L2(µk) has the Fourier–Walsh

expansion

f =
∑

s∈Bk

θsϕs,

where θs , 〈f, ϕs〉, s ∈ B
k. To keep the notation simple, we will not explicitly

mark the underlying dimension when working with the Walsh functions. When
k = d, we will write Φ instead of Φd.

For any k, the Walsh system Φk is a tensor product basis induced by Φ1 =
{ϕ0, ϕ1}, where

ϕ0(x) =
1√
2

and ϕ1(x) =
1√
2
(−1)x

for any x ∈ B. That is, for any k ≥ 1, any ϕs ∈ Φk has the form

ϕs = ϕs(1) ⊗ ϕs(2) ⊗ · · · ⊗ ϕs(k) ,

which means that

ϕs(x) =

k∏

i=1

ϕs(i)(x
(i)), ∀x ∈ B

k.

This generalizes to the following useful factorization property of the Walsh func-
tions: for any k ≥ 1 and any l ≤ k, we have

ϕs = ϕπl,k(s) ⊗ ϕσl,k(s), ∀s ∈ B
k (3)

where πl,k and σl,k denote the prefix and the suffix mappings defined on B
k

analogously to (1). This means that, for products of functions on disjoint subsets
of the d variables, the Fourier–Walsh coefficients also have the product form.
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2.3. Sparsity and weak-ℓp balls

Our interest lies with functions whose Fourier–Walsh representations satisfy a
certain sparsity constraint. Given a function f on B

d, let θ(f) denote the vector
of its Fourier–Walsh coefficients. We will assume that the components of θ(f)
decay according to a power law. Formally, let θ(1), . . . , θ(M), where M = 2d, be
the components of θ(f) arranged in decreasing order of magnitude:

|θ(1)| ≥ |θ(2)| ≥ · · · ≥ |θ(M)|.

Given some 0 < p < ∞, we say that θ(f) belongs to the Marcinkiewicz, or
weak-ℓp, ball of radius R [3, 21], and write θ(f) ∈ wℓp(R), if

|θ(m)| ≤ R ·m−1/p, 1 ≤ m ≤ M. (4)

It is not hard to show that the Fourier–Walsh coefficients of any probability
density on B

d are bounded by 1/
√
M . With this in mind, let us define the

function class

Fd(p) ,
{
f : Bd → R : θ(f) ∈ wℓp(1/

√
M)
}

(5)

We are particularly interested in the case 0 < p ≤ 1.
We will need approximation properties of weak-ℓp balls as listed, e.g., in [5].

The basic fact is that the power-law condition (4) particularized to the elements
of Fd(p) is equivalent to the concentration estimate

∣∣{s ∈ B
d : |θs|2 ≥ λ

}∣∣ ≤
(

1

Mλ

)p/2

(6)

valid for all λ > 0. Additionally, for any 1 ≤ k ≤ M , let θk(f) denote the vector
θ(f) with θ(k+1), . . . , θ(M) set to zero. Then it follows from (4) that

‖θ(f)− θk(f)‖ℓ2
M

≤ CM−1/2k−r (7)

where r , 1/p− 1/2, and C is some constant that depends only on p. Hence,
given any f ∈ Fd(p) and denoting by fk the function obtained from it by trun-
cating all but the k largest Fourier–Walsh coefficients, we get from Parseval’s
identity that

‖f − fk‖L2(µd) ≤ CM−1/2k−r. (8)

Thus, the assumption that f belongs to the sparsity class Fd(p) for some p can be
interpreted qualitatively as saying that the behavior of f is strongly influenced
by a small number of subsets of the d covariates. The number of these influential
subsets decreases as p → 0. To make this qualitative statement somewhat more
precise, we recall the notion of influence of a covariate i ∈ {1, . . . , d} on the
function f [9]:

Infi(f) ,
∑

s∈Bd: s(i)=1

θs(f)
2.
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The larger this value, the more effect the “bit flip” x(i) 7→ x(i) ⊕ 1 has on the
value of f , as measured by the average

1

M

∑

x∈Bd

|f(x)− f(x⊕ ei)|2 ,

where ei ∈ B
d has 1 in the ith coordinate and 0 everywhere else. By the con-

centration estimate (6), the number of “large” coefficients in the Fourier–Walsh
expansion of any f ∈ Fd(p) decreases as p → 0. At the same time, the squared
norm ‖f‖2L2(µd)

of any p ∈ Fd(p) also decreases as p → 0. Consequently, the

number of “influential” covariates [i.e., those i ∈ {1, . . . , d} with sufficiently
large value of Infi(f)] becomes smaller as p → 0.

3. Density estimation via recursive Walsh thresholding

Let X1, . . . , Xn be independent random variables in B
d with common unknown

density f . We wish to estimate f on the basis of this sample. For densities defined
on the Euclidean space, nonparametric estimators based on hard or soft thresh-
olding of empirically estimated coefficients of the target density in a suitably
chosen basis (e.g., a wavelet basis) attain near-minimax rates of convergence of
the squared-error risk over rich classes of densities [10, 19]. Thresholding is a
means of controlling the bias-variance trade-off.

Several authors have investigated the use of term-by-term thresholding rules
for density estimation on the binary hypercube. There, one begins by computing
the empirical estimates

θ̂s =
1

n

n∑

i=1

ϕs(Xi) (9)

of the Fourier–Walsh coefficients of f , and then forming the thresholded esti-
mator

f̂ =
∑

s∈Bd

I{T (θ̂s)≥λn}θ̂sϕs, (10)

where T (·) is some real-valued statistic and I{·} is the indicator function. Based
on the observation that

Var θ̂s =
1

n

(
1

M
− θ2s

)
, (11)

while the squared bias incurred by omitting the term θ̂sϕs from the estimator
(10) is θ2s , Ott and Kronmal [28] considered the ideal thresholded estimator

f̂∗ =
∑

s∈Bd

I{θ2
s>1/M(n+1)}θ̂sϕs. (12)

The idea is to keep only those terms where the variance (11) is smaller than the

bias θ2s . Clearly, f̂
∗ is impractical because the thresholding criterion depends on
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the unknown coefficients θs. Instead, Ott and Kronmal [28] suggested that one
could mimic the ideal estimator (12) by replacing θ2s in the thresholding criterion

by the unbiased estimator (nθ̂2s−1/M)/(n−1), leading to the practical estimator

f̂WT =
∑

s∈Bd

I{θ̂2
s>2/M(n+1)}θ̂sϕs, (13)

where WT stands for “Walsh thresholding.” This estimator was further im-
proved by Liang and Krishnaiah [24] and Chen, Krishnaiah and Liang [7], who
replaced the hard thresholding rule in (13) with shrinkage rules.

The main disadvantage of such termwise thresholding is the need to compute
empirical estimates of all M = 2d Fourier–Walsh coefficients. While this is not
an issue when d is comparable to log n, it is clearly impractical when d ≫ logn.
In order to alleviate this difficulty, we will consider a recursive thresholding
approach, which will allow us to reject whole groups of empirical coefficients
based on efficiently implementable thresholding rules. The main idea behind
this approach is motivated by the following argument.

Given some 1 ≤ k ≤ d, we can represent any function f ∈ L2(µd) with the
Fourier–Walsh coefficients {θs : s ∈ B

d} as

f =
∑

u∈Bk

∑

v∈Bd−k

θuvϕuv

=
∑

u∈Bk

( ∑

v∈Bd−k

θuvϕv

)
⊗ ϕu

≡
∑

u∈Bk

fu ⊗ ϕu,

where, for each u ∈ B
k, fu ,

∑
v∈Bd−k θuvϕv is a function in L2(µd−k). The

Fourier–Walsh coefficients of fu are precisely those coefficients of f that are
indexed by s ∈ B

d with πk(s) = u. By Parseval’s identity, we have

Wu , ‖fu‖2L2(µd−k)
=

∑

v∈Bd−k

θ2uv.

This leads to the following observation: for any λ > 0,

Wu < λ for some u ∈ B
k ⇒ θ2uv < λ for every v ∈ B

d−k.

The usefulness of this observation for our purposes comes from the fact that we
can represent the strings s ∈ B

d, and hence the elements of the Walsh system in
L2(µd), by the leaves of a complete binary tree of depth d. Suppose we wanted
to pick out only those coefficients of f whose squared magnitude exceeds some
threshold λ. If we knew that Wu ≤ λ for some u ∈ B

k, then this would tell us
that the square of every coefficient corresponding to a leaf descending from u
does not exceed λ. Hence, we could start at the root of the tree and at each
internal node u that has not yet been visited check whether Wu ≥ λ; if not,
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then we would delete u and all of its descendants from the tree without having
to compute explicitly the corresponding coefficients. At the end of the process
(i.e., when we get to the leaves), we will be left only with those s ∈ B

d for which
θ2s ≥ λ. If f ∈ Fd(p) for some p, then the resulting squared L2 error will be

∑

s∈Bd

I{θ2
s<λ}θ

2
s ≤ CM−1(Mλ)−2r/(2r+1),

where r = 1/p− 1/2, as before.
We will follow this reasoning in constructing our density estimator. We begin

by developing a suitable estimator for Wu. To do that, we shall rely on the
following lemma (see Appendix A.1 for the proof):

Lemma 1. For any density f on B
d, any 1 ≤ k ≤ d, and any u ∈ B

k, we have

fu(y) = Ef

{
ϕu(πk(X))I{σk(X)=y}

}
, ∀y ∈ B

d−k

and
Wu = Ef {ϕu(πk(X))fu(σk(X))} .

This lemma suggests that, for each 1 ≤ k ≤ d and each u ∈ B
k, an empirical

estimate of Wu can be obtained by

Ŵu =
1

n

n∑

i=1

ϕu(πk(Xi))


 1

n

n∑

j=1

ϕu(πk(Xj))I{σk(Xi)=σk(Xj)}




=
1

n2

n∑

i=1

n∑

j=1

ϕu(πk(Xi))ϕu(πk(Xj))I{σk(Xi)=σk(Xj)}. (14)

Although this is a biased estimator, it has the following useful property (see
Appendix A.2 for the proof):

Lemma 2. For any 1 ≤ k ≤ d and any u ∈ B
k,

Ŵu =
∑

v∈Bd−k

θ̂2uv, (15)

where each θ̂uv is an empirical estimate of θuv computed according to (9).

Another advantage of computing Ŵu indirectly via (14), rather than (15), is
that, while the latter requires O(2d−kn) operations, the former requires only
O(n2d) operations. This can amount to significant computational savings when
k < d − log(nd). When k ≥ d − log(nd), it becomes more efficient to use the
direct estimator (15).

Now that we have a way of estimating Wu, we can define our density esti-
mation procedure. Provided the threshold scales appropriately with the sample
size, we will be able to achieve a good balance between the estimation error
(variance) and the approximation error (squared bias) and attain near-minimax
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rates of convergence. In our analysis, we shall actually consider a more flexible
strategy: for every 1 ≤ k ≤ d, we shall compare the estimate Ŵu of Wu to
a threshold that depends not only on the sample size n, but also on k. More
specifically, we will let

λk,n =
αk

n
, 1 ≤ k ≤ d (16)

where the sequence {αk}dk=1 satisfies α1 ≥ αk ≥ · · · ≥ αd > 0. In particular,
this set-up covers the following two extreme cases:

1. αk = const for all k – this covers the standard case of always comparing
against the same threshold (that depends on n)

2. αk = const · 2d−k – this corresponds to thresholding not the sum of (a
particular subset of) the coefficients, but their average.

As we shall see, this k-dependent scaling will allow us to flexibly trade off the
expected L2 error and the computational complexity of the resulting estimator.
Now we describe our density estimator. Given the sequence λ = {λk,n}dk=1,
define the set

A(λ) ,
{
s ∈ B

d : Ŵπk(s) ≥ λk,n, ∀1 ≤ k ≤ d
}

(17)

and consider the density estimate

f̂RWT ,
∑

s∈Bd

I{s∈A(λ)}θ̂sϕs, (18)

where RWT stands for “recursive Walsh thresholding.” To implement this es-
timator on a computer, we call the routine RecursiveWalsh, shown as Algo-
rithm 1, with u = ∅ (the empty string, corresponding to the root of the tree)
and with the desired threshold sequence λ. The factors of 1/2 in the updates

for Ŵu0 and Ŵu1 arise because of the factorization property (3) of the Walsh
basis functions: for any k ≥ 0 and any s, x, x′ ∈ B

k+1 we have

ϕu(x)ϕu(x
′) = ϕπk(s)(πk(x))ϕπk(s)(πk(x

′))

(
− 1√

2

)s(k)(x(k)+x′(k))

.

3.1. Analysis of performance

Let us denote by F+,1
d (p) the set of all probability densities in Fd(p):

F+,1
d (p) ,



f ∈ Fd(p) : f ≥ 0,

∑

x∈Bd

f(x) = 1



 . (19)

Our first main result is that, with appropriately tuned thresholds, the estimator
(18) adapts to unknown sparsity of the Fourier–Walsh representation of f :
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Algorithm 1 RecursiveWalsh(u,λ)

k ← length(u)
if k = d then

θ̂u ←
1
n

n∑

i=1

ϕu(Xi)

if θ̂2u ≥ λd,n then

output u, θ̂u
end if

return

end if

u0 ← 0u
u1 ← 1u

Ŵu0 ←
1

2n2

n∑

i=1

n∑

j=1

ϕu(πk(Xi))ϕu(πk(Xj))I{σk+1(Xi)=σk+1(Xj)}

if Ŵu0 ≤ λk+1,n then

return

else

RecursiveWalsh(u0,λ)
end if

Ŵu1 ←
1

2n2

n∑

i=1

n∑

j=1

ϕu(πk(Xi))ϕu(πk(Xj))(−1)
X

(k+1)
i

+X
(k+1)
j I{σk+1(Xi)=σk+1(Xj)}

if Ŵu1 ≤ λk+1,n then

return

else

RecursiveWalsh(u1,λ)
end if

Theorem 1. There exist absolute constants C1, C2 > 0, such that the following
holds. Suppose the threshold sequence λ = {λk,n}dk=1, where λk,n = αk/n for all
k, is chosen in such a way that αk ≥ C1d/M = (C1/M) logM for all k, where
M ≡ 2d. Then the estimator (18) satisfies

sup
f∈F+,1

d
(p)

Ef‖f − f̂RWT‖2L2(µd)
≤ C2

M

(
logM

n

)2r/(2r+1)

(20)

for all n and all 0 < p ≤ 1, where, as before, r = 1/p− 1/2. Moreover, the risk
of (18) in the large-sample regime n ≥ M2r/(2r+1) is bounded by

sup
f∈F+,1

d
(p)

Ef‖f − f̂RWT‖2L2(µd)
≤ C2 logM

n
. (21)

Remark 1. Adaptation to p. As the reader can easily see from the proof of
the theorem in Section 4.2, the bounds (20) and (21) hold for all 0 < p ≤ 2.
However, we were only able to derive lower bounds for the case of p ≤ 1.

Remark 2. Positivity and normalization issues. As is the case with orthogonal
series estimators, f̂RWT may not necessarily be a bona fide density. In particular,
there may be some x ∈ B

d such that f̂RWT(x) < 0, and it may happen that∫
f̂RWTdµd 6= 1. In principle, this can be handled by clipping the negative values
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at zero and renormalizing; this procedure can only improve the expected L2

error. In practice this may be computationally expensive when d is very large. If
the estimate is suitably sparse, however, the renormalization can be carried out
approximately using Monte-Carlo estimates of the appropriate sums. Moreover,
in many applications the scaling of the density is not important. �

Our second main result is a lower bound on the minimax L2 risk attainable
by any estimator over F+,1

d (p). It shows, in particular, that our recursive esti-

mator f̂RWT is minimax for “moderate” sample sizes logM � n � M2/p. For
large sample sizes, n � M2/p, f̂RWT is no longer optimal — in particular, it is
outperformed by both the simple histogram estimator

f̂hist(x) =
1

n

n∑

i=1

I{Xi=x}

and by the unthresholded orthogonal series estimator

f̂(x) =
∑

s∈Bd

θ̂sϕs(x),

both of which attain the optimal O(1/n) risk. Note, however, that for n ≥
M2r/(2r+1) = M1−p/2, the risk of f̂RWT is within a factor of logM of the
minimax rate. The precise statement is as follows:

Theorem 2. Consider the problem of estimating an unknown f ∈ F+,1
d (p),

0 < p ≤ 1, from n i.i.d. samples X1, . . . , Xn. Then the following statements
hold:

1. Suppose that logM ≤ n ≤ M2(1−ǫ)/p for some ǫ ∈ (0, 1). Then there exists
a positive constant C = C(p, ǫ), such that

inf
f̂n

sup
f∈F+,1

d
(p)

Ef‖f̂n − f‖2L2(µd)
≥ C

M

(
logM

n

) 2r
2r+1

. (22)

where, as before, M = 2d.
2. Suppose that n ≥ M2/p and M ≥ 4. Then there exists an absolute constant

C > 0, such that

inf
f̂n

sup
f∈F+,1

d
(p)

Ef‖f̂n − f‖2L2(µd)
≥ C

n
. (23)

Our third, and final, main result bounds the running time of the algorithm used
for computing f̂RWT:

Theorem 3. Fix any f ∈ Fd(p). Given any δ ∈ (0, 1), provided each αk is
chosen so that

nC1(2
ka2k,n ∧ 2k/2ak,n) ≥

log(2kd/δ)

log e
, (24)
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where

ak,n ,
1

5

√
αk

n
−
√

C2
2

2kn

and C1, C2 > 0 are certain absolute constants, then Algorithm 1 runs in

O

(
n2d

( n

M

)p/2
K(α, p)

)
(25)

time with probability at least 1−δ, where K(α, p) ,
∑d

k=1 α
−p/2
k and, as before,

M = 2d.

Remark 3. Trade-off between time complexity and MSE. By controlling the rate
at which the sequence αk decays with k, we can trade off MSE against complex-
ity. Consider the following two extreme cases: (1) α1 = · · · = αd ∼ 1/M and (2)
αk ∼ 2d−k/M . The first case, which reduces to the term-by-term thresholding,
achieves the same bias-variance trade-off as the Ott–Kronmal estimator [28].
However, it has K(α, p) = O(Mp/2d), resulting in O(d2n2+p/2) complexity. The
second case, which leads to a very severe estimator that will tend to reject a lot
of coefficients, has MSE of O(n−2r/(2r+1)M−1/(2r+1)), but K(α, p) = O(Mp/2),
leading to a considerably better O(dn2+p/2) complexity. From the computa-
tional viewpoint, it is preferable to use rapidly decaying thresholds. However,
this reduction in complexity will be offset by a corresponding increase in MSE.
In fact, using RWT with exponentially decaying αk’s in practice is not advis-
able as its low complexity is mainly due to the fact that it will tend to reject
even the big coefficients very early on, especially when d is large. To achieve a
good balance between complexity and MSE, a moderately decaying threshold
sequence might be best, e.g., αk ∼ (d− k + 1)m/M for some m ≥ 1. As p → 0,
the effect of λ on complexity becomes negligible, and the complexity tends to
O(n2d). �

Remark 4. Incoherence. Note that for any of the above choices of αk, the
proposed method requires polylog(M) operations. One intuitive explanation for
why such fast computation is possible is that the Walsh basis is “incoherent” (to
use term common in compressed sensing and group testing literature) with the
canonical basis of L2(µd). Similar polylog computation results were achieved by
Gilbert et al. in the context of fast sparse Fourier approximation [14, 15] and
group testing [16]. Their strategies also had connections to the Goldreich–Levin
algorithm [17], as well as to the work of Kushilevitz and Mansour on sparse
Boolean function estimation [22, 25]. �

4. Proofs of the theorems

In this section we prove our three main results. However, before proceeding
to the proofs, we collect all the technical tools that we will be using: moment
bounds, concentration inequalities, and an approximation-theoretic lemma per-
taining to class F+,1

d (p).
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4.1. Preliminaries

4.1.1. Moment bound

We will need the following result of Rosenthal [30]. Let U1, . . . , Un be i.i.d. ran-
dom variables with EUi = 0 and EU2

i ≤ σ2. Then for any m ≥ 2 there exists
some cm such that

E

∣∣∣∣∣n
−1

n∑

i=1

Ui

∣∣∣∣∣

m

≤ cm

(
σm

nm/2
+

E|U1|m
nm−1

)
. (26)

4.1.2. Concentration bounds

We will need the well-known Hoeffding inequality: if U1, . . . , Un are i.i.d.
bounded random variables such that EUi = 0 and |Ui| ≤ b < ∞ for all 1 ≤ i ≤ n,
then

P

(∣∣∣∣∣
1

n

n∑

i=1

Ui

∣∣∣∣∣ > t

)
≤ 2 exp

(
−nt2

2b2

)
(27)

The following result is due to Talagrand [35]. Let U1, . . . , Un be i.i.d. ran-
dom variables, let ε1, . . . , εn be independent Rademacher random variables
[i.e., P(εi = −1) = P(εi = 1) = 1/2] also independent of U1, . . . , Un, and
let F be a class of functions uniformly bounded by L > 0. Then if there exist
some v,H > 0 such that supg∈F Var g(U) ≤ v and

E

{
sup
g∈F

n∑

i=1

εig(Ui)

}
≤ nH (28)

for all n, then there are universal constants C1 and C2 such that, for every
τ > 0,

P

(
sup
g∈F

νn(g) ≥ τ + C2H

)
≤ exp

{
−nC1

(
τ2

v
∧ τ

L

)}
, (29)

where

νn(g) ,
1

n

n∑

i=1

g(Ui)− Eg(U), ∀g ∈ F (30)

is the empirical process indexed by F .

Remark 5. Typically, some additional regularity conditions on F are needed
to ensure measurability of the supremum supg∈F νn(g) of the empirical process
(30). However, when U takes values in a finite set, as is the case in this paper,
there is no need for such conditions because any uniformly bounded class of
real-valued functions on a finite set is separable: it contains a countable subset
F0, such that for any g ∈ F there exists a sequence g1, g2, . . . ∈ F0 converging
to g pointwise. Such a separability property ensures measurability of suprema
over F [37, p. 110].
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4.1.3. Large separated subsets of F+,1
d (p)

In the sequel, we will be interested in large subsets of the class of densities
F+,1

d (p) ⊂ Fd(p), whose elements are separated from one another by a given
fixed amount, as measured by the norm ‖ · ‖L2(µd). The following lemma, whose
proof is given in Appendix A, will be useful:

Lemma 3. Let r = 1/p − 1/2. Let s1, . . . , sM , M = 2d, be the lexicographic
ordering of the elements of Bd. Given a positive real parameter a and an integer
k ∈ {1, . . . ,M − 1}, let Θ(M,k, a) ⊂ R

M−1 consist of (M − 1)-dimensional real
vectors having exactly k nonzero components, each of which is equal to either a
or −a. With this, define the set F(k, a) ⊂ L2(µd) by

F(k, a) =

{
f : θs1(f) =

1√
M

,
(
θsj (f)

)
2≤j≤M

∈ Θ(M,k, a)

}
.

Suppose that k and a are such that

ka ≤ 1

2
√
M

and a ≤ 1√
M

(k + 1)−1/p. (31)

Then the following statements hold:

1. The set F(k, a) is contained in F+,1
d (p).

2. For any two f, f ′ ∈ F(k, a) we have

D(f‖f ′) ≤ 2Mka2, (32)

where D(·‖·) is the Kullback–Leibler divergence (relative entropy) [8].
3. If k = M − 1, then there exists a set F̃(M − 1, a) ⊂ F(M − 1, a) with the

following properties:

• ‖f − f ′‖2L2(µd)
≥ (M − 1)a2 for all f, f ′ ∈ F̃(M − 1, a) with f 6= f ′

• log |F̃(M − 1, a)| ≥ (M − 1)/8

4. If M − 1 ≥ 4k, then there exists a set F̃(k, a) ⊂ F(k, a) with the following
properties:

• ‖f − f ′‖2L2(µd)
≥ ka2 for all f, f ′ ∈ F̃(k, a) with f 6= f ′

• log |F̃(k, a)| ≥ 0.233 k
(
log M−1

k + 1
)

4.2. Proof of Theorem 1

Let us decompose the squared L2 error as

‖f − f̂RWT‖2L2(µd)
=
∑

s

I{s∈A(λ)}(θs − θ̂s)
2 +

∑

s

I{s∈A(λ)c}θ
2
s ≡ T1 + T2.

We start by observing that any s ∈ A(λ) necessarily satisfies Ŵs ≡ θ̂2s ≥ λd,n,

while for any s ∈ A(λ)c there exists some 1 ≤ k ≤ d such that Ŵπk(s) < λk,n,
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which implies, in turn, that θ̂2πk(s)t
< λk,n for all t ∈ B

d−k and, in particular,

that θ̂2s < λk,n ≤ λ1,n. Therefore, defining the sets

A1 = {s ∈ B
d : θ̂2s ≥ λd,n} and A2 = {s ∈ B

d : θ̂2s < λ1,n},
we can bound T1 and T2 as

T1 ≤
∑

s

I{s∈A1}(θs − θ̂s)
2

and
T2 ≤

∑

s

I{s∈A2}θ
2
s .

Further, defining

B =
{
s ∈ B

d : θ2s < λd,n/2
}

and S =
{
s ∈ B

d : θ2s ≥ 3λ1,n/2
}
,

we can write

T1 ≤
∑

s

I{s∈A1∩B}(θs − θ̂s)
2 +

∑

s

I{s∈A1∩Bc}(θs − θ̂s)
2 ≡ T11 + T12,

and

T2 ≤
∑

s

I{s∈A2∩S}θ
2
s +

∑

s

I{s∈A2∩Sc}θ
2
s ≡ T21 + T22.

Applying (6) and (11), we get

ET12 ≤
∑

s∈Bc

E(θs − θ̂s)
2

≤ 1

Mn

∣∣{s : θ2s ≥ λd,n/2
}∣∣

≤ 1

Mn

(
2

Mλd,n

)p/2

=
1

Mn

(
2n

Mαd

)p/2

=
1

M
np/2−1

(
2

2dαd

)p/2

︸ ︷︷ ︸
≤1

≤ 1

M
n−2r/(2r+1). (33)

To bound T22 we apply (8):

ET22 ≤
∑

s∈Bd

I{θ2
s<3α1/2n}θ

2
s ≤ C

M

(
Mα1

n

)2r/(2r+1)

≤ C

M

(
logM

n

)2r/(2r+1)

. (34)
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In order to deal with the large-deviation terms T11 and T21, we will need some
moment and concentration bounds which are listed in Section 4.1. First, using
Cauchy–Schwarz, we get

ET11 ≤
∑

s

√
E(θs − θ̂s)4 · P(s ∈ A1 ∩B) (35)

To estimate the fourth moment in (35), we apply the bound (26) to Ui =
ϕs(Xi)− θs, 1 ≤ i ≤ n, and m = 4. Then

EU2
i = E(ϕs(Xi)− θs)

2 =
1

M
− θ2s ≤ 1

M

and

E|U1|4 ≤ 1

M2
,

so that

E(θs − θ̂s)
4 ≤ c4

(
1

M2n2
+

1

M2n3

)
≤ 2c4

M2n2
.

To handle the probability that s ∈ A1 ∩B, we first estimate

|θ̂s − θs|2 = (θs − θ̂s)
2 = θ2s − 2θsθ̂s + θ̂2s ≥ θ2s − 2|θsθ̂s|+ θ̂2s = (|θs| − |θ̂s|)2.

From this we conclude that θ̂2s ≥ λd,n and θ2s < λd,n/2 together imply

|θ̂s − θs| ≥
1

5

√
λd,n =

1

5

√
αd

n

(the factor of 1/5 is simply a lower bound on 1− 1/
√
2). Therefore,

P(s ∈ A1 ∩B) ≤ P

(
|θ̂s − θs| ≥

1

5

√
αd

n

)
.

Applying Hoeffding’s inequality (27) to Ui = ϕs(Xi) − θs, 1 ≤ i ≤ n, with
b = 2/

√
M and using the fact that αd ≥ C1d/M , we get

P

(
|θ̂s − θs| ≥

1

5

√
αd

n

)
≤ 2 exp (−Cd) ≤ 2

MC
.

for some absolute constant C > 0. If C1 is chosen so that C ≥ 2, then we will
have

ET11 ≤ 2
√
c4

Mn
. (36)

Finally,

ET21 ≤
∑

s

P(s ∈ A2 ∩ S)θ2s ≤
∑

s∈S

P(s ∈ A2)θ
2
s .
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Using (the one-sided version of) Hoeffding’s inequality,

P(s ∈ A2) = P

(
θ̂s <

√
λ1,n

)

= P

(
θ̂s − θs <

√
λ1,n − θs

)

≤ exp

[
−C′n

(
θs −

√
λ1,n

)2]
(37)

for some absolute constant C′ > 0. By definition of the set S,

S ⊆
∞⋃

ℓ=2

{
s ∈ B

d :
3(ℓ− 1)λ1,n

2
≤ θ2s <

3ℓλ1,n

2

}
. (38)

Therefore, combining (37) and (38) and using (6), we get

ET21 ≤
∑

s∈S

exp

[
−C′n

(
θs −

√
λ1,n

)2]
θ2s

≤ 3λ1,n

2

∞∑

ℓ=2

exp (−C′′λ1,nnℓ) · ℓ
∣∣∣∣
{
s ∈ B

d :
3(ℓ− 1)λ1,n

2
≤ θ2s <

3ℓλ1,n

2

}∣∣∣∣

≤ C

M

(
logM

n

)2r/(2r+1) ∞∑

ℓ=2

1

M ℓ
ℓ2r/(2r+1)

≤ C

M

(
logM

n

)2r/(2r+1)

. (39)

Putting together Eqs. (33), (34), (36), and (39), we get the bound (20). To get
(21), we use much cruder bounds:

ET1 ≤
∑

s

E[(θs − θ̂s)
2] ≤ M · CM

n
=

C

n
;

ET22 ≤
∑

s

I{θ2
s<3α1/2n}θ

2
s ≤ M · C logM

Mn
=

C logM

n
;

ET21 ≤
∑

s∈S

θ2s ≤ |S|
M

≤ 1

M

(
2

3Mλ1,n

)p/2

≤ C

M

(
n

logM

)p/2

≤ Cnp/2−1

Mn
≤ C

n
,

where in the last bound we have used the assumption that n ≥ M2r/(2r+1)

(the bounds on ET1 and ET22 hold for all values of n). Combining these three
bounds, we get (21).

4.3. Proof of Theorem 2

The proof of the first part uses a popular information-theoretic technique due
to Yang and Barron [39, 40]; we only outline the main steps. The first step is to
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lower-bound the minimax risk by the minimum probability of error in a multiple
hypothesis test. Let F0 be an arbitrary subset of F+,1

d (p). Then

inf
f̂

sup
f∈F+,1

d
(p)

Ef‖f̂ − f‖2L2(µd)
≥ inf

f̂
sup
f∈F0

Ef‖f̂ − f‖2L2(µd)
.

In particular, suppose that the set F0 is finite, F0 = {f (1), . . . , f (N)}, and δ-
separated in L2(µd), i.e.,

‖f (i) − f (j)‖L2(µd) ≥ δ, ∀i, j ∈ {1, . . . , N}; i 6= j (40)

Then a standard argument [40] gives

inf
f̂

sup
f∈F0

Ef‖f̂ − f‖2L2(µd)
≥ δ2

4
min
f̃

P

(
f̃ 6= f (Z)

)
, (41)

where the random variable Z is uniformly distributed over the set {1, . . . , N},
and the minimum is over all estimators f̃ based on Xn that take values in the
packing set {f (1), . . . , f (N)}. Applying Fano’s inequality [8], we can write

min
f̃

P

(
f̃ 6= f (Z)

)
≥ 1− I(Z;Xn) + log 2

logN
, (42)

where I(Z;Xn) is the Shannon mutual information [8] between the random in-

dex Z ∈ {1, . . . , N} and the observationsX1, . . . , Xn
i.i.d.∼ f (Z). In this particular

case, we have

I(Z;Xn) =
n

N

N∑

k=1

∑

x∈Bd

f (k)(x) log
f (k)(x)

N−1
∑N

ℓ=1 f
(ℓ)(x)

=
n

N

N∑

k=1

D(f (k)‖f̄), (43)

where f̄ denotes the mixture density N−1
∑N

ℓ=1 f
(ℓ). The next step consists in

upper-bounding this mutual information. To that end, suppose that there exists
some ∆ > 0, such that

D(f‖f ′) ≤ ∆, ∀f, f ′ ∈ F0. (44)

Using convexity of the relative entropy and (44), for every k ∈ {1, . . . , N} we
have

D(f (k)‖f̄) ≤ 1

N

N∑

ℓ=1

D(f (k)‖f (ℓ)) ≤ ∆.

Substituting this into (43), we see that I(Z;Xn) ≤ n∆. Combining this bound
with (41), we get

inf
f̂

sup
f∈F0

Ef‖f̂ − f‖2L2(µd)
≥ δ2

4

[
1− n∆+ log 2

logN

]
(45)
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In particular, let k ∈ {1, . . . ,M − 1} and a > 0 satisfy the conditions (31) of
Lemma 3, as well as

a2 ≤ C

Mnk
log |F̃(k, a)| (46)

for a suitable constant C > 0, where F̃(k, a) are the subsets of F+,1
d (p) described

in Lemma 3. If we let F0 = F̃(k, a), then, by Lemma 3, (44) holds with ∆ =
1
2n log |F̃(k,a)|

4 . This, in conjunction with (45), gives

inf
f̂

sup
f∈F0

Ef‖f̂ − f‖2L2(µd)
≥ Cδ2(k, a), (47)

where
δ(k, a) , min

{
‖f − f ′‖L2(µd) : f, f

′ ∈ F̃(k, a); f 6= f ′
}

is the minimal L2(µd)-separation between any two distinct elements of F̃(k, a).
We can now consider the following cases:

1. Suppose that M2/p ≤ n. Then we take k = M − 1 and a2 = C
Mn . Because

in this case

k ∨ (k + 1)1/p = M1/p ≤
√
n ≤ C

a
√
M

,

and log |F̃(M − 1, a)| ≥ (M − 1)/8, the conditions (31) and (46) will be
satisfied for a suitable choice of C. Moreover, by Lemma 3, we have

δ2(k, a) = δ2(M − 1, a) ≥ (M − 1)a2 ≥ C

n
.

Substituting this into (45), we obtain (23).

2. Suppose that n ≤ M2(1−ǫ)/p for some ǫ ∈ (0, 1). Let k = C
(

n
logM

)p/2

and a = C′
(

logM
Mn

)1/2
. Then

k ∨ (k + 1)1/p ≤ (2k)1/p

= (2C)1/p
(

n

logM

)1/2

=
(2C)1/pC′

a
√
M

.

If we choose C and C′ in such a way that (2C)1/pC′ ≤ 1/2, then (31) will
be satisfied. Moreover, we must have

M − 1 ≥ 4k = 4C

(
n

logM

)p/2

. (48)
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With our assumptions on n and M , this will hold for all sufficiently
large M . Next, we check that (46) is satisfied. Assuming that (48) holds,
Lemma 3 implies that

1

Mnk
log |F̃(k, a)| ≥ C

Mn
log

M − 1

k

≥ C

Mn
log

(M − 1)2/p logM

n
.

Again, using our assumption on n and M , as well as the fact that a2 =
C logM

Mn , we can guarantee that (46) holds, with an appropriate choice of
C = C(p, ǫ). By Lemma 3, we will have

δ2(k, a) ≥ ka2 ≥ C

M

(
logM

n

)1− p
2

=
C

M

(
logM

n

) 2r
2r+1

,

and we obtain (22).

4.4. Proof of Theorem 3

The time complexity of the algorithm is determined by the number of recursive
calls made to RecursiveWalsh. Recall that, for each 1 ≤ k ≤ d, a recursive
call to RecursiveWalsh is made for every u ∈ B

k for which Ŵu ≥ λk,n. Let us
say that a recursive call to RecursiveWalsh(u,λ) is correct if Wu ≥ λk,n/2.
We will show that, with high probability, only the correct recursive calls are
made at every 1 ≤ k ≤ d. The probability of making at least one incorrect
recursive call is given by

P




d⋃

k=1

⋃

u∈Bk

{Ŵu ≥ λk,n,Wu < λk,n/2}




≤
d∑

k=1

∑

u∈Bk

P

(
Ŵu ≥ λk,n,Wu < λk,n/2

)
.

For a given u ∈ B
k, let

f̂u ,
∑

v∈Bd−k

θ̂uvϕv.

Then Ŵu ≥ λk,n and Wu < λk,n/2 together imply that

‖fu − f̂u‖2L2(µd−k)
=

∑

v∈Bd−k

(θ̂uv − θuv)
2

= Ŵu − 2
∑

v∈Bd−k

θ̂uvθuv +Wu
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≥ Ŵu − 2

√
ŴuWu +Wu

=

(√
Ŵu −

√
Wu

)2

≥
(
1− 1√

2

)2

λk,n

≥ λk,n/25.

Now, as shown in Appendix B, for each u ∈ B
k, the norm ‖fu− f̂u‖L2(µd−k) can

be expressed as a supremum of an empirical process over a suitable function
class, to which we can then apply Talagrand’s bound (29) with L = 1/

√
2k,

v = 1/2k, and H = 1/
√
2kn. Hence,

P(Ŵu ≥ λk,n,Wu < λk,n/2) ≤ P(‖fu − f̂u‖2L2(µd−k)
≥
√
λk,n/5)

≤ exp
{
−nC1(2

ka2k,n ∧ 2k/2ak,n)
}
,

where for each 1 ≤ k ≤ d,

ak,n =
1

5

√
αk

n
−
√

C2
2

2kn
.

Here, C1 and C2 are the absolute constants in Talagrand’s bound (29). Given
δ > 0, if we choose αk according to (24), then

P(Ŵu ≥ λk,n,Wu < λk,n/2) ≤
δ

d2k
, ∀u ∈ B

k.

Summing over 1 ≤ k ≤ d and u ∈ B
k, we see that, with probability at least

1− δ, only the correct recursive calls will be made.
Next, we give an upper bound on the number of the correct recursive calls.

For each 1 ≤ k ≤ d, Wu ≥ λk,n/2 implies that there exists at least one v ∈ B
d−k

such that θ2uv ≥ λk,n/2. Since for every 1 ≤ k ≤ d each θs contributes to exactly
one Wu, we have by the pigeonhole principle that

∣∣{u ∈ B
k : Wu ≥ λk,n/2

}∣∣ ≤
∣∣{s ∈ B

d : θ2s ≥ λk,n/2
}∣∣

≤
(

2

Mλk,n

)p/2

,

where in the second line we used (6). Hence, the number of the correct recursive
calls in Algorithm 1 is bounded by

N =

d∑

k=1

(
2

Mλk,n

)p/2

=

(
2n

M

)p/2 d∑

k=1

α
−p/2
k .

At each recursive call, we compute an estimate of the corresponding Wu0 and
Wu1, which requires O(n2d) operations. Therefore, with probability at least
1− δ, the time complexity of the algorithm is given by (25).
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5. Simulations

Although an extensive empirical evaluation is outside the scope of this paper,
we have implemented the proposed estimator, and now present some simulation
results to demonstrate its small-sample performance on synthetic data in low-
and high-dimensional regimes. In the low-dimensional regime, it is feasible to
obtain the “ground truth” by exhaustively computing all the 2d Walsh coeffi-
cients and to compare it with our estimate. In the high-dimensional regime, our
comparison is based on the density values at randomly generated samples. Addi-
tionally, we present a number of computational strategies that greatly enhance
computational efficiency in the high-dimensional regime.

5.1. Low-dimensional simulations

We generated synthetic observations from a mixture density f on a 15-
dimensional binary hypercube. The mixture has 10 components, where each
component is a product density with 12 randomly chosen covariates having
Bernoulli(1/2) distributions, and the other three having Bernoulli(0.9) distribu-
tions. For d = 15, it is still feasible to quickly compute the ground truth, con-
sisting of 32768 values of f and its Walsh coefficients. These values are shown
in Fig. 1 (left). As can be seen from the coefficient profile in the bottom of the
figure, this density is clearly sparse. Fig. 1 also shows the estimated probabilities
and the Walsh coefficients for sample sizes n = 5000 (middle) and n = 10000
(right).

To study the trade-off between MSE and complexity, we implemented three
different thresholding schemes: (1) constant, λk,n = 2/(2dn), (2) logarithmic,
λk,n = 2 log(d − k + 2)/(2dn), and (3) linear, λk,n = 2(d − k + 1)/(2dn). The
thresholds at k = d are set to twice the variance of the empirical estimate of
any coefficient whose value is zero; this forces the estimator to reject empirical
coefficients whose values cannot be reliably distinguished from zero. Occasion-
ally, spurious coefficients get retained, as can be seen in Fig. 1 (middle) for the

estimate for n = 5000. Fig 2 shows the performance of f̂RWT. Fig. 2(a) is a
plot of MSE vs. sample size. In agreement with the theory, MSE is the small-
est for the constant thresholding scheme [which is simply an efficient recursive
implementation of a term-by-term thresholding estimator with λn ∼ 1/Mn],
and then it increases for the logarithmic and for the linear schemes. Fig. 2(b,c)
shows the running time (in seconds) and the number of recursive calls made to
RecursiveWalsh vs. sample size. The number of recursive calls is a platform-
independent way of gauging the computational complexity of the algorithm,
although it should be kept in mind that each recursive call has O(n2d) over-
head. Also, the number of recursive calls depends on whether a binary or N -ary
tree is utilized. The N -ary tree scheme is explained in detail below, in Section
5.2. We have used N = 256 in the simulations, as this setting leads to much
reduced computations times vs. a binary tree.
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Ground truth (f)

f̂RWT, n = 500

f̂RWT, n = 10000

Fig 1. Ground truth (top) and estimated density for n = 5000 (middle) and n = 10000
(bottom) with constant thresholding. Left column: true and estimated probabilities (clipped at
zero and renormalized) arranged in lexicographic order. Right column: absolute values of true
and estimated Walsh coefficients arranged in lexicographic order. For the estimated densities,
the coefficient plots also show the threshold level (dotted line) and absolute values of the
rejected coefficients (lighter color).



Recursive density estimation on the binary hypercube 845

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

 !

Sample size

M
S

E
/2

D

linear

log

constant

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

20

Sample size

C
P

U
 t

im
e
 (

s
e
c
o
n
d
s
)

linear

log

constant

(a) (b)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

20

Sample size

N
u
m

b
e
r 

o
f 

re
c
u
rs

iv
e
 c

a
lls

linear

log

constant

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

Sample size

N
u
m

b
e
r 

o
f 

c
o
e
ff

ic
ie

n
ts

linear

log

constant

(c) (d)

Fig 2. Small-sample performance of f̂RWT in estimating f with three different thresholding
schemes: (a) MSE; (b) running time (in seconds); (c) number of recursive calls; (d) number
of coefficients retained by the algorithm. All results are averaged over five independent runs
for each sample size (the error bars show the standard deviations).

The running time increases polynomially with n, and is the largest for the
constant scheme, followed by the logarithmic and the linear schemes. We see
that, while the MSE of the logarithmic scheme is fairly close to that of the con-
stant scheme, its complexity is considerably lower, in terms of both the number
of recursive calls and the running time. In all three cases, the number of re-
cursive calls decreases with n due to the fact that weight estimates become
increasingly accurate with n, which causes the expected number of false discov-
eries (i.e., making a recursive call at an internal node of the tree only to reject
its descendants later) to decrease. Finally, Fig. 2(d) shows the number of coef-
ficients retained in the estimate. This number grows with n as a consequence
of the fact that the threshold decreases with n, while the number of accurately
estimated coefficients increases.

Additionally, we have performed comparisons between our proposed method
and two alternatives: the Ott and Kronmal thresholding estimator [28]; and
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Fig 3. Comparison of f̂RWT with the Ott and Kronmal (O&K) estimator [28] and with an

exhaustive search for the best MSE. The plots show: (a) f̂RWT MSE; (b) f̂RWT times; (c)
O&K MSE; (d) O&K times; (e) Exhaustive search MSE; (f) Exhaustive search times. All
results are averaged over ten independent runs for each sample size (the error bars show the
standard deviations).

an exhaustive search over all possible thresholds for the best MSE. As seen in
Fig. 3, our thresholding estimator provides close to the best possible MSE with
far lower computational cost than the alternatives.
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5.2. High-dimensional simulations

Although our algorithm has been implemented in MATLAB and therefore can be
much further optimized for speed, we have devised several strategies for travers-
ing the coefficient tree efficiently and circumventing computer-architecture re-
lated challenges for high-dimensional problems. We describe those strategies and
demonstrate them using the same experimental set-up as above, but with much
larger dimensionality.

• Direct computation of the coefficients near the leaves of the tree.

As discussed in 2.3, the direct estimator (15) for Ŵu becomes computa-
tionally more efficient than the indirect estimator (14) for k ≥ d− log(nd).
Hence, near the bottom of the tree, instead of continuing to traverse the
remaining levels based on the weights Ŵu, we simply compute all coef-
ficients θ̂u at the leaves of the corresponding subtree. This is always the
most sensible course of action, given the fact that (15) requires the θ̂u
anyway.

• N-ary tree. The number of levels to be traversed can be reduced by a
factor of logN by considering an N -ary, rather than a binary, tree, at the
cost of an increased number (N) of branches per level. We have found
this trade-off to be worthwhile in many cases due to the possibility of
vectorizing the computation of Ŵu for all the branches in each level and
taking advantage of optimized routines for matrix algebra.

• Open-node queue. While our algorithm lends itself to recursive imple-
mentation, many computer/operating system architectures impose a hard
limit on the recursion level due to stack-size restrictions (recursive func-
tion calls typically use stack memory). This becomes a problem when the
dimension d is high and the tree is accordingly very deep. We have circum-
vented the issue by implementing a queue system where the so-called open
nodes (the tree branches awaiting processing) are sorted according to some
criterion. This amounts to transferring the “stack” to user memory, where
the only limit on the number of nodes is the free memory size. Possible
criteria for sorting the nodes include depth-first, breadth-first and high-
est weight Ŵu. We have used the latter criterion in our high-dimensional
simulations.

• Pruning high-frequency Walsh coefficients. For a given Walsh func-
tion ϕs, the Hamming weight (i.e., number of “on” bits) of s is a measure
of frequency; higher-frequency coefficients have a higher proportion of ones
in s. Because in many problems it is appropriate to assume that the signals
of interest have low frequency, we have included the ability to impose a
limit on the order of the Walsh coefficients by ignoring any branches with
more than m “on” bits. The choice of m depends on the problem context
and on computational resources.

• Weight-adaptive thresholding. For some datasets, significant gains can
be achieved by varying the thresholds λk,n in a data-driven manner at
each level of the tree; as an alternative to the preset schedules αk in
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(16), it is possible to take the weights Ŵu for each branch at level k,

and then expand only the top q branches with the highest Ŵu. This is
equivalent to making αk not only level–dependent, but also dependent on
the sequence of weights at level k. The value of q controls the trade-off
between computation speed and accuracy.

The first three strategies are important modifications to a naive implementation
of our algorithm, but in no way impact the MSE. The latter two techniques,
however, provide an approximation to the estimator proposed and analyzed in
this paper; for appropriate values of m and q, they yield significant computa-
tional savings for a modest increase in MSE.

In Figure 4, we present plots of the MSE and computation time for simu-
lated data with d = 50 and multiple sample sizes (n), using the aforementioned
optimizations. As before, the data were generated from a Bernoulli mixture den-
sity, similar to the one used for Figure 2 but using ten 50-dimensional mixture
components, where each component has 47 covariates with a Bernoulli(1/2) dis-
tribution and three covariates with a Bernoulli(0.9) distribution. The results
are averaged over ten independent runs. We have limited the number of “on”
bits in the Walsh binary strings to three and eight (i.e., m = 3 and m = 8

respectively), expanded only the 16 subtrees with highest Ŵu at each level (i.e.,
q = 16) and used an N -ary tree with N = 256. The subtrees in the open-node

queue were sorted by decreasing Ŵu. Even in this high-dimensional regime, we
achieve steadily decreasing MSE as a function of n, as well as approximately lin-
ear scaling in computation time. It is also apparent that setting m = 3 achieves
essentially the same MSE but with an order-of-magnitude reduction in the com-
putational effort.

6. Summary and conclusion

We have presented a computationally efficient adaptive procedure for estimating
a multivariate binary density in the “big d, small n” regime, which essentially
forces a “nonparametric” approach. Many problems of current practical inter-
est that involve multivariate binary data seem to pertain to populations with
certain “constellation” effects among the d covariates. We have formalized this
observation by focusing on a class of densities whose Walsh representations ex-
hibit a certain power-law behavior. For moderate sample sizes, our estimator
attains nearly minimax rates of MSE convergence over this class and runs in
polynomial time with high probability. Moreover, the complexity improves for
sparser densities. We have also reported the results of simulations, which show
that our implemented estimator behaves in accordance with the theory even
in the small-sample regime. In the future, we plan to test our method on real
high-dimensional data sets. Another promising future direction is to investigate
the relationship between various smoothness classes of densities on the binary
hypercube defined in terms of their Fourier–Walsh representations and proba-
bility densities of binary Markov random fields [23]. Such a density will have



Recursive density estimation on the binary hypercube 849

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 !"#$

 !"#%

 !"#&

 !"

 !'#(

 !'#$

 !'#%

 !'#&

 !'

Sample size

)
*
+
 
,
-
.

m=3

m=8

(a)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

Sample size

C
P

U
 t

im
e
 (

s
e
c
o
n
d
s
)

(b)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Sample size

C
P

U
 t

im
e
 (

s
e
c
o
n
d
s
)

(c)

Fig 4. Performance for a large–dimensional problem (d = 50): (a) Log–MSE; (b)–(c) running
time (in seconds) for m = 3 and m = 8, respectively. All results are averaged over ten
independent runs for each sample size (the error bars show the standard deviations).
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the form

f(x) =
1

Z

d∏

i=1

e−hi(x
(i),xNi),

where for each i ∈ {1, . . . , d} we have a neighborhood Ni ⊆ {1, . . . , d}\{i},
the corresponding “local energy” function hi(·) depends only on x(i) and on
xNi = (x(j) : j ∈ Ni), and Z is the normalization constant known as the
partition function. It is reasonable to assume that if most of the neighborhoods
Ni are small, then most of the Fourier–Walsh coefficients of f will be small as
well. Assuming specific bounds on the decay of the Fourier–Walsh coefficients
of f amounts to assuming something about the decay of correlations in the
Markov random field governed by f . It remains to be seen whether sparsity
classes of the type investigated in this paper can serve as a good model of
binary Markov random fields with polynomial decay of correlations, or whether
one would need to introduce a binary analog of something like (weak) Besov
bodies [3] in order to account for localization both in space (small number of
i’s with large neighborhoods) and in frequency (small number of large Fourier–
Walsh coefficients). In either case, it would be worthwhile to investigate the
use of recursive thresholding estimators of the type introduced in this paper to
estimate Markov graphical models on the binary hypercube.

Appendix A: Auxiliary proofs

A.1. Proof of Lemma 1

Using the appropriate definitions, as well as the factorization property (3) of
the Walsh functions, we have

Ef

{
ϕu(πk(X))I{σk(X)=y}

}
=
∑

x∈Bd

f(x)ϕu(πk(x))I{σk(x)=y}

=
∑

z∈Bk

f(zy)ϕu(z)

=
∑

z∈Bk

( ∑

(v,w)∈Bk×Bd−k

θvwϕvw(zy)

)
ϕu(z)

=
∑

z∈Bk

( ∑

(v,w)∈Bk×Bd−k

θvwϕv(z)ϕw(y)

)
ϕu(z)

=
∑

(v,w)∈Bk×Bd−k

θvwϕw(y)〈ϕv, ϕu〉

=
∑

w∈Bd−k

θuwϕw(y)

≡ fu(y).
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Similarly,

Wu =
∑

y∈Bd−k

f2
u(y)

=
∑

y∈Bd−k

E
{
ϕu(πk(X))I{σk(X)=y}

}
fu(y)

=
∑

x∈Bd

∑

y∈Bd−k

f(x)ϕu(πk(x))fu(y)I{σj(x)=y}

=
∑

x∈Bd

f(x)ϕu(πk(x))fu(σk(x))

≡ Ef {ϕu(πk(X))fu(σk(X))} ,

and the lemma is proved.

A.2. Proof of Lemma 2

We begin by showing that, for any 1 ≤ k < d and any u ∈ B
k,

Ŵu = Ŵu0 + Ŵu1. (A.1)

From the factorization properties of the Walsh functions, we have

Ŵu0 =
1

n2

n∑

i=1

n∑

j=1

ϕu0(πk+1(Xi))ϕu0(πk+1)Xj))I{σk+1(Xi)=σk+1(Xj)}

=
1

2n2

n∑

i=1

n∑

j=1

ϕu(πk(Xi))ϕu(πk(Xj))I{σk+1(Xi)=σk+1(Xj)}

and

Ŵu1 =
1

n2

n∑

i=1

n∑

j=1

ϕu1(πk+1(Xi))ϕu1(πk+1)Xj))I{σk+1(Xi)=σk+1(Xj)}

=
1

2n2

n∑

i=1

n∑

j=1

ϕu(πk(Xi))ϕu(πk(Xj))(−1)X
(k+1)
i

× (−1)X
(k+1)
l I{σk+1(Xi)=σk+1(Xj)}.

Adding these two expressions and using the fact that

1 + (−1)X
(k+1)
i (−1)X

(k+1)
l = 2I{X(k+1)

i
=X

(k+1)
j

},

we get

Ŵu0 + Ŵu1 =
1

n2

n∑

i=1

n∑

j=1

ϕu(πk(Xi))ϕu(πk(Xj))

× I{σk+1(Xi)=σk+1(Xj),X
(k+1)
i

=X
(k+1)
j

}
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=
1

n2

n∑

i=1

n∑

j=1

ϕu(πk(Xi))ϕu(πk(Xj))I{σk(Xi)=σk(Xj)}

≡ Ŵu.

This proves (A.1). By induction, we have

Ŵu =
∑

s∈L(u)

Ŵs,

where L(u) denotes the set of all leaves descending from u. Since L(u) = {uv ∈
B
d : v ∈ B

d−k} and since

Ŵs =
1

n2

n∑

i=1

n∑

j=1

ϕs(Xi)ϕs(Xj) ≡ θ̂2s ,

the lemma is proved.

A.3. Proof of Lemma 3

We first consider Item 1. By construction, for any f ∈ F(k, a) we have

f(x) ≤ 1

M
+

M∑

j=2

|θsj (f)| · ‖ϕsj‖∞ =
1

M
+

ka√
M

and

f(x) ≥ 1

M
−

M∑

j=2

|θsj (f)| · ‖ϕsj‖∞ =
1

M
− ka√

M

Thus, if k and a satisfy the first condition in (31), then all f ∈ F(k, a) will be
bounded between 1/2M and 3/2M . To see that the second condition in (31)
implies F(k, a) ⊂ Fd(p), observe that in that case the Fourier–Walsh coefficients
of f ordered according to decreasing magnitude are

|θ(m)(f)| =





1√
M
, m = 1

a, m = 2, . . . , k + 1

0, m = k + 2, . . . ,M

from which it follows that f ∈ Fd(p). Finally, any f ∈ F(k, a) is also a proba-
bility density because it is nonnegative and because

∑

x∈Bd

f(x) = 〈f, 1〉 =
√
M〈f, ϕ0〉 =

√
Mθ0(f) = 1.

This shows that F(k, a) ⊂ F+,1
d (p), as claimed.
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We now move on to Item 2. To prove that the bound (32) holds for any two
densities f, f ′ ∈ F(k, a), we use the fact that the Kullback–Leibler divergence
D(f‖f ′) is bounded above by the chi-square distance:

D(f‖f ′) ≤ χ2(f, f ′) ,
∑

x∈Bd

|f(x)− f ′(x)|2
f ′(x)

. (A.2)

For any x ∈ B
d and f, f ′ ∈ F(k, a), we have

|f(x)− f ′(x)|2 =

∣∣∣∣∣∣

M∑

j=1

(
θsj (f)− θsj (f

′)
)
ϕsj (x)

∣∣∣∣∣∣

2

≤ 2ka2

M
.

Using this together with the fact that f, f ′ ≥ 1/2M in (A.2), we arrive at (32).
For Item 3, we need the following well-known combinatorial result from cod-

ing theory, the so-called Varshamov–Gilbert bound (see, e.g., Lemma 4.7 in [26]):
For any m ∈ N, there exists a subset Km of Bm with the following properties:

• for any u, v ∈ Km with u 6= v,

m∑

i=1

I{u(i) 6=v(i)} ≥ m/4

• log |Km| ≥ m/8

There is a one-to-one correspondence between F(M − 1, a) and the binary hy-
percube B

M−1, under which each f ∈ F(M − 1, a) is mapped to uf ∈ B
M−1

with

u
(j)
f = I{θsj+1

(f)=a}, j = 1, . . . ,M − 1.

Given the Varshamov–Gilbert set KM−1 ⊂ B
M−1, let

F̃(M − 1, a) ,
{
f ∈ F(M − 1, a) : uf ∈ KM−1

}
.

Then for any two f, f ′ ∈ F̃(M − 1, a), we have

‖f − f ′‖2L2(µd)
= 4a2

M−1∑

j=1

I{u(j)
f

6=u
(j)

f′
} ≥ (M − 1)a2, (A.3)

and log |F(M − 1, a)| = log |KM−1| ≥ (M − 1)/8. This takes care of Item 3.
Finally, we consider Item 4. To that end, we will need a refinement of the

Varshamov–Gilbert bound due to Reynaud-Bouret [29], which for our purposes
can be stated as follows (see Lemma 4.10 in [26]): For any m, k ∈ N with
m ≥ k, let B

m
k denote the subset of B

m that consists of all u ∈ B
m with∑m

i=1 I{u(i)=1} = k. If m ≥ 4k, then there exists a set Km,k ⊂ B
m
k with the

following properties:
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• for any u, v ∈ Km,k with u 6= v,

m∑

i=1

I{u(i) 6=v(i)} ≥ k/2

• log |Km,k| ≥ 0.233k log(m/k)

Now assume that M − 1 ≥ 4k and consider the corresponding set KM−1,k. To
each u ∈ KM−1,k we can associate 2k elements of F(M − 1, k), say {fu,v :
v ∈ B

k}, such that u determines the locations of the k nonzero Walsh–Fourier
coefficients taking values in {−a, a}, while the choice of v ∈ B

k determines the
signs of these coefficients. Thus, let

F̃(k, a) ,
{
fu,v : u ∈ Km,k, v ∈ B

k
}
.

Consider now any two fu,v, fu′,v′ ∈ F̃(k, a), such that (u, v) 6= (u′, v′). For any
j ∈ 1, . . . ,M − 1 such that u(j) 6= u′(j), either u(j) = 0 or u′(j) = 0. Suppose the
latter. Then |θsj+1(fu,v)| = a, while |θsj+1 (fu′,v′)| = 0. Consequently,

‖fu,v − fu′,v′‖2L2(µd)
= a2

M−1∑

j=1

I{u(j) 6=u′(j)} ≥ ka2

and

log |F̃(k, a)| = k log 2 + log |KM−1,k|

≥ k log 2 + 0.233k log
M − 1

k

≥ 0.233k

(
log

M − 1

k
+ 1

)
.

This proves Item 4.

Appendix B: Empirical process representation

In this appendix, we show that for each u ∈ B
k, the norm ‖fu− f̂u‖L2(µd−k) can

be expressed as a supremum of an empirical process over a suitable function
class; this was a key element of the proof of Theorem 3.

First, we show that ‖fu−f̂u‖L2(µd−k) can be expressed as an empirical process
of the form (30) indexed by a suitable function class. To this end, define

F ,




∑

v∈Bd−k

ξ(v)ϕuv : ξ ∈ L2(µd−k), ‖ξ‖L2(µd−k) ≤ 1



 .

Then
‖fu − f̂u‖L2(µd−k) = sup

g∈F
νn(g). (B.1)
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Indeed, let X1, . . . , Xn be n i.i.d. copies of X ∼ f . Then

νn(g) =
1

n

n∑

i=1

g(Xi)− Eg(X)

=
1

n

n∑

i=1

∑

v∈Bd−k

ξ(v)ϕuv(Xi)−
∑

v∈Bd−k

ξ(v)θuv

=
∑

v∈Bd−k

(θ̂uv − θuv)ξ(v)

≤ ‖ξ‖L2(µd−k)‖fu − f̂u‖L2(µd−k),

where in the last line we used Cauchy–Schwarz. This proves (B.1). Next, we
determine the constants L, v and H that are needed to apply Talagrand’s bound
(29). For any ξ ∈ L2(µd−k) with unit norm, we have

sup
x∈Bd

∣∣∣∣∣∣
∑

v∈Bd−k

ξ(v)ϕuv(x)

∣∣∣∣∣∣
≤ ‖ξ‖L2(µd−k) sup

x∈Bd

√ ∑

v∈Bd−k

ϕ2
uv(x)

≤
√
2d−k2−d

= 2−k/2.

Hence, any g ∈ F is bounded by L ≡ 2−k/2. From this, we also get the bound
Var g ≤ v with v = L2 = 2−k. Finally, to bound the Rademacher average (28),
we note that F is the unit ball in the RKHS induced by the kernel

Ku(x, y) ,
∑

v∈Bd−k

ϕuv(x)ϕuv(y), ∀x, y ∈ B
d.

Then standard arguments (see, e.g., Section 2.4.2 in [27]) lead to the bound

E

{
sup
g∈F

n∑

i=1

εig(Ui)

}
≤
√

n

2k
,

which gives H = 1/
√
2kn.
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