
Electronic Journal of Statistics

Vol. 7 (2013) 697–716
ISSN: 1935-7524
DOI: 10.1214/13-EJS784

Marginals of multivariate Gibbs

distributions with applications in

Bayesian species sampling

Annalisa Cerquetti∗

Department of Methods and Models for Economics, Territory and Finance

University of Rome “La Sapienza”

Via del Castro Laurenziano, 9 00161 Rome, Italy

e-mail: annalisa.cerquetti@gmail.com

Abstract: Gibbs partition models are the largest class of infinite exchange-
able partitions of the positive integers generalizing the product form of the
probability function of the two-parameter Poisson-Dirichlet family. Here we
call into question the current approach to Bayesian nonparametric estima-
tion in species sampling problems under Gibbs priors, which incorrectly
relies on treating exchangeable partition probability functions (EPPFs) as
multivariate distributions on compositions of the positive integers. We show
that once those multivariate distributions are correctly derived, results for
corresponding sampling formulas can be obtained, generalized and some-
times fixed, working with marginals and a known result on falling factorial
moments of a sum of non independent indicators. We provide an application
of our findings to a recently proposed Bayesian nonparametric estimation
under Gibbs priors of the predictive probability to observe a species already
observed a certain number of times.
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1. Introduction

Exchangeable random partitions of the positive integers are consistent sequences
Π = (Πn) of random partitions of finite sets [n] := {1, . . . , n}, such that, for
each particular partition {A1, . . . , Ak} of [n], where the blocks are assumed to
be listed in order of appearance, for |Ai| = ni ∀i,

P(Πn = {A1, . . . , Ak}) = p(|A1|, . . . , |Ak|),

for some non-negative symmetric function p of compositions (n1, . . . , nk) of n,
satisfying p(1) = 1 and p(n1, . . . , nk) =

∑

j p(. . . , nj + 1, . . . ) + p(n1, . . . , nk, 1),
called the exchangeable partition probability function (EPPF) determined by Π,
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(see [28] for a comprehensive reference). By Kingman’s correspondence, ([21]),
every exchangeable partition Π has the same distribution as one generated by an
infinite exchangeable sequence (Xn) driven by some random discrete probability
measure P representable as P (·) :=

∑∞
i=1 PiδX̂i

(·), for X̂i i.i.d. with non-atomic
distribution H(·) independent of the (Pi). By the exchangeable equivalence re-
lation i ∼ j iff Xi = Xj , then

p(n1, . . . , nk) =
∑

(i1,...,ik)

E





k
∏

j=1

P
nj

ij



 , (1)

where (i1, . . . , ik) ranges over all ordered k-tuples of distinct positive integers

and (Pi) is any rearrangement of the ranked atoms (P ↓
i ) of P . Exchangeable

Gibbs partitions ([14]) are the largest class of infinite exchangeable partitions
with EPPF in the Gibbs product form

pα,V (n1, . . . , nk) = Vn,k

k
∏

j=1

(1− α)nj−1, (2)

for α ∈ (−∞, 1), V = (Vn,k) weights satisfying the backward recursive rela-
tion Vn,k = (n − kα)Vn+1,k + Vn+1,k+1, for V1,1 = 1, and (x)y = (x)(x +
1) · · · (x+y−1). By Theorem 12 in [14] each exchangeable partition with EPPF
in (2) arises as a probability mixture of extreme partitions, namely: Fisher’s
(1943) partitions ([12]) for α < 0, Ewens (θ) partitions ([6, 21]) for α = 0,
and Poisson-Kingman conditional partitions driven by the stable subordinator
([27]) for α ∈ (0, 1). A particularly tractable example of (2) is the two param-
eter (α, θ) Poisson-Dirichlet model ([25, 29]), which is well-known to arise for
Vn,k = (θ + α)k−1↑α/(θ + 1)n−1, for α ∈ (0, 1), θ > −α or α < 0, θ = |α|ξ for
ξ = 1, 2, . . . and (x)y↑α = x(x + α) · · · (x+ (y − 1)α).

When the order of the blocks is irrelevant, and interest is just in the sizes
of the blocks, by an application of Eq. (2.7) in [28], given an infinite EPPF in
the form (2), for each n ≥ 1 the corresponding joint distribution of the random
vector (N1,n . . . , NKn,n,Kn) of the sizes and number of the blocks in exchange-
able random order that, from now on, we term multivariate Gibbs distribution
of parameters (α, V ), is given by

Pα,V (N
ex
1 = n1, . . . , N

ex
Kn

= nk,Kn = k) =
n!

∏k

j=1 nj !

1

k!
Vn,k

k
∏

j=1

(1−α)nj−1. (3)

The corresponding Gibbs sampling formula, encoding the partition of n by the
vector of the numbers of blocks of different sizes, is obtained by the obvious
change of variable in (3) and multiplying by the number k!/Πn

i=1ci! of compo-
sitions of n providing the same partition of n, i.e. the same rearrangement in
decreasing order, and corresponds to

Pα,V (C1,n = c1, . . . , Cn,n = cn) = n!Vn,k

n
∏

i=1

[(1 − α)i−1]
ci

(i!)cici!
, (4)
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where ci =
∑k

j=1 1{nj = i}, for i = 1, . . . , n,
∑n

i=1 ici = n and
∑n

i=1 ci = k.
Note that this is the general Gibbs analog of the Ewens sampling formula ([6])

Pθ(C1,n = c1, . . . , Cn,n = cn) =
n!θk

(θ)n

n
∏

i=1

1

(i)cici!
, (5)

which gives the distribution of the number of blocks of different sizes of the
Dirichlet (θ) partition model, ([11, 20]), whose EPPF is well-known to arise
for α = 0 in the (α, θ) model. A comprehensive reference for the study of (5),
also called component frequency spectrum, for general combinatorial random
structures is [1].

In this paper we study marginals of (3), both conditional and unconditional,
to 1) drastically simplify the Bayesian approach to nonparametric estimation in
species sampling problems under Gibbs priors as introduced in [22] and further
developed in [23], 2) generalize, and sometimes fix, results obtained in the same
spirit, with a view toward estimation of rare species richness, in [9] and [10].
Species sampling problems arise in many contexts, like population genetics,
ecology or biology, when interest lies in studying richness and diversity of large
populations of different species whose relative abundances are unknown. In a
Bayesian nonparametric approach one assumes that the species labels of the first
n individuals observed are a sample from a species sampling model (Pitman,
1996) that is an infinite exchangeable sequence (Xn) driven by an almost surely
discrete de Finetti measure P with prediction rule

P(Xn+1 ∈ ·|X1, . . . , Xn) =

Kn
∑

j=1

pj,nδX̂j
(·) + qnH(·),

for pj,n = p(. . . , nj + 1, . . . )/p(n1, . . . , nk), qn = p(n1, . . . , nk, 1)/p(n1, . . . , nk),

p(·) the EPPF determined by (Xn) and (X̂1, . . . , X̂Kn
) the distinct values among

(X1, . . . , Xn). Given the vector of the multiplicities (n1, . . . , nk) of the first k
species observed in a initial sample of size n, posterior predictive estimation on
a further sample of m observations is then obtained under the prior assumption
that the unknown relative abundances of the different species in the population
(Pi) – the random atoms in the infinite series representation of P – belong to
the Gibbs family, or which is the same, that p belongs to the model (2). Unfor-
tunately, in both [22] and [23], where the posterior predictive analysis of Gibbs
partition models has been firstly devised, like in [9] and [10], providing further es-
timation results based on conditional falling factorial moments of components of
(4), conditional and unconditional multivariate distributions of the vector of sizes
and number of the blocks are erroneously identified with conditional and uncon-
ditional EPPFs (cf. e.g. Eq. (2) in Lijoi et al. 2007, Eq. (3) and Proposition 1 and
3 in Lijoi et al. 2008), whereas the former are probability distributions on the
space of random compositions of the positive integers, and the latter are proba-
bility functions of a particular partition of the sets [n] for n ≥ 1. Such a mistake
heavily affects the complexity of the proofs and sometimes induces wrong results.

Here, after correctly identifying conditional and unconditional multivariate
Gibbs distributions, we derive corresponding marginals and obtain in a direct
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way joint falling factorial moments of any order of corresponding Gibbs sam-
pling formulas, both conditional and unconditional, and explicit formulas for
distributions of interest generalizing the particular cases obtained in [9]. Our
analysis, besides providing a more effective technique for Bayesian nonpara-
metric applications, establishes the first systematic study of joint multivariate
distributions on spaces of compositions of the positive integers arising from
Gnedin-Pitman’s Gibbs partitions theory. The paper is organized as follows: in
Section 2 we obtain marginals of (3) and, resorting to a result in [18] for a sum
of non independent indicators, derive general formulas for joint falling factorial
moments of (4), together with explicit marginal distributions and their expected
values. In Section 3, first we fix the results in [23], then we derive conditional
multivariate Gibbs distributions and their marginals, for sizes and number of
new blocks induced by an additional m-sample. Exploiting the same technique
adopted in Section 2, a complete analysis is performed for conditional Gibbs
sampling formulas, which generalizes the results in [9], deriving joint falling fac-
torial moments and general marginals for the entire Gibbs class. In Section 4
we introduce multivariate Pólya-Gibbs distributions arising by the conditional
allocation of the additional sample in old blocks and derive joint falling factorial
moments and marginals of the corresponding vector of counts. Finally, in Sec-
tion 5, we apply the proposed technique to fix, by a very short proof, a wrong
result on a Bayesian nonparametric estimator of the m-step ahead probability
to detect at observation n+m+1 a species already observed a certain number
of times, which recently appeared in Favaro et al. (2012b).

2. Marginals of multivariate Gibbs distributions

To obtain the marginal distributions for general Multivariate Gibbs distributions
(3) it is enough to resort to the definition of generalized central Stirling numbers
of parameters (−1,−α)

S−1,−α
n,k =

n!

k!

∑

(n1,...,nk)

k
∏

j=1

(1− α)nj−1

nj !
, (6)

where the sum ranges over all (n1, . . . , nk) compositions of n, (see Sect. A.3
for further details). From now on we refer to (3) omitting the ex power in the
notation.

Proposition 1. Under a general Gibbs partition model (2) of parameters (α, V ),
for each n ≥ 1 the r-dimensional marginal of (3), for 0 ≤ k− r ≤ n−

∑r

j=1 nj,
is given by

Pα,V (N1 = n1, . . . , Nr = nr,Kn = k)

=
n!

∏r
j=1 nj !(n−

∑r
j=1 nj)!

r
∏

j=1

(1 − α)nj−1
Vn,k

k[r]
S−1,−α

n−
∑

r
j=1 nj ,k−r

, (7)

for (x)[n] = (x)(x − 1) · · · (x− n+ 1).
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Proof. From (3)

Pα,V (N1 = n1, . . . , Nr = nr,Kn = k)

=
n!

∏r
j=1 nj !

r
∏

j=1

(1− α)nj−1
Vn,k

k!

∑

(b1,...,bk−r)

1
∏

i bi!

k−r
∏

i=1

(1− α)bi−1,

for (b1, . . . , bk−r) such that bi > 0 ∀i and
∑

i bi = n−
∑r

j=1 nj . Multiplying and

dividing by (n−
∑r

j=1 nj)! and (k − r)! an application of (6) yields (7).

By (6), for each Gibbs model (2), Pα,V (Kn = k) = Vn,kS
−1,−α
n,k , and a close

inspection of (7) shows that, for every i, the conditional law of Ni given Kn

does not involve the choice of the specific Gibbs weights (Vn,k). As an example
the law of N1 given Kn = k, for 0 ≤ k − 1 ≤ n− n1 and n1 = 1, . . . , n− k + 1,
will correspond to

Pα(N1 = n1|Kn = k) =

(

n

n1

)

(1− α)n1−1

k

S−1,−α,
n−n1,k−1

S−1,−α
n,k

.

A formula for the joint law of (N1, . . . , Nr) on the event {Kn ≥ r} can be
obtained by appropriate marginalization of (7).

2.1. Joint falling factorial moments of Gibbs sampling formulas

Joint falling factorial moments for the Ewens’ sampling formula (5) of order
(r1, . . . , rn), for rl non negative integers and n −

∑

l lrl ≥ 0, are in [7] (cf. Eq.
(41.9)) and correspond to

Eθ

[

n
∏

l=1

(Cl,n)[rl]

]

=
n!

(n−
∑n

l=1 lrl)!

(θ)n−
∑

n
l=1 lrl

(θ)n

n
∏

l=1

(

θ

l

)rl

.

Under the same conditions, the generalization to the (α, θ) Poisson-Dirichlet
sampling formula has been obtained in [30] and is given by

Eα,θ

[

n
∏

l=1

(Cl,n)[rl]

]

=
n!

(n−
∑n

l=1 lrl)!

(θ + α)∑
l
rl−1↑α

(θ + 1)n−1

×

n
∏

l=1

(

(1− α)l−1

l!

)rl

(θ + α
∑

l

rl)n−
∑

lrl .

In the following Proposition we generalize those results to the general Gibbs
sampling formula (4) by resorting to a result in [18], first established in [5] then
studied in [19]. See also [16, 17].

Proposition 2. Under a general (α, V ) Gibbs partition model, joint falling
factorial moments of the vector of counts (C1,n, . . . , Cn,n) of order (r1, . . . , rn)
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for
∑

l lrl ≤ n are given by

Eα,V

[

n
∏

l=1

(Cl,n)[rl]

]

=
n!

∏n

l=1(l!)
rl

∏n

l=1 [(1 − α)l−1]
rl

(n−
∑

l lrl)!

×

n−
∑

l lrl
∑

k−
∑

l rl=0

Vn,kS
−1,−α

n−
∑

l
lrl,k−

∑
l
rl
, (8)

for 0 ≤ k −
∑n

l=1 rl ≤ n −
∑n

l=1 lrl. For rl = r ≤ ⌈n
l
⌉ and rj = 0 for every

j 6= l, the r-th falling factorial moment of Cl,n results

Eα,V

[

(Cl,n)[r]
]

=
n![(1− α)l−1]

r

(l!)r(n− lr)!

n−rl
∑

k−r=0

Vn,kS
−1,−α
n−rl,k−r, (9)

and corrects the summation limits in Eq. (11) in Favaro et al. (2012a).

Proof. For Kn = k, let Cl,n =
∑k

j=1 1{Nj = l}. Then by a result for a sum
of non independent indicators r.v.s in Johnson & Kotz (2005, Sect. 10.2), or
Charalambides (2005, Example 1.12), for r ≤ n

Eα,V

[

(Cl,n)[r]
]

= Eα,V (

k
∑

j=1

1{Nj = l})[r] = r!
∑

(a1,...,ar)

Pα,V (Na1 = l, . . . , Nar
= l),

(10)
where the summation is extended over all r-combinations (a1, . . . , ar) of {1, . . . , k}.
Since in our case the number of blocks Kn is random, and the vector (N1, . . . ,
Nr|Kn = k) is exchangeable then, for l = 1, . . . , n,

Eα,V

[

(Cl,n)[r]
]

=

n−rl
∑

k−r=0

E
[

(Cl,n)[r]|Kn = k
]

Pα,V (Kn = k)

=
n−rl
∑

k−r=0

r!

(

k

r

)

P(N1 = l, . . . , Nr = l|Kn = k)Pα,V (Kn = k)

=

n−rl
∑

k−r=0

r!

(

k

r

)

Pα,V (N1 = l, . . . , Nr = l,Kn = k).

By a similar argument

Eα,V

[

n
∏

l=1

(Cl,n)[rl]

]

=

n−
∑

l
lrl

∑

k−
∑

l
rl=0

(
n
∏

l=1

rl!)
k!

∏

l rl!(k −
∑

l rl)!

× Pα,V (N1 =1, . . . , Nr1 =1, . . . , N∑
l
rl−rn+1 =n, . . . , N∑

l
rl =n,Kn = k).

(11)

Inserting (7) in (11) the result follows.
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Remark 1. Notice that (8) generalizes the result in [9] Eq. (11), stated in terms of
generalized factorial coefficients, (see Sect. A.3 for the relationship with general-
ized Stirling numbers), which corresponds, after fixing the summation limits, to
(9). Actually the summation limits in (8), (9) and (11) are written in an uncon-
ventional way. This is to highlight that they must correspond to the parameters
of the generalized Stirling numbers, as it is compulsory for the summation to
make sense, and allows to detect some inconsistent summations in the results
in [9]. We will adopt this unconventional notation all over the paper.

The distribution of Cl,n for a general (α, V ) Gibbs model, generalizing Propo-
sition 2 (Dirichlet case), Proposition 4 (two parameter Poisson-Dirichlet case)
and Proposition 8 (Gnedin-Fisher case ([13])) in [9], arises by the known rela-
tionship between discrete probability distributions and falling factorial moments
(see e.g. [18]), and corresponds to

Pα,V (Cl,n = x) =
n![(1 − α)l−1]

x

x!(l!)x

⌈n
l
⌉−x
∑

r=0

(−1)r[(1− α)l−1]
r

r!(l!)r(n− rl − lx)!

×

n−rl−xl
∑

k−r−x=0

Vn,kS
−1,−α
n−rl−xl,k−r−x, (12)

for x = 0, . . . , ⌈n/l⌉. Its with expected value follows from (9) for r = 1. The dis-
tribution and the expected value of C1,n, the number of singletons, generalizing
(41.10) and (41.11) in [7] to the entire Gibbs family, follow for l = 1.

3. Conditional multivariate Gibbs distributions

The study of conditional exchangeable random partitions, i.e. exchangeable par-
titions starting with an initial allocation of the first n natural integers in a
certain number j of blocks, has been initiated in [22], in view of proposing a
Bayesian conditional nonparametric estimation of the richness of a population
of species under priors on the unknown relative abundances belonging to the
Gibbs class. This is the first paper suffering from the problem we pointed out
in the Introduction. In this setting the standard setup is as follows: given an
initial sample of n observations, inducing a partition of the first n integers in j
blocks with observed multiplicities (n1, . . . , nj), a further sample of size m ≥ 1

is collected. Let K
(n)
m be the number of new blocks generated by the additional

m ≥ 1 integers, (S1, . . . , SK
(n)
m

) the vector of the sizes of the new blocks in ex-

changeable random order, Σm =
∑K(n)

m

i=1 Si the total number of new integers in
new blocks and (M1,m, . . . ,Mj,m) the vector of the allocations of the additional
m − Σm observations in the j old blocks. The next Proposition corrects the
mistake in [23] fixing formulas (9) in Proposition 1 and (19) in Proposition 3,
both missing the combinatorial coefficients.

Proposition 3. Under a general (α, V ) Gibbs partition model, given the ini-
tial allocation of n integers in j blocks, the joint conditional distribution of
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(K
(n)
m ,Σm, S1, . . . , SK

(n)
m

), for S1, . . . , SK
(n)
m

in exchangeable random order, that

we term conditional Multivariate Gibbs distribution of parameters (α,m, n, j),

for si ≥ 1 ∀i and s =
∑k

i=1 si, corresponds to

Pα,V (K
(n)
m = k,Σm = s, S1 = s1, . . . , SK

(n)
m

= sk|n1, . . . , nj)

=
m!

s1! · · · sk!k!m− s!

Vn+m,j+k

Vn,j

(n− jα)m−s

k
∏

i=1

(1− α)si−1. (13)

Conditioning on Σm yields

Pα,V (K
(n)
m = k, S1 = s1, . . . , SK

(n)
m

= sk|Kn = j,Σm = s)

=
s!

s1! · · · sk!k!

Vn+m,j+k
∑s

i=0 Vn+m,j+iS
−1,−α
s,i

k
∏

i=1

(1− α)si−1. (14)

Proof. By easy combinatorics and telescoping product from the one-step pre-
diction rule under (2) the conditional probability of any particular partition of

the set [n +m] − [n] in k new blocks of size si ≥ 1,
∑k

i=1 si = s, s ≤ m, with

allocation in j old blocks of mi ≥ 0,
∑j

i=1 mi = m− s integers, corresponds to

ps
m
(n) =

Vn+m,j+k

Vn,j

j
∏

i=1

(ni − α)mi

k
∏

i=1

(1 − α)si−1, (15)

for n = (n1, . . . , nj), s = (s1, . . . , sk) and m = (m1, . . . ,mj). The joint full

conditional of (K
(n)
m , S1, . . . , SK

(n)
m

,Σm,M1,m, . . . ,Mj,m) easily arises from (3)

and the standard multinomial coefficient and corresponds to

Pα,V (S1 = s1, . . . , Sk = sk,Σm = s,K(n)
m = k,M1,m = m1, . . . ,Mj,m = mj |n)

=
m!

∏k

i=1 si!k!
∏j

i=1 mi!

Vn+m,j+k

Vn,j

k
∏

i=1

(1− α)si−1

j
∏

i=1

(ni − α)mi
. (16)

By marginalizing with respect to all possible allocations (m1, . . . ,mj) (13) fol-
lows. (14) is an easy consequence of Eq. (11) in [23]. Additionally, by (14) and

Eq. (4) in [22], the conditional distribution given K
(n)
m , does not involve the

choice of the Gibbs model as in the unconditional case, and fixes formula (34)
in [23].

Remark 2. Further results for the conditional moments of any order ofK
(n)
m and

for the conditional asymptotic distribution of a proper normalization of K
(n)
m

under (α, θ) Poisson-Dirichlet partition models are in [8]. A simplified approach
to the posterior analysis of the two-parameter model, exploiting the deletion of
classes property and the Beta-Binomial distribution of Σm|Kn = j, is in [2]. A
general result for conditional α diversity for Poisson-Kingman partition models
driven by the stable subordinator ([27]) has been obtained in [3].
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Given the corrected formulas in Proposition 3, the derivation of estimators
for quantities of interest in Bayesian nonparametric species sampling modeling
becomes an easy task. In the next Proposition, mimicking the technique adopted
in the previous section for the unconditional case, we derive marginals of (13) as
the tools to obtain joint conditional falling factorial moments of the conditional
Gibbs sampling formula, which accounts for the conditional probability distribu-

tion of the number of new blocks of different sizes. For Wl,m =
∑K(n)

m

i=1 1{Si = l},

1 ≤ l ≤ m,
∑m

l=1 Wl,m = K
(n)
m and

∑

l lWl,m = Σm, by the obvious change of
variable in (13), and multiplying by k!/

∏m

l=1 wl!, it corresponds to

Pα,V (W1,m = w1, . . . ,Wm,m = wm|n1, . . . , nj)

=
m!Vn+m,j+k

Vn,j

(n− jα)m−s

(m− s)!

m
∏

l=1

[(1− α)l−1]
wl

(l!)wlwl!
, (17)

for
∑

l wl = k and
∑

l lwl = s. In what follows we will resort to the convolu-

tion relation which defines non-central generalized Stirling numbers S−1,−α,γ
n,k in

terms of central generalized Stirling numbers (see Eq. (35) in Section A.3).

Proposition 4. Under a general (α, V ) Gibbs partition model the r-dimensional
marginal of (13), for (s1, . . . , sr) :

∑

i si ≤ s ≤ m and 0 ≤ k− r ≤ m−
∑r

i=1 si,
is given by

Pα,V (S1 = s1, . . . , Sr = sr,K
(n)
m = k|n1, . . . , nj)

=
m![
∏r

i=1(1− α)si−1]
∏r

i=1 si!(m−
∑r

i=1 si)!

(k − r)!

k!

Vn+m,j+k

Vn,j

S
−1,−α,−(n−jα)
m−

∑
r
i=1 si,k−r

. (18)

Proof. Multiplying and dividing (13) by (s−
∑r

i=1 si)! and (m−
∑r

i=1 si)! and
marginalizing yields

Pα,V (S1 = s1, . . . , Sr = sr,K
(n)
m = k|n1, . . . , nj)

=
m![
∏r

i=1(1− α)si−1]
∏r

i=1 si!(m−
∑r

i=1 si)!

1

k!

Vn+m,j+k

Vn,j

×

m−
∑

r
i=1 si

∑

s−
∑

r
i=1 si=k−r

(m−
∑r

i=1 si)!(n− jα)m−s

(s−
∑r

i=1 si)!(m− s)!

×
∑

(b1,...,bk−r)

(s−
∑r

i=1 si)!
∏

i bi!

k−r
∏

i=1

(1− α)bi−1 =

further multiplying and dividing by (k − r)! we obtain

=
m![
∏r

i=1(1− α)si−1]
∏r

i=1 si!(m−
∑r

i=1 si)!

(k − r)!

k!

Vn+m,j+k

Vn,j

×

m−
∑r

i=1 si
∑

s−
∑

r
i=1 si=k−r

(

m−
∑r

i=1 si
s−

∑r

i=1 si

)

(n− jα)m−sS
−1,−α

s−
∑

r
i=1 si,k−r

,

and the result follows by an applications of (35).
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The next Proposition, which generalizes Theorem 2 in [9], provides the

joint falling factorials moments of any order of (17). Let W
(n)
l,m stands for

Wl,m|n1, . . . , nj .

Proposition 5. Under a general (α, V ) Gibbs partition model, joint falling fac-
torial moments of order (r1, . . . , rm) of the conditional sampling formula (17),
for m−

∑

l lrl ≥ 0, are given by

Eα,V

[

m
∏

l=1

(W
(n)
l,m)[rl]

]

=
m!
∏m

l=1 [(1− α)l−1]
rl

(m−
∑

l lrl)!
∏

l(l!)
rl

1

Vn,j

m−
∑

l lrl
∑

k−
∑

l
rl=0

Vn+m,j+kS
−1,−α,−(n−jα)
m−

∑
l
lrl,k−

∑
l
rl
. (19)

For rl = r ≤ ⌈m
l
⌉ and rj = 0 for j 6= l then

Eα,V [(W
(n)
l,m)[r]] =

m!

(m− rl)!

[(1 − α)l−1]
r

(l!)r
1

Vn,j

m−rl
∑

k−r=0

Vn+m,j+kS
−1,−α,−(n−jα)
m−rl,k−r ,

(20)
which fixes the admissible values of r in Theorem 2. in [9] which is expressed in
terms of non central generalized factorial coefficients (see Eq. (36) in A.3).

Proof. By the analogy between (18) and (7) the proof moves along the same
lines as the proof of Proposition 2.

In [9], (cf. Propositions 2, 6 and 9), explicit one dimensional marginals of
(17) have been derived for the Dirichlet (θ), the (α, θ) Poisson-Dirichlet and
the Gnedin-Fisher (γ) ([13]) partition models. By (20) the general result for the
entire Gibbs family, providing the conditional analog of (12), corresponds to

Pα,V (W
(n)
l,m = x) =

[(1− α)l−1]
x

x!(l!)x
m!

Vn,j

⌈m
l
⌉−x
∑

r=0

(−1)r[(1− α)l−1]
r

r!(l!)r(m− rl − xl)!

×

m−rl−xl
∑

k−r−x=0

Vn+m,j+kS
−1,−α,−(n−jα)
m−rl−xl,k−r−x, (21)

for x = 0, . . . , ⌈m/l⌉. Its expected value, which provides the Bayesian nonpara-
metric estimator under quadratic loss function, for the number of new species
represented l times, arises from (20) for r = 1 and corresponds to Eq. (17)
in [9] expressed in terms of generalized non central factorial coefficients. The

conditional distribution of the number of new singleton species W
(n)
1,m and its

expected value follow easily for l = 1.

4. Multivariate Pólya-Gibbs distributions

In this Section we focus on the conditional random allocation of the additional
m integers in the j old blocks. First we derive the conditional joint distribution
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of the random vector (M1,m, . . . ,Mj,m,Σm) of the numbers of new observations
falling in the j old blocks and of the total number of new observations Σm falling
in new blocks, for

∑

i Mi,n +Σm = m. Then, similarly to the previous sections,
we move attention to the corresponding vector of counts and its joint falling
factorial moments. From (16) an application of (6) yields

Pα,V (M1,m = m1, . . . ,Mj,m = mj ,Σm = s|n1, . . . , nj)

=
m!

∏j

i=1 mi!s!

j
∏

i=1

(ni − α)mi

s
∑

k=0

Vn+m,j+k

Vn,j

S−1,−α
s,k , (22)

for mi ≥ 0 for i = 1, . . . , j and
∑j

i=1 mi = m− s.

Remark 3. Note here that, since the number of old blocks is fixed, (22) may
be interpreted as a generalization of multivariate Pólya distributions (Dirich-
let mixtures of multinomial distributions). If QV is the conditional law, given
(n1, . . . , nj), of the vector (P̃1,n, . . . , P̃j,n, Rj,n), for P̃i,n = P̃i|n1, . . . , nj the con-
ditional random relative abundance of the i-th species to appear, and Rj,n =

1 −
∑j

i=1 P̃i,n, then (22) turns out to be a QV -multinomial mixture that we
term multivariate Pólya-Gibbs distribution of parameters (m,n1 − α, . . . , nj −
α, V ). Moreover QV will be the limit law, for m → ∞, of the random vector
(

M
(n)
1,m/m, . . . ,M

(n)
j,m/m,Σm/m

)

, where M
(n)
i,m stands for a component of (22).

Notice that for the two-parameter Poisson-Dirichlet (α, θ) model, by a result in
[26], (see Sect. 3.7, Corollary 20),

(P̃1,n, . . . , P̃j,n, Rj,n) ∼ Dir[n1 − α, . . . , nj − α, θ + jα],

and substituting Vn,j = (θ + α)j−1↑α/(θ + 1)n−1 in (22) yields

Pα,θ(M1,m = m1, . . . ,Mj,m = mj ,Σm = s|n1, . . . , nj)

=
m!

∏j

i=1 mi!s!

∏j

i=1(ni − α)mi
(θ + jα)s

(θ + n)m
, (23)

which is a propermultivariate Pólya distribution of parameters (m,n1−α, . . . , nj−
α, θ + jα).

The next Proposition provides the general marginal of (22) that we need to
obtain joint falling factorial moments of the corresponding vector of counts.

Proposition 6. Under a general (α, V ) Gibbs model, given the initial allocation
of n integers in j old blocks, the conditional joint marginal distribution of the
vector of the sizes (M1,m . . . ,Mr,m) of the additional new observations falling
in the first r old blocks, for 1 ≤ r ≤ j, corresponds to

Pα,V (M1,m = m1, . . . ,Mr,m = mr|n1, . . . , nj)

=
m!
∏r

i=1(ni − α)mi
∏r

i=1 mi!(m−
∑r

i=1 mi)!

m−
∑

r
i=1 mi
∑

k=0

Vn+m,j+k

Vn,j

S
−1,−α,−(n−(j−r)α−

∑r
i=1 ni)

m−
∑

r
i=1 mi,k

.

(24)
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Proof. By (22), the joint marginal of the sizes of the first r blocks and Σm is
obtained as

Pα,V (M1,m = m1, . . . ,Mr,m = mr,Σm = s|n1, . . . , nj)

=
m!
∏r

i=1(ni−α)mi
(n−jα−

∑r

i=1 ni+rα)m−s−
∑

r
i=1 mi

∏r
i=1 mi!(m− s−

∑r
i=1 mi)!s!

s
∑

k=0

Vn+m,j+k

Vn,j

S−1,−α
s,k ,

marginalizing with respect to Σm, multiplying and dividing by (m−
∑r

i=1 mi)!
and then changing the order of marginalization yields

Pα,V (M1,m = m1, . . . ,Mr,m = mr|n1, . . . , nj)

=
m!
∏r

i=1(ni − α)mi
∏r

i=1 mi!(m−
∑r

i=1 mi)!

m−
∑r

i=1 mi
∑

k=0

Vn+m,j+k

Vn,j

m−
∑r

i=1 mi
∑

s=k

(

m−
∑r

i=1 mi

s

)

× (n− jα−

r
∑

i=1

ni + rα)m−s−
∑

r
i=1 mi

S−1,−α
s,k ,

and the result follows by an application of (35).

Now let O
(n)
l,m =

∑

i:ni≤l 1{ni +Mi,m = l|n1, . . . , nj}, for l = 1, . . . , n+m, be
the number of old blocks of size l after the allocation of the additional m-sample,

then, to obtain the joint falling factorial moments of any order of (O
(n)
1,m, . . . ,

O
(n)
n+m,m) we exploit the result (10) recalled in the proof of Proposition 2, namely

E

[

(O
(n)
l,m)[r]

]

= r!
∑

(ξ1,...,ξr)

P(Mξ1 = l − n1, . . . ,Mξr = l − nr|n1, . . . , nj). (25)

Specializing (24) for mi = l− ni the next result follows from (25) as the analog
of Propositions 2 and 5.

Proposition 7. Under a general (α, V ) Gibbs model, the joint falling factorial

moments of the vector of the number of old blocks of different size (O
(n)
1,m, . . . ,

O
(n)
n+m,m), after the allocation of the additional m-sample, given the initial allo-

cation (n1, . . . , nj) are given by

Eα,V

[

(

n+m
∏

l=1

(O
(n)
l,m)[rl])

]

=

n+m
∏

l=1

rl!
∑

(Ξr1 ,...,Ξrn+m
)

m!
∏n+m

l=1

∏rl
i=1(nξi − α)l−nξi

∏n+m

l=1

∏rl
i=1(l − nξi)!(m−

∑

l lrl +
∑

l

∑rl
i=1 nξi)!

×

m−
∑

l
lrl+

∑
l

∑rl
i=1 nξi

∑

k=0

Vn+m,j+k

Vn,j

S
−1,−α,−(n−(j−

∑
l
rl)α−

∑
l

∑
i
nξi

)

m−
∑

l
lrl+

∑
l

∑rl
i=1 nξi

,k
,
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for Ξr1 = (ξ1, . . . , ξr1), . . . ,Ξrn+m
= (ξ∑

l rl−rn+m
, . . . , ξ∑n+m

l=1 rl
), ξi : nξi ≤ l,

and each Ξrl ranging over all the combinations of rl elements of j. For rl = r
and rj = 0 for j 6= l, then

Eα,V

[

(O
(n)
l,m)[r]

]

= r!
∑

(ξ1,...,ξr)

m!
∏r

i=1(nξi − α)l−nξi
∏r

i=1(l − nξi)!(m− rl +
∑r

i=1 nξi)!

×

m−lr+
∑r

i=1 nξi
∑

k=0

Vn+m,j+k

Vn,j

S
−1,−α,−(n−(j−r)α−

∑
r
i=1 nξi

)

m−lr+
∑

r
i=1 nξi

,k

(26)

for ξi : nξi ≤ l, which agrees with the result in Theorem 1. in [9] apart from
some typos in the summation limits.

Proof. By the analogy between (24) and (7) the proof moves along the same
lines as the proof of Proposition 2.

From (26) the the conditional marginal law of O
(n)
l,m, under (α, V ) Gibbs

models, generalizing Proposition 5 (two-parameter Poisson-Dirichlet case) and
Proposition 9 (one parameter Gnedin-Fisher case) in [9] to the entire (α, V )
Gibbs family, is given by

Pα,V (O
(n)
l,m = y)

=

⌈
m−rl+

∑r+y
i=1

nξi
l

⌉−y
∑

r=0

(−1)r(r + y)!

y!r!

1

Vn,j

×
∑

(ξ1,...,ξr+y)

m!
∏r+y

i=1 (l − nξi)!(m− rl − yl +
∑r+y

i=1 nξi)!

r+y
∏

i=1

(nξi − α)l−nξi

×

m−rl−ly+
∑r+y

i=1 nξi
∑

k=0

Vn+m,j+kS
−1,−α,−(n−(j−r−y)α−

∑r+y
i=1 nξi

)

m−lr−ly+
∑r+y

i=1 nξi
,k

.

Its expected value, which plays the role of the Bayesian nonparametric estimator,
under quadratic loss function, of the number of old species represented l times,
follows easily from (26) for r = 1, and agrees with Eq. (15) in [9] while fixing
some typos in the summation limits.

Remark 4. Relying on the technique presented in this paper, conditional r-th

falling factorial moments of Z
(n)
l,m = O

(n)
l,m + W

(n)
l,m , the total number of old and

new blocks of size l after the allocation of the additional m-sample, as derived
in Th. 3 in [9] by means of a very complex procedure, may be obtained in a
straightforward way by the full conditional joint distribution (16). Multiplying
by the way to choose t blocks among the old and r− t among the new for every
t, combining (20) and (26) we get
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Eα,V

[

(Z
(n)
l,m)[r]

]

=

r
∑

t=0

(

r

t

)

t!
∑

(ξi1 ,...,ξit )

m![(1− α)l−1]
r−t
∏t

i=1(nξi − α)l−nξi
∏t

i=1(l − nξi)!(l!)
r−t(m− tl +

∑t

i=1 nξi − (r − t)l)!

×

m−rl+
∑

nξi
∑

k−r+t=0

Vn+m,k+j

Vn,j

S
−1,−α,−(n−jα−

∑
nξi

+tα)

m−rl+
∑

nξi
,k−r+t

which agrees with Theorem 3. in [9].

5. Application

In species sampling problems, given a basic n-sample (n1, . . . , nj), interest may
be in estimating the probability to observe at step n+m + 1 a species already
represented l times both belonging to an old species or to a new species even-
tually arising in the m-additional sample which is still to be observed. This is
the topic of a recent paper by Favaro et al. (2012b), ([10]), and can be seen as
a generalization of the problem of estimating the discovery probability, i.e. the
probability to discover at step n+m+ 1 a new species, not represented in the
previous n+m observations, already solved in [22]. In this Section we show how
working with marginals of conditional multivariate Gibbs distributions greatly
simplifies the derivation of the results obtained in [10] and additionally allows
to fix a mistake. First recall that by sequential construction of exchangeable
Gibbs partitions, the probability to observe an old species observed l times in
the basic n-sample at observation n + 1, easily follows by one-step prediction
rules for general (α, V ) Gibbs EPPFs (see e.g. [28]). For cl,n =

∑j

i=1 1{ni = l},
for l = 1, . . . , n then

pl,n(n1, . . . , nj) = cl,n
p(n1, . . . , l + 1, . . . , nj)

p(n1, . . . , l, . . . , nj)
= cl,n

Vn+1,j

Vn,j

(l − α).

By a similar argument, given a basic sample (n1, . . . , nj), but assuming as in
[10] an intermediate m-sample still to be observed, the probability to sample at
observation n +m + 1 a species represented l times among new species can be
expressed as

Pn+m+1
new,l (α, V ) =

V
n+m+1,j+K

(n)
m

V
n+m,j+K

(n)
m

(l − α)W
(n)
l,m , (27)

for K
(n)
m and W

(n)
l,m as previously defined.

In the following Proposition we correct the Bayesian nonparametric estima-
tor, under quadratic loss function, of (27), (see Theorem 2. in [10]), reducing a
cumbersome proof to few straightforward steps.

Proposition 8. Under a general (α, V ) Gibbs partition model, for W
(n)
l,m =

∑K(n)
m

i=1 1{Si= l|Kn=j}, the Bayesian nonparametric estimator of Pm+n+1
new,l (α, V )
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is given by

E
(α,V )

(S1,...,S
K

(n)
m

,K
(n)
m |Kn=j)

(

V
n+m+1,j+K

(n)
m

V
n+m,j+K

(n)
m

(l − α)W
(n)
l,m

)

= (l − α)

m−l
∑

k−1=0

Vn+m+1,j+k

Vn,j

(

m

l

)

(1 − α)l−1S
−1,−α,−(n−jα)
m−l,k−1 . (28)

Proof. Let f(K
(n)
m ) =

V
n+m+1,j+K

(n)
m

V
n+m,j+K

(n)
m

then, by definition of W
(n)
l,m ,

E
(α,V )

(S1,...,S
K

(n)
m

,K
(n)
m |Kn=j)

(

V
n+m+1,j+K

(n)
m

V
n+m,j+K

(n)
m

(l − α)W
(n)
l,m

)

= (l − α)

m−l+1
∑

k=1

E
(α,V )

(S1,...,S
K

(n)
m

|K
(n)
m =k,Kn=j)

(

f(k)

k
∑

i=1

1{Si = l|Kn = j}

)

× Pα,V (K
(n)
m = k|Kn = j)

= (l − α)

m−l
∑

k−1=0

f(k)kP(S1 = l|K(n)
m = k,Kn = j)Pα,V (K

(n)
m = k|Kn = j).

(29)

Specializing (18) for si = l for every i, and inserting the marginal for r = 1 in
(29), the result follows.

Remark 5. The mistake in Theorem 2 in [10] is in the summation limits. The
marginalization over the possible numbers of new species arising in the addi-
tional m-sample, giving rise to at least one species represented l times, actually
ranges between 1, for m = l, and m − l + 1, which stands for one species of
size l and m− l species of size 1. In [10] the summation ranges until m− l thus
producing the wrong result.

For completeness, by an analogous approach, we provide a simplified deriva-
tion for the Bayesian nonparametric estimator of the probability to observe at
step n+m+ 1 a species represented l times among the old species, namely

Pm+n+1
old,l (α, V ) =

V
n+m+1,j+K

(n)
m

V
n+m,j+K

(n)
m

(l − α)O
(n)
l,m.

Proposition 9. Under a general (α, V ) Gibbs partition model, for O
(n)
l,m =

∑j

i=1 1{ni + Mi,m = l|n1, . . . , nj}, then a Bayesian nonparametric estimator

under quadratic loss function of Pm+n+1
old,l (α, V ), for cξ =

∑j
i=1 1{ni = ξ}, is

given by

E
(α,V )

(M1,m,...,Mj,m,K
(n)
m |n1,...,nj)

(

V
n+m+1,j+K

(n)
m

V
n+m,j+K

(n)
m

(l − α)O
(n)
l,m

)
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= (l − α)

l
∑

ξ=1

cξ

(

m

l − ξ

)

(ξ − α)l−ξ

m−l+ξ
∑

k=0

Vn+m+1,j+k

Vn,j

S
−1,−α,−(n−jα+ξ−α)
m−l+ξ,k .

(30)

Proof. Let f(K
(n)
m ) =

V
n+m+1,j+K

(n)
m

V
n+m,j+K

(n)
m

, then by definition of O
(n)
l,m

E
(α,V )

(M1,m,...,Mj,m,K
(n)
m |n1,...,nj)

(

V
n+m+1,j+K

(n)
m

V
n,m,j+K

(n)
m

(l − α)O
(n)
l,m

)

= (l − α)

m
∑

k=0

f(k)

× E
(α,V )

(M1,m,...,Mj,m|K
(n)
m =k,n1,...,nj)

(

j
∑

i=1

1
{

ni+Mi,m = l|K(n)
m =k, n1, . . . , nj

}

)

× Pα,V (K
(n)
m = k|Kn = j)

= (l − α)

m
∑

k=0

f(k)
∑

i:ni≤l

Pα,V (Mi,m = l − ni,K
(n)
m = k|n1, . . . , nj)

and the result follows by an application of (24) by the change of variable cξ =
∑j

i=1 1{ni = ξ}.

Appendix A

This Appendix contains some basic facts on rising and falling factorial numbers,
partitions and compositions of the natural integers, together with known results
and definitions of generalized central and non central Stirling numbers that are
exploited in the proofs and derivations all over the paper. The main reference is
[28]. Additionally, to facilitate the reading of the results contained in [22, 23, 9]
and [10], the relationship between central and non central generalized factorial
coefficients and generalized Stirling numbers is reported.

A.1. Generalized rising factorials

For n = 0, 1, 2, . . . , and arbitrary real x and h, (x)n↑h denotes the nth factorial
power of x with increment h (also called generalized rising factorial) (x)n↑h :=

x(x + h) · · · (x + (n − 1)h) =
∏n−1

i=0 (x + ih) = hn(x/h)n, where (x)n stands
for (x)n↑1, and (x)n↑0 = xn, for which the following multiplicative law holds
(x)n+r↑h = (x)n↑h(x+nh)r↑h. From e.g. [24] (see Eq. 2.41 and 2.45) a generalized
version of the multinomial theorem also holds,

(

p
∑

j=1

zj)n↑h =
∑

nj≥0,
∑

nj=n

n!

n1! · · ·np!

p
∏

j=1

(zj)nj↑h. (31)
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For mj > 0, for every j, and
∑

j mj = m, an application of the multiplicative
law yields (zj)nj+mj−1 = (zj)mj−1(zj +mj − 1)nj

and by (31)

∑

nj≥0,
∑

nj=n

n!

n1! · · ·np!

p
∏

j=1

(zj)nj+mj−1 =

p
∏

j=1

(zj)mj−1(

p
∑

j=1

(zj +mj − 1))n

=

p
∏

j=1

(zj)mj−1(m+

p
∑

j=1

zj − p)n,

which simplifies the proof of Lemma 1 in [23].

A.2. Partitions and compositions

A partition of the finite set [n] := {1, . . . , n} into k blocks is an unordered
collection of non-empty disjoint sets {A1, . . . , Ak} whose union is [n], where the
blocksAi are assumed to be listed in order of appearance, i.e. in the order of their
least elements. The sequence (|A1|, . . . , |Ak|) of the sizes of blocks, (n1, . . . , nk),
defines a composition of n, i.e. a sequence of positive integers with sum n. Two
sequences that differ in the order of their terms define different compositions
of n but the same partition of n. Let Pk

[n] denotes the space of all partitions

of [n] with k blocks. From [28] (see Eq. (1.9)) the number of ways to partition
[n] into k blocks and assign each block a W combinatorial structure such that
the number of W -structures on a set of j elements is wj , in terms of sum over
compositions of n into k parts, is given by

Bn,k(w•) =
n!

k!

∑

(n1,...,nk)

k
∏

i=1

wni

ni!
, (32)

whereBn,k(w•) is a polynomial in variablesw1, . . . , wn−k+1 known as the (n, k)th
partial Bell polynomial.

A.3. Generalized Stirling numbers and factorial coefficients

(For a comprehensive treatment see [15], see also [28] Ex. 1.2.7). For arbitrary

distinct reals η and β, these are the connection coefficients Sη,β
n,k defined by

(x)n↓η =
n
∑

k=0

Sη,β
n,k (x)k↓β (33)

and correspond to Sη,β
n,k = Bn,k((β − η)•−1↓η), where (x)n↓h = (x)n↑−h are

generalized falling factorials and (x)[n] = (x)n↓1. Hence for η = −1, β = −α,

and α ∈ (−∞, 1), S−1,−α
n,k is defined by

(x)n =

n
∑

k=0

S−1,−α
n,k (x)k↑α, (34)
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and for wni
= (1 − α)ni−1 and α ∈ [0, 1), Bn,k((1 − α)•−1) = S−1,−α

n,k . In
[22, 23, 9, 10] the treatment is in term of generalized factorial coefficients, which
are the connection coefficients Cα

n,k defined by (αy)n =
∑n

k=0 C
α
n,k(y)k, (see

e.g. [4]). From the definition of generalized rising factorials and (34), if x =
yα then (yα)n =

∑n

k=0 S
−1,−α
n,k αk(y)k, hence S−1,−α

n,k = Cα
n,kα

−k. Additionally,
specializing formula (16) in [15], the following convolution relation holds, which
defines non-central generalized Stirling numbers

S−1,−α,γ
n,k =

n
∑

s=k

(

n

s

)

S−1,−α
s,k (−γ)n−s, (35)

and consequently,

Cα,γ
n,k = αkS−1,−α,γ

n,k =

n
∑

s=k

(

n

s

)

Cα
s,k(−γ)n−s. (36)

An easy variation of equation (38) in [23] (see also (2.49) in [4]) provides a
definition of non-central generalized Stirling numbers as connection coefficients.
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