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1. Introduction

Substantial progress has been achieved over the last years in estimating high-
dimensional regression models. A thorough introduction to this dynamic field of
contemporary statistics is provided by the recent monographs Hastie, Tibshirani
and Friedman (2009); Bühlmann and van de Geer (2011). In the popular frame-
work of linear and generalized linear models, the Lasso estimator introduced
by Tibshirani (1996) immediately proved successful. Its theoretical properties
have been extensively studied and its popularity has never wavered since then,
see for example Bunea, Tsybakov and Wegkamp (2006); van de Geer (2008);
Bickel, Ritov and Tsybakov (2009); Meinshausen and Yu (2009). However, even
though numerous phenomena are well captured within this linear context, re-
straining high-dimensional statistics to this setting is unsatisfactory. To relax
the strong assumptions required in the linear framework, one idea is to inves-
tigate a more general class of models, such as nonparametric regression models
of the form Y = f(X)+W , where Y denotes the response, X the predictor and
W a zero-mean noise. A good compromise between complexity and effective-
ness is the additive model. It has been extensively studied and formalized for
thirty years now. Amongst many other references, the reader is invited to refer
to Stone (1985); Hastie and Tibshirani (1986, 1990); Härdle (1990). The core
of this model is that the regression function is written as a sum of univariate
functions f =

∑p
i=1 fi, easing its interpretation. Indeed, each covariate’s effect

is assessed by a unique function. This class of nonparametric models is a pop-
ular setting in statistics, despite the fact that classical estimation procedures
are known to perform poorly as soon as the number of covariates p exceeds the
number of observations n in that setting.

In the present paper, our goal is to investigate a PAC-Bayesian-based pre-
diction strategy in the high-dimensional additive framework (p≫ n paradigm).
In that context, estimation is essentially possible at the price of a sparsity as-
sumption, i.e., most of the fi functions are zero. More precisely, our setting is
non-asymptotic. As empirical evidences of sparse representations accumulate,
high-dimensional statistics are more and more coupled with a sparsity assump-
tion, namely that the intrinsic dimension p0 of the data is much smaller than
p and n, see e.g. Giraud, Huet and Verzelen (2012). Additive modelling under
a sparsity constraint has been essentially studied under the scope of the Lasso
in Meier, van de Geer and Bühlmann (2009), Suzuki and Sugiyama (2012) and
Koltchinskii and Yuan (2010) or of a combination of functional grouped Lasso
and backfitting algorithm in Ravikumar et al. (2009). Those papers inaugurated
the study of this problem and contain essential theoretical results consisting in
asymptotics (see Meier, van de Geer and Bühlmann (2009); Ravikumar et al.
(2009)) and non-asymptotics (see Suzuki and Sugiyama (2012); Koltchinskii
and Yuan (2010)) oracle inequalities. The present article should be seen as a
constructive contribution towards a deeper understanding of prediction prob-
lems in the additive framework. It should also be stressed that our work is
to be seen as an attempt to relax as much as possible assumptions made on
the model, such as restrictive conditions on the regressors’ matrix. We consider
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them too much of a non-realistic burden when it comes to prediction prob-
lems.

Our modus operandi will be based on PAC-Bayesian results, which is original
in that context to our knowledge. The PAC-Bayesian theory originates in the
two seminal papers Shawe-Taylor and Williamson (1997); McAllester (1999) and
has been extensively formalized in the context of classification (see Catoni (2004,
2007)) and regression (see Audibert (2004a,b); Alquier (2006, 2008); Audibert
and Catoni (2010, 2011)). However, the methods presented in these references
are not explicitly designed to cover the high-dimensional setting under the spar-
sity assumption. Thus, the PAC-Bayesian theory has been worked out in the
sparsity perspective lately, by Dalalyan and Tsybakov (2008, 2012); Alquier and
Lounici (2011); Rigollet and Tsybakov (2012). The main message of these stud-
ies is that aggregation with a properly chosen prior is able to deal effectively with
the sparsity issue. Interesting additional references addressing the aggregation
outcomes would be Rigollet (2006); Audibert (2009). The former aggregation
procedures rely on an exponential weights approach, achieving good statisti-
cal properties. Our method should be seen as an extension of these techniques,
and is particularly focused on additive modelling specificities. Contrary to pro-
cedures such as the Lasso, the Dantzig selector and other penalized methods
which are provably consistent under restrictive assumptions on the Gram matrix
associated to the predictors, PAC-Bayesian aggregation requires only minimal
assumptions on the model. Our method is supported by oracle inequalities in
probability, that are valid in both asymptotic and non-asymptotic settings. We
also show that our estimators achieve the optimal rate of convergence over tra-
ditional smoothing classes such as Sobolev ellipsoids. It should be stressed that
our work is inspired by Alquier and Biau (2011), which addresses the celebrated
single-index model with similar tools and philosophy. Let us also mention that
although the use of PAC-Bayesian techniques are original in this context, paral-
lel work has been conducted in the deterministic design case by Suzuki (2012).

A major difficulty when considering high-dimensional problems is to achieve a
favorable compromise between statistical and computational performances. The
recent and thorough monograph Bühlmann and van de Geer (2011) shall provide
the reader with valuable insights that address this drawback. As a consequence,
the explicit implementation of PAC-Bayesian techniques remains unsatisfactory
as existing routines are only put to test with small values of p (typically p < 100),
contradicting with the high-dimensional framework. In the meantime, as a so-
lution of a convex problem the Lasso proves computable for large values of p
in reasonable amounts of time. We therefore focused on improving the com-
putational aspect of our PAC-Bayesian strategy. Monte Carlo Markov Chains
(MCMC) techniques proved increasingly popular in the Bayesian community, for
they probably are the best way of sampling from potentially complex probability
distributions. The reader willing to find a thorough introduction to such tech-
niques is invited to refer to the comprehensive monographs Marin and Robert
(2007); Meyn and Tweedie (2009). While Alquier and Biau (2011); Alquier and
Lounici (2011) explore versions of the reversible jump MCMC method (RJM-
CMC) introduced by Green (1995), Dalalyan and Tsybakov (2008, 2012) in-
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vestigate a Langevin-Monte Carlo-based method, however only a deterministic
design is considered. We shall try to overcome those limitations by consider-
ing adaptations of a recent procedure whose comprehensive description is to
be found in Petralias (2010); Petralias and Dellaportas (2012). This procedure
called Subspace Carlin and Chib algorithm originates in the seminal paper by
Carlin and Chib (1995), and has a close philosophy of Hans, Dobra and West
(2007), as it favors local moves for the Markov chain. We provide numerical
evidence that our method is computationally efficient, on simulated data.

The paper is organized as follows. Section 2 presents our PAC-Bayesian pre-
diction strategy in additive models. In particular, it contains the main theoreti-
cal results of this paper which consist in oracle inequalities. Section 3 is devoted
to the implementation of our procedure, along with numerical experiments on
simulated data, presented in Section 4. Finally, and for the sake of clarity, proofs
have been postponed to Section 5.

2. PAC-Bayesian prediction

Let (Ω,A,P) be a probability space on which we denote by {(Xi, Yi)}ni=1 a
sample of n independent and identically distributed (i.i.d.) random vectors in
(−1, 1)p × R, with Xi = (Xi1, . . . , Xip), satisfying

Yi = ψ⋆(Xi) + ξi =

p
∑

j=1

ψ⋆
j (Xij) + ξi, i ∈ {1, . . . , p},

where ψ⋆
1 , . . . , ψ

⋆
p are p continuous functions (−1, 1) → R and {ξi}ni=1 is a set

of i.i.d. (conditionaly to {(Xi, Yi)}ni=1) real-valued random variables. Let P de-
note the distribution of the sample {(Xi, Yi)}ni=1. Denote by E the expectation
computed with respect to P and let ‖ · ‖∞ be the supremum norm. We make
the two following assumptions.

(A1) For any integer k, E[|ξ1|k] <∞, E[ξ1|X1] = 0 and there exist two positive
constants L and σ2 such that for any integer k ≥ 2,

E[|ξ1|k|X1] ≤
k!

2
σ2Lk−2.

(A2) There exists a constant C > max(1, σ) such that ‖ψ⋆‖∞ ≤ C.

Note that A1 implies that E ξ1 = 0 and that the distribution of ξ1 may depend
onX1. In particular, A1 holds if ξ1 is a zero-mean gaussian with variance γ2(X1)
where x 7→ γ2(x) is bounded.

Further, note that the boundedness assumption A2 plays a key role in our
approach, as it allows to use a version of Bernstein’s inequality which is one
of the two main technical tools we use to state our results. This assumption
is not only a technical prerequisite since it proved crucial for critical regimes:
indeed, if the intrinsic dimension p0 of the regression function ψ⋆ is still large,
the boundedness of the function class allows much faster estimation rates. This
point is profusely discussed in Raskutti, Wainwright and Yu (2012).
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We are mostly interested in sparse additive models, in which only a few
{ψ⋆

j }pj=1 are not identically zero. Let {ϕk}∞k=1 be a known countable set of
continuous functions R → (−1, 1) called the dictionary. In the sequel, |H| stands
for the cardinality of a setH. For any p-th tuple m = (m1, . . . ,mp) ∈ N

p, denote
by S(m) ⊂ {1, . . . , p} the set of indices of nonzero elements of m, i.e.,

|S(m)| =
p
∑

j=1

1[mj > 0],

and define

Θm = {θ ∈ R
m1 × · · · × R

mp} ,
with the convention R

0 = ∅. The set Θm is embedded with its canonical Borel
field B(Θm) = B(Rm1)⊗ · · · ⊗B(Rmp). Denote by

Θ
def
=

⋃

m∈M

Θm,

which is equipped with the σ-algebra T = σ
(
∨

m∈M
B(Θm)

)

, where M is the
collection of models M = {m = (m1, . . . ,mp) ∈ N

p}. Consider the span of the
set {ϕk}∞k=1, i.e., the set of functions

F =







ψθ =
∑

j∈S(m)

ψj =
∑

j∈S(m)

mj
∑

k=1

θjkϕk : θ ∈ Θm,m ∈ M







,

equipped with a countable generated σ-algebra denoted by F. The risk and
empirical risk associated to any ψθ ∈ F are defined respectively as

R(ψθ) = E[Y1 − ψθ(X1)]
2 and Rn(ψθ) = rn({Xi, Yi}ni=1, ψθ),

where

rn({xi, yi}ni=1, ψθ) =
1

n

n
∑

i=1

(yi − ψθ(xi))
2
.

Consider the probability ηα on the set M defined by

ηα : m 7→
1− α

1−α

1−
(

α
1−α

)p+1

(

p

|S(m)|

)−1

α
∑p

j=1 mj ,

for some α ∈ (0, 1/2). Let us stress the fact that the probability ηα acts as a
penalization term over a modelm, on the number of its active regressors through

the combinatorial term
(

p
|S(m)|

)−1
and on their expansion through α

∑p
j=1 mj .

Our procedure relies on the following construction of the probability π, re-
ferred to as the prior, in order to promote the sparsity properties of the target
regression function ψ⋆. For any m ∈ M, ζ > 0 and x ∈ Θm, denote by B

1
m
(x, ζ)
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the ℓ1-ball centered in x with radius ζ. For any m ∈ M, denote by πm the
uniform distribution on B

1
m
(0, C). Define the probability π on (Θ,T),

π(A) =
∑

m∈M

ηα(m)πm(A), A ∈ T.

Note that the volume Vm(C) of B1
m
(0, C) is given by

Vm(C) =
(2C)

∑
j∈S(m) mj

Γ
(

∑

j∈S(m)mj + 1
) =

(2C)
∑

j∈S(m) mj

(

∑

j∈S(m)mj

)

!
.

Finally, set δ > 0 (which may be interpreted as an inverse temperature param-
eter) and the posterior Gibbs transition density is

ρδ({(xi, yi)}ni=1, θ)

=
∑

m∈M

ηα(m)

Vm(C)
1B1

m
(0,C)(θ)

exp[−δrn({xi, yi}ni=1, ψθ)]
∫

exp[−δrn({xi, yi}ni=1, ψθ)]π(dθ)
. (2.1)

We then consider two competing estimators. The first one is the randomized
Gibbs estimator Ψ̂, constructed with parameters θ̂ sampled from the posterior
Gibbs density, i.e., for any A ∈ F,

P(Ψ̂ ∈ A|{Xi, Yi}ni=1) =

∫

A

ρδ({Xi, Yi}ni=1, θ)π(dθ), (2.2)

while the second one is the aggregated Gibbs estimator Ψ̂a defined as the pos-
terior mean

Ψ̂a =

∫

ψθρδ({Xi, Yi}ni=1, θ)π(dθ) = E[Ψ̂|{Xi, Yi}ni=1]. (2.3)

These estimators have been introduced in Catoni (2004, 2007) and investigated
in further work by Audibert (2004a); Alquier (2006, 2008); Dalalyan and Tsy-
bakov (2008, 2012).

For the sake of clarity, denote byD a generic numerical constant in the sequel.
We are now in a position to write a PAC-Bayesian oracle inequality.

Theorem 2.1. Let ψ̂ and ψ̂a be realizations of the Gibbs estimators defined
by (2.2)– (2.3), respectively. Let A1 and A2 hold. Set w = 8Cmax(L,C) and
δ = nℓ/[w+4(σ2+C2)], for ℓ ∈ (0, 1), and let ε ∈ (0, 1). Then with P-probability
at least 1− 2ε,

R(ψ̂)−R(ψ⋆)

R(ψ̂a)−R(ψ⋆)

}

≤ D inf
m∈M

inf
θ∈B1

m
(0,C)

{

R(ψθ)−R(ψ⋆)

+|S(m)| log(p/|S(m)|)
n

+
log(n)

n

∑

j∈S(m)

mj +
log(1/ε)

n







, (2.4)

where D depends upon w, σ, C, ℓ and α defined above.
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Under mild assumptions, Theorem 2.1 provides inequalities which admit the
following interpretation. If there exists a “small” model in the collection M,
i.e., a model m such that

∑

j∈S(m)mj and |S(m)| are small, such that ψθ (with

θ ∈ Θm) is close to ψ⋆, then ψ̂ and ψ̂a are also close to ψ⋆ up to log(n)/n
and log(p)/n terms. However, if no such model exists, at least one of the terms
∑

j∈S(m)mj/n and |S(m)|/n starts to emerge, thereby deteriorating the global
quality of the bound. A satisfying estimation of ψ⋆ is typically possible when
ψ⋆ admits a sparse representation.

To go further, we derive from Theorem 2.1 an inequality on Sobolev ellipsoids.
We show that our procedure achieves the optimal rate of convergence in this
setting. For the sake of shortness, we consider Sobolev spaces, however one
can easily derive the following results in other functional spaces such as Besov
spaces. See Tsybakov (2009) and the references therein.

The notation {ϕk}∞k=1 now refers to the (non-normalized) trigonometric sys-
tem, defined as

ϕ1 : t 7→ 1, ϕ2j : t 7→ cos(πjt), ϕ2j+1 : t 7→ sin(πjt),

with j ∈ N
∗ and t ∈ (−1, 1). Let us denote by S⋆ the set of indices of non-

identically zero regressors. That is, the regression function ψ⋆ is

ψ⋆ =
∑

j∈S⋆

ψ⋆
j .

Assume that for any j ∈ S⋆, ψ⋆
j belongs to the Sobolev ellipsoid W(rj , dj)

defined as

W(rj , dj) =

{

f ∈ L2([−1, 1]) : f =

∞
∑

k=1

θkϕk and

∞
∑

i=1

i2rjθ2i ≤ dj

}

.

with dj chosen such that
∑

j∈S⋆

√

dj ≤ C
√
6/π and for unknown regularity

parameters r1, . . . , r|S⋆| ≥ 1. Let us stress the fact that this assumption casts
our results onto the adaptive setting. It also implies that ψ⋆ belongs to the
Sobolev ellipsoid W(r, d), with r = minj∈S⋆ rj and d =

∑

j∈S⋆ dj , i.e.,

ψ⋆ =
∑

j∈S⋆

∞
∑

k=1

θ⋆jkϕk. (2.5)

It is worth pointing out that in that setting, the Sobolev ellipsoid is better
approximated by the ℓ1-ball B1

m
(0, C) as the dimension of m grows. Further,

make the following assumption.

(A3) The distribution of the data P has a probability density with respect to
the corresponding Lebesgue measure, bounded from above by a constant
B > 0.
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Theorem 2.2. Let ψ̂ and ψ̂a be realizations of the Gibbs estimators defined by
(2.2)– (2.3), respectively. Let A1, A2 and A3 hold. Set w = 8Cmax(L,C) and
δ = nℓ/[w+4(σ2+C2)], for ℓ ∈ (0, 1), and let ε ∈ (0, 1). Then with P-probability
at least 1− 2ε,

R(ψ̂)−R(ψ⋆)

R(ψ̂a)−R(ψ⋆)

}

≤

D







∑

j∈S⋆

d
1

2rj+1

j

(

log(n)

2nrj

)

2rj
2rj+1

+ |S⋆| log(p/|S⋆|)/n+
log(1/ε)

n







,

where D is a constant depending only on w, σ, C, ℓ, α and B.

Theorem 2.2 illustrates that we obtain the minimax rate of convergence over
Sobolev classes up to a log(n) term. Indeed, the minimax rate to estimate a

single function with regularity r is n
2r

2r+1 , see for example Tsybakov (2009,
Chapter 2). Theorem 2.1 and Theorem 2.2 thus validate our method.

A salient fact about Theorem 2.2 is its links with existing work: assume that
all the ψ⋆

j belong to the same Sobolev ellipsoid W(r, d). The convergence rate is

now log(n)n− 2r
2r+1 + log(p)/n. This rate (down to a log(n) term) is the same as

the one exhibited by Koltchinskii and Yuan (2010) in the context of multiple ker-

nel learning (n− 2r
2r+1 +log(p)/n). Suzuki and Sugiyama (2012) even obtain faster

rates which correspond to smaller functional spaces. However, the results pre-
sented by both Koltchinskii and Yuan (2010) and Suzuki and Sugiyama (2012)
are obtained under stringent conditions on the design, which are not necessary
to prove Theorem 2.2.

A natural extension is to consider sparsity on both regressors and their ex-
pansion, instead of sparse regressors and nested expansion as before. That is,
we no longer consider the first mj dictionary functions for the expansion of re-
gressor j. To this aim, we slightly extend the previous notation. Let K ∈ N

∗ be
the length of the dictionary. A model is now denoted by m = (m1, . . . ,mp) and
for any j ∈ {1, . . . , p}, mj = (mj1, . . . ,mjK) is a K-sized vector whose entries
are 1 whenever the corresponding dictionary function is present in the model
and 0 otherwise. Introduce the notation

S(m) = {mj 6= 0, j ∈ {1, . . . , p}}, S(mj) = {mjk 6= 0, k ∈ {1, . . . ,K}}.
The prior distribution on the models space M is now

ηα : m 7→
1− α 1−αK+1

1−α

1−
(

α 1−αK+1

1−α

)p+1

(

p

|S(m)|

)−1
∏

j∈S(m)

(

K

|S(mj)|

)−1

α|S(mj)|,

for any α ∈ (0, 1/2).

Theorem 2.3. Let ψ̂ and ψ̂a be realizations of the Gibbs estimators defined
by (2.2)– (2.3), respectively. Let A1 and A2 hold. Set w = 8Cmax(L,C) and
δ = nℓ/[w+4(σ2+C2)], for ℓ ∈ (0, 1), and let ε ∈ (0, 1). Then with P-probability
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at least 1− 2ε,

R(ψ̂)−R(ψ⋆)

R(ψ̂a)−R(ψ⋆)

}

≤ D inf
m∈M

inf
θ∈B1

m
(0,C)

{

R(ψθ)−R(ψ⋆)

+|S(m)| log(p/|S(m)|)
n

+
log(nK)

n

∑

j∈S(m)

|S(mj)|+
log(1/ε)

n







,

where D depends upon w, σ, C, ℓ and α defined above.

3. MCMC implementation

In this section, we describe an implementation of the method outlined in the
previous section. Our goal is to sample from the Gibbs posterior distribu-
tion ρδ. We use a version of the so-called Subspace Carlin and Chib (SCC)
developed by Petralias (2010); Petralias and Dellaportas (2012) which origi-
nates in the Shotgun Stochastic Search algorithm (see Hans, Dobra and West
(2007)). The key idea of the algorithm lies in a stochastic search heuristic that
restricts moves in neighborhoods of the visited models. Let T ∈ N

∗ and de-
note by {θ(t),m(t)}Tt=0 the Markov chain of interest, with θ(t) ∈ Θ

m(t). Define
i : t 7→ {+,−,=}, the three possible moves performed by the algorithm: an
addition, a deletion or an adjustment of a regressor. Let {e1, . . . , ep} be the
canonical base of Rp. For any model m(t) = (m1(t), . . . ,mp(t)) ∈ M, define its
neighborhood {V+[m(t)],V−[m(t)],V=[m(t)]}, where

V
+[m(t)] = {k ∈ M : k = m(t) + xej , x ∈ N

∗, j ∈ {1, . . . , p}\S[m(t)]},
V
−[m(t)] = {k ∈ M : k = m(t)−mj(t)ej , j ∈ S[m(t)]},

and
V
=[m(t)] = {k ∈ M : S(k) = S[m(t)]}.

A move i(t) is chosen with probability q[i(t)]. By convention, if S[m(t)] = p
(respectively S[m(t)] = 1) the probability of performing an addition move (re-
spectively a deletion move) is zero. Note ξ : {+,−} 7→ {−,+} and let Dm be
the design matrix in model m ∈ M. Denote by LSEm the least square estimate
LSEm = (D′

m
Dm)−1D′

m
Y (with Y = (Y1, . . . , Yn)) in model m ∈ M. For ease

of notation, let I denote the identity matrix. Finally, denote by φ(·;µ,Γ) the
density of a Gaussian distribution N(µ,Γ) with mean µ and covariance matrix
Γ. A description of the full algorithm is presented in Algorithm 1.

The estimates Ψ̂ and Ψ̂a are obtained as

Ψ̂ =

p
∑

j=1

K
∑

k=1

θjk(T )ϕk,

and for some burnin b ∈ {1, . . . , T − 1},

Ψ̂a =

p
∑

j=1

K
∑

k=1

(

1

T − b

T
∑

ℓ=b+1

θjk(ℓ)

)

ϕk.
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Algorithm 1 A Subspace Carlin and Chib-based algorithm

1: Initialize (θ(0),m(0)).
2: for t = 1 to T do

3: Choose a move i(t) with probability q[i(t)].

4: For any k ∈ V
i(t)[m(t − 1)], generate θk from the proposal density φ(·; LSEk, σ

2I).

5: Propose a model k ∈ V
i(t)[m(t− 1)] with probability

γ(m(t− 1),k) =
Ak

∑

j∈Vi(t) [m(t−1)]Aj

,

where

Aj =
ρδ(θj)

φ(θj; LSEj, σ2I)
.

6: if i(t) ∈ {+,−} then

7: For any h ∈ V
ξ(i(t))[k], generate θh from the proposal density φ(·; LSEh, σ

2I). Note

that m(t − 1) ∈ V
ξ(i(t))[k].

8: Accept model k, i.e., set m(t) = k and θ(t) = θk, with probability

α = min

(

1,
Akq[i(t)]γ(k,m(t − 1))

Am(t−1)q[ξ(i(t))]γ(m(t − 1),k)

)

= min

(

1,
q[i(t)]

∑

h∈Vi(t)[m(t−1)]Ah

q[ξ(i(t))]
∑

h∈Vξ(i(t)) [k]Ah

)

.

Otherwise, set m(t) = m(t − 1) and θ(t) = θm(t−1).
9: else

10: Generate θm(t−1) from the proposal density φ(·; LSEm(t−1), σ
2I).

11: Accept model k, i.e., set m(t) = k and θ(t) = θk, with probability

α = min

(

1,
Akγ(k,m(t− 1))

Am(t−1)γ(m(t− 1),k)

)

.

Otherwise, set m(t) = m(t − 1) and θ(t) = θm(t−1).
12: end if

13: end for

The transition kernel of the chain defined above is reversible with respect to
ρδ ⊗ ηα, hence this procedure ensures that {θ(t)}Tt=1 is a Markov Chain with
stationary distribution ρδ.

4. Numerical studies

In this section we validate the effectiveness of our method on simulated data.
All our numerical studies have been performed with the software R (see R Core
Team (2012)). The method is available on the CRAN website (http://www.
cran.r-project.org/web/packages/pacbpred/index.html), under the name
pacbpred (see Guedj (2012)).

Some comments are in order here about how to calibrate the constants C,
σ2, δ and α. Clearly, a too small value for C will stuck the algorithm, pre-
venting the chain to escape from the initial model. Indeed, most proposed
models will be discarded since the acceptance ratio will frequently take the

http://www.cran.r-project.org/web/packages/pacbpred/index.html
http://www.cran.r-project.org/web/packages/pacbpred/index.html
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Table 1

Each number is the mean (standard deviation) of the RSS over 10 independent runs

p = 50 p = 200 p = 400
MCMC 3000 it. 10000 it. 20000 it.
Model 1 0.0318 (0.0047) 0.0320 (0.0029) 0.0335 (0.0056)
Model 2 0.0411 (0.0061) 0.1746 (0.0639) 0.2201 (0.0992)
Model 3 0.0665 (0.0421) 0.1151 (0.0399) 0.1597 (0.0579)

value 0. Conversely, a large value for C deteriorates the quality of the bound in
Theorem 2.1, Theorem 2.2, Theorem 2.3 and Theorem 5.1. However, this only
influences the theoretical bound, as its contribution to the acceptance ratio is
limited to log(2C). We thereby proceeded with typically large values of C (such
as C = 106). As the parameter σ2 is the variance of the proposal distribution φ,
the practioner should tune it in accordance with the noise level of the data. The
parameter requiring the finest calibration is δ: the convergence of the algorithm
is sensitive to its choice. Dalalyan and Tsybakov (2008, 2012) exhibit the theo-
retical value δ = n/4σ2. This value leads to very good numerical performances,
as it has been also noticed by Dalalyan and Tsybakov (2008, 2012); Alquier and
Biau (2011). The choice for α is guided by a similar reasoning to the one for C.
Its contribution to the acceptance ratio is limited to a log(1/α) term. The value
α = 0.25 was used in the simulations for its apparent good properties. Although
it would be computationally costly, a finer calibration through methods such as
cross-validation is possible.

Finally and as a general rule, we strongly encourage practitioners to run
several chains of inequal lengths and to adjust the number of iterations needed
by observing if the empirical risk is stabilized.

Model 1. n = 200 and S⋆ = {1, 2, 3, 4}. This model is similar to Meier, van de
Geer and Bühlmann (2009, Section 3, Example 1) and is given by

Yi = ψ⋆
1(Xi1) + ψ⋆

2(Xi2) + ψ⋆
3(Xi3) + ψ⋆

4(Xi4) + ξi,

with

ψ⋆
1 : x 7→ − sin(2x), ψ⋆

2 : x 7→ x3, ψ⋆
3 : x 7→ x,

ψ⋆
4 : x 7→ e−x − e/2, ξi ∼ N(0, 0.1), i ∈ {1, . . . , n}.

The covariates are sampled from independent uniform distributions over
(−1, 1).

Model 2. n = 200 and S⋆ = {1, 2, 3, 4}. As above but correlated. The covariates
are sampled from a multivariate gaussian distribution with covariance matrix
Σij = 2−|i−j|−2, i, j ∈ {1, . . . , p}.
Model 3. n = 200 and S⋆ = {1, 2, 3, 4}. This model is similar to Meier, van de
Geer and Bühlmann (2009, Section 3, Example 3) and is given by

Yi = 5ψ⋆
1(Xi1) + 3ψ⋆

2(Xi2) + 4ψ⋆
3(Xi3) + 6ψ⋆

4(Xi4) + ξi,
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with

ψ⋆
1 : x 7→ x, ψ⋆

2 : x 7→ 4(x2 − x− 1), ψ⋆
3 : x 7→ sin(2πx)

2− sin(2πx)
,

ψ⋆
4 : x 7→ 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx) + 0.4 cos3(2πx)

+ 0.5 sin3(2πx), ξi ∼ N(0, 0.5), i ∈ {1, . . . , n}.

The covariates are sampled from independent uniform distributions over (−1, 1).

The results of the simulations are summarized in Table 1 and illustrated by
Figure 1 and Figure 2. The reconstruction of the true regression function ψ⋆ is
achieved even in very high-dimensional situations, pulling up our method at the
level of the gold standard Lasso.

(a) Model 1, p = 200.
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(b) Model 1, p = 400.
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(c) Model 2, p = 50.
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(d) Model 3, p = 50.
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Fig 1. Estimates (red dashed lines) for ψ⋆
1 , ψ

⋆
2 , ψ

⋆
3 and ψ⋆

4 (solid black lines). Other estimates
(for ψ⋆

j , j /∈ {1, 2, 3, 4}) are mostly zero.
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(a) Model 1, p = 200.
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(b) Model 1, p = 400.
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(c) Model 2, p = 50.
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(d) Model 3, p = 50.
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Fig 2. plot of the responses Y1, . . . , Yn against their estimates. The more points on the first
bisectrix (solid black line), the better the estimation.

5. Proofs

To start the chain of proofs leading to Theorem 2.1, Theorem 2.2 and Theorem 2.3,
we recall and prove some lemmas to establish Theorem 5.1 which consists in a
general PAC-Bayesian inequality in the spirit of Catoni (2004, Theorem 5.5.1)
for classification or Catoni (2004, Lemma 5.8.2) for regression. Note also that
Dalalyan and Tsybakov (2012, Theorem 1) provides a similar inequality in the
deterministic design case. A salient fact on Theorem 5.1 is that the validity of
the oracle inequalities only involves the distribution of the noise variable ξ1, and
that distribution is independent of the sample size n.

The proofs of the following two classical results are omitted. Lemma 5.1 is a
version of Bernstein’s inequality which originates in Massart (2007, Proposition
2.19), whereas Lemma 5.2 appears in Catoni (2004, Equation 5.2.1).

For x ∈ R, denote (x)+ = max(x, 0). Let µ1, µ2 be two probabilities. The
Kullback-Leibler divergence of µ1 with respect to µ2 is denoted KL(µ1, µ2) and
is

KL(µ1, µ2) =

{

∫

log
(

dµ1

dµ2

)

dµ1 if µ1 ≪ µ2,

∞ otherwise.

Finally, for any measurable space (A,A) and any probability π on (A,A), denote
by M1

+,π(A,A) the set of probabilities on (A,A) absolutely continuous with
respect to π.



PAC-Bayesian sparse additive prediction 277

Lemma 5.1. Let (Ti)
n
i=1 be independent real-valued variables. Assume that

there exist two positive constants v and w such that, for any integer k ≥ 2,

n
∑

i=1

E[(Ti)
k
+] ≤

k!

2
vwk−2.

Then for any γ ∈
(

0, 1
w

)

,

E

[

exp

(

γ

n
∑

i=1

(Ti − ETi)

)]

≤ exp

(

vγ2

2(1− wγ)

)

.

Lemma 5.2. Let (A,A) be a measurable space. For any probability µ on (A,A)
and any measurable function h : A→ R such that

∫

(exp ◦ h)dµ <∞,

log

∫

(exp ◦ h)dµ = sup
m∈M1

+,π(A,A)

∫

hdm−KL(m,µ),

with the convention ∞ − ∞ = −∞. Moreover, as soon as h is upper-bounded
on the support of µ, the supremum with respect to m on the right-hand side is
reached for the Gibbs distribution g given by

dg

dµ
(a) =

exp(h(a))
∫

(exp ◦ h)dµ, a ∈ A.

Theorem 5.1 is valid in the general regression framework. In the proofs of
Lemma 5.3, Lemma 5.4, Lemma 5.5 and Theorem 5.1, we consider a general
regression function ψ⋆. Denote by (Θ,T) a space of functions equipped with a
countable generated σ-algebra, and let π be a probability on (Θ,T), referred to
as the prior. Lemma 5.3, Lemma 5.4, Lemma 5.5 and Theorem 5.1 follow from
the work of Catoni (2004); Dalalyan and Tsybakov (2008, 2012); Alquier (2008);
Alquier and Biau (2011). Let δ > 0 and consider the so-called posterior Gibbs
transition density ρδ with respect to π, defined as

ρδ({xi, yi}ni=1, ψ) =
exp[−δrn({xi, yi}ni=1, ψ)]

∫

exp[−δrn({xi, yi}ni=1, ψ)]π(dψ)
. (5.1)

In the following three lemmas, denote by ρ a so-called posterior probability
absolutely continuous with respect to π. Let ψ be a realization of a random
variable Ψ sampled from ρ.

Lemma 5.3. Let A1 and A2 hold. Set w = 8Cmax(L,C), δ ∈ (0, n/[w+4(σ2+
C2)]) and ε ∈ (0, 1). Then with P-probability at least 1− ε

R(ψ)−R(ψ⋆) ≤ 1

1− 4δ(σ2+C2)
n−wδ

(

Rn(ψ)−Rn(ψ
⋆) +

log dρ
dπ (ψ) + log 1

ε

δ

)

.
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Proof. Apply Lemma 5.1 to the variables Ti defined as follow: for any ψ ∈,

Ti = −(Yi − ψ(Xi))
2 + (Yi − ψ⋆(Xi))

2, i ∈ {1, . . . , n}. (5.2)

First, let us note that

R(ψ)−R(ψ⋆) = E[(Y1 − ψ(X1))
2]− E[(Y1 − ψ⋆(X1))

2]

= E[(2Y1 − ψ(X1)− ψ⋆(X1))(ψ
⋆(X1)− ψ(X1))]

= E [(ψ⋆(X1)− ψ(X1))E[(2W1 + ψ⋆(X1)− ψ(X1))|X1]]

= 2E[(ψ⋆(X1)− ψ(X1))E[ξ1|X1]] + E[ψ⋆(X1)− ψ(X1)]
2.

As E[ξ1|X1] = 0,

R(ψ)−R(ψ⋆) = E[ψ⋆(X)− ψ(X)]2. (5.3)

By (5.2), the random variables (Ti)
n
i=1 are independent. Using Lemma 5.1, we

get

n
∑

i=1

ET 2
i =

n
∑

i=1

E
[

(2Yi − ψ(Xi)− ψ⋆(Xi))
2(ψ(Xi)− ψ⋆(Xi))

2
]

=

n
∑

i=1

EE
[

(2Wi + ψ⋆(Xi)− ψ(Xi))
2(ψ(Xi)− ψ⋆(Xi))

2|Xi

]

.

Next, using that |a+ b|k ≤ 2k−1(|a|+ |b|) for any a, b ∈ R and k ∈ N
∗, we get

n
∑

i=1

ET 2
i ≤ 2

n
∑

i=1

E
[

(ψ(Xi)− ψ⋆(Xi))
2
E
[

(4W 2
i + 4C2)|Xi

]]

≤ 8
(

σ2 + C2
)

n
∑

i=1

E
[

(ψ(Xi)− ψ⋆(Xi))
2
]

= 8n
(

σ2 + C2
)

(R(ψ)−R(ψ⋆))
def
= v, (5.4)

where we have used (5.3) in the last equation. It follows that for any integer
k ≥ 3,

n
∑

i=1

E[(Ti)
k
+] =

n
∑

i=1

EE[(Ti)
k
+|Xi]

≤
n
∑

i=1

EE
[

|2Yi − ψ(Xi)− ψ⋆(Xi)|k|ψ(Xi)− ψ⋆(Xi)|k|Xi

]

=

n
∑

i=1

EE
[

|2Wi + ψ⋆(Xi)− ψ(Xi)|k|ψ(Xi)− ψ⋆(Xi)|k|Xi

]

≤ 2k−1
n
∑

i=1

EE
[(

2k|ξi|k + |ψ⋆(Xi)− ψ(Xi)|k
)

|ψ(Xi)− ψ⋆(Xi)|k|Xi

]

.



PAC-Bayesian sparse additive prediction 279

Using that |ψ(xi)− ψ⋆(xi)|k ≤ (2C)k−2|ψ(xi)− ψ⋆(xi)|2 and (5.3), we get

n
∑

i=1

E[(Ti)
k
+] ≤ 2k−1

n
∑

i=1

(

2k−1k!σ2Lk−2 + (2C)k
)

(2C)k−2[R(ψ)−R(ψ⋆)]

=
k!

2
v(2C)k−2

(

22k−4σ2Lk−2 + 2
k!2

2k−4Ck

σ2 + C2

)

.

Recalling that C > max(1, σ) gives

22k−4σ2Lk−2 + 2
k!2

2k−4Ck

σ2 + C2
≤ 4k−2σ2Lk−2

2σ2
+

2
k!4

k−2Ck

C2

≤ 1

2
(4L)k−2 +

1

2
(4C)k−2 = [4max(L,C)]k−2.

Hence
n
∑

i=1

E[(Ti)
k
+] ≤

k!

2
vwk−2, with w

def
= 8Cmax(L,C). (5.5)

Applying Lemma 5.1, we obtain, for any real δ ∈
(

0, n
w

)

, with γ = δ
n ,

E exp[δ(Rn(ψ
⋆)−Rn(ψ) +R(ψ)−R(ψ⋆))] ≤ exp

(

vδ2

2n2
(

1− wδ
n

)

)

,

that is, that for any real number ε ∈ (0, 1),

E exp

[

δ[Rn(ψ
⋆)−Rn(ψ)] + δ[R(ψ)−R(ψ⋆)]

(

1− 4δ(σ2 + C2)

n− wδ

)

− log
1

ε

]

≤ ε. (5.6)

Next, we use a standard PAC-Bayesian approach (as developed in Audibert
(2004a); Catoni (2004, 2007); Alquier (2008)). For any prior probability π on
(Θ,T),

∫

E exp

[

δ[R(ψ)−R(ψ⋆)]

(

1− 4δ(σ2 + C2)

n− wδ

)

+δ[Rn(ψ
⋆)−Rn(ψ)]− log

1

ε

]

π(dψ) ≤ ε.

By the Fubini-Tonelli theorem

E

∫

exp

[

δ[R(ψ)−R(ψ⋆)]

(

1− 4δ(σ2 + C2)

n− wδ

)

+δ[Rn(ψ
⋆)−Rn(ψ)]− log

1

ε

]

π(dψ) ≤ ε.



280 B. Guedj and P. Alquier

Therefore, for any data-dependent posterior probability measure ρ absolutely
continuous with respect to π, adopting the convention ∞× 0 = 0,

E

∫

exp

[

δ[R(ψ)−R(ψ⋆)]

(

1− 4δ(σ2 + C2)

n− wδ

)

+δ[Rn(ψ
⋆)−Rn(ψ)] − log

dρ

dπ
(ψ)− log

1

ε

]

ρ(dψ) ≤ ε. (5.7)

Recalling that E stands for the expectation computed with respect to P, the
integration symbol may be omitted and we get

E exp

[

δ[R(ψ)−R(ψ⋆)]

(

1− 4δ(σ2 + C2)

n− wδ

)

+δ[Rn(ψ
⋆)−Rn(ψ)]− log

dρ

dπ
(ψ)− log

1

ε

]

≤ ε.

Using the elementary inequality exp(δx) ≥ 1R+
(x), we get, with P-probability

at most ε

(

1− 4δ(σ2 + C2)

n− wδ

)

[R(ψ)−R(ψ⋆)] ≥ Rn(ψ)−Rn(ψ
⋆)

+
log dρ

dπ (ψ) + log 1
ε

δ
.

Taking δ < n/[w + 4(σ2 + C2)] implies

1− 4δ(σ2 + C2)

n− wδ
> 0,

and with P-probability at least 1− ε,

R(ψ)−R(ψ⋆) ≤ 1

1− 4δ(σ2+C2)
n−wδ

(

Rn(ψ)−Rn(ψ
⋆) +

log dρ
dπ (ψ) + log 1

ε

δ

)

.

Lemma 5.4. Let A1 and A2 hold. Set w = 8Cmax(L,C), δ ∈ (0, n/[w+4(σ2+
C2)]) and ε ∈ (0, 1). Then with P-probability at least 1− ε

∫

Rn(ψ)ρ(dψ) −Rn(ψ
⋆) ≤

[

1 +
4δ(σ2 + C2)

n− wδ

] [∫

R(ψ)ρ(dψ)

−R(ψ⋆)

]

+
KL(ρ, π) + log 1

ε

δ
. (5.8)

Proof. Set ψ ∈ F and Zi = (Yi−ψ(Xi))
2− (Yi−ψ⋆(Xi))

2, i ∈ {1, . . . , n}. Since
Zi = −Ti where Ti is defined in (5.2), using the same arguments that lead to
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(5.6), we get that for any δ ∈ (0,∈ n/w) and ε ∈ (0, 1)

E

∫

exp

[

−δ[R(ψ)−R(ψ⋆)]

(

1 +
4δ(σ2 + C2)

n− wδ

)

+δ[Rn(ψ)−Rn(ψ
⋆)]− log

dρ

dπ
(ψ)− log

1

ε

]

ρ(dψ) ≤ ε.

Using Jensen’s inequality, we get

E exp

[

−
∫ {

δ[R(ψ)−R(ψ⋆)]

(

1 +
4δ(σ2 + C2)

n− wδ

)

+δ[Rn(ψ)−Rn(ψ
⋆)]− log

dρ

dπ
(ψ)− log

1

ε

}

ρ(dψ)

]

≤ ε.

Since exp(δx) ≥ 1R+
(x), we obtain with P-probability at most ε

[

−
∫

R(ψ)ρ(dψ) +R(ψ⋆)

](

1 +
4δ(σ2 + C2)

n− wδ

)

+

∫

Rn(ψ)ρ(dψ)

−Rn(ψ
⋆)− KL(ρ, π) + log 1

ε

δ
≥ 0.

Taking δ < n/[w + 4(σ2 + C2)] yields (5.8).

Lemma 5.5. Let A1 and A2 hold. Set w = 8Cmax(L,C), δ ∈ (0, n/[w+4(σ2+
C2)]) and ε ∈ (0, 1). Then with P-probability at least 1− ε

∫

R(ψ)ρ(dψ) −R(ψ⋆) ≤ 1

1− 4δ(σ2+C2)
n−wδ

(∫

Rn(ψ)ρ(dψ) −Rn(ψ
⋆)

+
KL(ρ, π) + log 1

ε

δ

)

.

Proof. Recall (5.7). By Jensen’s inequality,

E exp

[

δ

(∫

R(ψ)ρ(dψ)−R(ψ⋆)

)[

1− 4δ(σ2 + C2)

n− wδ

]

+δ

(

Rn(ψ
⋆)−

∫

Rn(ψ)ρ(dψ)

)

−KL(ρ, π)− log
1

ε

]

≤ ε.

Using exp(δx) ≥ 1R+
(x) yields the expected result.

Theorem 5.1. Let ψ̂ and ψ̂a be realizations of the Gibbs estimators defined
by (2.2)– (2.3), respectively. Let A1 and A2 hold. Set w = 8Cmax(L,C) and
δ = nℓ/[w+ 4(σ2 +C2)], for ℓ ∈ (0, 1), and let ε ∈ (0, 1). Then with probability



282 B. Guedj and P. Alquier

at least 1− 2ε,

R(ψ̂)−R(ψ⋆)

R(ψ̂a)−R(ψ⋆)

}

≤ D inf
ρ∈M1

+,π(Θ,T)

{
∫

R(ψ)ρ(dψ)

−R(ψ⋆) +
KL(ρ, π) + log 1

ε

n

}

, (5.9)

where D is a constant depending only upon w, σ, C and ℓ.

Proof. Recall that the randomized Gibbs estimator Ψ̂ is sampled from ρδ. De-
note by ψ̂ a realization of the variable Ψ̂. By Lemma 5.3, with P-probability at
least 1− ε,

R(ψ̂)−R(ψ⋆) ≤ 1

1− 4δ(σ2+C2)
n−wδ

(

Rn(ψ̂)−Rn(ψ
⋆) +

log dρδ

dπ (ψ̂) + log 1
ε

δ

)

.

Note that

log
dρδ
dπ

(ψ̂) = log
exp[−δRn(ψ̂)]

∫

exp[−δRn(ψ)]π(dψ)

= −δRn(ψ̂)− log

∫

exp[−δRn(ψ)]π(dψ).

Thus, with P-probability at least 1− ε,

R(ψ̂)−R(ψ⋆) ≤ 1

1− 4δ(σ2+C2)
n−wδ

(

−Rn(ψ
⋆)− 1

δ
log

∫

exp[−δRn(ψ)]π(dψ)

+
1

δ
log

1

ε

)

.

By Lemma 5.2, with P-probability at least 1− ε,

R(ψ̂)−R(ψ⋆) ≤ 1

1− 4δ(σ2+C2)
n−wδ

inf
ρ∈M1

+,π(Θ,T)

(∫

Rn(ψ)ρ(dψ) −Rn(ψ
⋆)

+
KL(ρ, π) + log 1

ε

δ

)

.

Finally, by Lemma 5.4, with P-probability at least 1− 2ε,

R(ψ̂)−R(ψ⋆) ≤
1 + 4δ(σ2+C2)

n−wδ

1− 4δ(σ2+C2)
n−wδ

inf
ρ∈M1

+,π(Θ,T)

{∫

R(ψ)ρ(dψ) −R(ψ⋆)

+
2

1 + 4δ(σ2+C2)
n−wδ

KL(ρ, π) + log 1
ε

δ

}

.
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Apply Lemma 5.5 with the Gibbs posterior probability defined by (5.1). With
P-probability at least 1− ε,

∫

R(ψ)ρδ(dψ)−R(ψ⋆) ≤ 1

1− 4δ(σ2+C2)
n−wδ

(∫

Rn(ψ)ρδ(dψ)−Rn(ψ
⋆)

+
KL(ρδ, π) + log 1

ε

δ

)

.

Note that

KL(ρδ, π) =

∫

log
exp[−δRn(ψ)]

∫

exp[−δRn(ψ)]π(dψ)
ρδ(dψ)

= −δ
∫

Rn(ψ)ρδ(dψ)− log

(∫

exp[−δRn(ψ)]π(dψ)

)

.

By Lemma 5.2, with P
⊗n-probability at least 1− ε

∫

R(ψ)ρδ(dψ)−R(ψ⋆) ≤ 1

1− 4δ(σ2+C2)
n−wδ

inf
ρ∈M1

+,π(Θ,T)

{∫

Rn(ψ)ρ(dψ)

−Rn(ψ
⋆) +

KL(ρ, π) + log 1
ε

δ

}

.

By Lemma 5.4, with P
⊗n-probability at least 1− 2ε

∫

R(ψ)ρδ(dψ)−R(ψ⋆) ≤
1 + 4δ(σ2+C2)

n−wδ

1− 4δ(σ2+C2)
n−wδ

inf
ρ∈M1

+,π(Θ,T)

{∫

R(ψ)ρ(dψ)

−R(ψ⋆) +
2

1 + 4δ(σ2+C2)
n−wδ

KL(ρ, π) + log 1
ε

δ

}

.

As R is a convex function, applying Jensen’s inequality gives

∫

R(ψ)ρδ(dψ) ≥ R(ψ̂a).

Finally, note that

1 + 4δ(σ2+C2)
n−wδ

1− 4δ(σ2+C2)
n−wδ

= 1 +
8ℓ(σ2 + C2)

(1− ℓ)(w + 4σ2 + 4C2)
.

Proof of Theorem 2.1. Let ρ ∈ M1
+,π(Θ,T). For any A ∈ T, note that ρ(A) =

∑

m∈M
ρm(A) where ρm(·) = ρ(·∩Θm), the trace of ρ on Θm. By Theorem 5.1,
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with P-probability at least 1− 2ε

R(ψ̂)−R(ψ⋆) ≤ D inf
m∈M

inf
ρ∈M1

+,π(Θ,T)

{
∫

R(ψ)ρm(dψ)−R(ψ⋆) +
KL(ρm, π) + log 1

ε

n

}

. (5.10)

Note that for any ρ ∈ M1
+,π(Θ,T) and any m ∈ M,

KL(ρm, π) =

∫

log

(

dρm
dπm

)

dρm +

∫

log

(

dπm
dπ

)

dρm

= KL(ρm, πm)+log(1/α)
∑

j∈S(m)

mj+log

(

p

|S(m)|

)

+log







1−
(

α
1−α

)p+1

1− α
1−α






.

Next, using the elementary inequality log
(

n
k

)

≤ k log(ne/k) and that α
1−α < 1,

KL(ρm, π) ≤ KL(ρm, πm) + log(1/α)
∑

j∈S(m)

mj + |S(m)| log
(

pe

|S(m)|

)

+ log

(

1− α

1− 2α

)

.

We restrict the set of all probabilities absolutely continuous with respect to πm
to uniform probabilities on the ball B1

m
(x, ζ), with x ∈ B

1
m
(0, C) and 0 < ζ ≤

C − ‖θ‖1. Such a probability is denoted by µx,ζ . With P-probability at least
1− 2ε, it yields that

R(ψ̂)−R(ψ⋆) ≤ D inf
m∈M

inf
θ∈B1

m
(0,C)

inf
µθ,ζ ,0<ζ≤C−‖θ‖1

{∫

R(ψθ̄)µθ,ζ(dθ̄)−

R(ψ⋆) +
1

n



KL(µθ,ζ , πm) + log
1

ε
+ |S(m)| log

(

p

|S(m)|

)

+
∑

j∈S(m)

mj











.

Next, note that

KL(µθ,ζ , πm) = log

(

Vm(C)

Vm(ζ)

)

= log

(

C

ζ

)

∑

j∈S(m)

mj .

Note also that
∫

R(ψθ̄)µθ,ζ(dθ̄) =

∫

E [Y1 − ψθ̄(X1)]
2
µθ,ζ(dθ̄)

=

∫

E [Y1 − ψθ(X1) + ψθ(X1)− ψθ̄(X1)]
2 µθ,ζ(dθ̄),
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and

∫

E [Y1 − ψθ(X1) + ψθ(X1)− ψθ̄(X1)]
2
µθ,ζ(dθ̄)

=

∫

R(ψθ)µθ,ζ(dθ̄) +

∫

E [ψθ(X1)− ψθ̄(X1)]
2
µθ,ζ(dθ̄)

+ 2

∫

E{[Y1 − ψθ(X1)][ψθ(X1)− ψθ̄(X1)]}µθ,ζ(dθ̄).

Since θ̄ ∈ B
1
m
(θ, ζ),

∫

E [ψθ(X1)− ψθ̄(X1)]
2 µθ,ζ(dθ̄)

=

∫

E





∑

j∈S(m)

mj
∑

k=1

(θjk − θ̄jk)ϕk(X1j)





2

µθ,ζ(dθ̄)

≤ ‖θ − θ̄‖21max
k

‖ϕk‖2∞ ≤ ζ2,

and by the Fubini-Tonelli theorem,

2

∫

E{[Y1 − ψθ(X1)][ψθ(X1)− ψθ̄(X1)]}µθ,ζ(dθ̄)

= 2E

[

[Y1 − ψθ(X1)]

∫

[ψθ(X1)− ψθ̄(X1)]µθ,ζ(dθ̄)

]

= 0,

since
∫

ψθ̄(X1)µθ,ζ(dθ̄) = ψθ(X1). Consequently, as

∫

R(ψθ)µθ,ζ(dθ̄) = R(ψθ),

we get
∫

R(ψθ̄)µθ,ζ(dθ̄) ≤ R(ψθ) + ζ2.

So with P-probability at least 1− 2ε,

R(ψ̂)−R(ψ⋆) ≤ D inf
m∈M

inf
θ∈B1

m
(0,C)

inf
µθ,ζ ,0<ζ≤C−‖θ‖1

{

R(ψθ) + ζ2 −R(ψ⋆)

+
1

n



log(C/ζ)
∑

j∈S(m)

mj + log
1

ε
+ |S(m)| log

(

p

|S(m)|

)

+
∑

j∈S(m)

mj





}

.

The function t 7→ t2+log(C/t)
∑

j∈S(m)mj/n is convex. Its minimum is unique

and is reached for t = [
∑

j∈S(m)mj/(2n)]
1/2. With P-probability at least 1−2ε,
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R(ψ̂)−R(ψ⋆) ≤ D inf
m∈M

inf
θ∈B1

m
(0,C)

{

R(ψθ)−R(ψ⋆)

+|S(m)| log(p/|S(m)|)
n

+
log(n)

n

∑

j∈S(m)

mj +
log(1/ε)

n







,

whereD is a constant depending only on w, σ, C, ℓ and α. As the same inequality
holds for ψ̂a, this concludes the proof.

Proof of Theorem 2.2. Recall Theorem 2.1. A3 gives

R(ψθ)−R(ψ⋆) =

∫

(ψθ(x) − ψ⋆(x))2dP(x) ≤ B

∫

(ψθ(x)− ψ⋆(x))2dx.

For any m ∈ M, define

ψ⋆
m

=
∑

j∈S⋆

mj
∑

k=1

θ⋆jkϕk.

To proceed, we need to check that the projection of θ⋆ onto model m lies in
B

1
m
(0, C), i.e.,

∑

j∈S⋆

mj
∑

k=1

|θ⋆jk| ≤ C.

Using the Cauchy-Schwarz inequality, we get

∑

j∈S⋆

mj
∑

k=1

|θ⋆jk| =
∑

j∈S⋆

mj
∑

k=1

krj |θ⋆jk|k−rj

≤
∑

j∈S⋆





√

√

√

√

mj
∑

k=1

k2rj(θ⋆jk)
2

√

√

√

√

mj
∑

k=1

k−2rj



 .

Since for any t ≥ 1,
∑mj

k=1 k
−2t ≤ ∑∞

k=1 k
−2t = π2/6, the previous inequality

yields

∑

j∈S⋆

mj
∑

k=1

|θ⋆jk| ≤
π√
6

∑

j∈S⋆

√

dj ≤ C.

Recalling (5.3) and A3, for a m ∈ M we may now write that

inf
θ∈Θm

R(ψθ)−R(ψ⋆) ≤ R(ψ⋆
m
)−R(ψ⋆) ≤ B

∫

(ψ⋆(x)− ψ⋆
m
(x))2dx

= B

∫





∑

j∈S⋆

∞
∑

k=1+mj

θ⋆jkϕk(x)





2

dx.
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As {ϕk}∞k=1 forms an orthogonal basis,

B

∫





∑

j∈S⋆

∞
∑

k=1+mj

θ⋆jkϕk(x)





2

dx = B
∑

j∈S⋆

∞
∑

k=1+mj

(θ⋆jk)
2

≤ B
∑

j∈S⋆

dj(1 +mj)
−2rj ,

where the normalizing numerical factors are included in the now generic constant
B. As a consequence, with P-probability at least 1− 2ε,

R(ψ̂)−R(ψ⋆) ≤ D inf
m∈M







B
∑

j∈S⋆

{

dj(1 +mj)
−2rj +

mj

n
log(n)

}

+|S⋆| log(p/|S
⋆|)

n
+

log(1/ε)

n

}

,

where D is the same constant as in Theorem 2.1. For any r ≥ 2, the function

t 7→ dj(1+t)
−2rj+ log(n)

n t is convex and admits a minimum in
( log(n)
2rjdjn

)− 1
2rj+1 −1.

Accordingly, choosing mj ∼
( log(n)
2rjdjn

)− 1
2rj+1 − 1 yields that with P-probability

at least 1− 2ε,

R(ψ̂)−R(ψ⋆) ≤ D







∑

j∈S⋆

d
1

2rj+1

j

(

log(n)

2nrj

)

2rj
2rj+1

+ |S⋆|
log
(

p
|S⋆|

)

n
+

log(1/ε)

n







,

where D is a constant depending only on α, w, σ, C, ℓ and B, and that ends
the proof.

Proof of Theorem 2.3. The proof is similar to the proof of Theorem 2.1. From
(5.10) and for any ρ ∈ M

1
+,π(Θ,T) and any m ∈ M,

KL(ρm, π) = KL(ρm, πm) + log(1/α)|S(m)|+ log

(

p

|S(m)|

)

+ log







1−
(

α 1−αK+1

1−α

)p+1

1− α 1−αK+1

1−α






+

∑

j∈S(m)

log

(

K

|S(mj)|

)

.

Using the elementary inequality log
(

n
k

)

≤ k log(ne/k) and that α 1−αK+1

1−α ∈ (0, 1)
since α < 1/2,

KL(ρm, π) ≤ KL(ρm, πm) + |S(m)|
[

log(1/α) + log

(

pe

|S(m)|

)]

+
∑

j∈S(m)

|S(mj)| log
(

Ke

|S(mj)|

)

+ log

(

1− α

1− 2α

)

.
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Thus with P-probability at least 1− 2ε,

R(ψ̂)−R(ψ⋆) ≤ D inf
m∈M

inf
θ∈B1

m
(0,C)

inf
µθ,ζ ,0<ζ≤C−‖θ‖1

{

R(ψθ) + ζ2 −R(ψ⋆)

+
1

n

[

[log(C/ζ) + log(K)]
∑

j∈S(m)

|S(mj)|+ log
1

ε
+ |S(m)| log

(

p

|S(m)|

)

]}

.

Hence with P-probability at least 1− 2ε,

R(ψ̂)−R(ψ⋆)

R(ψ̂a)−R(ψ⋆)

}

≤ D inf
m∈M

inf
θ∈B1

m
(0,C)

{

R(ψθ)−R(ψ⋆)

+ |S(m)| log(p/|S(m)|)
n

+
log(nK)

n

∑

j∈S(m)

|S(mj)|+
log(1/ε)

n

}

,

where D is a numerical constant depending upon w, σ, C, ℓ and α.
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Audibert, J.-Y. (2004b). Théorie statistique de l’apprentissage: une approche
PAC-Bayésienne PhD thesis, Université Paris 6 - UPMC.
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