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Bivariate sinh-normal distribution and a related model

Debasis Kundu
Indian Institute of Technology Kanpur

Abstract. Sinh-normal distribution is a symmetric distribution with three pa-
rameters. In this paper, we introduce bivariate sinh-normal distribution, which
has seven parameters. Due to presence of seven parameters it is a very flexible
distribution. Different properties of this new distribution has been established.
The model can be obtained as a bivariate Gaussian copula also. Therefore, us-
ing the Gaussian copula property, several properties of this proposed distribu-
tion can be obtained. Maximum likelihood estimators cannot be obtained in
closed forms. We propose to use two step estimators based on Copula, which
can be obtained in a more convenient manner. One data analysis has been
performed to see how the proposed model can be used in practice. Finally,
we consider a bivariate model which can be obtained by transforming the
sinh-normal distribution and it is a generalization of the bivariate Birnbaum–
Saunders distribution. Several properties of the bivariate Birnbaum–Saunders
distribution can be obtained as special cases of the proposed generalized bi-
variate Birnbaum–Saunders distribution.

1 Introduction

Rieck and Nedelman (1991), introduced sinh-normal (SHN) distribution, as a three
parameter symmetric model with the following cumulative distribution function
(CDF)

FY (y;α,σ,μ) = �
(
a(y;α,σ,μ)

); y ∈R. (1)

Here, �(·) is the CDF of a standard normal random variable, α > 0, σ > 0, −∞ <

μ < ∞, sinh(x) is the hyperbolic sine function of x where sinh(x) = (ex −e−x)/2,
and

a(y;α,σ,μ) = 2

α
sinh

(
y − μ

σ

)
.

Note that a(y;α,σ,μ) is an increasing function of y, and as y → −∞, a(y;
α,σ,μ) → −∞, and as y → ∞, a(y;α,σ,μ) → ∞, therefore, FY (·) as defined in
(1) is a proper distribution function. From now on, a three-parameter sinh-normal
random variable with CDF (1) will be denoted by SHN(α, σ,μ). It has several
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important properties, and a brief review of SHN distribution will be provided in
Section 2.

The main aim of this paper is to introduce bivariate sinh-normal (BSHN) dis-
tribution, which is a natural extension of SHN distribution of one dimension to
two dimensions. Recently, Kundu et al. (2010) introduced a bivariate Birnbaum–
Saunders distribution. It is observed that the bivariate log-Birnbaum–Saunders dis-
tribution can be obtained as a special case of the BSHN distribution. The proposed
BSHN distribution has seven parameters, and due to presence of two location, two
shapes, two scales and one correlation parameters, it is a very flexible model. After
proper normalization, as the shape parameters converge to zero, it approaches to a
standard bivariate normal distribution.

The probability density function (PDF) of BSHN, can be both unimodal or bi-
modal depending on the shape parameters. Due to presence of the two shape pa-
rameters, it is more flexible than the bivariate normal distribution. The marginals of
BSHN are SHN distributions, and the conditional distribution also can be obtained
in closed form. The generation from a BSHN distribution is quite straight forward,
hence simulation experiments can be performed in a routine matter. The proposed
BSHN model can be obtained as a bivariate Gaussian copula, hence different cop-
ula properties can be easily incorporated for BSHN distribution. The model has
the total positivity of order two (TP2) or reverse rule of order two (RR2) properties
depending on the correlation parameter. The maximum likelihood estimators of
the unknown parameters cannot be obtained in closed form, as expected. Nonlin-
ear optimization method needs to be used to compute the MLEs. We propose to
use two stage estimators as proposed by Joe (2005). One data analysis has been
performed for illustrative purposes.

Finally, we introduce a new bivariate distribution, which can be obtained by
transforming the BSHN random variable. The new distribution is a generaliza-
tion of the bivariate Birnbaum–Saunders distribution introduced by Kundu et al.
(2010), and we call it as the bivariate generalized Birnbaum–Saunders distribution.
We establish different properties of the generalized Birnbaum–Saunders distribu-
tion, and it is observed that several properties of the bivariate Birnbaum–Saunders
distribution can be obtained as special cases of the proposed distribution. Finally
we indicate multivariate generalization of the proposed models.

Rest of the paper is organized as follows. In Section 2, we provide some prelim-
inaries. The proposed BSHN distribution is defined and its properties are discussed
in Section 3. The statistical inference of the unknown parameters are discussed in
Section 4. The analysis of a data set is provided in Section 5. In Section 6, we pro-
poses generalized Birnbaum–Saunders distribution, and finally we conclude the
paper in Section 7.
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2 Preliminaries

2.1 Sinh-normal distribution

Suppose Y ∼ SHN(α, σ,μ), then the CDF of Y is provided in (1), and the corre-
sponding probability density function (PDF) becomes

fY (y;α,σ,μ) = φ
(
a(y;α,σ,μ)

)
A(y;α,σ,μ); y ∈R,

here φ(·) is the PDF of a standard normal random variable, and

A(y;α,σ,μ) = d

dy
a(y;α,σ,μ) = 2

ασ
cosh

(
y − μ

σ

)
= e(y−μ)/σ + e−(y−μ)/σ

ασ
.

By simple transformation, it follows that if Y ∼ SHN(α, σ,μ), then

Z = 2

α
sinh

(
y − μ

σ

)
∼ N(0,1). (2)

Here N(0,1) denotes a standard normal random variable. From (2), it follows that
if Z ∼ N(0,1), then

Y = σ arcsinh
(

αZ

2

)
+ μ ∼ SHN(α, σ,μ), (3)

where arcsinh (x) = ln(x + √
x2 + 1). Using (3), random samples from SHN

distribution can be easily generated. Moreover, from (3), it follows that if Y ∼
SHN(α, σ,μ), then cY ∼ SHN(α, |c|σ, cμ).

Rieck (1989) has established the following properties of a SHN distribution.
The PDF of SHN is symmetric about the location parameter μ. The distribution is
strongly unimodal for α ≤ 2, and it is bimodal if α > 2. It can be easily seen using
L’Hospital’s rule, that if Y ∼ SHN(α, σ,μ), then

2(Y − μ)

ασ
→ N(0,1) as α → 0. (4)

Another important property of the SHN distribution is that if Y ∼ SHN(α, eμ,2),
then Y has a log-Birnbaum–Saunders distribution. The moment generating func-
tion of a SHN distribution cannot be obtained in closed form.

2.2 Birnbaum–Saunders distribution

Birnbaum and Saunders (1969) introduced a two-parameter failure time distribu-
tion for fatigue failure due to cyclic loading. The cumulative distribution function
(CDF) of a two-parameter Birnbaum–Saunders random variable T for α > 0 and
β > 0, can be written as

FT (t;α,β) = �

[
1

α

{(
t

β

)1/2

−
(

β

t

)1/2}]
. (5)



Sinh-normal 593

It is an absolute continuous distribution with the PDF

fT (t;α,β) = 1

2
√

2παβ

[(
β

t

)1/2

+
(

β

t

)3/2]
exp

[
− 1

2α2

(
t

β
+ β

t
− 2

)]
,

t > 0.

Here α is the shape parameter and β is the scale parameter. From now on, a two-
parameter Birnbaum–Saunders random variable with CDF (5) will be denoted by
BS(α,β). If the following transformation is used, that is,

Z = 1

α

{(
T

β

)1/2

−
(

β

T

)1/2}
, (6)

then Z follows standard normal distribution. Several properties and several mea-
sures of a Birnbaum–Saunders random variable can be obtained using the trans-
formation (6).

2.3 Copula

It is well known that the dependence among two or more random variables,
say X1, . . . ,Xp is completely determined by its joint distribution function
FX1,...,Xp(x1, . . . , xp). The idea of separating FX1,...,XP

(x1, . . . , xp) in two parts—
the one which describes the dependence structure, and the other one which de-
scribes only the marginal behavior, leads to the concept of copula. A p-variate
copula defined on [0,1]p is a multivariate distribution with univariate marginals
on [0,1]. Let X1, . . . ,Xp be p random variables with continuous distribution
functions FX1(·), . . . ,FXp(·), respectively, then according to Sklar’s theorem,
FX1,...,Xp(x1, . . . , xp) has a unique copula representation:

FX1,...,Xp(x1, . . . , xp) = C
(
FX1(x1), . . . ,FXp(xp)

)
.

Moreover,

C(u1, . . . , up) = FX1,...,Xp

(
F−1

X1
(u1), . . . ,F

−1
Xp

(up)
)
.

It is well known that many dependence properties of a multivariate distribution de-
pend only on the corresponding copula. Therefore, many dependence properties of
a multivariate distribution can be obtained by studying the corresponding copula.

The bivariate Gaussian copula is defined as follows:

CG(u, v) =
∫ �−1(u)

−∞

∫ �−1(v)

−∞
φ2(x, y;ρ)dx dy = �2

(
�−1(u),�−1(v);ρ)

.

Here φ(·), �(·) are same as defined before, and φ2(u, v;ρ) denotes the standard
bivariate normal density function:

φ2(u, v;ρ) = 1

2π

√
1 − ρ2

exp
{
− 1

2(1 − ρ2)

(
u2 + v2 − 2ρuv

)}
.
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The bivariate Gaussian copula density can be obtained as

cG(u, v;ρ) = ∂2

∂u∂v
CG(u, v;ρ) = φ2(�

−1(u),�−1(v);ρ)

φ(�−1(u))φ(�−1(v))

= 1√
1 − ρ2

exp
(

2ρ�−1(u)�−1(v) − ρ2(�−1(u)2 + �−1(v)2)

2(1 − ρ2)

)
.

We recall that a non-negative function g defined in R
2 is total positivity of order

two, abbreviated by TP2 if for all x1 < x2, y1 < y2, with x, y ∈ R

g(x1, y1)g(x2, y2) ≥ g(x2, y1)g(x1, y2). (7)

If the equality (7) is reversed, it is called reverse rule of order two (RR2).
The following result will be useful for future development, and it may have

some independent interest also.

Result 2.1. The Gaussian copula density is (a) TP2 for 0 < ρ < 1, (b) RR2 if
−1 < ρ < 0.

Proof. To prove (a), we need to show that for all a1, a2, b1, b2 ∈ R, if 0 < a1 <

a2 < 1, and 0 < b1 < b2 < 1, then for 0 < ρ < 1,

cG(a1, b1;ρ)cG(a2, b2;ρ) ≥ cG(a2, b1;ρ)cG(a1, b2;ρ). (8)

Proving (8) is equivalent to prove that for all −∞ < x1 < x2 < ∞, −∞ < y1 <

y2 < ∞
φ2(a1, b1;ρ)φ2(a2, b2;ρ) ≥ φ2(a2, b1;ρ)φ2(a1, b2;ρ). (9)

Now considering all possible six cases, like (i) x1 < x2 < y1 < y2, (ii) x1 < y1 <

x2 < y2, etc., (9) can be easily verified for 0 < ρ < 1. Similarly, (b) can be easily
obtained along the same line. �

3 Bivariate sinh-normal distribution

In this section, we introduce bivariate sinh-normal distribution, and study its dif-
ferent properties. The bivariate random vector (Y1, Y2) is said to have bivariate
sinh-normal distribution with parameters α1, σ1,μ1, α2, σ2,μ2, ρ, if the CDF of
Y1 and Y2 is

P(Y1 ≤ y1, Y2 ≤ y2) = �2
(
a(y1;α1, σ1,μ1), a(y2;α2, σ2,μ2);ρ)

,
(10)

y1, y2 ∈ R
2.

Here α1 > 0, α2 > 0, σ1 > 0, σ2 > 0, −∞ < μ1 < ∞, −∞ < μ2 < ∞,
−1 < ρ < 1, and �2(u, v, ρ) is the CDF of a standard bivariate normal vector
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(Z1,Z2), with correlation coefficient ρ. The corresponding PDF of Y1 and Y2 is
given by

fY1,Y2(y1, y2) = φ2
(
a(y1;α1, σ1,μ1), a(y2;α2, σ2,μ2);ρ) 2∏

i=1

A(yi;αi, σi,μi),

y1, y2 ∈ R
2.

Here a(·),A(·) and φ2(·) are same as defined before. From now on, a BSHN ran-
dom variable with CDF (10) will be denoted by BSHN(α1, σ1,μ1, α2, σ2,μ2, ρ).

It is clear that μ1, μ2 are the two location parameters, and σ1, σ2 are the two
scale parameters. If μ1 = μ2 = 0 and σ1 = σ2 = 1, it is called a standard BSHN
distribution. A standard BSHN random variable has the PDF which is centered at
(0,0), and it is symmetric around (0,0). It is observed that the surface of the PDF
can be unimodal, bimodal or multimodal depending on the parameter values.

It is immediate that if (Y1, Y2) ∼ BSHN(α1, σ1,μ1, α2, σ2,μ2, ρ), and

Zi = a(Yi;αi, σi,μi), i = 1,2,

then (Z1,Z2) has a standard bivariate normal distribution with correlation coef-
ficient ρ. Moreover, if (Z1,Z2) has a standard bivariate normal distribution with
correlation coefficient ρ, and if

Yi = σi arcsinh
(

αiZi

2

)
+ μi, i = 1,2, (11)

then (Y1, Y2) ∼ BSHN(α1, σ1,μ1, α2, σ2,μ2, ρ). The representation (11) can be
used to generate samples from a BSHN distribution. We present the following
simple algorithm to generate samples from BSHN distribution.

Algorithm 3.1.

• Step 1: Generate independent U1 and U2 from N(0,1).
• Step 2: Compute

Z1 =
√

1 + ρ + √
1 − ρ

2
U1 +

√
1 + ρ − √

1 − ρ

2
U2,

Z2 =
√

1 + ρ − √
1 − ρ

2
U1 +

√
1 + ρ + √

1 − ρ

2
U2.

• Step 3:

Yi = σi arcsinh
(

αiZi

2

)
+ μi, i = 1,2.

It is further follows using L’Hospital’s rule that as α1 → 0, α2 → 0, {2(
Y1−μ1
α1σ1

),

2(
Y2−μ2
α2σ2

)} converges to a standard bivariate normal distribution with correlation
coefficient ρ.
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The following theorem provides the marginal and conditional distributions of
the BSHN distribution.

Theorem 3.1. If (Y1, Y2) ∼ BSHN(α1, σ1,μ1, α2, σ2,μ2, ρ), then:

(a) Yi ∼ SHN(αi, σi,μi); i = 1,2.
(b) The conditional CDF of Y1, given Y2 = y2, is given by

P(Y1 ≤ y1|Y2 = y2) = �

{
a(y : α1, σ1,μ1) − ρa(y2;α2, σ2,μ2)√

1 − ρ2

}
.

(c) The conditional PDF of Y1, given Y2 = y2 is

fY1|Y2=y2(y1) = φ

{
a(y;α1, σ1,μ1) − ρa(y2;α2, σ2,μ2)√

1 − ρ2

}

× 1√
1 − ρ2

A(y1;α1, σ1,μ1).

(d) The conditional hazard of Y1 at y1, given Y2 = y2 is an increasing function
of y1, for y1 > 0, for all values of y2 and ρ.

Proof. The proof of (a) can be obtained from the definition. The proof of (b) can
be obtained by taking the transformation

u = a(y1;α1, σ1,μ1) and v = u − ρa(y2;α2, σ2,μ2)√
1 − ρ2

.

Part (c) can be obtained from (b) by differentiating with respect to y1. To prove (d),
note that the conditional hazard of Y1 at y, given Y2 = y2 can be written as

hY1|Y2=y2(y) = φ(b(y))

1 − �(b(y))
× 1√

1 − ρ2
A(y;α1, σ1,μ1),

where

b(y) = a(y;α1, σ1,μ1) − ρa(y2;α2, σ2,μ2)√
1 − ρ2

.

Since b(y) is an increasing function of y, A(y;α1, σ1,μ1) is an increasing function
of y for y > 0 and the hazard function of a normal distribution is an increasing
function, the result follows. �

Consider the following random variable U(y2) = {Y1|Y2 = y2}. If

c = −ρa(y2;α2, σ2,μ2)√
1 − ρ2

,
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then

P
(
U(y2) ≤ y

) = �
(
a
(
y;α1

√
1 − ρ2, σ1,μ1

) + c
)
.

Therefore, U(y2) has the following representation

U(y2) = σ1 arcsinh
(α1

√
1 − ρ2V

2

)
+ μ1, (12)

where V ∼ N(c,1). Using (12), different properties of the conditional distribution
can be obtained.

The following theorem provides the symmetric properties of the BSHN random
variable.

Theorem 3.2. If (Y1, Y2) ∼ BSHN(α1, σ1,μ1, α2, σ2,μ2, ρ), and

sgn(x) =
⎧⎨⎩

1 if x > 0,
0 if x = 0,
−1 if x < 0,

then

(a) (c1Y1, c2Y2) ∼ BSHN(α1, |c1|σ1, c1μ1, α2, |c2|σ2, c2μ2, sgn(c1c2)ρ).
(b) (Y1,−Y2) ∼ BSHN(α1, σ1,μ1, α2, σ2,−μ2,−ρ).
(c) (−Y1, Y2) ∼ BSHN(α1, σ1,−μ1, α2, σ2,μ2,−ρ).
(d) (−Y1,−Y2) ∼ BSHN(α1, σ1,−μ1, α2, σ2,−μ2, ρ).

Proof. The proof of (a) follows from the joint PDF of (Y1, Y2) and using the ap-
propriate transformation. The results of (b), (c) and (d) follow from (a). �

Since FYi
(yi) = �(a(yi;αiσiμi)), for i = 1,2, therefore,

FY1,Y2(y1, y2) = �2
(
a(y1;α1, σ1,μ1), a(y2;α2, σ2,μ2);ρ)

= CG

(
�−1(

�
(
a(y1;α1, σ1,μ1)

))
,�−1(

�
(
a(y2;α2, σ2,μ2)

));ρ)
= CG

(
FY1(y1),FY2(y2);ρ)

.

Therefore, BSHN distribution can be obtained as a bivariate Gaussian copula, with
marginals as SHN distributions. We immediately have the following results.

Theorem 3.3. If (Y1, Y2) ∼ BSHN(α1, σ1,μ1, α2, σ2,μ2, ρ), then for ρ > 0, it is
TP2 and for ρ < 0, it is RR2.

Proof. Since both TP2 and RR2 are copula properties, the results immediately
follow from Result 2.1. �
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Theorem 3.4. If (Y1, Y2) ∼ BSHN(α1, σ1,μ1, α2, σ2,μ2, ρ), then for ρ > 0 (a)
T1 is stochastically increasing in T2 (b) T2 is stochastically increasing in T1, for
all values of α1, β1, α2 and β2.

Proof. We will prove (a), (b) follows along the same line. Note that the results
can be established if we can show that CG(u, v;ρ) is a concave function in u for
fixed v when ρ > 0, see Nelsen (2006, page 197). It is equivalent to prove that
∂
∂u

CG(u, v;ρ) is a decreasing function in u for fixed v. Using Meyer (2013), we
have

∂

∂u
C(u, v;ρ) = �

(
�−1(v) − ρ�−1(u)√

1 − ρ2

)
.

Clearly, for ρ > 0, the right-hand side is a decreasing function in u for fixed v and
the result follows. �

The bivariate hazard rate of Y1 and Y2 is defined as

h(y1, y2) =
(
− ∂

∂y1
,− ∂

∂y2

)
lnP(Y1 > y1, Y2 > y2) = (

h1(y1, y2), h2(y1, y2)
);

see Marshall (1975). Moreover, this bivariate vector valued function h(y1, y2)

uniquely determines the probability distribution. We have the following result.

Theorem 3.5. If (Y1, Y2) ∼ BSHN(α1, σ1,μ1, α2, σ2,μ2, ρ), then h1(y1, y2) is an
increasing function of y1, for y1 > 0, and for all values of y2. Similarly, h2(y1, y2)

is an increasing function of y2 for y2 > 0 for all values of y1.

Proof. Using similar technique as in Gupta and Gupta (1997), it can be easily
shown that

h1(y1, y2) =
[(({

1 − �
((

a(y2;α2, σ2,μ2) − ρa(y1 : α1, σ1,μ1)
)
/

√
1 − ρ2

)}
× φ

(
a(y1;α1, σ1,μ1)

))/
�2

(
a(y1;α1, σ1,μ1), a(y2;α2, σ2,μ2);ρ)]

× A(y1;α1, σ1,μ1).

Since a(y1;α1, σ1,μ1) is an increasing function of y1, and the hazard gradi-
ent of a bivariate normal distribution is an increasing function, see Gupta and
Gupta (1997), it follows that the function within [·] is an increasing function
of y1. The first part of the result follows by observing the fact that the function
A(y1;α1, σ1,μ1) is an increasing function of y1 for y1 > 0. Similarly, the second
part also can be established. �

From the Gaussian copula, it follows that if (Y1, Y2) ∼ BSHN(α1, σ1,μ1, α2,

σ2,μ2, ρ), then for all values of α1, α2, σ1, σ2, μ1 and μ2, (a) Kendall’s tau and
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(b) Spearman’s rho becomes

τ = 2

π
sin−1(ρ) and ρS = 6

π
sin−1

(
ρ

2

)
,

respectively.
Now we provide the medial correlation of the BSHN distribution using the cop-

ula property. If MY1 and MY2 denote the medians of Y1 and Y2, respectively, then
MY1,Y2 , the medial correlation coefficient of Y1 and Y2 is

MY1,Y2 = P
[
(Y1 − MY1)(Y2 − MY2) > 0

] − P
[
(Y1 − MY1)(Y2 − MY2) < 0

]
.

It has been shown by Nelsen (2006), that the medial correlation coefficient is a
copula property and MY1,Y2 = 4C(1

2 , 1
2)−1. Therefore, of (Y1, Y2) follows BSHN,

then

MY1,Y2 = 4CG

(
1

2
,

1

2

)
−1 = 4�2(0,0, ρ)−1 = 4

(
1

4
+ sin−1 ρ

2π

)
−1 = 2 sin−1 ρ

π
.

The concept of bivariate tail dependence relates to the amount of dependence in
the upper-quadrant (or lower-quadrant) tail of bivariate distribution, see Joe (1997,
page 33). In terms of original random variables Y1 and Y2, the upper tail depen-
dence is defines as

χ = lim
z→1

P
(
Y2 ≥ F−1

Y2
(z)|Y1 ≥ F−1

Y1
(z)

)
.

Intuitively, the upper-tail dependence exists when there is a positive probability
that some positive outliers may occur jointly. Since the Gaussian copula is upper
tail and lower tail independent, it follows that if (Y1, Y2) ∼ BSHN(α1, σ1,μ1, α2,

σ2,μ2, ρ), then Y1 and Y2 are upper tail and lower tail independent.

4 Inference

4.1 Maximum likelihood estimators

In this section, we discuss the estimation of the unknown parameters based on
a sample of size n, {(y11, y21), . . . , (yn1, yn2)} from BSHN(α1, σ1,μ1, α2, σ2,

μ2, ρ). Let us denote θ = (α1, σ1,μ1, α2, σ2,μ2, ρ). The log-likelihood function
becomes

l(θ) =
n∑

i=1

lnφ2
(
a(yi1;α1, σ1,μ1), a(y2i;α2, σ2,μ2);ρ)

(13)

+
2∑

j=1

n∑
i=1

lnA(yij ;αj , σj ,μj ).
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The MLEs of the unknown parameters can be obtained by maximizing (13) with
respect to the unknown parameters. It is a seven-dimensional optimization prob-
lem. Clearly, they cannot be obtained in explicit forms. To avoid solving the seven
dimensional optimization problem, we propose the profile log-likelihood function
approach. Since{(

e(Y1−μ1)/σ1 − e−(Y1−μ1)/σ1
)
,
(
e(Y2−μ2)/σ2 − e−(Y2−μ2)/σ2

)}
∼ N2

{
(0,0),

(
α2

1 α1α2ρ

α1α2ρ α2
2

)}
,

for fixed σ1,μ1, σ2,μ2, the MLEs of α1, α2 and ρ are

α̂1(σ1,μ1) =
(

1

n

n∑
i=1

g2(yi1;σ1,μ1)

)1/2

,

α̂2(σ2,μ2) =
(

1

n

n∑
i=1

g2(yi2;σ2,μ2)

)1/2

and

ρ̂(σ1,μ1, σ2,μ2) =
∑n

i=1 g(yi1;σ1,μ1)g(yi2;σ2,μ2)√∑n
i=1 g2(yi1;σ1,μ1)

√∑n
i=1 g2(yi2;σ2,μ2)

,

where

g(y;σ,μ) = e(y−μ)/σ − e−(y−μ)/σ . (14)

Observe that α̂1(σ1,μ1) is a function of σ1 and μ1, and α̂2(σ2,μ2) is a function
of σ2 and μ2 only. Finally, the MLEs of σ1, μ1, σ2 and μ2 can be obtained by
maximizing the profile log-likelihood function

lprofile(σ1,μ2, σ2,μ2)
(15)

= l
(
α̂1(σ1,μ1), σ1,μ1, α̂2(σ2.μ2), σ2,μ2, ρ̂(σ1,μ1, σ2,μ2)

)
,

with respect to σ1, μ1, σ2 and μ2. Note that the maximization of (15) cannot be
performed explicitly. Newton–Raphson or some iterative procedure is needed to
solve this problem. If the MLEs of σ1, μ1, σ2 and μ2 are denoted by σ̂1, μ̂1, σ̂2
and μ̂2, respectively, then the MLEs of α1, α2 and ρ become

α̂1 = α̂1(σ̂1, μ̂1), α̂2 = α̂2(σ̂2, μ̂2), ρ̂ = ρ̂(σ̂1, μ̂1, σ̂2, μ̂2).

The exact distribution of the MLEs cannot be obtained, since BSHN is a regular
family, it satisfies all the required conditions for the MLEs to be consistent and
asymptotically normally distributed. We have the following results.
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Theorem 4.1. If θ̂ is the MLE of θ , then
√

n(θ̂ − θ)
d→ N7

(
0, I−1)

,

here
d→ means convergence in distribution, N7(0, I−1) denotes the 7-variate nor-

mal distribution with mean vector 0 and the covariance matrix I−1. Here the ma-
trix I is the Fisher information matrix.

It may be mentioned that the elements of the Fisher information matrix can
be obtained in a routine matter, although they are not in explicit forms. All the
elements are in the double integration form and they are not presented here.

4.2 Two-stage estimators

In the previous subsection, we have seen that the MLEs of unknown parameters
can be obtained by maximizing the profile log-likelihood function, and it needs
solving a four dimensional optimization problem. To avoid that, we propose to use
the estimation of the unknown parameters using the copula structure based on two
stage estimation method. Using the copula structure, the log-likelihood function
can be written as

l(θ) =
n∑

i=1

ln cG

(
FY1(yi1;α1, σ1,μ1),FY2(yi2;α2, σ2,μ2);ρ)

+
n∑

i=1

lnfY1(yi1;α1, σ1,μ1) +
n∑

i=1

lnfY2(yi2;α2, σ2,μ2).

Two step estimation procedure can be incorporated as follows. First, compute the
estimates of α1, σ1 and μ1, say α̃1, σ̃1 and μ̃1, respectively, by maximizing

h1(α1, σ1,μ1) =
n∑

i=1

lnfY1(yi1;α1, σ1,μ1)

with respect to α1, σ1 and μ1. Similarly, obtain the estimates of α2, σ2 and μ2, say
α̃2, σ̃2 and μ̃2, respectively, by maximizing

h2(α2, σ2,μ2) =
n∑

i=1

lnfY2(yi2;α2, σ2,μ2)

with respect to α2, σ2 and μ2. Finally, obtain the estimate of ρ, say ρ̃, by maxi-
mizing h(ρ) with respect to ρ, where

h(ρ) =
n∑

i=1

ln cG(ui1, ui2;ρ),

and

ui1 = FY1(yi1; α̃1, σ̃1, μ̃1) and ui2 = FY2(yi2; α̃2, σ̃2, μ̃2).
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Now we indicate how to compute α̃1, σ̃1 and μ̃1. Note that h1(·) can be written
as

h1(α1, σ1,μ1) =
n∑

i=1

lnφ
(
a(yi1;α1, σ1,μ1)

) +
n∑

i=1

ln
(
A(yi1;α1, σ1,μ1)

)
. (16)

Hence, for fixed σ1 and μ1, the maximization of (16) with respect to α1 can be
obtained at

α̃1(σ1,μ1) =
(

1

n

n∑
i=1

g2(yi1;σ1,μ1)

)1/2

,

where g(·) is same as defined (14). Further, σ̃1 and μ̃1 can be obtained by maxi-
mizing

h1
(
α̃1(σ1,μ1), σ1,μ1

) =
n∑

i=1

lnφ
(
a
(
yi1; α̃1(σ1,μ1), σ1,μ1

))

+
n∑

i=1

ln
(
A

(
yi1; α̃1(σ1,μ1), σ1,μ1

))
,

with respect to σ1 and μ1. Similarly, we can obtain α̃2, σ̃2 and μ̃2. Finally, obtain
the ρ̃ by maximizing h(ρ) with respect to ρ, which is equivalent to maximize

n∑
i=1

lnφ2(zi1, zi2;ρ),

where for i = 1, . . . , n,

zi1 = �−1(ui1) = a(yi1; α̃1, σ̃1, μ̃1) and zi2 = �−1(ui2) = a(yi2; α̃2, σ̃2, μ̃2).

Therefore,

ρ̃ =
∑n

i=1 zi1zi2√∑n
i=1 z2

i1

√∑n
i=1 z2

i2

.

A two-stage estimation process involves solving two independent two-dimen-
sional optimization problems rather than one four dimensional optimization prob-
lem. Clearly it saves a significant amount of computational time. The estimators
obtained by the two-stage procedure are consistent estimators of the unknown pa-
rameters. The asymptotic distribution of the two-stage estimators can be obtained
in a routine matter as it has been obtained in Joe (2005), and it is not pursued here.
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5 Data analysis

This data set represents two different measurements of stiffness, “Shock” and “Vi-
bration” of each of 30 boards. The first measurement (Shock) involves sending a
shock wave down the board and the second measurement (Vibration) is determined
while vibrating the board. The data set was originally from William Galligan, and it
is reported in Johnson and Wichern (1992, page 162). We divide all the data points
by 1000, just for computational purposes, it is not going to make any difference in
the statistical inference.

We fit the SHN distributions to both the marginals and the estimates of the
unknown parameters, namely α1, σ1, μ1, α2, σ2 and μ2, are as follows:

α̃1 = 0.00327, σ̃1 = 184.6307, μ̃1 = 1.4660,

α̃2 = 0.00318, σ̃2 = 198.9323, μ̃1 = 1.7189.

We want to see how good the SHN distribution fits the marginals. The
Kolmogorov–Smirnov distance between the empirical distribution function and
the fitted distribution function, and the associated p value (reported in brackets)
for Y1 and Y2 are 0.1048 (0.8965) and 0.0940 (0.9535), respectively. Therefore,
based on the Kolmogorov–Smirnov distances, it is clear that the SHN distribu-
tion fits the marginals quite well. Finally, we obtain ρ̃ = 0.9238. The 95% con-
fidence intervals of α1, σ1, μ1, α2, σ2, μ2 and ρ become, (0.00172,0.00482),
(166.0629,203.1985), (0.7781,2.1539), (0.00173,0.00463), (181.9448,
215.9198), (0.9874,2.4504), (0.8449,1.0000), respectively.

For comparison purposes, we have fitted the bivariate normal distribution to the
data set, and the estimates are as follows:

μ̂1 = 1.5079, σ̂1 = 0.2987, μ̂2 = 1.7249,

σ̂2 = 0.3174, ρ̂ = 0.9241.

The Kolmogorov–Smirnov distance between the empirical distribution function
and the fitted distribution function, and the associated p value (reported in brack-
ets) for Y1 and Y2 are 0.1219 (0.7641) and 0.1003 (0.9233), respectively. There-
fore, for the marginals SHN distribution fits better than the normal distribution.

We also perform the bivariate goodness of fit test. In case of bivariate normal
distribution the chi-square value is 14.1740, and the associated p value is between
0.95 and 0.99. For BSHN distribution, we transform it to bivariate normal and
perform the bivariate normal goodness of fit test. The chi-square value in this case
is 14.1123, and the associated p value is also between 0.95 and 0.99. Since for
BSHN, the chi-square value is lower, it indicates that BSHN provides marginally
a better fit than the bivariate normal distribution.
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6 Related model

In this section, we consider bivariate generalized Birnbaum–Saunders distribu-
tion, which can be obtained from BSHN by transformation. Owen (2004), see
also Diaz-Garcia and Dominguez-Molina (2006), proposed a generalization of the
Birnbaum–Saunders distribution, which can be described as follows. A random
variable T , is said to have a generalized Birnbaum–Saunders distribution with pa-
rameters α > 0, β > 0 and λ > 0, if the CDF of T is

FT (t) = P(T ≤ t) = �
(
b(t;α,β,λ)

)
, t > 0.

where

b(t;α,β,λ) = 1

α

{(
t

β

)λ

−
(

β

t

)λ}
.

The corresponding PDF becomes;

fT (t) = φ
(
b(t;α,β,λ)B(t;α,β,λ)

)
, t > 0,

where

B(t;α,β,λ) = d

dt
b(t;α,β,λ) = λ

αt

[(
t

β

)λ

+
(

β

t

)λ]
.

We denote this random variable as GBS(α,β,λ). It can be easily seen that if

T ∼ GBS(α,β,λ) ⇔ lnT ∼ SHN
(
α,λ−1, lnβ

)
.

Now we are in a position to introduce the bivariate generalized Birnbaum–
Saunders distribution as follows. A bivariate random vector (T1, T2) is said to have
bivariate generalized Birnbaum–Saunders distribution with parameters α1, β1, λ1,
α2, β2, λ2 and ρ, if

(T1, T2) = (
eY1, eY2

)
,

where (Y1, Y2) ∼ BSHN(α1, λ
−1
1 , lnβ1, α2, λ

−1
2 , lnβ2, ρ). The joint CDF of (T1,

T2) becomes

P(T1 ≤ t1, T2 ≤ t2) = �2
(
b(t1;α1, β1, λ1), b(t2;α2, β2, λ2);ρ)

,
(17)

t1 > 0, t2 > 0.

A random vector (T1, T2) with CDF (17), will be denoted by BGBS(α1, β1, λ1, α2,

β2, λ2, ρ). The joint PDF of (T1, T2) becomes

fT1,T2(t1, t2) = φ2
(
b(t1;α1, β1, λ1), b(t2;α2, β2, λ2);ρ) 2∏

i=1

B(ti;αi, βi, λi),

(18)
t1 > 0, t2 > 0.
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Note that when λ1 = λ2 = 1/2, it matches with the bivariate Birnbaum–Saunders
distribution introduced by Kundu et al. (2010). Therefore, most of the results ob-
tained in Kundu et al. (2010) can be obtained as special cases of the results of this
paper. We present the results without proofs, as they can be obtained along the
same line as the proofs provided in Section 3.

Theorem 6.1. If (T1, T2) ∼ BGBS(α1, β1, λ1, α2, β2, λ2, ρ), then:

(a) Ti ∼ GBS(αi, βi, λi); i = 1,2.
(b) The conditional CDF of T1 given T2 = t2, is given by

P(T1 ≤ t1|T2 = t2) = �

[
b(t1;α1, β1, λ1) − ρb(t2;α2, β2, λ2)√

1 − ρ2

]
.

(c) The conditional PDF of T1, given T2 = t2 is

fT1|T2=t2(t1) = φ

{
b(t1;α1, β1, λ1) − ρb(t2;α2, β2, λ2)√

1 − ρ2

}

× 1√
1 − ρ2

B(t1;α1, β1, λ1).

Theorem 6.2. If (T1, T2) ∼ BGBS(α1, β1, λ1, α2, β2, λ2, ρ), then:

(a) For c1 > 0, c2 > 0, (c1T1, c2T2) ∼ BGBS(α1, c1β1, λ1, α2, c2β2, λ2, ρ).
(b) (T1, T

−1
2 ) ∼ BGBS(α1, β1, λ1, α2, β

−1
2 , λ2,−ρ).

(c) (T −1
1 , T2) ∼ BGBS(α1, β

−1
1 , λ1, α2, β2, λ2,−ρ).

(d) (T −1
1 , T −1

2 ) ∼ BGBS(α1, β
−1
1 , λ1, α2, β

−1
2 , λ2, ρ).

Theorem 6.3. If (T1, T2) ∼ BGBS(α1, β1, λ1, α2, β2, λ2, ρ), then for ρ > 0, it is
TP2 and for ρ < 0, it is RR2.

Note that the results of Theorems 3.1, 3.2, and 3.3 of Kundu et al. (2010) can be
obtained as special cases of the results of Theorems 6.1, 6.2 and 6.3, respectively.
Due to copula property, Blomqvist’s beta, Kendall’s tau and Spearman’s rho will be
same as the bivariate sinh-normal distribution. The maximum likelihood estimators
of the unknown parameters cannot be obtained in closed form. In this case also
directly the two stage estimators can be used as before, alternatively, after making
the data transformation, the two stage procedure as described in Section 4, can be
used quite easily.

7 Conclusion

In this paper, we consider a new bivariate distribution which is a natural exten-
sion of the univariate sinh-normal distribution. The proposed model has seven un-
known parameters, and we obtain different properties of the model. It is observed
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that the model can be obtained as a Gaussian copula, hence several properties of
the Gaussian copula can be easily obtained for this model. The maximum likeli-
hood estimators of the unknown parameters cannot be obtained in closed form, and
they can be obtained by using profile log-likelihood method. It involves solving a
four dimensional optimization problem. To avoid that, we propose to use two step
estimation procedure using the copula structure. The estimators obtained by two
stage procedure can be obtained by solving two independent two-dimensional opti-
mization problems. They are consistent, and asymptotically normally distributed.
Computationally they can be obtained in a much easier manner than the MLEs.
Further, we have considered bivariate generalized Birnbaum–Saunders distribu-
tion, and studied its different properties. It is observed that many properties of the
bivariate Birnbaum–Saunders distribution can be obtained as special cases of the
proposed model.

It may be mentioned that although in this paper we have mainly concentrated
for the bivariate model, the same concept can be extended for any p dimensional
model. Several properties can be obtained along the same line as the bivariate
model. Clearly, it is more flexible than the multivariate normal model. Different
other characteristics are under investigation, it will be reported later.
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