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ADAPTIVE PIECEWISE POLYNOMIAL ESTIMATION
VIA TREND FILTERING1

BY RYAN J. TIBSHIRANI

Carnegie Mellon University

We study trend filtering, a recently proposed tool of Kim et al. [SIAM
Rev. 51 (2009) 339–360] for nonparametric regression. The trend filtering es-
timate is defined as the minimizer of a penalized least squares criterion, in
which the penalty term sums the absolute kth order discrete derivatives over
the input points. Perhaps not surprisingly, trend filtering estimates appear to
have the structure of kth degree spline functions, with adaptively chosen knot
points (we say “appear” here as trend filtering estimates are not really func-
tions over continuous domains, and are only defined over the discrete set of
inputs). This brings to mind comparisons to other nonparametric regression
tools that also produce adaptive splines; in particular, we compare trend fil-
tering to smoothing splines, which penalize the sum of squared derivatives
across input points, and to locally adaptive regression splines [Ann. Statist.
25 (1997) 387–413], which penalize the total variation of the kth derivative.
Empirically, we discover that trend filtering estimates adapt to the local level
of smoothness much better than smoothing splines, and further, they exhibit
a remarkable similarity to locally adaptive regression splines. We also pro-
vide theoretical support for these empirical findings; most notably, we prove
that (with the right choice of tuning parameter) the trend filtering estimate
converges to the true underlying function at the minimax rate for functions
whose kth derivative is of bounded variation. This is done via an asymptotic
pairing of trend filtering and locally adaptive regression splines, which have
already been shown to converge at the minimax rate [Ann. Statist. 25 (1997)
387–413]. At the core of this argument is a new result tying together the fit-
ted values of two lasso problems that share the same outcome vector, but have
different predictor matrices.

1. Introduction. Per the usual setup in nonparametric regression, we assume
that we have observations y1, . . . , yn ∈R from the model

yi = f0(xi) + εi, i = 1, . . . , n,(1)

where x1, . . . , xn ∈ R are input points, f0 is the underlying function to be esti-
mated, and ε1, . . . , εn are independent errors. For the most part, we will further
assume that the inputs are evenly spaced over the interval [0,1], that is, xi = i/n
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for i = 1, . . . , n. (However, this assumption can be relaxed, as discussed in the
supplementary document [Tibshirani (2014)].) The literature on nonparametric re-
gression is rich and diverse, and there are many methods for estimating f0 given
observations from the model (1); some well-known examples include methods
based on local polynomials, kernels, splines, sieves and wavelets.

This paper focuses on a relative newcomer in nonparametric regression: trend
filtering, proposed by Kim et al. (2009). For a given integer k ≥ 0, the kth order
trend filtering estimate β̂ = (β̂1, . . . , β̂n) of (f0(x1), . . . , f0(xn)) is defined by a
penalized least squares optimization problem,

β̂ = argmin
β∈Rn

1

2
‖y − β‖2

2 + nk

k! · λ∥∥D(k+1)β
∥∥

1,(2)

where λ ≥ 0 is a tuning parameter, and D(k+1) ∈R
(n−k−1)×n is the discrete differ-

ence operator of order k + 1. (The constant factor nk/k! multiplying λ is unimpor-
tant, and can be absorbed into the tuning parameter λ, but it will facilitate compar-
isons in future sections.) When k = 0,

D(1) =

⎡
⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

0 0 0 · · · −1 1

⎤
⎥⎥⎥⎥⎦ ∈ R

(n−1)×n(3)

and so ‖D(1)β‖1 = ∑n−1
i=1 = |βi − βi+1|. Hence, the 0th order trend filtering

problem, which we will also call constant trend filtering, is the same as one-
dimensional total variation denoising [Rudin, Osher and Faterni (1992)], or the
one-dimensional fused lasso [Tibshirani et al. (2005)] (with pure fusion penalty,
i.e., without an additional �1 penalty on the coefficients themselves). In this case,
k = 0, the components of the trend filtering estimate form a piecewise constant
structure, with break points corresponding to the nonzero entries of D(1)β̂ =
(β̂2 − β̂1, . . . , β̂n − β̂n−1). See Figure 1 for an example.

For k ≥ 1, the operator D(k+1) ∈R
(n−k−1)×n is most easily-defined recursively,

as in

D(k+1) = D(1) · D(k).(4)

[Above, D(1) is the (n − k − 1) × (n − k) version of the first order discrete dif-
ference operator (3).] In words, the definition (4) says that the (k + 1)st order
difference operator is built up by evaluating differences of differences, a total of
k + 1 times. Therefore, the matrix D(k+1) can be thought of as the discrete anal-
ogy to the (k + 1)st order derivative operator, and the penalty term in (2) penalizes
the discrete (k + 1)st derivative of the vector β ∈ R

n, that is, the changes in the
discrete kth derivative of β . Accordingly, one might expect the components of the
kth order trend filtering estimate to exhibit the structure of a piecewise polyno-
mial of order k, for example, for first order trend filtering, the estimate would be
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FIG. 1. Simple examples of trend filtering for constant, linear, and quadratic orders (k = 0,1,2,
resp.), shown from left to right. Although the trend filtering estimates are only defined at the discrete
inputs xi = i/n, i = 1, . . . , n, we use linear interpolation to extend the estimates over [0,1] for
visualization purposes (this is the default for all figures in this paper).

piecewise linear, for second order, it would be piecewise quadratic, etc. Figure 1
gives empirical evidence towards this claim. Later, in Section 4, we provide a more
definitive confirmation of this piecewise polynomial structure when we examine a
continuous-time representation for trend filtering.

It is straightforward to check that

D(2) =

⎡
⎢⎢⎢⎢⎣

1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
0 0 1 −2 · · · 0
...

⎤
⎥⎥⎥⎥⎦ ,

D(3) =

⎡
⎢⎢⎢⎢⎣

−1 3 −3 1 · · · 0
0 −1 3 −3 · · · 0
0 0 −1 3 · · · 0
...

⎤
⎥⎥⎥⎥⎦

and in general, the nonzero elements in each row of D(k) are given by the (k + 1)st
row of Pascal’s triangle, but with alternating signs. A more explicit (but also more
complicated-looking) expression for the kth order trend filtering problem is there-
fore

β̂ = argmin
β∈Rn

1

2

n∑
i=1

(yi − βi)
2 + nk

k! · λ
n−k−1∑

i=1

∣∣∣∣∣
i+k+1∑
j=i

(−1)j−i

(
k + 1
j − i

)
βj

∣∣∣∣∣.
The penalty term above sums over successive linear combinations of k+2 adjacent
coefficients, that is, the discrete difference operator D(k+1) is a banded matrix with
bandwidth k + 2.
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1.1. The generalized lasso and related properties. For any order k ≥ 0, the
trend filtering estimate β̂ is uniquely defined, because the criterion in (2) is strictly
convex. Furthermore, the trend filtering criterion is of generalized lasso form with
an identity predictor matrix X = I (this is called the signal approximator case)
and a specific choice of penalty matrix D = D(k+1). Some properties of the trend
filtering estimate therefore follow from known results on the generalized lasso
[Tibshirani and Taylor (2011, 2012)], for example, an exact representation of the
trend filtering estimate in terms of its active set and signs, and also, a formula for
its degrees of freedom:

df(β̂) = E[number of knots in β̂] + k + 1,(5)

where the number of knots in β̂ is interpreted to mean the number of nonzero
entries in D(k+1)β̂ (the basis and continuous-time representations of trend filtering,
in Sections 3.3 and 4, provide a justification for this interpretation). To repeat some
of the discussion in Tibshirani and Taylor (2011, 2012), the result in (5) may seem
somewhat remarkable, as a fixed-knot kth degree regression spline with d knots
also has d + k + 1 degrees of freedom—and trend filtering does not employ fixed
knots, but rather, chooses them adaptively. So, why does trend filtering not have
a larger degrees of freedom? At a high level, the answer lies in the shrinkage due
to the �1 penalty in (2): the nonzero entries of D(k+1)β̂ are shrunken toward zero,
compared to the same quantity for the corresponding equality-constrained least
squares estimate. In other words, within each interval defined by the (adaptively
chosen) knots, trend filtering fits a kth degree polynomial whose kth derivative is
shrunken toward its kth derivatives in neighboring intervals, when compared to a
kth degree regression spline with the same knots. Figure 2 gives a demonstration
of this phenomenon for k = 1 and k = 3.

In terms of algorithms, the fact that the discrete difference operator D(k+1) is
banded is of great advantage for solving the generalized lasso problem in (2). Kim
et al. (2009) describe a primal–dual interior point method for solving (2) at a fixed
value of λ, wherein each iteration essentially reduces to solving a linear system in
D(k+1)(D(k+1))T , costing O(n) operations. In the worst case, this algorithm re-
quires O(n1/2) iterations, so its complexity is O(n3/2).2 [Kim et al. (2009) focus
mainly on linear trend filtering, the case k = 1, but their arguments carry over to

2It should be noted that hidden in the O(·) notation here is a factor depending on the prespeci-
fied error tolerance ε, namely, a term of the form log(1/ε). We emphasize here that the primal–dual
interior point method is a different type of algorithm than the path algorithm, in the sense that the
latter returns an exact solution up to computer precision, whereas the former returns an ε-suboptimal
solution, as measured by the difference in its achieved criterion value and the optimal criterion value.
Essentially, all general purpose convex optimization techniques (that are applicable to the trend fil-
tering problem) fall into the same class as the primal–dual interior point method, that is, they return
ε-suboptimal solutions; only specialized techniques like the path algorithm can deliver exact solu-
tions.
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FIG. 2. Examples of the shrinkage effect for linear trend filtering (k = 1, left panel) and for cubic
trend filtering (k = 3, right panel). In each panel, the solid red line is the trend filtering estimate (at
a particular value of λ), and the dashed blue line is the regression spline estimate of the same order
and with the same knots, with the vertical lines marking the locations of the knots. The trend filtering
estimates on the left and right have shrunken 1st and 3rd derivatives, respectively, compared to their
regression spline counterparts.

the general case as well.] On the other hand, instead of solving (2) at a fixed λ,
Tibshirani and Taylor (2011) describe a path algorithm to solve (2) over all values
of λ ∈ [0,∞), that is, to compute the entire solution path β̂ = β̂(λ) over λ. This
path is piecewise linear as a function of λ (not to be confused with the estimate
itself at any fixed λ, which has a piecewise polynomial structure over the input
points x1, . . . , xn). Again, the bandedness of D(k+1) is key here for efficient com-
putations, and Tibshirani and Arnold (2013) describe an implementation of the
path algorithm in which computing the estimate at each successive critical point in
the path requires O(n) operations.

Software for both of these algorithms is freely available online. For the primal–
dual interior point method, see http://stanford.edu/~boyd/l1_tf, which provides
Matlab and C implementations (these only cover the linear trend filtering case, but
can be extended to the general polynomial case); for the path algorithm, see the
function trendfilter in the R package genlasso, available on the CRAN
repository.

1.2. Summary of our results. Little is known about trend filtering—mainly,
the results due to its generalized lasso form, for example, the degrees of freedom
result (5) discussed in the previous section—and much is unknown. Examining the
trend filtering fits in Figures 1 and 2, it appears that the estimates not only have the
structure of piecewise polynomials, they furthermore have the structure of splines:
these are piecewise polynomial functions that have continuous derivatives of all

http://stanford.edu/~boyd/l1_tf
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FIG. 3. The leftmost panel shows the same cubic trend filtering estimate as in Figure 2 (but here we
do not use linear interpolation to emphasize the discrete nature of the estimate). The components of
this estimate appear to be the evaluations of a continuous piecewise polynomial function. Moreover,
its discrete 1st and 2nd derivatives (given by multiplying by D(1) and D(2), resp.) also appear to
be continuous, and its discrete third derivative (from multiplication by D(3)) is piecewise constant
within each interval. Hence, we might believe that such a trend filtering estimate actually represents
the evaluations of a 3rd degree spline over the inputs xi = i/n, i = 1, . . . , n. We address this idea in
Section 4.

orders lower than the leading one [i.e., a kth degree spline is a kth degree piecewise
polynomial with continuous 0th through (k−1)st derivatives at its knots]. Figure 3
plots an example cubic trend filtering estimate, along with its discrete 1st, 2nd
and 3rd derivatives (given by multiplication by D(1), D(2), and D(3), resp.). Sure
enough, the lower order discrete derivatives appear “continuous” across the knots,
but what does this really mean for such discrete sequences? Does trend filtering
have an analogous continuous-time representation, and if so, are the estimated
functions really splines?

Besides these questions, one may also wonder about the performance of trend
filtering estimates compared to other methods. Empirical examples (like those in
Section 2) show that trend filtering estimates achieve a significantly higher de-
gree of local adaptivity than smoothing splines, which are arguably the standard
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tool for adaptive spline estimation. Other examples (like those in Section 3) show
that trend filtering estimates display a comparable level of adaptivity to locally
adaptive regression splines, another well-known technique for adaptive spline esti-
mation, proposed by Mammen and van de Geer (1997) on the basis of being more
locally adaptive (as their name would suggest). Examples are certainly encourag-
ing, but a solely empirical conclusion here would be unsatisfactory—fixing as a
metric the squared error loss in estimating the true function f0, averaged over the
input points, can we say more definitively that trend filtering estimates actually
outperform smoothing splines, and perform as well as locally adaptive regression
splines?

We investigate the questions discussed above in this paper. To summarize our
results, we find that:

• for k = 0,1 (constant or linear orders), the continuous-time analogues of trend
filtering estimates are indeed kth degree splines; moreover, they are exactly the
same as kth order locally adaptive regression splines;

• for k ≥ 2 (quadratic or higher orders), the continuous-time versions of trend
filtering estimates are not quite splines, but piecewise polynomial functions that
are “close to” splines (with small discontinuities in lower order derivatives at
the knots); hence, they are not the same as kth order locally adaptive regression
splines;

• for any k, if the kth derivative of true function f0 is of bounded variation, then
the kth order trend filtering estimate converges to f0 (in terms of squared error
loss) at the minimax rate; this rate is achieved by locally adaptive regression
splines [Mammen and van de Geer (1997)], but not by smoothing splines nor
any other estimate linear in y [Donoho and Johnstone (1998)].

We note that, although trend filtering and locally adaptive regression splines are
formally different estimators for k ≥ 2, they are practically indistinguishable by
eye in most examples. Such a degree of similarity, in finite samples, goes beyond
what we are able to show theoretically. However, we do prove that trend filtering
estimates and locally adaptive regression spline estimates converge to each other
asymptotically (Theorem 1). The argument here boils down to a bound on the
difference in the fitted values of two lasso problems that have the same outcome
vector, but different predictor matrices (because both trend filtering and locally
adaptive regression splines can be represented as lasso problems, see Section 3).
To the best of our knowledge, this general bound is a new result (see the supple-
mentary document [Tibshirani (2014)]). Further, we use this asymptotic pairing
between trend filtering and locally adaptive regression splines to prove the min-
imax convergence rate for trend filtering (Corollary 1). The idea is simple: trend
filtering and locally adaptive regression splines converge to each other at the min-
imax rate, locally adaptive regression splines converge to the true function at the
minimax rate [Mammen and van de Geer (1997)], and hence so does trend filtering.
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1.3. Why trend filtering? Trend filtering estimates, we argue, enjoy the favor-
able theoretical performance of locally adaptive regression splines; but now it is
fair to ask: why would we ever use trend filtering, over, say, the latter estimator?
The main reason is that trend filtering estimates are much easier to compute, due
to the bandedness of the discrete derivative operators, as explained previously. The
computations for locally adaptive regression splines, meanwhile, cannot exploit
such sparsity or structure, and are considerably slower. To be more concrete, the
primal–dual interior point method described in Section 1.1 above can handle prob-
lems of size on the order of n = 1,000,000 points (and the path algorithm, on the
order of n = 100,000 points), but even for n = 10,000 points, the computations
for locally adaptive regression splines are prohibitively slow. We discuss this in
Section 3.

Of course, the nonparametric regression toolbox is highly-developed and al-
ready offers plenty of good methods. We do not presume that trend filtering should
be regarded as the preferred method in every nonparametric regression problem,
but simply that it represents a useful contribution to the toolbox, being both fast and
locally adaptive, that is, balancing the strengths of smoothing splines and locally
adaptive regression splines. This manuscript mainly focuses on the comparison
to the aforementioned estimators because they, too, like trend filtering, fit piece-
wise polynomials functions and they are widely used. Though we do not com-
pare wavelets or smoothing splines with a spatially variable tuning parameter in as
much detail, we consider them in Section 6 in an analysis of astrophysics data. It
should be mentioned that for trend filtering to become a truly all-purpose nonpara-
metric regression tool, it must be able to handle arbitrary input points x1, . . . , xn

(not just evenly spaced inputs). We give an extension to this case in the supplemen-
tary document [Tibshirani (2014)]. Our analysis of trend filtering with arbitrary
inputs shows promising computational and theoretical properties, but still, a few
questions remain unanswered. This will be the topic of future work.

As a separate point, another distinguishing feature of trend filtering is that it
falls into what is called the analysis framework with respect to its problem formu-
lation, whereas locally adaptive regression splines, smoothing splines, and most
others fall into the synthesis framework. Synthesis and analysis are two terms used
in signal processing that describe different approaches for defining an estimator
with certain desired characteristics. In the synthesis approach, one builds up the
estimate constructively from a set of characteristic elements or atoms; in the anal-
ysis approach, the strategy is instead to define the estimate deconstructively, via an
operator that penalizes undesirable or uncharacterisic behavior. Depending on the
situation, it can be more natural to implement the former rather than the latter, or
vice versa, and hence both are important. We discuss the importance of the analy-
sis framework in the context of nonparametric regression estimators in Section 7.2,
where we define extensions of trend filtering that would be difficult to construct
from the synthesis perspective, for example, a sparse variant of trend filtering.
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Here is an outline for the rest of this article (though we have discussed its con-
tents throughout the Introduction, we list them here in proper order). In Sections 2
and 3, we compare trend filtering to smoothing splines and locally adaptive regres-
sion splines, respectively. We give data examples that show trend filtering estimates
are more locally adaptive than smoothing splines, and that trend filtering and lo-
cally adaptive regression splines are remarkably similar, at any common value of
their tuning parameters. We also discuss the differing computational requirements
for these methods. In Section 3, we show that both locally adaptive regression
splines and trend filtering can be posed as lasso problems, with identical predictor
matrices when k = 0 or 1, and with similar but slightly different predictor matrices
when k ≥ 2. This allows us to conclude that trend filtering and locally adaptive
regression splines are exactly the same for constant or linear orders, but not for
quadratic or higher orders. Section 4 develops a continuous-time representation
for the trend filtering problem, which reveals that (continuous-time) trend filtering
estimates are always kth order piecewise polynomials, but for k ≥ 2, are not kth
order splines. In Section 5, we derive the minimax convergence rate of trend filter-
ing estimates, under the assumption that the kth derivative of the true function has
bounded total variation. We do this by bounding the difference between trend fil-
tering estimates and locally adaptive regression splines, and invoking the fact that
the latter are already known to converge at the minimax rate [Mammen and van de
Geer (1997)]. We also study convergence rates for a true function with growing
total variation. In Section 6, we consider an astrophysics data example, and com-
pare the performance of several commonly used nonparametric regression tools.
Section 7 presents ideas for future work: multivariate trend filtering, sparse trend
filtering, and the synthesis versus analysis perspectives. Essentially all proofs, and
the discussion of trend filtering for arbitrary inputs, are deferred until the supple-
mentary document [Tibshirani (2014)].

2. Comparison to smoothing splines. Smoothing splines are a popular tool
in nonparametric regression, and have been extensively studied in terms of both
computations and theory [some well-known references are de Boor (1978), Wahba
(1990), Green and Silverman (1994)]. Given input points x1, . . . , xn ∈ [0,1], which
we assume are unique, and observations y1, . . . , yn ∈ R, the kth order smoothing
spline estimate is defined as

f̂ = argmin
f ∈W(k+1)/2

n∑
i=1

(
yi − f (xi)

)2 + λ

∫ 1

0

(
f ((k+1)/2)(t)

)2
dt,(6)

where f ((k+1)/2)(t) is the derivative of f of order (k + 1)/2, λ ≥ 0 is a tuning
parameter, and the domain of minimization here is the Sobolev space

W(k+1)/2 =
{
f : [0,1] → R :f is (k + 1)/2 times differentiable and

∫ 1

0

(
f ((k+1)/2)(t)

)2
dt < ∞

}
.
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Unlike trend filtering, smoothing splines are only defined for an odd polynomial
order k. In practice, it seems that the case k = 3 (i.e., cubic smoothing splines)
is by far the most common case considered. In the next section, we draw a high-
level comparison between smoothing splines and trend filtering, by writing the
smoothing spline minimization problem (6) in finite-dimensional form. Following
this, we make empirical comparisons, and then discuss computational efficiency.

2.1. Generalized ridge regression and Reinsch form. Remarkably, it can be
shown that the infinite-dimensional problem in (6) is has a unique minimizer,
which is a kth degree natural spline with knots at the input points x1, . . . , xn [see,
e.g., Wahba (1990), Green and Silverman (1994), Hastie, Tibshirani and Friedman
(2008)]. Recall that a kth degree natural spline is a simply a kth degree spline that
reduces to a polynomial of degree (k − 1)/2 before the first knot and after the
last knot; it is easy to check the set of natural splines of degree k, with knots at
x1, . . . , xn, is spanned by precisely n basis functions. Hence, to solve (6), we can
solve for the coefficients θ ∈ R

n in this basis expansion:

θ̂ = argmin
θ∈Rn

‖y − Nθ‖2
2 + λθT �θ,(7)

where N ∈ R
n×n contains the evaluations of kth degree natural spline basis func-

tions over the knots x1, . . . , xn, and � ∈ R
n×n contains the integrated products of

their ((k + 1)/2)nd derivatives; that is, if η1, . . . , ηn denotes a collection of basis
functions for the set of kth degrees natural splines with knots at x1, . . . , xn, then

Nij = ηj (xi) and �ij =
∫ 1

0
η

((k+1)/2)
i (t) · η((k+1)/2)

j (t) dt

(8)
for all i, j = 1, . . . , n.

The problem in (7) is a generalized ridge regression, and from its solution θ̂ , the
function f̂ in (6) is simply given at the input points x1, . . . , xn by(

f̂ (x1), . . . , f̂ (xn)
)= Nθ̂.

More generally, the smoothing spline estimate f̂ at an arbitrary input x ∈ [0,1] is
given by

f̂ (x) =
n∑

j=1

θ̂j ηj (x).

To compare the smoothing spline problem, as expressed in (7), with trend filter-
ing, it helps to rewrite the smoothing spline fitted values as follows:

Nθ̂ = N
(
NT N + λ�

)−1
NT y

= N
(
NT (I + λN−T �N−1)N)−1

NT y(9)

= (I + λK)−1y,
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where K = N−T �N−1. The expression in (9) is called the Reinsch form for the
fitted values. From this expression, we can view û = Nθ̂ as the solution of the
minimization problem

û = argmin
u∈Rn

‖y − u‖2
2 + λuT Ku,(10)

which is of similar form to the trend filtering problem in (2), but here the �1 penalty
‖D(k+1)β‖1 is replaced by the quadratic penalty uT Ku = ‖K1/2u‖2

2. How do
these two penalties compare? First, the penalty matrix K1/2 used by smoothing
splines is similar in nature to the discrete derivative operators [we know from
its continuous-time analog in (6) that the term ‖K1/2u‖2

2 penalizes wiggliness
in something like the ((k + 1)/2)nd derivative of u] but is still strictly differ-
ent. For example, for k = 3 (cubic smoothing splines) and input points xi = i/n,
i = 1, . . . , n, it can be shown [Green and Yandell (1985)] that the smoothing spline
penalty is ‖K1/2u‖2

2 = ‖C−1/2D(2)u‖2
2/n3 where D(2) is the second order discrete

derivative operator, and C ∈ R
n×n is a tridiagonal matrix, with diagonal elements

equal to 2/3 and off-diagonal elements equal to 1/6.
A second and more important difference is that smoothing splines utilize a

(squared) �2 penalty, while trend filtering uses an �1 penalty. Analogous to the
usual comparisons between ridge regression and the lasso, the former penalty
shrinks the components of K1/2û, but does not set any of the components to zero
unless λ = ∞ (in which case all components are zero), whereas the latter penalty
shrinks and also adaptively sets components of D(k+1)β̂ to zero. One might imag-
ine, recalling that K1/2 and D(k+1) both act in a sense as derivative operators,
that trend filtering estimates therefore exhibit a finer degree of local adaptivity
than do smoothing splines. This idea is supported by the examples in the next
section, which show that trend filtering estimates outperform smoothing splines
(when both are optimally tuned) in estimating functions with spatially inhomoge-
neous smoothness. The idea is also supported by our theory in Section 5, where we
prove that trend filtering estimates have a better rate of convergence than smooth-
ing splines (in fact, they achieve the optimal rate) over a broad class of underlying
functions.

2.2. Empirical comparisons. We compare trend filtering and smoothing spline
estimates on simulated data. We fix k = 3 (i.e., we compare cubic trend filtering
versus cubic smoothness splines), because the smooth.spline function in the
R programming language provides a fast implementation for smoothing splines in
this case. Generally speaking, smoothing splines and trend filtering provide similar
estimates when the underlying function f0 has spatially homogeneous smoothness,
or to put it simply, is either entirely smooth or entirely wiggly throughout its do-
main. Hence, to illustrate the difference between the two estimators, we consider
two examples of functions that display varying levels of smoothness at different
spatial locations.
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Our first example, which we call the “hills” example, considers a piecewise cu-
bic function f0 over [0,1], whose knots are spaced farther apart on the left-hand
side of the domain, but bunched closer together on the right-hand side. As a result,
f0(x) is smooth for x between 0 and about 0.8, but then abruptly becomes more
wiggly—see the top left panel of Figure 4. We drew n = 128 noisy observations
from f0 over the evenly spaced inputs xi = i/n, i = 1, . . . , n (with independent,

FIG. 4. An example with n = 128 observations drawn from a model where the underlying function
has variable spatial smoothness, as shown in the top left panel. The cubic trend filtering estimate with
19 degrees of freedom, shown in the top right panel, picks up the appropriate level of smoothness at
different spatial locations: smooth at the left-hand side of the domain, and wiggly at the right-hand
side. When also allowed 19 degrees of freedom, the cubic smoothing spline estimate in the bottom
left panel grossly underestimates the signal on the right-hand side of the domain. The bottom right
panel shows the smooth spline estimate with 30 degrees of freedom, tuned so that it displays the
appropriate level of adaptivity on the right-hand side; but now, it is overly adaptive on the left-hand
side.
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normal noise), and fit a trend filtering estimate, tuned to have 19 degrees of free-
dom, as shown in the top right panel.3 We can see here that the estimate adapts to
the appropriate levels of smoothness at both the left and right sides of the domain.
But this is not true of the smoothing spline estimate with 19 degrees of freedom,
displayed in the bottom left panel: the estimate is considerably oversmoothed on
the right-hand side. As we increase the allowed flexibility, the smoothing spline
estimate is able to fit the small hills on the right, with a total of 30 degrees of free-
dom; however, this causes undersmoothing on the left-hand side, as shown in the
bottom right panel.

For our second example, we take f0 to be the “Doppler” function [as consid-
ered in, e.g., Donoho and Johnstone (1995), Mammen and van de Geer (1997)].
Figure 5, clockwise from the top left, displays the Doppler function and corre-
sponding n = 1000 noisy observations, the trend filtering estimate with 50 degrees
of freedom, the smoothing spline estimate with 50 degrees of freedom, and the
smoothing spline estimate with 90 degrees of freedom. The same story, as in the
hills example, holds here: trend filtering adapts to the local level of smoothness
better than smoothing splines, which have trouble with the rapidly increasing fre-
quency of the Doppler function (as x decreases).

In Figure 6, we display the input-averaged squared error losses4

1

n

n∑
i=1

(
β̂i − f0(xi)

)2 and
1

n

n∑
i=1

(
f̂ (xi) − f0(xi)

)2
for the trend filtering and smoothing spline estimates β̂ and f̂ , respectively, on the
hills and Doppler examples. We considered a wide range of model complexities in-
dexed by degrees of freedom, and averaged the results over 50 simulated data sets
for each setup (the dotted lines show plus or minus one standard deviations). Aside
from the visual evidence given in Figures 4 and 5, Figure 6 shows that from the
perspective of squared error loss, trend filtering outperforms smoothing splines in
estimating underlying functions with variable spatial smoothness. As mentioned
previously, we will prove in Section 5 that for a large class of underlying func-
tions f0, trend filtering estimates have a sharper convergence rate than smoothing
splines.

2.3. Computational considerations. Recall that the smoothing spline fitted
values are given by

Nθ̂ = N
(
NT N + λ�

)−1
NT y,(11)

where N ∈R
n×n contains the evaluations of basis functions η1, . . . , ηn for the sub-

space of kth degree natural splines with knots at the inputs, and � ∈ R
n×n contains

3To be precise, this is an unbiased estimate of its degrees of freedom; see (5) in Section 1.1.
4For the Doppler data example, we actually average the squared error loss only over inputs xi ≥

0.175, because for xi < 0.175, the true Doppler function f0 is of such high frequency that neither
trend filtering nor smoothing splines are able to do a decent job of fitting it.
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FIG. 5. An example with n = 1000 noisy observations of the Doppler function, f (x) =
sin(4/x) + 1.5, drawn in the top left panel. The top right and bottom left panels show the cubic
trend filtering and smoothing spline estimates, each with 50 degrees of freedom; the former captures
approximately 4 cycles of the Doppler function, and the latter only 3. If we nearly double the model
complexity, namely, we use 90 degrees of freedom, then the smoothing spline estimate is finally able
to capture 4 cycles, but the estimate now becomes very jagged on the right-hand side of the plot.

their integrated products of their ((k+1)/2)nd order derivatives, as in (8). Depend-
ing on exactly which basis we choose, computation of (11) can be fast or slow;
by choosing the B-spline basis functions, which have local support, the matrix
NT N + λ� is banded, and so the smoothing spline fitted values can be computed
in O(n) operations [e.g., see de Boor (1978)]. In practice, these computations are
extremely fast.

By comparison, Kim et al. (2009) suggest a primal–dual interior point method,
as mentioned in Section 1.1, that computes the trend filtering estimate (at any fixed
value of the tuning parameter λ) by iteratively solving a sequence of banded linear
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FIG. 6. Shown is the squared error loss in predicting the true function f0, averaged over the input
points, for the hills data example on the left, and the Doppler example on the right. In each setup,
trend filtering and smoothing spline estimators were fit over a range of degrees of freedom values; the
red curves display the loss for trend filtering, and the blue curves for smoothing splines. The results
were averaged over 50 simulated data sets, and the standard deviations are denoted by dotted lines.
In these examples, trend filtering has a generally better predictive accuracy than smoothing splines,
especially for models of low to intermediate complexity (degrees of freedom).

systems, rather than just a single one. Theoretically, the worst-case number of iter-
ations scales as O(n1/2), but the authors report that in practice the number of iter-
ations needed is only a few tens, almost independent of the problem size n. Hence,
trend filtering computations with the primal–dual path interior point method are
slower than those for smoothing splines, but not by a huge margin.

To compute the trend filtering estimates for the examples in the previous section,
we actually used the dual path algorithm of Tibshirani and Taylor (2011), which
was also discussed in Section 1.1. Instead of solving the trend filtering problem at
a fixed value of λ, this algorithm constructs the solution path as λ varies from ∞
to 0. Essentially, it does so by stepping through a sequence of estimates, where
each step either adds one knot to or deletes one knot from the fitted piecewise
polynomial structure. The computations at each step amount to solving two banded
linear systems, and hence require O(n) operations; the overall efficiency depends
on how many steps along the path are needed before the estimates of interest have
been reached (at which point the path algorithm can be terminated early). But
because knots can be both added and deleted to the fitted piecewise polynomial
structure at each step, the algorithm can take much more than k steps to reach
an estimate with k knots. Consider the Doppler data example, in the last section,
with n = 1000 points: the path algorithm used nearly 4000 steps to compute the
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trend filtering estimate with 46 knots (50 degrees of freedom) shown in the upper
right panel of Figure 5. This took approximately 28 seconds on a standard desktop
computer, compared to the smoothing spline estimates shown in the bottom left
and right panels of Figure 5, which took about 0.005 seconds each. We reiterate
that in this period of time, the path algorithm for trend filtering computed a total of
4000 estimates, versus a single estimate computed by the smoothing spline solver.
(A quick calculation, 28/4000 = 0.007, shows that the time per estimate here is
comparable.) For the hills data set in the last section, where n = 128, the dual path
algorithm constructed the entire path of trend filtering estimates (consisting of 548
steps) in less than 3 seconds; both smoothing spline estimates took under 0.005
seconds each.

3. Comparison to locally adaptive regression splines. Locally adaptive re-
gression splines are an alternative to smoothing splines, proposed by Mammen
and van de Geer (1997). They are more computationally intensive than smooth-
ing splines but have better adaptivity properties (as their name would suggest).
Let x1, . . . , xn ∈ [0,1] denote the inputs, assumed unique and ordered as in
x1 < x2 < · · · < xn, and y1, . . . , yn ∈ R denote the observations. For the kth order
locally adaptive regression spline estimate, where k ≥ 0 is a given arbitrary integer
(not necessarily odd, as is required for smoothing splines), we start by defining the
knot superset

T =
{ {xk/2+2, . . . , xn−k/2}, if k is even,

{x(k+1)/2+1, . . . , xn−(k+1)/2}, if k is odd.
(12)

This is essentially just the set of inputs {x1, . . . , xn}, but with points near the left
and right boundaries removed. We then define the kth order locally adaptive re-
gression spline estimate as

f̂ = argmin
f ∈Gk

1

2

n∑
i=1

(
yi − f (xi)

)2 + λ · TV
(
f (k)),(13)

where f (k) is now the kth weak derivative of f , λ ≥ 0 is a tuning parameter, TV(·)
denotes the total variation operator, and Gk is the set

Gk = {
f : [0,1] →R :f is kth degree spline with knots contained in T

}
.(14)

Recall that for a function f : [0,1] → R, its total variation is defined as

TV(f ) = sup

{ p∑
i=1

∣∣f (zi+1) − f (zi)
∣∣ : z1 < · · · < zp is a partition of [0,1]

}

and this reduces to TV(f ) = ∫ 1
0 |f ′(t)|dt if f is (strongly) differentiable.

Next, we briefly address the difference between our definition of locally adap-
tive regression splines in (13) and the original definition found in Mammen and
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van de Geer (1997); this discussion can be skipped without interrupting the flow
of ideas. After this, we rewrite problem (13) in terms of the coefficients of f with
respect to a basis for the finite-dimensional set Gk . For an arbitrary choice of ba-
sis, this new problem is of generalized lasso form, and in particular, if we choose
the truncated power series as our basis for Gk , it simply becomes a lasso problem.
We will see that trend filtering, too, can be represented as a lasso problem, which
allows for a more direct comparison between the two estimators.

3.1. Unrestricted locally adaptive regression splines. For readers familiar
with the work of Mammen and van de Geer (1997), it may be helpful to explain the
difference between our definition of locally adaptive regression splines and theirs:
these authors define the locally adaptive regression spline estimate as

f̂ ∈ argmin
f ∈Fk

1

2

n∑
i=1

(
yi − f (xi)

)2 + λ · TV
(
f (k)),(15)

where Fk is the set

Fk = {
f : [0,1] → R : f is k times weakly differentiable and TV

(
f (k))< ∞}

.

[The element notation in (15) emphasizes the fact that the minimizer is not gener-
ally unique.] We call (15) the unrestricted locally adaptive regression spline prob-
lem, in reference to its minimization domain compared to that of (13). Mammen
and van de Geer (1997) prove that the minimum in this unrestricted problem is
always achieved by a kth degree spline, and that this spline has knots contained in
T if k = 0 or 1, but could have knots outside of T (and in fact, outside of the input
set {x1, . . . , xn}) if k ≥ 2. In other words, the solution in (13) is always a solution
in (15) when k = 0 or 1, but this need not be true when k ≥ 2; in the latter case,
even though there exists a kth degree spline that minimizes (15), its knots could
occur at noninput points.

The unrestricted locally adaptive regression estimate (15) is the main object of
theoretical study in Mammen and van de Geer (1997), but practically speaking,
this estimate is difficult to compute when k ≥ 2, because the possible knot loca-
tions are generally not easy to determine [see also Rosset and Zhu (2007)]. On
the other hand, the restricted estimate as defined in (13) is more computationally
tractable. Fortunately, Mammen and van de Geer (1997) show that essentially all
of their theoretical results for the unrestricted estimate also apply to the restricted
estimate, as long as the input points x1, . . . , xn are not spaced too far apart. In par-
ticular, for evenly spaced inputs, xi = i/n, i = 1, . . . , n, the convergence rates of
the unrestricted and restricted estimates are the same. We therefore focus on the
restricted problem (13) in the current paper, and mention the unrestricted prob-
lem (15) purely out of interest. For example, to anticipate results to come, we will
show in Lemma 3 of Section 3.3 that the trend filtering estimate (2) for k = 0 or 1
is equal to the locally adaptive regression spline estimate (13) (i.e., they match at
the input points x1, . . . , xn); hence, from what we discussed above, it also solves
the unrestricted problem in (15).
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3.2. Generalized lasso and lasso form. We note that the knot set T in (12) has
n − k − 1 elements, so Gk is spanned by n basis functions, call them g1, . . . , gn.
Since each gj , j = 1, . . . , n is a kth degree spline with knots in T , we know that
its kth weak derivative is piecewise constant and (say) right-continuous, with jump
points contained in T ; therefore, writing t0 = 0 and T = {t1, . . . , tn−k−1}, we have

TV
(
g

(k)
j

)=
n−k−1∑

i=1

∣∣g(k)
j (ti) − g

(k)
j (ti−1)

∣∣.
Similarly, any linear combination of g1, . . . , gn satisfies

TV

((
n∑

j=1

θjgj

)(k))
=

n−k−1∑
i=1

∣∣∣∣∣
n∑

j=1

(
g

(k)
j (ti) − g

(k)
j (ti−1)

) · θj

∣∣∣∣∣.
Hence, we can reexpress (13) in terms of the coefficients θ ∈ R

n in its basis ex-
pansion with respect to g1, . . . , gn,

θ̂ = argmin
θ∈Rn

1

2
‖y − Gθ‖2

2 + λ‖Cθ‖1,(16)

where G ∈R
n×n contains the evaluations of g1, . . . , gn over the inputs x1, . . . , xn,

and C ∈ R
(n−k−1)×n contains the differences in their kth derivatives across the

knots, that is,

Gij = gj (xi) for i, j = 1, . . . , n,(17)

Cij = g
(k)
j (ti) − g

(k)
j (ti−1) for i = 1, . . . , n − k − 1, j = 1, . . . , n.(18)

Given the solution θ̂ in (16), we can recover the locally adaptive regression spline
estimate f̂ in (13) over the input points by(

f̂ (x1), . . . , f̂ (xn)
)= Gθ̂,

or, at an arbitrary point x ∈ [0,1] by

f̂ (x) =
n∑

j=1

θ̂j gj (x).

The problem (16) is a generalized lasso problem, with predictor matrix G and
penalty matrix C; by taking g1, . . . , gn to be the truncated power basis, we can
turn (a block of) C into the identity, and hence (16) into a lasso problem.

LEMMA 1. Let T = {t1, . . . , tn−k−1} denote the set defined in (12), and let
g1, . . . , gn denote the kth order truncated power basis with knots in T ,

g1(x) = 1, g2(x) = x, . . . , gk+1(x) = xk,
(19)

gk+1+j (x) = (x − tj )
k · 1{x ≥ tj }, j = 1, . . . , n − k − 1.
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(For the case k = 0, we interpret 00 = 1.) Then the locally adaptive regression
spline problem (13) is equivalent to the following lasso problem:

θ̂ = argmin
θ∈Rn

1

2
‖y − Gθ‖2

2 + λ

n∑
j=k+2

|θj |,(20)

in that f̂ (x) =∑n
j=1 θ̂j gj (x) for x ∈ [0,1]. Here, G ∈R

n×n is the basis matrix as
in (17).

Lemma 1 follows from the fact that for the truncated power basis, the penalty
matrix C in (18) satisfies Ci,i+k+1 = 1 for i = 1, . . . , n − k − 1, and Cij = 0 oth-
erwise. It is worth noting that Osborne, Presnell and Turlach (1998) investigate
a lasso problem similar to (20) for the purposes of knot selection in regression
splines.

Note that (20) is of somewhat nonstandard form for a lasso problem, because the
�1 penalty is only taken over the last n − k − 1 components of θ . We will see next
that the trend filtering problem in (2) can also be written in lasso form (again with
the �1 penalty summing over the last n − k − 1 coefficients), and we will compare
these two formulations. First, however, it is helpful to express the knot superset T

in (12) and the basis matrix G in (17) in a more explicit form, for evenly spaced
input points xi = i/n, i = 1, . . . , n (this being the underlying assumption for trend
filtering). These become

T =
{(

(k + 2)/2 + i
)
/n, for i = 1, . . . , n − k − 1, if k is even,(

(k + 1)/2 + i
)
/n, for i = 1, . . . , n − k − 1, if k is odd

(21)

and

Gij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
0, for i < j ,
1, for i ≥ j ,

if k = 0,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ij−1/nj−1,

for i = 1, . . . , n, j = 1, . . . , k + 1,
0, for i ≤ j − k/2, j ≥ k + 2,
(i − j + k/2)k/nk,

for i > j − k/2, j ≥ k + 2,

if k > 0 is even,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ij−1/nj−1,

for i = 1, . . . , n, j = 1, . . . , k + 1,
0, for i ≤ j − (k + 1)/2, j ≥ k + 2,(
i − j + (k + 1)/2

)k
/nk,

for i > j − (k + 1)/2, j ≥ k + 2,

if k > 0 is odd.

(22)

(It is not really important to separate the definition of G for k = 0 from that for
k > 0, k even; this is only done to make transparent the structure of G.)
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3.3. Trend filtering in lasso form. We can transform the trend filtering problem
in (2) into lasso form, just like the representation for locally adaptive regression
splines in (20).

LEMMA 2. The trend filtering problem in (2) is equivalent to the lasso problem

α̂ = argmin
α∈Rn

1

2
‖y − Hα‖2

2 + λ

n∑
j=k+2

|αj |,(23)

in that the solutions satisfy β̂ = Hα̂. Here, the predictor matrix H ∈R
n×n is given

by

Hij =

⎧⎪⎪⎨
⎪⎪⎩

ij−1/nj−1, for i = 1, . . . , n, j = 1, . . . , k + 1,
0, for i ≤ j − 1, j ≥ k + 2,

σ
(k)
i−j+1 · k!/nk, for i > j − 1, j ≥ k + 2,

(24)

where we define σ
(0)
i = 1 for all i and

σ
(k)
i =

i∑
j=1

σ
(k−1)
j for k = 1,2,3, . . . ,

that is, σ
(k)
i is the kth order cumulative sum of (1,1, . . . ,1) ∈ R

i .

The proof of this lemma basically inverts the (k + 1)st order discrete difference
operator D(k+1); see the supplementary document [Tibshirani (2014)]. We remark
that this result, in the special case of k = 1, can be found in Kim et al. (2009).

It is not hard to check that in the case k = 0 or 1, the definitions of G in (22)
and H in (24) coincide, which means that the locally adaptive regression spline
and trend filtering problems (20) and (23) are the same. But when k ≥ 2, we have
G 	= H , and hence the problems are different.

LEMMA 3. Consider evenly spaced inputs xi = i/n, i = 1, . . . , n, and the
basis matrices G,H defined in (22), (24). If k = 0 or 1, then G = H , so the
lasso representations for locally adaptive regression splines and trend filtering,
(20) and (23), are the same. Therefore, their solutions are the same, or in other
words,

β̂i = f̂ (xi) for i = 1, . . . , n,

where β̂ and f̂ are the solutions of the original trend filtering and locally adaptive
regression spline problems, (2) and (13), at any fixed common value of the tuning
parameter λ.

If k ≥ 2, however, then G 	= H , so the problems (20) and (23) are different,
and hence the trend filtering and locally adpative regression spline estimators are
generically different.
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See the supplement for the proof [Tibshirani (2014)]. Though the trend filtering
and locally adaptive regression spline estimates are formally different for polyno-
mial orders k ≥ 2, they are practically very similar (at all common values of λ).
We give examples of this next, and then compare the computational requirements
for the two methods.

3.4. Empirical comparisons. We revisit the hills and Doppler examples of
Section 2.2. Figure 7 displays, for k = 3 (cubic order), the trend filtering and lo-
cally adaptive regression spline estimates at matching values of the tuning param-
eter λ. The estimates are visually identical in both examples (but not numerically
identical—the average squared difference between the estimates across the input
points is around 10−5 for the hills example, and 10−7 for the Doppler example).
This remains true for a wide range of common tuning parameter values, and only
for very small values of λ do slight differences between the two estimators become
noticeable.

Nothing is special about the choice k = 3 here or about these data sets in
particular: as far as we can tell, the same phenomenon occurs for any polyno-
mial order k, and any set of observations. This extreme similarity between the
two estimators, holding in finite sample and across essentially all common tun-
ing parameter values, is beyond what we show theoretically in Section 5. In this
section, we prove that for tuning parameters of a certain order, the two estimators
converge asymptotically at a fast rate. Sharper statements are a topic for future
work.

FIG. 7. Trend filtering and locally adaptive regression spline estimates, using the same values of
the tuning parameter λ, for the hills and Doppler data examples considered in Section 2.2. The trend
filtering estimates are drawn as solid red lines, and locally adaptive regression splines as dotted blue
lines; in both examples, the two estimates are basically indistinguishable by eye.
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3.5. Computational considerations. Both the locally adaptive regression
spline and trend filtering problems can be represented as lasso problems with
dense, square predictor matrices, as in (20) and (23). For trend filtering, we do
this purely for analytical reasons, and computationally it is much more efficient to
work from its original representation in (2), where the penalty operator D(k+1) is
sparse and banded. As discussed in Sections 1.1 and 2.3, two efficient algorithms
for trend filtering are the primal–dual interior point method of Kim et al. (2009)
and the dual path algorithm of Tibshirani and Taylor (2011); the former computes
the trend filtering estimate at a fixed value of λ, in O(n3/2) worst-case complex-
ity [the authors claim that the practical complexity is closer to O(n)]; the latter
computes the entire solution path over λ, with each critical point in this piecewise
linear path requiring O(n) operations.

For locally adaptive regression splines, on the other hand, there is not a better
computational alternative than solving the lasso problem in (20). One can check
that the inverse of the truncated power basis matrix G is dense, so if we con-
verted (20) to generalized lasso form [to match the form of trend filtering in (2)],
then it would have a dense penalty matrix. And if we were to choose, for example,
the B-spline basis over the truncated power basis to parameterize Gk(T ) in (13),
then although the basis matrix G would be sparse and banded, the resulting penalty
matrix C in (16) would be dense. In other words, to compute the locally adaptive
regression spline estimate, we are more or less stuck with solving the lasso prob-
lem in (20), where G is the dense predictor matrix in (22). This task is manageable
for small or moderately sized problems, but for large problems, dealing with the
n × n dense matrix G, and even holding it in memory, becomes burdensome.

To compute the locally adaptive regression spline estimates for the examples in
the last section, we solved the lasso problem in (20) using the LARS algorithm for
the lasso path [Efron et al. (2004)], as implemented by the lars R package.5 This
particular algorithm was chosen for the sake of a fair comparison to the dual path
algorithm used for trend filtering. For the Doppler data example with n = 1000
points, the LARS algorithm computed the locally adaptive regression spline es-
timate (shown in the right panel of Figure 7) in a comparable amount of time to
that taken by the dual path algorithm for trend filtering—in fact, it was faster, at
approximately 16 versus 28 seconds on a standard desktop computer. The real is-
sue, however, is scalability. For n = 1000 points, each of these algorithms required
about 4000 steps to compute their respective estimates; for n = 10,000 noisy ob-
servations from the Doppler curve, the dual path algorithm completed 4000 steps
in a little under 2.5 minutes, whereas the LARS algorithm completed 4000 steps
in 1 hour. Furthermore, for problem sizes n somewhat larger than n = 10,000, just
fitting the n×n basis matrix G used by the LARS algorithm into memory becomes
an issue.

5To fit the problem in (20) into standard lasso form, that is, a form in which the �1 penalty is taken
over the entire coefficient vector, we can solve directly for the first k + 1 coefficients (in terms of the
last n − k − 1 coefficients), simply by linear regression.
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4. Continuous-time representation. Section 3.3 showed that the trend filter-
ing minimization problem (2) can be expressed in lasso form (23), with a predictor
matrix H as in (24). The question we consider is now: is there a set of basis func-
tions whose evaluations over the inputs x1, . . . , xn give this matrix H ? Our next
lemma answers this question affirmatively.

LEMMA 4. Given inputs x1 < · · · < xn, consider the functions h1, . . . , hn de-
fined as

h1(x) = 1, h2(x) = x, . . . , hk+1(x) = xk,
(25)

hk+1+j (x) =
k∏

�=1

(x − xj+�) · 1{x ≥ xj+k}, j = 1, . . . , n − k − 1.

If the input points are evenly spaced over [0,1], xi = i/n for i = 1, . . . , n, then
the trend filtering basis matrix H in (24) is generated by evaluating the functions
h1, . . . , hn over x1, . . . , xn, that is,

Hij = hj (xi), i, j = 1, . . . , n.(26)

The proof is given in the supplementary document [Tibshirani (2014)]. As a
result of the lemma, we can alternatively express the trend filtering basis matrix H

in (24) as

Hij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ij−1/nj−1,

for i = 1, . . . , n, j = 1, . . . , k + 1,
0, for i ≤ j − 1, j ≥ k + 2,
k∏

�=1

(
i − (j − k − 1 + �)

)
/nk,

for i > j − 1, j ≥ k + 2.

(27)

This is a helpful form for bounding the difference between the entries of G and H ,
which is needed for our convergence analysis in the next section. Moreover, the
functions defined in (25) give rise to a natural continuous-time parameterization
for trend filtering.

LEMMA 5. For inputs x1 < · · · < xn, and the functions h1, . . . , hn in (25),
define the linear subspace of functions

Hk = span{h1, . . . , hn} =
{

n∑
j=1

αjhj :α1, . . . , αn ∈ R

}
.(28)

If the inputs are evenly spaced, xi = i/n, i = 1, . . . , n, then the continuous-time
minimization problem

f̂ = argmin
f ∈Hk

1

2

n∑
i=1

(
yi − f (xi)

)2 + λ · TV
(
f (k))(29)
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(where as before, f (k) is understood to mean the kth weak derivative of f ) is
equivalent to the trend filtering problem in (2), that is, their solutions match at the
input points,

β̂i = f̂ (xi) for i = 1, . . . , n.

This result follows by expressing f in (29) in finite-dimensional form as
f =∑n

j=1 αjhj , and then applying Lemmas 4 and 2. Lemma 5 says that the com-
ponents of trend filtering estimate, β̂1, . . . , β̂n, can be seen as the evaluations of a
function f̂ ∈ Hk over the input points, where f̂ solves the continuous-time prob-
lem (29). The function f̂ is a piecewise polynomial of degree k, with knots con-
tained in {xk+1, . . . , xn−1}, and for k ≥ 1, it is continuous since each of the basis
functions h1, . . . , hn are continuous. Hence, for k = 0 or 1, the continuous-time
trend filtering estimate f̂ is a spline (and further, it is equal to the locally adaptive
regression spline estimate by Lemma 3). But f̂ is not necessarily a spline when
k ≥ 2, because in this case it can have discontinuities in its lower order derivatives
(of orders 1, . . . , k − 1) at the input points. This is because each basis function hj ,
j = k + 2, . . . , n, though infinitely (strongly) differentiable in between the inputs,
has discontinuous derivatives of all lower orders 1, . . . , k − 1 at the input point
xj−1. These discontinuities are visually quite small in magnitude, and the basis
functions h1, . . . , hn look extremely similar to the truncated power basis functions
g1, . . . , gn; see Figure 8 for an example.

Loosely speaking, the basis functions h1, . . . , hn in (25) can be thought of as
the falling factorial analogues of the truncated power basis g1, . . . , gn in (19). One
might expect then that the subspaces of kth degree piecewise polynomial functions
Hk and Gk are fairly close, and that the (continuous-time) trend filtering and locally

FIG. 8. For n = 22 inputs (evenly spaced over [0,1]) and k = 3, the left panel shows the truncated
power basis functions in (19) and the center panel shows the basis functions in (25) utilized by trend
filtering. The two sets of basis functions appear very similar. The right plot is a zoomed in version
of the center plot, and shows the nonsmooth nature of the trend filtering basis functions—here (for
k = 3) they have discontinuous first and second derivatives.
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adaptive regression spline problems (29) and (13) admit similar solutions. In the
next section, we prove that (asymptotically) this is indeed the case, though we do
so by instead studying the discrete-time parameterizations of these problems. We
show that over a broad class of true functions f0, trend filtering estimates inherit
the minimax convergence rate of locally adaptive regression splines, because the
two estimators converge to each other at this same rate.

5. Rates of convergence. In this section, we assume an observation model

yi = f0(xi) + εi, i = 1, . . . , n,(30)

where xi = i/n, i = 1, . . . , n are evenly spaced input points, f0 : [0,1] → R is an
unknown regression function to be estimated, and εi , i = 1, . . . , n are i.i.d. sub-
Gaussian errors with zero mean, that is,

E[εi] = 0, P
(|εi | > t

)≤ M exp
(−t2/

(
2σ 2))

(31)
for all t > 0, i = 1, . . . , n

for some constants M,σ > 0. [We will write An = OP(Bn) to denote that An/Bn

is bounded in probability, for random sequences An,Bn. We will also write an =
�(bn) to denote 1/an = O(1/bn) for constant sequences an, bn, and finally an =
�(bn) to denote an = O(bn) and an = �(bn).]

In Mammen and van de Geer (1997), the authors consider the same setup, and
study the performance of the locally adaptive regression spline estimate (13) when
the true function f0 belongs to the set

Fk(C) = {
f : [0,1] → R : f is k times weakly differentiable and TV

(
f (k))≤ C

}
for some order k ≥ 0 and constant C > 0. Theorem 10 of Mammen and van de
Geer (1997) shows that the kth order locally adaptive regression spline estimate f̂

in (13), with λ = �(n1/(2k+3)), satisfies

1

n

n∑
i=1

(
f̂ (xi) − f0(xi)

)2 = OP

(
n−(2k+2)/(2k+3))(32)

and also that TV(f̂ ) = OP(1).

5.1. Minimax convergence rate. We note that the rate n−(2k+2)/(2k+3) in (32)
is the minimax rate for estimation over the function class Fk(C), provided that
C > 1. To see this, define the Sobolev smoothness class

Wk(C) =
{
f : [0,1] → R : f is k times differentiable and

∫ 1

0

(
f (k)(t)

)2
dt ≤ C

}
.

Minimax rates over the Sobolev classes are well-studied, and it is known [e.g., see
Nussbaum (1985)] that

min
f̂

max
f0∈Wk(C)

E

[
1

n

n∑
i=1

(
f̂ (xi) − f0(xi)

)2]= �
(
n−2k/(2k+1)).
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Recalling that TV(f ) = ∫ 1
0 |f ′(t)|dt for differentiable f , it follows that Fk(C) ⊇

Wk+1(C − 1), and

min
f̂

max
f0∈Fk(C)

E

[
1

n

n∑
i=1

(
f̂ (xi) − f0(xi)

)2]= �
(
n−(2k+2)/(2k+3)).

In words, one cannot hope to do better than n−(2k+2)/(2k+3) for function estimation
over Fk(C).

On the other hand, the work of Donoho and Johnstone (1998) provides a lower
bound on the rate of convergence over Fk(C) for any estimate linear in y—by
this, we mean that the vector of its fitted values over the inputs is a linear function
of y. This covers smoothing splines [recall the expression (11) for the smoothing
splines fitted values] and also, for example, kernel regression estimators. Letting
Bα

p,q denote the three parameter Besov space as in Donoho and Johnstone (1998),
and ‖ · ‖Bα

p,q
denote the corresponding norm, we have

Fk(C) ⊇ {
f : [0,1] → R :

∥∥f (k)
∥∥∞ + TV

(
f (k))≤ C

}
⊇ {

f : [0,1] → R :
∥∥f (k)

∥∥
B1

1,1
≤ C′}(33)

⊇ {
f : [0,1] → R :‖f ‖

Bk+1
1,1

≤ C′′},
where we write ‖f ‖∞ = maxt∈[0,1] |f (t)| for the L∞ function norm, and C′,C′′
are constants. The second containment above follows from a well-known embed-
ding of function spaces [e.g., see Mallat (2008), Johnstone (2011)]. The third
containment is given by applying the Johnen–Scherer bound on the modulus of
continuity [e.g., Theorem 3.1 of DeVore and Lorentz (1993)] when working with
the usual definition of the Besov norms.6 Since the minimax linear risk over the
Besov ball in (33) is of order n−(2k+1)/(2k+2) [Donoho and Johnstone (1998)], we
have7

min
f̂ linear

max
f0∈Fk(C)

E

[
1

n

n∑
i=1

(
f̂ (xi) − f0(xi)

)2]= �
(
n−(2k+1)/(2k+2)).

Hence, in terms of their convergence rate over Fk(C), smoothing splines are sub-
optimal.

5.2. Trend filtering convergence rate. Here, we show that trend filtering also
achieves the minimax convergence rate over Fk(C). The arguments used by
Mammen and van de Geer (1997) for locally adaptive regression splines cannot

6Thanks to Iain Johnstone for pointing this out.
7These authors actually study minimax rates under the L2 function norm, instead of the discrete

(input-averaged) norm that we consider here. However, these two norms are close enough over the
Besov spaces that the rates do not change; see Section 15.5 of Johnstone (2011).
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be directly applied here, as they are based some well-known interpolating proper-
ties of splines that do not easily extend to the trend filtering setting. Our strategy is
hence to show that, as n → ∞, trend filtering estimates lie close enough to locally
adaptive regression spline estimates to share their favorable asymptotic properties.
(Note that for k = 0 or k = 1, the trend filtering and locally adaptive regression
spline estimates are exactly the same for any given problem instance, as shown in
Lemma 3 in Section 3; therefore, the arguments here are really directed toward es-
tablishing a convergence rate for trend filtering in the case k ≥ 2.) Using the trian-
gle inequality (actually, using ‖a +b‖2

2 = ‖a‖2
2 +‖b‖2

2 + 2aT b ≤ 2‖a‖2
2 + 2‖b‖2

2),
we have

1

n

n∑
i=1

(
β̂i − f0(xi)

)2 ≤ 2

n

n∑
i=1

(
β̂i − f̂ (xi)

)2 + 2

n

n∑
i=1

(
f̂ (xi) − f0(xi)

)2
,(34)

where β̂, f̂ are the trend filtering and locally adaptive regression spline estimates
in (2), (13), respectively. The second term above is OP(n

−(2k+2)/(2k+3)) by (32); if
we could show that the first term above is also OP(n

−(2k+2)/(2k+3)), then it would
follow that trend filtering converges (in probability) to f0 at the minimax rate.

Recall from Section 3 that both the trend filtering and locally adaptive regression
spline estimates can be expressed in terms of the fitted values of lasso problems,

β̂ = Hα̂,
(
f̂ (x1), . . . , f̂ (xn)

)= Gθ̂,

where G,H ∈ R
n×n are the basis matrices in (22), (24), and α̂, θ̂ are the solutions

in lasso problems (20), (23). Hence, we seek a bound for
∑n

i=1(β̂i − f̂ (xi))
2 =

‖Hα̂ − Gθ̂‖2
2, the (squared norm) difference in fitted values between two lasso

problems with the same outcome y, but different predictor matrices G,H . Intu-
itively, a tight bound is plausible here because G and H have such similar entries
(again, for k = 0 or k = 1, we know that indeed G = H ).

While there are existing results on the stability of the lasso fit as a function of the
outcome vector y [e.g., Tibshirani and Taylor (2012) show that for any fixed pre-
dictor matrix and tuning parameter value, the lasso fit is nonexpansive as a function
of y], as far as we can tell, general stability results do not exist for the lasso fit as a
function of its predictor matrix. To this end, in the supplement [Tibshirani (2014)],
we develop bounds for the difference in fitted values of two lasso problems that
have different predictor matrices, but the same outcome. The bounds are asymp-
totic in nature, and are driven primarily by the maximum elementwise difference
between the predictor matrices. We can apply this work in the current setting to
show that the trend filtering and locally adaptive regression spline estimates con-
verge (to each other) at the desired rate, n−(2k+2)/(2k+3); essentially, this amounts
to showing that the elements of G − H converge to zero quickly enough.

THEOREM 1. Assume that y ∈ R
n is drawn from the model (30), with evenly

spaced inputs xi = i/n, i = 1, . . . , n and i.i.d. sub-Gaussian errors (31). Assume
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also that f0 ∈ Fk(C), that is, for a fixed integer k ≥ 0 and constant C > 0, the true
function f0 is k times weakly differentiable and TV(f

(k)
0 ) ≤ C. Let f̂ denote the

kth order locally adaptive regression spline estimate in (13) with tuning parameter
λ = �(n1/(2k+3)), and let β̂ denote the kth order trend filtering estimate in (2) with
tuning parameter (1 + δ)λ, for any fixed δ > 0. Then

1

n

n∑
i=1

(
β̂i − f̂ (xi)

)2 = OP

(
n−(2k+2)/(2k+3)).

PROOF. We use Corollary 2 in the supplementary document [Tibshirani
(2014)], with X = G and Z = H . First, note that our sub-Gaussian assumption
in (31) implies that E[ε4

i ] < ∞ (indeed, it implies finite moments of all orders), and
with μ = (f0(x1), . . . , f0(xn)), we know from the result of Mammen and van de
Geer (1997), paraphrased in (32), that

‖μ − Gθ̂‖2 = OP

(
n−(k+1)/(2k+3)+1/2)= OP(

√
n).

Furthermore, the locally adaptive regression spline estimate f̂ has total variation

TV(f̂ ) = ‖θ̂2‖1 = OP(1),

where θ̂2 denotes the last p2 = n − k − 1 components of θ̂ . Therefore, recalling
that λ = �(n1/(2k+3)), the remaining conditions needed for Corollary 2 in the sup-
plement [Tibshirani (2014)] reduce to

n(2k+2)/(2k+3)‖G2 − H2‖∞ → 0 as n → ∞,

where G2 and H2 denote the last n − k − 1 columns of G and H , respectively,
and ‖A‖∞ denotes the maximum absolute element of a matrix A. The above limit
can be established by using Stirling’s formula (and controlling the approximation
errors) to bound the elementwise differences in G2 and H2; see Lemma 5 in the
supplementary document [Tibshirani (2014)]. Therefore, we apply Corollary 2 in
the supplement to conclude that

‖Gθ̂ − Hα̂‖2 = OP

(√
n1/(2k+3)

)
.

Squaring both sides and dividing by n gives the result. �

Now, using the triangle inequality (34) [and recalling the convergence rate of
the locally adaptive regression spline estimate (32)], we arrive at the following
result.

COROLLARY 1. Under the assumptions of Theorem 1, for a tuning parameter
value λ = �(n1/(2k+3)), the kth order trend filtering estimate β̂ in (2) satisfies

1

n

n∑
i=1

(
β̂i − f0(xi)

)2 = OP

(
n−(2k+2)/(2k+3)).
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Hence, the trend filtering estimate converges in probability to f0 at the minimax
rate.

REMARK. Mammen and van de Geer (1997) prove the analogous convergence
result (32) for locally adaptive regression splines using an elegant argument in-
volving metric entropy and the interpolating properties of splines. In particular,
a key step in their proof uses the fact that for every k ≥ 0, and every function
f : [0,1] → R that has k weak derivatives, there exists a spline g ∈ Gk [i.e., g is
a spline of degree k with knots in the set T , as defined in (14)] such that

max
x∈[x1,xn]

∣∣f (x) − g(x)
∣∣≤ dkTV

(
f (k))n−k and TV

(
g(k))≤ dkTV

(
f (k)),(35)

where dk is a constant depending only on k (not on the function f ). Following this
line of argument for trend filtering would require us to establish the same interpo-
lating properties (35) with h ∈ Hk in place of g, where Hk , as defined in (25), (28),
is the domain of the continuous-time trend filtering minimization problem in (29).
This gets very complicated, as Hk does not contain spline functions, but instead
functions that can have discontinuous lower order derivatives at the input points
x1, . . . , xn. We circumvented such a complication by proving that trend filtering
estimates converge to locally adaptive regression spline estimates at a rate equal
to the minimax convergence rate (Theorem 1), therefore, “piggybacking” on the
locally adaptive regression splines rate due to Mammen and van de Geer (1997).

5.3. Functions with growing total variation. We consider an extension to esti-
mation over the function class Fk(Cn), where now Cn > 0 is not necessarily a con-
stant and can grow with n. As in the last section, we rely on a result of Mammen
and van de Geer (1997) for locally adaptive regression splines in the same situa-
tion, and prove that trend filtering estimates and locally adaptive regression spline
estimates are asymptotically very close.

THEOREM 2. Assume that y ∈ R
n is drawn from the model (30), with inputs

xi = i/n, i = 1, . . . , n and i.i.d. sub-Gaussian errors (31). Assume also that f0 ∈
Fk(Cn), that is, for a fixed integer k ≥ 0 and Cn > 0 (depending on n), the true

function f0 is k times weakly differentiable and TV(f
(k)
0 ) ≤ Cn. Let f̂ denote the

kth order locally adaptive regression spline estimate in (13) with tuning parameter

λ = �(n1/(2k+3)C
−(2k+1)/(2k+3)
n ), and let β̂ denote the kth order trend filtering

estimate in (2) with tuning parameter (1 + δ)λ, for any fixed δ > 0. If Cn does not
grow too quickly,

Cn = O
(
n(k+2)/(2k+2)),(36)

then

1

n

n∑
i=1

(
β̂i − f̂ (xi)

)2 = OP

(
n−(2k+2)/(2k+3)C2/(2k+3)

n

)
.
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PROOF. The arguments here are similar to the proof of Theorem 1. We invoke
Theorem 10 of Mammen and van de Geer (1997), for the present case of growing
total variation Cn: this says that

1

n

n∑
i=1

(
f̂ (xi) − f0(xi)

)2 = OP

(
n−(2k+2)/(2k+3)C2/(2k+3)

n

)
(37)

and also TV(f̂ ) = ‖θ̂2‖1 = OP(Cn). Now the conditions for Corollary 2 in the
supplementary document [Tibshirani (2014)] reduce to

n(2k+2)/(4k+6)C(2k+2)/(2k+3)
n ‖G2 − H2‖∞ = O(1),(38)

n(2k+2)/(2k+3)‖G2 − H2‖∞ → 0 as n → ∞.(39)

Applying the assumption (36) on Cn, it is seen that both (38), (39) are implied by
the condition n‖G2 − H2‖∞ = O(1), which is shown in Lemma 5 in the supple-
mentary document [Tibshirani (2014)]. Therefore, we conclude using Corollary 2
in the supplement that√√√√ n∑

i=1

(
β̂i − f̂ (xi)

)2 = ‖Hα̂ − Gθ̂‖2 = OP

(√
n1/(2k+3)C

2/(2k+3)
n

)
,

which gives the rate in the theorem after squaring both sides and dividing by n.
�

Finally, we employ the same triangle inequality (34) [and the locally adaptive
regression splines result (37) of Mammen and van de Geer (1997)] to derive a rate
for trend filtering.

COROLLARY 2. Under the assumptions of Theorem 2, for Cn =
O(n(k+2)/(2k+2)) and a tuning parameter value λ = �(n1/(2k+3)C

−(2k+1)/(2k+3)
n ),

the kth order trend filtering estimate β̂ in (2) satisfies

1

n

n∑
i=1

(
β̂i − f0(xi)

)2 = OP

(
n−(2k+2)/(2k+3)C2/(2k+3)

n

)
.

REMARK. Although we manage to show that trend filtering achieves the same
convergence rate as locally adaptive regression splines in the case of underlying
functions with growing total variation, we require the assumption that Cn grows
no faster than O(n(k+2)/(2k+2)), which is not required for the locally adaptive re-
gression spline result proved in Mammen and van de Geer (1997). But it is worth
pointing out that for k = 0 or k = 1, the restriction Cn = O(n(k+2)/(2k+2)) for the
trend filtering convergence result is not needed, because in these cases trend fil-
tering and locally adaptive regression splines are exactly the same by Lemma 3 in
Section 3.
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6. Astrophysics data example. We examine data from an astrophysics sim-
ulation model for quasar spectra, provided by Yu Feng, with help from Mattia
Ciollaro and Jessi Cisewski. Quasars are among the most luminous objects in the
universe. Because of this, we can observe them at great distances, and features
in their spectra reveal information about the universe along the line-of-sight of a
given quasar. A quasar spectrum drawn from this model is displayed in the top left
panel of Figure 9. The spectrum, in black, shows the flux (y-axis) as a function of
log wavelength (x-axis). Noisy realizations of this true curve are plotted as gray
points, measured at n = 1172 points, (approximately) equally spaced on the log
wavelength scale. We see that the true function has a dramatically different level
of smoothness as it traverses the wavelength scale, being exceptionally wiggly on
the left-hand side of the domain, and much smoother on the right. (The error vari-
ance is also seen to be itself inhomogeneous, with larger errors around the wiggly
portions of the curve, but for simplicity we do not account for this.) The wiggly
left-hand side of the spectrum are absorption features called the Lyman-alpha for-
est.

To estimate the underlying function, we applied trend filtering, smooth-
ing splines, and wavelet smoothing, each over 146 values of degrees of free-
dom (from 4 to 150 degrees to freedom). Locally adaptive regression splines
were not compared because of their extreme proximity to trend filtering. The
smooth.spline function in R was used to fit the smoothing spline estimates,
and because it produces cubic order smoothing splines, we considered cubic order
trend filtering and wavelets with 4 vanishing moments to put all of the methods
on more or less equal footing. Wavelet smoothing was fit using the wavethresh
package in R, and the “wavelets on the interval” option was chosen to handle the
boundary conditions (as periodicity and symmetry are not appropriate assumptions
for the boundary behavior in this example), which uses an algorithm of Cohen,
Daubechies and Vial (1993). Wavelet transforms generally require the number of
observations to be a power of 2 (this is at least true in the wavethresh imple-
mentation), and so we restricted the wavelet smoothing estimate to use the first
1024 points with the smallest log wavelengths.

Figure 9 demonstrates the function estimates from these methods, run on the
single data set shown in the top left panel (the observations are not drawn in the
remaining panels so as not to cloud the plots). Each estimate was tuned to have 81
degrees of freedom. We can see that trend filtering (top right panel) captures many
features of the true function, picking up the large spike just before x = 3.6, but
missing some of the action on the left-hand side. The smoothing spline estimate
(bottom left) appears fairly similar, but it does not fit the magnitudes of the wiggly
components as well. Wavelet smoothing (bottom right) detects the large spike, but
badly overfits the true function to the left of this spike, and even misses gross
smoothness features to the right.

We further compared the three contending methods by computing their average
squared error loss to the true function, over 20 draws from the simulated model.
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FIG. 9. The top left panel shows data simulated from a model for quasar spectrum. The true curve,
in black, displays flux as a function of log wavelength. The gray points are noisy observations at
n = 1172 wavelength values. We fit trend filtering, smoothing splines, and wavelets to these points,
and tuned each to have 81 degrees of freedom. (This value was chosen because it corresponded
to the trend filtering model with the minimum squared error loss, averaged 20 simulations—see
Figure 10.) The resulting estimates are displayed in the top right, bottom left and bottom right panels,
respectively (with the true function plotted in the background, in gray). Trend filtering and smoothing
splines give similar fits, except that trend filtering does a better job of estimating the large peak at
around x = 3.6, as well as some of the finer features of the true function to the left of this. Wavelet
smoothing also does well in detecting the extreme peak, but then overfits the true function on the
left-hand side, and underfits on the right.
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FIG. 10. Left plot: the squared error loss in estimating the true light curve for the quasar spectrum
data, using trend filtering, smoothing splines and wavelets, fit over a range of model complexities
(degrees of freedom values). The results were averaged over 20 simulated data sets, with standard
errors drawn as dotted lines. Trend filtering achieves a significantly lower squared error loss than
smoothing splines for models of low complexity; both perform much better than wavelets. Right plot:
trend filtering versus a smoothing spline estimator that fits a different smoothing parameter on two
halves of the domains (on either side of the peak around x = 3.6); the methods perform comparably.

This is shown in the left panel of Figure 10. Trend filtering outperforms smoothing
splines for lower values of model complexity (degrees of freedom); this can be
attributed to its superior capability for local adaptivity, a claim both empirically
supported by the simulations in Section 2.2, and formally explained by the theory
in Section 5. Wavelet smoothing is not competitive in terms of squared error loss.
Although in theory it achieves the same (minimax) rate of convergence as trend
filtering, it seems in the current setting to be hurt by the high noise level at the left-
hand side of the domain; wavelet smoothing overfits in this region, which inflates
the estimation variance.

Finally, we compared trend filtering to a smoothing spline estimator whose tun-
ing parameter varies over the input domain (to yield a finer level of local adaptiv-
ity). For an example of a recent proposal of such an estimator, see Wang, Du and
Shen (2013) (see also the references therein). Methods that fit a flexibly varying
tuning parameter over the domain can become very complicated, and so to simplify
matters for the quasar spectrum data, we allowed the smoothing spline estimator
two different tuning parameters λ1, λ2 to the left and right of x = 3.6. Note that
this represents somewhat of an ideal scenario for variable parameter smoothing
splines, as we fixed an appropriate division of the domain based on knowledge of
the true function. It should also be noted that we fit the split smoothing spline esti-
mator over a total of 146 · 146 = 21,316 values of degrees of freedom (146 in each
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half of the domain), which puts it at an advantage over the other methods. See the
right panel of Figure 10 for the results. Over 20 simulated data sets, we fit split
smoothing splines whose degrees of freedom d1, d2 on the left and right sides of
x = 3.6 ranged from 4 to 150. For each value of degrees of freedom d , the plotted
curve shows the minimum squared error loss over all models with d1 + d2 = d . In-
terestingly, despite all of the advantages imparted by its setup, the split smoothing
spline estimator performs basically on par with trend filtering.

7. Extensions and discussion. We have shown that trend filtering, a newly
proposed method for nonparametric regression of Kim et al. (2009), is both fast
and locally adaptive. Two of the major tools for adaptive spline estimation are
smoothing splines and locally adaptive regression splines; in short, the former es-
timators are fast but not locally adaptive, and the latter are locally adaptive but
not fast. Trend filtering lies in a comparatively favorable position: its estimates
can be computed in O(n3/2) worst-case complexity (at a fixed value of the tuning
parameter λ, using a primal–dual interior point algorithm), which is slower than
the O(n) complexity of smoothing splines, but not by a big margin; its estimates
also achieve the same convergence rate as locally adaptive regression splines over
a broad class of underlying functions (which is, in fact, the minimax rate over this
class).

One way to construct trend filtering estimates, conceptually, is to start with the
lasso form for locally adaptive regression splines (20), but then replace the ma-
trix G in (22), which is generated by the truncated power series, with the matrix
H in (27), generated by something like their falling factorial counterparts. This
precisely defines trend filtering, and it has the distinct computational advantage
that H has a sparse banded inverse (whereas the inverse of G is dense). More-
over, the matrix H is close enough to G that trend filtering estimates retain some
of the desirable theoretical properties of locally adaptive regression splines, that
is, their minimax rate of convergence. Although this change-of-basis perspective
is helpful for the purposes of mathematical analysis, the original representation
for trend filtering (2) is certainly more natural, and also perhaps more useful for
constructing related estimators whose characteristics go beyond (piecewise) poly-
nomial smoothness of a given order. We finish by discussing this, in Section 7.2.
First, we briefly discuss an extension to multivariate inputs.

7.1. Multivariate trend filtering. An important extension concerns the case of
multivariate inputs x1, . . . , xn ∈ R

p . In this case, there are two strategies for ex-
tending trend filtering that one might consider. The first is to extend the definition
of the discrete difference operators to cover multivariate inputs—the analogous
extension here for smoothing splines are thin plate splines [Green and Silverman
(1994), Wahba (1990)]. An extension such as this is “truly” multivariate, and is
an ambitious undertaking; even just the construction of an appropriate multivariate
discrete difference operator is a topic deserving its own study.
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A second, more modest approach for multivariate input points is to fit an ad-
ditive model whose individual component functions are fit by (univariate) trend
filtering. Hastie and Tibshirani (1990) introduced additive models, of the form

yi =
p∑

j=1

fj (xij ) + εi, i = 1, . . . , n.(40)

The model (40) considers the contributions from each variable in the input space
marginally. Its estimates will often scale better with the underlying dimension p,
both in terms of computational and statistical efficiency, when compared to those
from a “true” multivariate extension that considers variables jointly. Fitting the
component functions f̂1, . . . , f̂p is most often done with a backfitting (blockwise
coordinate descent) procedure, where we cycle through estimating each f̂j by
fitting the current residual to the j th variable, using a univariate nonparametric
regression estimator. Common practice is to use smoothing splines for these in-
dividual univariate regressions, but given their improved adaptivity properties and
comparable computational efficiency, using trend filtering estimates for these inner
regressions is an idea worth investigating.

7.2. Synthesis versus analysis. Synthesis and analysis are concepts from sig-
nal processing that, roughly speaking, describe the acts of building up an estimator
by adding together a number of fundamental components, respectively, whittling
down an estimator by removing certain undesirable components. The same terms
are also used to convey related concepts in many scientific fields. In this section, we
compare synthesis and analysis in the context of �1 penalized estimation. Suppose
that we want to construct an estimator of y ∈R

n with some particular set of desired
characteristics, and consider the following two general problem formulations:

min
θ∈Rp

1

2
‖y − Xθ‖2

2 + λ‖θ‖1,(41)

min
β∈Rn

1

2
‖y − β‖2

2 + λ‖Dβ‖1.(42)

The first form (41) is the synthesis approach: here, we choose a matrix X ∈ R
n×p

whose columns are atoms or building blocks for the characteristics that we seek,
and in solving the synthesis problem (41), we are adaptively selecting a number
of these atoms to form our estimate of y. Problem (42), on the other hand, is the
analysis approach: instead of enumerating an atom set via X, we choose a penalty
matrix D ∈ R

m×n whose rows represent uncharacteristic behavior. In solving the
problem (42), we are essentially orthogonalizing our estimate with respect to some
adaptively chosen rows of D, therefore, directing it away from uncharacteristic be-
havior.

The original representation of trend filtering in (2) falls into the analysis frame-
work, with D = D(k+1), the (k + 1)st order discrete difference operator; its basis
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representation in (23) falls into the synthesis framework, with X = H , the falling
factorial basis matrix (an unimportant difference is that the �1 penalty only ap-
plies to part of the coefficient vector). In the former, we shape the trend filtering
estimate by penalizing jumps in its (k + 1)st discrete derivative across the input
points; in the latter, we build it from a set of basis functions, each of which is non-
smooth at only one different input point. Generally, problems (41) and (42) can be
equated if D has full row rank (as it does with trend filtering), but not if D is row
rank deficient [see Tibshirani and Taylor (2011), Elad, Milanfar and Rubinstein
(2007)].

Here, we argue that it can actually be easier to work from the analysis perspec-
tive instead of the synthesis perspective for the design of nonparametric regression
estimators. (The reverse can also be true in other situations, though that is not our
focus.) For example, suppose that we wanted to construct an estimator that dis-
plays piecewise polynomial smoothness across the input points, but additionally,
is identically zero over some appropriately chosen subintervals in its domain. It
helps to see an example: see the left panel in Figure 11. Working from the analysis
point of view, such an estimate is easily achieved by adding a pure �1 penalty to
the usual trend filtering criterion, as in

β̂ = argmin
β∈Rn

1

2
‖y − β‖2

2 + λ1
∥∥D(k+1)β

∥∥
1 + λ2‖β‖1.(43)

FIG. 11. Left panel: a small example of sparse quadratic trend filtering (k = 2). The estimate β̂

in (43) is identically zero for inputs approximately between 0 and 0.25, and 0.6 and 0.75. Right
panel: an example of constant/quadratic mixed trend filtering (k1 = 0 and k2 = 2). The estimate
defined in (44) is first piecewise quadratic over the first half of its domain, but then is flat in two
stretches over the second half.
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We call (43) the sparse trend filtering estimate. This could be of interest if, for
example, y ∈ R

n is taken to be the pairwise differences between two sequences
of observations, for example, between two response curves over time; in this case,
the zeros of β̂ indicate regions in time over which the two responses are deemed
to be more or less the same. It is important to note that an estimate with these
properties seems difficult to construct from the synthesis perspective—it is unclear
what basis elements, when added together, would generically yield an estimate like
that in (43).

As another example, suppose that we had prior belief that the observations
y ∈ R

n were drawn from an underlying function that possesses different orders
of piecewise polynomial smoothness, k1 and k2, at different parts of its domain.
We could then solve the mixed trend filtering problem,

β̂ = argmin
β∈Rn

1

2
‖y − β‖2

2 + λ1
∥∥D(k1+1)β

∥∥
1 + λ2

∥∥D(k2+1)β
∥∥

1.(44)

The right panel of Figure 11 shows an example, with an underlying function that
is mixed piecewise quadratic and piecewise constant. Again it seems much more
difficult to construct an estimate like (44), that is, one that can flexibly adapt to
the appropriate order of smoothness at different parts of its domain, using the syn-
thesis framework. Further study of the synthesis versus analysis perspectives for
estimator construction will be pursued in future work.
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SUPPLEMENTARY MATERIAL

Supplement to “Adaptive piecewise polynomial estimation via trend filter-
ing” (DOI: 10.1214/13-AOS1189SUPP; .pdf). We provide proofs for the results
in Sections 3 and 4. We also present the underlying theoretical framework needed
to establish the convergence rates in Section 5. Finally, we discuss an extension of
trend filtering to the case of arbitrary input points.
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