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DISCUSSION: “A SIGNIFICANCE TEST FOR THE LASSO”

BY LARRY WASSERMAN

Carnegie Mellon University

The paper by Lockhart, Taylor, Tibshirani and Tibshirani (LTTT) is an impor-
tant advancement in our understanding of inference for high-dimensional regres-
sion. The paper is a tour de force, bringing together an impressive array of results,
culminating in a set of very satisfying convergence results. The fact that the test
statistic automatically balances the effect of shrinkage and the effect of adaptive
variable selection is remarkable.

The authors make very strong assumptions. This is quite reasonable: to make
significant theoretical advances in our understanding of complex procedures, one
has to begin with strong assumptions. The following question then arises: what can
we do without these assumptions?

1. The assumptions. The assumptions in this paper—and in most theoretical
papers on high-dimensional regression—have several components. These include:

(1) The linear model is correct.
(2) The variance is constant.
(3) The errors have a Normal distribution.
(4) The parameter vector is sparse.
(5) The design matrix has very weak collinearity. This is usually stated in the

form of incoherence, eigenvalue restrictions or incompatibility assumptions.

To the best of my knowledge, these assumptions are not testable when p > n.
They are certainly a good starting place for theoretical investigations but they are
indeed very strong. The regression function m(x) = E(Y |X = x) can be any func-
tion. There is no reason to think it will be close to linear. Design assumptions are
also highly suspect. High collinearity is the rule rather than the exception espe-
cially in high-dimensional problems. An exception is signal processing, in partic-
ular compressed sensing, where the user gets to construct the design matrix. In
this case, if the design matrix is filled with independent random Normals, the de-
sign matrix will be incoherent with high probability. But this is a rather special
situation.

None of this is meant as a criticism of the paper. Rather, I am trying to motivate
interest in the question I asked earlier, namely: what can we do without these
assumptions?
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REMARK 1. It is also worth mentioning that even in low-dimensional mod-
els and even if the model is correct, model selection raises troubling issues that
we all tend to ignore. In particular, variable selection makes the minimax risk ex-
plode [Leeb and Pötscher (2005, 2008)]. This is not some sort of pathological risk
explosion, rather, the risk is large in a neighborhood of 0, which is a part of the
parameter space we care about.

2. The assumption-free lasso. To begin it is worth pointing out that the lasso
has a very nice assumption-free interpretation.

Suppose we observe (X1, Y1), . . . , (Xn,Yn) ∼ P where Yi ∈ R and Xi ∈ R
d .

The regression function m(x) = E(Y |X = x) is some unknown, arbitrary function.
We have no hope to estimate m(x) nor do we have licence to impose assumptions
on m.

But there is sound theory to justify the lasso that makes virtually no assump-
tions. In particular, I refer to Greenshtein and Ritov (2004) and Juditsky and Ne-
mirovski (2000).

Let L = {xtβ :β ∈ R
d} be the set of linear predictors. For a given β , define the

predictive risk

R(β) = E
(
Y − βT X

)2
,

where (X,Y ) is a new pair. Let us define the best, sparse, linear predictor �∗(x) =
βT∗ x (in the �1 sense) where β∗ minimizes R(β) over the set B(L) = {β :‖β‖1 ≤
L}. The lasso estimator β̂ minimizes the empirical risk R̂(β) = 1

n

∑n
i=1(Yi −

βT Xi)
2 over B(L). For simplicity, I will assume that all the variables are bounded

by C (but this is not really needed). We make no other assumptions: no linearity,
no design assumptions and no models. It is now easily shown that

R(β̂) ≤ R(β∗) +
√

8C2L4

n
log

(
2p2

δ

)

except on a set of probability at most δ.
This shows that the predictive risk of the lasso comes close to the risk of the

best sparse linear predictor. In my opinion, this explains why the lasso “works.”
The lasso gives us a predictor with a desirable property—sparsity—while being
computationally tractable and it comes close to the risk of the best sparse linear
predictor.

3. Interlude: Weak versus strong modeling. When developing new method-
ology, I think it is useful to consider three different stages of development:

(1) Constructing the method.
(2) Interpreting the output of the method.
(3) Studying the properties of the method.
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I also think it is useful to distinguish two types of modeling. In strong modeling,
the model is assumed to be true in all three stages. In weak modeling, the model is
assumed to be true for stage 1 but not for stages 2 and 3. In other words, one can
use a model to help construct a method. But one does not have to assume the model
is true when it comes to interpretation or when studying the theoretical properties
of the method. My discussion is guided by my preference for weak modeling.

4. Assumption-free inference: The HARNESS. Here, I would like to dis-
cuss an approach I have been developing with Ryan Tibshirani. We call this:
High-dimensional Agnostic Regression Not Employing Structure or Sparsity, or,
the HARNESS. The method is a variant of the idea proposed in Wasserman and
Roeder (2009).

The idea is to split the data into two halves. D1 and D2. For simplicity, assume
that n is even so that each half has size m = n/2. From the first half D1, we select
a subset of variables S. The method is agnostic about how the variable selection is
done. It could be forward stepwise, lasso, elastic net or anything else. The output
of the first part of the analysis is the subset of predictors S and an estimator β̂ =
(β̂j : j ∈ S). The second half of the data D2 is used to provide distribution-free
inferences for the following questions:

(1) What is the predictive risk of β̂?
(2) How much does each variable in S contribute to the predictive risk?
(3) What is the best linear predictor using the variables in S?

All the inferences from D2 are interpreted as being conditional on D1. (A variation
is to use D1 only to produce S and then construct the coefficients of the predictor
from D2. For the purposes of this discussion, we use β̂ from D1.)

In more detail, let

R = E
∣∣Y − XT β̂

∣∣,
where the randomness is over the new pair (X,Y ); we are conditioning on D1.
Note that in this section I have changed the definition of R to be on the abso-
lute scale which is more interpretable. In the above equation, it is understood that
β̂j = 0 when j /∈ S. The first question refers to producing a estimate and confi-
dence interval for R (conditional on D1). The second question refers to inferring

Rj = E
∣∣Y − XT β̂(j)

∣∣ −E
∣∣Y − XT β̂

∣∣
for each j ∈ S, where β(j) is equal to β̂ except that β̂j is set to 0. Thus, Rj is the
risk inflation by excluding Xj . The third question refers to inferring

β∗ = arg min
β∈Rk

E
(
Y − XT

S β
)2
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the coefficient of the best linear predictor for the chosen model. We call β∗ the
projected parameter. Hence, xT β∗ is the best linear approximation to m(x) on the
linear space spanned by the selected variables.

A consistent estimate of R is

R̂ = 1

m

m∑
i=1

δi,

where the sum is over D2, and δi = |Yi −XT
i β̂|. An approximate 1 −α confidence

interval for R is R̂ ± zα/2s/
√

m where s is the standard deviation of the δi ’s.
The validity of this confidence interval is essentially distribution-free. In fact,

if we want to be purely distribution-free and avoid asymptotics, we could instead
define R to be the median of the law of |Y −XT β̂|. Then the order statistics of the
δi’s can be used in the usual way to get a finite sample, distribution-free confidence
interval for R.

Estimates and confidence intervals for Rj can be obtained from e1, . . . , em

where

ei = ∣∣Yi − XT β̂(j)

∣∣ − ∣∣Yi − XT β̂
∣∣.

Estimates and confidence intervals for β∗ can be obtained by standard least squares
procedures based on D2. The steps are summarized in Figure 1.

The HARNESS bears some similarity to POSI [Berk et al. (2013)] which is
another inference method for model selection. They both eschew any assumption
that the linear model is correct. But POSI attempts to make inferences that are valid
over all possible selected models while the HARNESS restricts attention to the
selected model. Also, the HARNESS emphasizes predictive inferential statement.

Here is an example using the wine dataset. (Thanks to the authors for providing
the data.) Using the first half of the data, we applied forward stepwise selection and

The HARNESS

Input: data D = {(X1, Y1), . . . , (Xn,Yn)}.
(1) Randomly split the data into two halves D1 and D2.
(2) Use D1 to select a subset of variables S. This can be forward stepwise, the

lasso, or any other method.
(3) Let R = E((Y − XT β̂)2|D1) be the predictive risk of the selected model on

a future pair (X,Y ), conditional on D1.
(4) Using D2 construct point estimates and confidence intervals for R,

(Rj : β̂j �= 0) and β∗.

FIG. 1. The steps in the HARNESS algorithm.



DISCUSSION 505

FIG. 2. Left plot: confidence intervals for Rj . Right plot: confidence intervals for projected param-
eters. From top down the variables are Alcohol, Volatile_Acidity, Sulphates, Total_Sulfur_Dioxide
and pH.

used Cp to select a model. The selected variables are Alcohol, Volatile_Acidity,
Sulphates, Total_Sulfur_Dioxide and pH. A 95 percent confidence interval for
the predictive risk of the null model is (0.65,0.70). For the selected model, the
confidence interval for R is (0.46,0.53). The (Bonferroni-corrected) 95 percent
confidence intervals for the Rj ’s are shown in the first plot of Figure 2. The
(Bonferroni-corrected) 95 percent confidence intervals for the parameters of the
projected model are shown in the second plot in Figure 2.

5. The value of data-splitting. Some statisticians are uncomfortable with
data-splitting. There are two common objections. The first is that the inferences
are random: if we repeat the procedure we will get different answers. The second
is that it is wasteful.

The first objection can be dealt with by doing many splits and combining the
information appropriately. This can be done but is somewhat involved and will be
described elsewhere. The second objection is, in my view, incorrect. The value of
data splitting is that leads to simple, assumption-free inference. There is nothing
wasteful about this. Both halves of the data are being put to use. Admittedly, the
splitting leads to a loss of power compared to ordinary methods if the model were
correct. But this is a false comparison since we are trying to get inferences without
assuming the model is correct. It is a bit like saying that nonparametric function
estimators have slower rates of convergence than parametric estimators. But that
is only because the parametric estimators invoke stronger assumptions.

6. Conformal prediction. Since I am focusing my discussion on regres-
sion methods that make weak assumptions, I would also like to briefly mention
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Vladimir Vovk’s theory of conformal inference. This is a completely distribution-
free, finite sample method for predictive regression. The method is described in
Vovk, Gammerman and Shafer (2005) and Vovk, Nouretdinov and Gammerman
(2009). Unfortunately, most statisticians seem to be unaware of this work which is
a shame. The statistical properties (such as minimax properties) of conformal pre-
diction were investigated in Lei, Robins and Wasserman (2014), Lei and Wasser-
man (2014).

A full explanation of the method is beyond the scope of this discussion but I do
want to give the general idea and say why it is related the current paper. Given data
(X1, Y1), . . . , (Xn,Yn), suppose we observe a new X and want to predict Y . Let
y ∈ R be an arbitrary real number. Think of y as a tentative guess at Y . Form the
augmented data set

(X1, Y1), . . . , (Xn,Yn), (X,y).

Now we fit a linear model to the augmented data and compute residuals ei for each
of the n + 1 observations. Now we test H0 :Y = y. Under H0, the residuals are
invariant under permutations and so

p(y) = 1

n + 1

n+1∑
i=1

I
(|ei | ≥ |en+1|)

is a distribution-free p-value for H0.
Next, we invert the test: let C = {y :p(y) ≥ α}. It is easy to show that

P(Y ∈ C) ≥ 1 − α.

Thus, C is distribution-free, finite-sample prediction interval for Y . Like the
HARNESS, the validity of the method does not depend on the linear model be-
ing correct. The set C has the desired coverage probability no matter what the true
model is. Both the HARNESS and conformal prediction use the linear model as a
device for generating predictions but neither requires the linear model to be true
for the inferences to be valid. [In fact, in the conformal approach, any method of
generating residuals can be used. It does not have to be a linear model. See Lei and
Wasserman (2014).]

One can also look at how the prediction interval C changes as different variables
are removed. This gives another assumption-free method to explore the effects
of predictors in regression. Minimizing the length of the interval over the lasso
path can also be used as a distribution-free method for choosing the regularization
parameter of the lasso.

On a related note, we might also be interested in assumption-free methods for
the related task of inferring graphical models. For a modest attempt at this, see
Wasserman, Kolar and Rinaldo (2013).
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7. Causation. LTTT do not discuss causation. But in any discussion of the
assumptions underlying regression, causation is lurking just below the surface.
Indeed, there is a tendency to conflate causation and inference. To be clear: pre-
diction, inference and causation are three separate ideas.

Even if the linear model is correct, we have to be careful how we interpret the
parameters. Many articles and textbooks describe βj as the change in Y if Xj is
changed, holding the other covariates fixed. This is incorrect. In fact, βj is the
change in our prediction of Y if Xj is changed. This may seem like nit-picking
but this is the very difference between association and causation.

Causation refers to the change in Y as Xj is changed. Association (prediction)
refers to the change in our prediction of Y as Xj is changed. Put another way, pre-
diction is about E(Y | observe X = x) while causation is about E(Y | set X = x). If
X is randomly assigned, they are the same. Otherwise, they are different. To make
the causal claim, we have to include in the model, every possible confounding
variable that could affect both Y and X. This complete causal model has the form

Y = g(X,Z) + ε,

where Z = (Z1, . . . ,Zk) represents all confounding variables in the world. The
relationship between Y and X alone is described as

Y = f (X) + ε′.

The causal effect—the change in Y as Xj is changed—is given by ∂g(x, z)/∂xj .
The association (prediction)—the change in our prediction of Y as Xj is
changed—is given by ∂f (x)/∂xj . If there are any omitted confounding variables,
then these will be different.

Which brings me back to the paper. Even if the linear model is correct, we still
have to exercise great caution in interpreting the coefficients. Most users of our
methods are nonstatisticians and are likely to interpret βj causally no matter how
many warnings we give.

8. Conclusion. LTTT have produced a fascinating paper that significantly ad-
vances our understanding of high-dimensional regression. I expect there will be a
flurry of new research inspired by this paper.

My discussion has focused on the role of assumptions. In low-dimensional mod-
els, it is relatively easy to create methods that make few assumptions. In high-
dimensional models, low assumption inference is much more challenging.

I hope I have convinced the authors that the low assumption world is worth
exploring. In the meantime, I congratulate the authors on an important and stimu-
lating paper.

Acknowledgments. Thanks to Rob Kass, Rob Tibshirani and Ryan Tibshirani
for helpful comments.
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