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SEMI-MARKOV APPROACH TO CONTINUOUS TIME RANDOM
WALK LIMIT PROCESSES

BY MARK M. MEERSCHAERT1,2 AND PETER STRAKA2

Michigan State University and UNSW Australia

Continuous time random walks (CTRWs) are versatile models for
anomalous diffusion processes that have found widespread application in the
quantitative sciences. Their scaling limits are typically non-Markovian, and
the computation of their finite-dimensional distributions is an important open
problem. This paper develops a general semi-Markov theory for CTRW limit
processes in R

d with infinitely many particle jumps (renewals) in finite time
intervals. The particle jumps and waiting times can be coupled and vary with
space and time. By augmenting the state space to include the scaling limits of
renewal times, a CTRW limit process can be embedded in a Markov process.
Explicit analytic expressions for the transition kernels of these Markov pro-
cesses are then derived, which allow the computation of all finite dimensional
distributions for CTRW limits. Two examples illustrate the proposed method.

1. Introduction. Continuous time random walks (CTRWs) assume a random
waiting time between each successive jump. They are used in physics to model a
variety of anomalous diffusion processes (see Metzler and Klafter [34]), and have
found applications in numerous other fields (see, e.g., [6, 17, 37, 38]). The scal-
ing limit of the CTRW is a time-changed Markov process in R

d [31]. The clock
process is the hitting time of an increasing Lévy process, which is non-Markovian.
The distribution of the scaling limit at one fixed time t is then usually calculated
by solving a fractional Fokker–Planck equation [34], that is, a governing equation
that involves a fractional derivative in time. The analysis of the joint laws at mul-
tiple times, however, becomes much more complicated, since the limit process is
not Markovian. In fact, the joint distribution of the CTRW limit at two or more
different times has yet to be explicitly calculated, even in the simplest cases; see
Baule and Friedrich [4] for further discussion.

The main motivation of this paper is to resolve this problem, and our approach is
to develop the semi-Markov theory for CTRW scaling limits. CTRWs are renewed
after every jump. As it turns out, the discrete set of renewal times of CTRWs con-
verges to a “regenerative set” in the scaling limit, which is not discrete and can be a
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random fractal or a random set of positive Lebesgue measure. This regenerative set
allows for the definition of the scaling limit of the previous and next renewal time
after a time t . By incorporating these times into the state space, a CTRW limit can
become Markovian. Although CTRW scaling limits have appeared in many appli-
cations throughout the literature, to our knowledge the renewal property has only
been studied for a discrete CTRW. Moreover, CTRW limits are examples for pos-
sibly discontinuous semi-Markov processes with infinitely many renewals in finite
time, and hence the development here complements the literature on continuous
semi-Markov processes [15].

It is known [25] that semi-Markov processes can be constructed by assuming a
Markov additive process (Au,Du) and defining Xt = A(Et), where Et is the hit-
ting time of the level t by the process Du. With this procedure, one also constructs
CTRW limit processes. However, such CTRW limits are homogeneous in time,
and several applications require time-inhomogeneous CTRW limit processes [16,
27]. Hence, we will assume that (Au,Du) is a diffusion process with jumps (such
that Du is strictly increasing), modeling the cumulative sum of non-i.i.d. jumps
and waiting times (see Section 2) which vary with time and space. In this setting,
we develop a semi-Markov theory for time-inhomogeneous CTRW limits.

Coupled CTRW limits, for which waiting times and jumps are not independent,
turn out to be particularly interesting. As recently discovered [21, 40], switching
the order of waiting time and jump (i.e., jumps precede waiting times) yields a
different scaling limit called the overshooting CTRW limit (OCTRW limit). The
two processes can have completely different tail behavior [21], and hence provide
versatile models for a variety of relaxation behaviors in statistical physics [42].
Both CTRW and OCTRW limit turn out to be semi-Markov processes; however,
incorporating the previous renewal time only renders the CTRW limit Markovian
and not the OCTRW limit, and the opposite is true when the following renewal
time is incorporated. In the uncoupled case, CTRW and OCTRW have the same
limit, and hence both approaches yield Markov processes.

This paper gives explicit formulae for the joint transition probabilities of the
CTRW limit (resp., OCTRW limit), together with its previous renewal time (resp.,
following renewal time, see Section 3). These formulae facilitate the calculation
of all finite-dimensional distributions for CTRW (and OCTRW) limits. The time-
homogeneous case is discussed in Section 4. Finally, Section 5 provides some
explicit examples, for problems of current interest in the physics literature.

2. Random walks in space–time. A continuous time random walk (CTRW)
is a random walk in space–time, with positive jumps in time. Let c > 0 be a scaling
parameter, and let

(
Sc

n, T
c
n

) = (
Ac

0,D
c
0
) +

n∑
k=1

(
J c

k ,Wc
k

)
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denote a Markov chain on R
d × [0,∞) that tracks the position Sc

n of a randomly
selected particle after n jumps, and the time T c

n the particle arrives at this position.
The particle starts at position Ac

0 at time Dc
0, Nc

t = max{k ≥ 0 :T c
k ≤ t} counts the

number of jumps by time t , and the CTRW

Xc
t = Sc

Nc
t

is the particle location at time t . The waiting times Wc
k are assumed positive,

and when t < T c
0 we define Nc

t = 0. The process Nc
t is inverse to T c

n , in the
sense that Nc

T c
n

= n. Often the sequence (J c
k ,Wc

k ) is assumed to be independent
and identically distributed, which is the appropriate statistical physics model for
particle motions in a heterogeneous medium whose properties are invariant over
space and time. The dependence on the time scale c > 0 facilitates triangular ar-
ray convergence schemes, which lead to a variety of interesting limit processes
[2, 3, 22, 32]. The CTRW is called uncoupled if the waiting time Wc

k is indepen-
dent of the jump J c

k ; see, for example, [5]. Coupled CTRW models have been
applied in physics [34, 39] and finance [29, 36]. If the waiting times are i.i.d. and
the jump distribution depends on the current position in space and time, the CTRW
limit is a time-changed Markov process governed by a fractional Fokker–Planck
equation [16]. A closely related model called the overshooting CTRW (OCTRW)
is

Y c
t = Sc

Nc
t +1,

a particle model for which J c
1 is the random initial location, and each jump J c

k is
followed by the waiting time Wc

k . See [23] for applications of OCTRW in finance,
where Yt represents the price at the next available trading time. See [42] for an
application of OCTRW to relaxation problems in physics.

In statistical physics applications, it is useful to consider the diffusion limit of
the (O)CTRW as the time scale c → ∞. To make this mathematically rigorous, let
D([0,∞),Rd+1) denote the space of càdlàg functions f : [0,∞) →R

d+1 with the
Skorokhod J1 topology, and suppose

(
Sc[cu], T c[cu]

) = (
Ac

0,D
c
0
) +

[cu]∑
k=1

(
J c

k ,Wc
k

) ⇒ (Au,Du),(2.1)

where “⇒” denotes the weak convergence of probability measures on D([0,∞),
R

d+1) as c → ∞. Suppose the limit process (Au,Du) is a canonical Feller pro-
cess with state space R

d+1, in the sense of [35], III Section 2. That is, we assume
a stochastic basis (�,F∞,Fu,P

χ,τ ) in which � is the set of right-continuous
paths in R

d+1 with left-limits and (Au(ω),Du(ω)) = ω(u) for all ω ∈ �. The fil-
tration F = {Fu}u≥0 is right continuous and (Au,Du) is F -adapted. The laws
{Pχ,τ }(χ,τ )∈Rd+1 are determined by a Feller semigroup of transition operators
(Tu)u≥0 and are such that (A0,D0) = (χ, τ ), Pχ,τ -a.s. The σ -fields F∞ and F0 are
augmented by the P

χ,τ -null sets. Expectation with respect to P
χ,τ is denoted by

E
χ,τ . The map (χ, τ ) �→ E

χ,τ [Z] is Borel-measurable for every F∞-measurable
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random variable Z. If the space–time jumps form an infinitesimal triangular array
([30], Definition 3.2.1), then (Au,Du) − (A0,D0) is a Lévy process [32]. In the
uncoupled case, Au −A0 and Du −D0 are independent Lévy processes [31]. If the
space–time jump distribution depends on the current position, it was argued in [16,
41] that the limiting process (Au,Du) is a jump-diffusion in R

d+1.
If (2.1) holds, and if

the sample paths u �→ Du are P
χ,τ -a.s. strictly increasing and

unbounded,
(2.2)

then [40], Theorem 3.6, implies that

Xc
t ⇒ Xt := (AEt−)+ and Y c

t ⇒ Yt := AEt

(2.3)
in D

([0,∞),Rd
)

as c → ∞,

where

Et = inf{u > 0 :Du > t}(2.4)

is the first passage time of Du, so that EDu = u. Then the inverse process (2.4)
is defined on all of R and has a.s. continuous sample paths. The CTRW limit
(CTRWL) process Xt in (2.3) is obtained by evaluating the left-hand limit of the
outer process Au− at the point u = Et , and then modifying this process to be right-
continuous. This changes the value of the process at time points t > 0 such that
u = Et is a jump point of the outer process Au, and Et+ε > Et for all ε > 0. If Au

and Du have no simultaneous jumps, then the CTRW limit Xt equals the OCTRW
limit Yt ([40], Lemma 3.9). However, these two processes can be quite different in
the coupled case. For example, if J c

k = Wc
k form a triangular array in the domain

of attraction of a stable subordinator Du, and if A0 = D0 = 0, then Au = Du, and
Xt = DEt− < t < DEt = Yt almost surely [7], Theorem III.4. See Example 5.4 for
more details.

We assume the Feller semigroup Tu that governs the process (Au,Du) acts on
the space C0(R

d+1) of continuous real-valued functions on R
d+1 that vanish at ∞,

and that it admits an infinitesimal generator A of jump-diffusion form [1], equa-
tion (6.42). In light of (2.2), this generator takes the form

Af (x, t) =
d∑

i=1

bi(x, t)∂xi
f (x, t) + γ (x, t)∂tf (x, t)

+ 1

2

∑
1≤i,j≤d

aij (x, t)∂2
xixj

f (x, t)

(2.5)

+
∫ [

f (x + y, t + w) − f (x, t)

−
d∑

i=1

hi(y,w)∂xi
f (x, t)

]
K(x, t;dy, dw),
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where (x, t) ∈ R
d+1, bi and γ are real-valued functions, and A = (aij ) is

a function taking values in the nonnegative definite d × d-matrices. Here,
K(x, t;dy, dw) is a jump-kernel from R

d+1 to itself, so that for every (x, t) ∈
R

d+1, C �→ K(x, t;C) is a measure on R
d+1 that is finite on sets bounded away

from the origin, and (x, t) �→ K(x, t;C) is a measurable function for every Borel
set C ⊂ R

d+1. The truncation function hi(x, t) = xi1{(x, t) ∈ [−1,1]d+1}. Since
the sample paths of Du are strictly increasing, γ ≥ 0, the diffusive component
of Du is zero, and the measures K(x, t;dy, dw) are supported on (dy, dw) ∈
R

d ×[0,∞). Instead of assuming that K(x, t;dy, dw) integrates 1 ∧‖(y,w)‖2, it
then suffices to assume∫ [

1 ∧ (‖y‖2 + |w|)]K(x, t;dy, dw) < ∞ ∀(x, t) ∈ R
d+1.(2.6)

The space–time jump kernel K can be interpreted as the joint intensity measure
for the long jumps and long waiting times which do not rescale to 0 as c → ∞. If
the measures (dy, dw) �→ K(x, t;dy, dw) are supported on “the coordinate axes”
(Rd ×{0})∪ ({0}× [0,∞)), then large jumps occur independently of long waiting
times, and the CTRWL and OCTRWL are identical ([40], Lemma 3.9). We refer
to this as the uncoupled case, and to the opposite case as the coupled case.

Finally, we assume that the coefficients bi , γ , aij and K satisfy Lipschitz and
growth conditions as in [1], Section 6.2, so that (Au,Du) has an interpretation as
the solution to a stochastic differential equation, as well as a semimartingale [19],
Section III.2. Then for any canonical Feller process (Au,Du) on R

d+1, we define
the CTRWL process Xt = (AEt−)+, and the OCTRWL process Yt = AEt , where
Et is given by (2.4). If we set A0− = A0, then Et , Xt and Yt are defined for all
t ∈ R.

2.1. Forward and backward renewal times. Although the (O)CTRWL is not
Markovian, it turns out that it can be embedded in a Markov process on a higher
dimensional state space, by incorporating information on the forward/backward
renewal times. Define the regenerative set

M = {
(t,ω) ⊂ R× � : t = Du(ω) for some u ≥ 0

}
,

the random set of image points of Du. These will turn out to be the renewal
points of the inverse process Et defined in (2.4). Since Du is càdlàg and has
a.s. increasing sample paths, for almost all ω the complement of the ω-slice
M(ω) := {t ∈ R : (t,ω) ∈ M} in R is a countable union of intervals of the form
[Du−(ω),Du(ω)), where u ≥ 0 ranges over the jump epochs of the process Du.
For example, if Du is compound Poisson with positive drift, then M is a.s. a union
of intervals [a, b) of positive length. If Du is a β-stable subordinator with no drift,
then M is a.s. a fractal of dimension β [8].

For any t ≥ 0, we write Gt , the last time of regeneration before t , and Ht , the
next time of regeneration after t , as

Gt(ω) := sup
{
s ≤ t : s ∈ M(ω)

} ≤ t ≤ inf
{
s > t : t ∈ M(ω)

} =: Ht(ω),(2.7)
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where for convenience we set Gt(ω) = inf M(ω) = τ , P
χ,τ -a.s. whenever the

supremum is taken over the empty set. In terms of the CTRW model, the parti-
cle has been resting at its current location since time Gt , and will become mobile
again at time Ht . It will become clear in the sequel that the future evolution of Xt

and Yt on the time interval [Ht,∞) depends only the position Yt at time t = Ht ,
meaning that Ht is a Markov time for Xt and Yt .

Note that Gt and Ht are a.s. defined for all t ∈ R and their sample paths are
càdlàg. By our assumptions on Du and the definition (2.4), it is easy to see that

Gt− = DEt− and Ht = DEt , P
χ,τ -a.s.

The age process Vt and the remaining lifetime Rt from renewal theory can be
defined by

Vt := t − Gt and Rt := Ht − t for all t ∈ R.(2.8)

At any time t > 0, the particle has been resting at its current location for an in-
terval of time of length Vt , and will move again after an additional time interval
of length Rt . We will show below that the processes (Xt−,Vt−) and (Yt ,Rt ) are
Markov, and we will compute the joint distribution of these Rd+1-valued processes
at multiple time points, using the Chapman–Kolmogorov equations. The joint laws
of (Xt−, Yt ,Vt−,Rt ) were first calculated in [13, 28], but only in the case where
the space–time process (Au,Du) is Markov additive (see Section 4) and only for
Lebesgue-almost all t ≥ 0. We now calculate this joint law in our more general
time-inhomogeneous setting, for all t ≥ 0. We need the following additional defi-
nitions: Let

C = {
(t,ω) ⊂R× � :Du−(ω) = t = Du(ω) for some u > 0

} ⊂ M

be the random set of points traversed continuously by Du. The set C is obtained
by removing from the set M of regenerative points all points t which satisfy t =
Du > Du− for some u > 0 (i.e., the right end points of all contiguous intervals).
Moreover, since (Au,Du) visits each point in R

d+1 at most once, it admits a 0-
potential, or mean occupation measure, Uχ,τ defined via∫

f (x, t)Uχ,τ (dx, dt) = E
χ,τ

[∫ ∞
0

f (Au,Du)du

]
=

∫ ∞
0

Tuf (χ, τ ) du

= E
χ,τ

[∫ ∞
0

f (Au−,Du−) du

]

for any nonnegative measurable function f :Rd+1 → [0,∞). The last equality
holds because (Au,Du) only jumps countably many times. Since (Au,Du) has
infinite lifetime, Uχ,τ is an infinite measure. We assume that Du is transient [11],
so that Uχ,τ (Rd × I ) < ∞ for any compact interval I ⊂ [0,∞). For instance, any
subordinator is transient [8].

Next we derive the joint law of the Markov process (Xt−, Yt ,Vt−,Rt ). The
proof uses sample path arguments, and we consider two cases, starting with the
case {t /∈ C}:
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PROPOSITION 2.1. Fix (χ, τ ) ∈ R
d+1 and t ≥ τ . Then

E
χ,τ [

f (Xt−, Yt ,Vt−,Rt )1{t /∈ C}]
=

∫
x∈Rd

∫
s∈[τ,t]

Uχ,τ (dx, ds)(2.9)

×
∫
y∈Rd

∫
w∈[t−s,∞)

K(x, s;dy, dw)f
(
x, x + y, t − s,w − (t − s)

)
for all nonnegative measurable f defined on R

d+1 ×R
d+1.

PROOF. The complement of the section set C(ω) in R is a.s. a countable union
of closed intervals [Du−,Du], where u is a jump epoch of Du. Hence, for t /∈ C
we have Gt− ≤ t ≤ Ht and Gt− < Ht , hence �DEt = Ht − Gt− > 0. In the
complementary case {t ∈ C}, the sample path of Et is left-increasing at t , and
hence the F -optional time Et is announced by the optional times Et−1/n. Hence,
E∗

t := Et · 1{t ∈ C} + ∞ · 1{t /∈ C} is F -predictable ([24], page 410), and since
in our setting (Au,Du) is a canonical Feller process, it is quasi left-continuous
([24], Proposition 22.20), and �(A,D)Et = (0,0) a.s. Writing J = {(u,ω) ∈
R

+ × � :�(A,D)u �= (0,0)} for the random set of jump epochs of (Au,Du), we
hence find that

f (Xt−, Yt ,Vt−,Rt )1{t /∈ C}
= ∑

u∈J
f (Au−,Au, t − Du−,Du − t)1{Du− ≤ t ≤ Du}

= ∑
u∈J

f (Au−,Au− + �Au, t − Du−,Du− + �Du − t)

× 1{Du− ≤ t ≤ Du− + �Du},
noting that all members of the sum except exactly one (u = Et ) equal 0. The last
expression equals

∫
W(ω,u;x, s)μ(ω,du;dy, dw) for the optional random mea-

sure

μ(ω,du;dy, dw) = ∑
v≥0

1J (v,ω)δ(v,�(Av(ω),Dv(ω))(du;dy, dw)(2.10)

on du × (dy, dw) ∈ R
+ × R

d+1 associated with the jumps of (Au,Du), and the
predictable integrand

W(ω,u;y,w) := f
(
Au−(ω),Au−(ω) + y, t − Du−(ω),Du−(ω) + w − t

)
× 1

{
Du−(ω) ≤ t ≤ Du−(ω) + w

}
.

The compensator μp of μ equals [19], page 155

μp(ω;du, dy, dw) = K
(
Au−(ω),Du−(ω);dy, dw

)
du.(2.11)
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Then the compensation formula [19], II.1.8, implies that

E
χ,τ [

f (Xt−, Yt ,Vt−,Rt )1{t /∈ C}]
= E

χ,τ

[∫
W(ω,u;y,w)μp(ω,du;dy, dw)

]

= E
χ,τ

[∫ ∞
u=0

∫
y∈Rd

∫ ∞
w=0

f
(
Au−(ω),Au−(ω) + y, t − Du−(ω),

Du−(ω) + w − t
)

× 1
{
Du−(ω) ≤ t ≤ Du−(ω) + w

}
× K

(
Au−(ω),Du−(ω);dy, dw

)
du

]

=
∫
x∈Rd

∫ ∞
s=τ

∫
y∈Rd

∫ ∞
w=0

f (x, x + y, t − s, s + w − t)

× 1{s ≤ t ≤ s + w}K(x, s;dy, dw)Uχ,τ (dx, ds),

which is equivalent to (2.9). �

The following proposition handles the case {t ∈ C}.
PROPOSITION 2.2. Fix (χ, τ ) ∈ R

d+1 and t ≥ τ . Suppose that the temporal
drift γ is bounded and continuous, and assume that the mean occupation mea-
sure Uχ,τ (dx, dt) is Lebesgue-absolutely continuous with a continuous density
uχ,τ (x, t). Then

E
χ,τ [

f (Yt )1{t ∈ C}] =
∫
x∈Rd

f (x)γ (x, t)uχ,τ (x, t) dx(2.12)

for all bounded measurable f . Also (2.12) remains true if Yt is replaced by Xt−,
Yt− or Xt .

PROOF. Similarly to the proof in [28], Du admits a decomposition into a con-
tinuous and a discontinuous part via

Dc
u =

∫ u

0
γ (As,Ds) ds, Dd

u = ∑
0≤s≤u

�Ds, t ≥ 0.

To see this, we first note that (Au,Du) is a semimartingale, and hence Du allows
the decomposition

Du = ∑
s≤u

�Ds1{�Ds > 1} + Bu + Mu,(2.13)

where Bu is a predictable process of finite variation (the first characteristic of
Du) and Mu is a local martingale. Due to [19], IX Section 4a, and (2.5), Bu =
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∫ u
0 γ̃ (As,Ds) ds where γ̃ (x, t) = γ (x, t) + ∫

s1{‖(y, s)‖ ≤ 1}K(x, t;dy, ds).
Since Du has no diffusive part, Mu is purely discontinuous and equal to
Mu = ∑

s≤u �Ds1{�Ds ≤ 1} − ∫ u
0

∫
w1{‖(y,w)‖ ≤ 1}K(As,Ds;dy, dw)ds.

But then (2.13) reads Du = Dd
u + Dc

u.
For fixed ω, the paths of D, Dc and Dd are nondecreasing and define Lebesgue–

Stieltjes measures dD, dDc and dDd on [0,∞). Then for any bounded measurable
f and g, we have∫ ∞

0
f (Au)g(Du)γ (Au,Du)du =

∫ ∞
0

f (Au)g(Du)dDc
u.(2.14)

The continuous measure dDc does not charge the countable set {u :�Du �= 0} of
discontinuities of Du and coincides with dD on the complement {u :�Du = 0}.
Hence the right-hand side of (2.14) can be written as∫ ∞

0
f (Au)g(Du)1{u :�Du = 0}dDu.(2.15)

The following substitution formula holds for all right-continuous, unbounded and
strictly increasing F : [0,∞) → [0,∞), the inverse F−1(t) = inf{u :F(u) > t}
and measurable h : [0,∞) → [0,∞):∫ ∞

0
h(u)dFu =

∫ ∞
0

h
(
F−1(t)

)
dt.

To see this, first show the statement for h an indicator function of an interval
(a, b] ⊂ [0,∞) and then for a function taking finitely many values. The statement
for positive h then follows by approximation via a sequence of finitely valued func-
tions from below, and for general h by a decomposition into positive and negative
part. Applying the substitution formula to (2.15) with F(u) = Du, the right-hand
side of (2.14) reduces to∫ ∞

0
f (Yt )g(Ht)1{t :�DEt = 0}dt.

Now note that �DEt = 0 is equivalent to t ∈ C and implies Ht = t . Hence, the
above lines show that the left-hand side of (2.14) equals∫ ∞

0
f (Yt )g(t)1{t ∈ C}dt.

Take expectations and apply Tonelli’s theorem to get∫
Rd+1

f (x)γ (x, t)g(t)uχ,τ (x, t) dx dt =
∫ ∞

0
E

χ,τ [
f (Yt )1{t ∈ C}]g(t) dt.

Since g is an arbitrary nonnegative bounded measurable function, this yields (2.12)
for almost every t . By our assumption that Du is transient, Uχ,τ (Rd × I ) < ∞ for
compact I ⊂ [0,∞), and then it can be seen that the continuous function uχ,τ (x, t)

must be bounded on R
d × I . Let I contain t and apply dominated convergence to
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see that the right-hand side of (2.12) is continuous in t . We have already noted in
the proof of Proposition 2.1 that �(A,D)Et = (0,0) on {t ∈ C}, which shows the
continuity of the left-hand side. This shows the equality for all t ≥ 0, and also that
Xt − Xt− = 0 = Yt − Yt− on {t ∈ C}. �

We can now characterize the joint law of (Xt−, Yt ,Vt−,Rt ):

THEOREM 2.3. Fix (χ, τ ) ∈ R
d+1 and t ≥ τ . If γ does not vanish, then sup-

pose that the mean occupation measure Uχ,τ (dx, dt) has a continuous Lebesgue
density uχ,τ (x, t), and if γ ≡ 0, let uχ,τ (x, t) ≡ 0. Then

E
χ,τ [

f (Xt−, Yt ,Vt−,Rt )
]

=
∫
x∈Rd

f (x, x,0,0)γ (x, t)uχ,τ (x, t) dx

+
∫
x∈Rd

∫
s∈[τ,t]

Uχ,τ (dx, ds)

×
∫
y∈Rd

∫
w∈[t−s,∞)

K(x, s;dy, dw)f
(
x, x + y, t − s,w − (t − s)

)
for all bounded measurable f . Moreover, Xτ = Yτ = χ and Vτ = Rτ = 0, Pχ,τ -
almost surely.

PROOF. On the set {t ∈ C}, Vt− = 0 = Rt . The above formula then follows
from Propositions 2.2 and 2.1. Assumption (2.2) and the right-continuity of D

yields Vτ = Rτ = 0. The sample paths of E are then seen to be right-increasing
at τ and Et > Eτ = 0 for t > τ . The right-continuity of A together with A0 = χ ,
P

χ,τ -a.s. yields Xτ = Yτ = χ . �

3. The Markov embedding. In this section, we establish the Markov prop-
erty of the processes (Yt ,Rt ) and (Xt−,Vt−). Since {Et ≤ u} = {Du ≥ t}, Pχ,τ -a.s.
for every (χ, τ ) ∈ R

d+1 [31], equation (3.2), we see that Et is an F -optional time
for every t . We introduce the filtration H = {Ht }t∈R where Ht = FEt and note that
(Yt ,Rt ) is adapted to H. Moreover, if T is H-optional, then ET :ω �→ ET (ω)(ω)

is F -optional (see Lemma A.1). We define the family of operators {Qs,t }s≤t act-
ing on the space Bb(R

d × [0,∞)) of real-valued bounded measurable functions f

defined on R
d × [0,∞) as follows:

Qs,tf (y,0) = E
y,s[f (Yt ,Rt )

]
,

Qs,tf (y, r) = 1{r > t − s}f (
y, r − (t − s)

)
(3.1)

+ 1{0 ≤ r ≤ t − s}Qs+r,tf (y,0).

The dynamics of Qs,t can be interpreted as follows: If the process (Yt ,Rt ) starts at
(y, r), the position in space y does not change while the remaining lifetime Rt de-
creases linearly to 0. When r = 0, the process continues with the dynamics given
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by (Yt ,Rt ) started at location y at time s + r . Note that Qs,tf (y, r) is measurable
in (s, t, y, r), for every bounded measurable f , by the construction of the prob-
ability measures P

χ,τ . We can now state the strong Markov property of (Yt ,Rt )

with respect to H and Qs,t .

THEOREM 3.1. Suppose that the operators Qs,t are given by (3.1). Then:

(i) The operators Qs,t satisfy the Chapman–Kolmogorov equations:

Qq,sQs,tf = Qq,tf, q ≤ s ≤ t,

and moreover, Qs,t1 = 1.
(ii) Let (χ, τ ) ∈ R

d+1, t ≥ 0 and let T be a H-optional time. Then

E
χ,τ [

f (YT +t ,RT +t )|HT

] = QT,T +t f (YT ,RT ), P
χ,τ -almost surely

for every real-valued bounded measurable f .
(iii) The process t �→ (Yt ,Rt ) is quasi-left-continuous with respect to H.

Hence, (Yt ,Rt ) is a Hunt process with respect to H and transition operators Qs,t .

PROOF. A proof is given in the Appendix. �

We define the filtration G = {Gt }t∈R via Gt = FEt−, the σ -field of all F -events
strictly before Et . Evidently, the left-continuous process (Xt−,Vt−) is adapted
to G. The main idea behind the Markov property of (Xt−,Vt−) is that, knowing
the current state (x, v) = (Xt−,Vt−) and the joint distribution of the next space–
time increment given by the kernel K(x, v;dy, dw) in (2.5), one can calculate the
distribution of the next renewal time Ht and the position Yt at that time. Then
the probability of events after the renewal point Ht can be calculated starting at
the point (Yt ,Ht) in space–time. We introduce the following notation: Define the
family of probability kernels {Kv}v≥0 on R

d+1

Kv(x, t;C) = K(x, t;C ∩ (Rd × [v,∞)))

K(x, t;Rd × [v,∞))
,

(3.2) v > 0, (x, t) ∈ R
d+1,C ⊂ R

d+1,

K0(x, t;C) = δ(0,0)(C),

where C is a Borel set. For v > 0, Kv(x, t;dy, dw) is the conditional probability
distribution of a space–time jump (y,w) (a jump-waiting time pair), given that a
time-jump (a waiting time) greater than or equal to v occurs. Should the denomina-
tor K(x, t;Rd × [v,∞)) equal 0, we set Kv(x, t;C) = 0. If v = 0, then K0 is the
Dirac-measure concentrated at (0,0) ∈R

d+1. Since v �→ K(x, t;C ∩Rd ×[v,∞))

is decreasing, and hence measurable, it follows that v �→ Kv(x, t;C) is measurable
for every (x, t) ∈ R

d+1 and Borel C ⊂ R
d+1.
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We now define the family of operators {Ps,t }s≤t acting on the space Bb(R
d ×

[0,∞)) of real-valued bounded measurable functions defined on R
d × [0,∞):

Ps,tf (x,0) = E
x,s[f (Xt−,Vt−)

]
,

Ps,tf (x, v)
(3.3)

= f (x, v + t − s)Kv

(
x, s − v;Rd × [v + t − s,∞)

)
+

∫
y∈Rd

∫
w∈[v,v+t−s)

Ps+w−v,tf (x + y,0)Kv(x, s − v;dy, dw).

The dynamics given by Ps,t can be interpreted as follows. With probability
Kv(x, s − v;Rd × (v + t − s,∞)), the process remains at x and the age increases
by t − s. This is the probability that the size of a jump of D whose base point is
at (x, s − v) exceeds v + t − s, given that it exceeds v. The remaining probability
mass for the jump of (A,D) is spread on the set (y,w) ∈ R

d × [v, v + t − s), and
the starting point is updated from x to x + y at the time s − v + w.

THEOREM 3.2. Let Ps,t be the operators defined by (3.3). Then:

(i) The operators (Ps,t ) satisfy the Chapman–Kolmogorov property:

Pq,sPs,tf = Pq,tf, q ≤ s ≤ t,

and moreover, Ps,t1 = 1.
(ii) The process (Xt−,Vt−) satisfies the simple Markov property with respect

to G and Ps,t :

E
χ,τ [

f (Xt−,Vt−)|Gs

] = Ps,tf (Xs−,Vs−), P
χ,τ -a.s.

for all (χ, τ ) ∈ R
d+1, τ ≤ s ≤ t and real-valued bounded measurable f .

PROOF. A proof is given in the Appendix. �

REMARK 3.3. It would be interesting to investigate whether the moderate
Markov property (e.g., see Chung and Glover [10]) holds for (Xt−,Vt−). An ap-
plication of the compensation formula to the process (Xt−,Gt−) might yield a
proof, but this would require the semimartingale characteristics of (Xt−,Gt−),
which we have not been able to calculate.

4. The time-homogeneous case. If the coefficients b(x, t), γ (x, t), a(x, t)

and K(x, t;dy, dw) of the generator A in (2.5) do not depend on t ∈ R, then
we say that (Au,Du) is a Markov additive process. This means that the future of
(Au,Du) only depends on the current state of Au; see, for example, [12].
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THEOREM 4.1. If the space–time random walk limit process (Au,Du) in (2.1)
is Markov additive, then the Markov processes (Xt−,Vt−) and (Yt ,Rt ) are time-
homogeneous. Writing Kr(x;dy, ds) := Kr(x, t;dy, ds) and P

x = P
x,0, the tran-

sition semigroup Qt−s := Qs,t of the Markov process (Yt ,Rt ) is given by

Qtf (y,0) = E
y[

f (Yt ,Rt )
]
,

(4.1)
Qtf (y, r) = 1{0 ≤ t < r}f (y, r − t) + 1{0 ≤ r ≤ t}Qt−rf (y,0)

and the transition semigroup Pt−s := Ps,t of the Markov process (Xt−,Vt−) is
given by

Ptf (x,0) = E
x[

f (Xt−,Vt−)
]
,

Ptf (x, v) = f (x, v + t)Kv

(
x;Rd × [v + t,∞)

)
(4.2)

+
∫
Rd×[v,v+t)

Pv+t−wf (x + y,0)Kv(x;dw,dy),

acting on the bounded measurable functions defined on [0,∞) ×R
d .

PROOF. Since (Au,Du) is Markov additive, we have ϑsAf = Aϑsf for all
s ∈ R, where the shift operator ϑsf (x, t) = f (x, t + s). It follows that the resol-
vents (λ −A)−1, the semigroup Tu and the kernel Uf (χ, τ) = Uχ,τ (f ) commute
with ϑs . Then E

χ,τ [f (Au,Du)] = E
χ,0[f (Au, τ + Du)] for all u and measurable

f , and hence it suffices to work with the laws Pχ,0. Now in Theorem 2.3,writing
Uχ,τ (dx, dt) = Uχ(dx, dt − τ), we have

E
χ,τ [

f (Xt−, Yt ,Vt−,Rt )
] = E

χ,0[
f (X(t−τ)−, Yt−τ ,V(t−τ)−,Rt−τ )

]
,

where τ = 0 without loss of generality. It follows that (4.1) and (4.2) are semi-
groups acting on the bounded measurable functions defined on [0,∞)×R

d , com-
pare [18], equations (19) and (31). �

REMARK 4.2. Under the assumptions of Theorem 2.3, a simple substitution
yields the formulation of Pt and Qt in terms of transition probabilities: For Pt , we
find

Pt(x0,0;dx, dv)

= γ (x, t)ux0(x, t) dxδ0(dv)

+ K
(
x0;Rd × [v,∞)

)
Ux0(dx, t − dv)1{0 ≤ v ≤ t},

(4.3)
Pt(x0, v0;dx, dv)

= δx0(dx)δv0+t (dv)Kv0

(
x0;Rd × [v0 + t,∞)

)
+

∫
y∈Rd

∫
w∈[v0,v0+t)

Pv0+t−w(x0 + y,0;dx, dv)Kv0(x0;dy, dw),
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and for Qt we have

Qt(y0,0;dy, dr)

= γ (y, t)uy0(y, t) dyδ0(dr)

+
∫
x∈Rd

∫
w∈[0,t]

Uy0(dx, dw)K(x;dy − x, dr + t − w),(4.4)

Qt(y0, r0;dy, dr)

= 1{0 < t < r0}δy0(dy)δr0−t (dr) + 1{0 ≤ r0 ≤ t}Qt−r0(y0,0;dy, dr).

5. Finite-dimensional distributions. In this section, we provide two exam-
ples to illustrate the explicit computation of finite dimensional distributions for the
CTRWL process Xt and the OCTRWL process Yt .

EXAMPLE 5.1 (The inverse stable subordinator). A very simple CTRW model
takes deterministic jumps J c

n = c−1 and waiting times Wc
k in the domain of attrac-

tion of a standard β-stable subordinator D̄u such that E[e−sD̄u] = e−usβ
. Setting

(A0,D0) = (χ, τ ), (2.1) holds with (Au,Du) = (χ + u, τ + D̄u), where D̄u is a
β-stable subordinator. Here, the CTRWL and the OCTRWL coincide, since Au

has no jumps. If (χ, τ ) = (0,0), then in (2.3) we have Xt = Yt = Et , the inverse
β-stable subordinator. Now we will compute the joint distributions of this first
passage time process. The joint Laplace transform of these finite-dimensional dis-
tributions was computed by Bingham [9] but to our knowledge, the distributions
themselves have not been reported in the literature.

The space–time limit (Au,Du) is a canonical Feller process on R
d+1 with

generator A given by (2.5) with d = 1, b1 ≡ 1, γ ≡ 0, a11 ≡ 0, and jump ker-
nel K(x, t;dy, dw) = δ0(dy)�(w)dw by [33], Proposition 3.10, where the Lévy
measure �(w)dw = βw−β−1 dw/�(1 − β). The stable Lévy process D̄u has
a smooth density g(t, u) so that P

0,0(D̄u ∈ dt) = g(t, u) dt for every u > 0
by [20], Theorem 4.10.2. The underlying process (Au,Du) is Markov addi-
tive, hence (Xt−,Vt−) and (Yt ,Rt ) are time-homogeneous Markov processes.
In [40], Lemma 4.2, it was shown that (Xt ,Vt ), has no fixed discontinuities,
hence (Xt−,Vt−) has the same law as (Xt ,Vt ). One checks that the 0-potential
of (Au,Du) is absolutely continuous with density

uχ,τ (x, t) = g(t − τ, x − χ)1{t > τ, x > χ}.(5.1)

Then it follows from (4.3) that the transition semigroup of (Xt−,Vt−) is given
by

Pt(x0,0;dx, dv)

= g(t − v, x − x0)�(v,∞) dx dv,(5.2)
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Pt(x0, v0;dx, dv)

= δx0(dx)δv0+t (dv)

(
v0 + t

v0

)−β

1{v0 > 0}

+
(

v0

v

)β ∫ v0+t−v

s=v0

g
(
(t − v) − (s − v0), x − x0

)

× βs−1−β ds

�(1 − β)
1{x > x0,0 < v < t}dx dv.

Hence, for 0 < t1 < t2, the joint distribution of (Et1,Vt1,Et2,Vt2) is

P
0,0(Et1 ∈ dx,Vt1 ∈ dv,Et2 ∈ dy,Vt2 ∈ dw)

= Pt2−t1(x, v;dy, dw)Pt1(0,0;dx, dv)

= g(t1 − v, x)�(v,∞)1{x > 0,0 < v < t1}dx dv

×
[
δx(dy)δv+t2−t1(dw)

(
v + t2 − t1

v

)−β

+
∫ v+t2−t1−w

s=v
g
(
(t2 − t1 − w) − (s − v), y − x

)

× βs−β−1 ds

�(1 − β)

(
v

w

)β

dy dw 1{y > x,0 < w < t2 − t1}
]

since E0 = V0 = 0 for the physical starting point (0,0). Integrating out the back-
ward renewal times Vt1 and Vt2 , it follows that the joint distribution of (Et1,Et2) is

P(Et1 ∈ dx,Et2 ∈ dy)

= 1{x > 0}δx(dy)

∫ t1

v=0
g(t1 − v, x)

(v + t2 − t1)
−β

�(1 − β)
dv(5.3)

+
∫ t1

v=0

∫ t2−t1

w=0

∫ v+t2−t1−w

s=v
g
(
(t2 − t1 − w) − (s − v), y − x

)
dy1{y > x}

× βs−β−1 ds

�(1 − β)

(
v

w

)β

dw dv.

REMARK 5.2. The joint distribution of (Et1,Et2) can also be computed from
the OCTRW embedding, but the computation appears to be simpler using the
CTRWL embedding.

REMARK 5.3. Baule and Friedrich [4] compute the Laplace transform of the
joint distribution function H(x,y, s, t) of x = Es and y = Et and show that

(∂x + ∂y)H(x, y, s, t) = −(∂s + ∂t )
βH(x, y, s, t)
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on 0 < s < t and 0 < x < y. Equation (5.3) provides an explicit solution to this
governing equation, which solves an open problem in [4]. The finite dimensional
laws of any uncoupled CTRW limit can easily be calculated from the finite dimen-
sional laws of Et , given the law of the process Au. This follows from a simple
conditioning argument; see, for example, [31].

EXAMPLE 5.4. Kotulski [26] considered a CTRW with jumps equal to the
waiting times J c

n = Wc
k , in the domain of attraction of a standard β-stable sub-

ordinator D̄u such that E[e−sD̄u] = e−usβ
. Equation (2.1) holds with (Au,Du) =

(A0 + D̄u,D0 + D̄u). The space–time limit (Au,Du) is a canonical Feller process
on R

d+1 with generator A given by (2.5) with d = 1, γ ≡ 0 and K(x, t;dy, dw) =
δw(dy)�(dw), where �(dw) = φ(w)dw = βw−β−1 dw/�(1 − β). The stable
Lévy process D̄u has a smooth density g(t, u) so that P0,0(D̄u ∈ dt) = g(t, u) dt

for every u > 0. Since the Markov process (Au,Du) is Markov additive, we need
only compute the potential for τ = 0:

Uχ,0(dx, dt) = δχ+t (dx)

∫ ∞
u=0

g(t, u) dudt.(5.4)

Next, one sees that ∫ ∞
u=0

g(t, u) du = tβ−1

�(β)
(5.5)

by taking Laplace transforms on both sides (also see [33], Example 2.9). The 0-
potential hence equals

Uχ,0(dx, dt) = δχ+t (dx)
tβ−1

�(β)
dt.(5.6)

With �([v,∞)) = v−β/�(1 − β), (4.3) reads

Pt(x0,0;dx, dv) = v−β

�(1 − β)

(t − v)β−1

�(β)
δx0+t−v(dx) dv1{0 < v < t},

Pt (x0, v0;dx, dv) = δx0(dx)δv0+t (dv)

(
v0 + t

v0

)−β

+
∫ v0+t

s=v0

(
v

v0

)−β

δx0+v0+t−v(dx)
(v0 + t − s − v)β−1

�(β)

× 1{0 < v < v0 + t − s} βs−β−1

�(1 − β)
ds dv.

Note that the above formulae extend Example 5.5 in [5], which calculates the law
of Xt−. The joint distribution of {(Xti−,Vti−) : 0 ≤ i ≤ n} can now be computed
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by a simple conditioning argument. Similarly, the semigroup for (Yt ,Rt ) reads

Qt(y0, r0;dy, dr)

= δy0(dy)δr0−t (dr)1{r0 ≥ t} + Qt−r0(dy − y0, dr)1{0 < r0 < t}
= δy0(dy)δr0−t (dr)1{r0 ≥ t}

+ 1{0 < r0 < t}δr+t−r0+y0(dy)

×
∫ t−r0

w=0

wβ−1

�(β)

β(t − r0 + r − w)−β−1

�(1 − β)
dw dr.

The joint distributions of Xt−, Yt lead directly to the joint distribution of CTRWL,
OCTRWL, respectively, for a wide variety of coupled models; see [21].

APPENDIX: PROOFS

LEMMA A.1. Let T be H-optional. Then ET :ω �→ ET (ω)(ω) is F -optional.

PROOF. We first assume that T is single valued. That is, fix t > 0 and U ∈ Ht ,
and let T (ω) = t · 1{ω ∈ U} + ∞ · 1{ω /∈ U}. It is easy to check that T is indeed
H-optional. Now {ET ≤ u} = {Et ≤ u} ∩ U , and the right-hand side lies in Fu,
which follows from U ∈ Ht = FE(t) and the definition of the stopped σ -algebra
FE(t). Now consider an H-optional time T with countably many values tn, so that
� = ⋃

n∈N{ω :T (ω) = tn}. Then due to the a.s. nondecreasing sample paths of E,
we have E(infTn) = infE(Tn), and an application of [24], Lemma 6.3/4, together
with the right-continuity of the filtrations F and H shows that ET is H-optional.

�

Stopping times allows for a decomposition into a predictable and totally inac-
cessible part [24]. The following lemma gives an interpretation for stopping times
of the form ET .

LEMMA A.2. Let T > 0 be an H-predictable stopping time. Then the F -
stopping time ET is predictable on the set {ω :ET −ε(ω) < ET (ω) ∀ε > 0} =
{VT − = 0} and totally inaccessible on the complement {ω :∃ε > 0,ET −ε(ω) =
ET (ω)} = {VT − > 0}. Moreover, �(A,D)ET

= (0,0) on {VT − = 0} and �DET
>

0 on {VT − > 0}, Pχ,τ -a.s.

PROOF. Let Tn be an announcing sequence ([24], page 410), for T , that is
Tn are H-stopping times, Tn < T , Tn ↑ T a.s. Then due to the a.s. continuity of
sample paths of E, the sequence ETn announces ET on the set {VT − = 0}, that is
ET is predictable on this set. As a canonical Feller process, (A,D) is quasi-left-
continuous, and all its jump times are totally inaccessible ([24], Proposition 22.20),
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hence �(A,D)ET
= (0,0), Pχ,τ -a.s. on {VT − = 0}. On the complementary set

{VT − > 0}, we have 0 < HT − GT − = �DET
, and hence the process D jumps

at ET . �

PROOF OF THEOREM 3.1. We first prove (ii). Consider the set of ω such that
HT (ω) > t . In this case, Mω ∩ (T , t) = ∅, and hence ET = Et , so (Yt ,Ht) =
(YT ,HT ), which implies that

E
χ,τ [

f (Yt ,Rt )1{HT >t}|HT

] = f (YT ,HT − t)1{HT >t}
(A.1)

= f
(
YT ,RT − (t − T )

)
1{HT >t}.

This corresponds to the first case in (3.1). Turning to the second case, HT (ω) ≤ t ,
consider the shift operators θt acting on �, which are defined as usually by
(θtω)(u) = ω(t + u), or equivalently

(A,D)u(θtω) = (A,D)t+u(ω),(A.2)

since (A,D) is canonical for �. Then from the definition of the inverse process E,
we find

Et(θET
ω) = inf

{
u ≥ 0 :Du(θET

ω) > t
} = inf

{
u ≥ 0 :Du+ET

(ω) > t
}

= inf
{
u :u − ET (ω) ≥ 0,Du(ω) > t

} − ET (ω)(A.3)

= Et(ω) − ET (ω),

where θET
ω = θuω if ET (ω) = u. Now observe that (A,D)Et is the point in R

d+1

where the process (A,D) enters the set Rd × (t,∞). This point will be the same
for the space–time path started at the earlier time ET , that is,

(A,D)Et ◦ θET
= (A,D)Et .(A.4)

In fact, using (A.2) and (A.3) we find

(A,D)Et (θET
ω) = (A,D)Et (θET

ω)(θET
ω) = (A,D)ET (ω)+Et (θET

ω)(ω)

= (A,D)Et (ω)(ω) = (A,D)Et (ω)

for all ω ∈ �. Hence, we have shown that

Ht(θET
ω) = Ht(ω), Yt (θET

ω) = Yt (ω)

on the set {HT ≤ t}. This yields

E
χ,τ [

f (Yt ,Rt)1{HT ≤t}|HT

] = E
χ,τ [

f (Yt ,Rt) ◦ θET
1{HT ≤t}|HT

]
= E

χ,τ [
f (Yt ,Rt) ◦ θET

|FET

]
1{HT ≤t}

(A.5)
= E

(A,D)ET
[
f (Yt ,Rt)

]
1{HT ≤t}

= E
YT ,HT

[
f (Yt ,Rt )

]
1{HT ≤t}
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P
χ,τ -almost surely, using the strong Markov property of (A,D) at the stopping

time ET . Then (ii) follows by adding equations (A.1) and (A.5).
As for (i), let (y0, r0) ∈ R

d ×[0,∞). Then P
y0,q+r0(Yr = y0,Rq = r0) = 1, and

hence by nested conditional expectations and the above calculations we have

Qq,tf (y0, r0) = E
y0,q+r0

[
Qq,tf (Yq,Rq)

]
= E

y0,q+r0
[
E

y0,q+r0
[
f (Yt ,Rt )|Hq

]]
= E

y0,q+r0
[
E

y0,q+r0
[
E

y0,q+r0
[
f (Yt ,Rt )|Hs

]|Hq

]]
= E

y0,q+r0
[
E

y0,q+r0
[
Qs,tf (Ys,Rs)|Hq

]]
= E

y0,q+r0
[
Qq,sQs,tf (Yq,Rq)

] = Qq,sQs,tf (y0, r0).

We turn to the remaining case (iii). By definition of Rt , it suffices to show that if
T is a H-predictable time, then (Y,H)T − = (Y,H)T , Pχ,τ -a.s. for every (χ, τ ) ∈
R

d+1. Hence let Tn < T , Tn ↑ T be a sequence of H-optional times announcing T .
As in Lemma A.2, we check the two cases in which the F -stopping time ET is
predictable or totally inaccessible.

On the set {ω :ET −ε(ω) < ET (ω),∀ε > 0}, the process E is left-increasing
at T , continuous, and ETn ↑ ET , ETn < ET if Tn ↑ T , Tn < T . Moreover,
�(A,D)ET

= (0,0) a.s. (Lemma A.2). Hence,

(H,Y )T − = (A,D)ET − = (A,D)ET − = (A,D)ET
= (H,Y )T .

On the set {ω :∃ε > 0 :ET −ε(ω) = ET (ω)}, E is left-constant at T . Hence,
ETn = ET for large n, and

(H,Y )T − = lim(H,Y )Tn = lim(A,D)ETn
= (A,D)ET

= (H,Y )T .

The two cases together imply that (H,Y )T − = (H,Y )T a.s. �

For the proof of Theorem 3.2, we will need the following lemma.

LEMMA A.3. Let (χ, τ ) ∈ R
d+1, and let t ≥ τ . Then for every bounded mea-

surable f defined on R
d+1 ×R

d+1, we have P
χ,τ -a.s.:

E
χ,τ [

f
(
Xt−,Gt−;�(A,D)E(t)

)|Gt

]
=

∫
Rd+1

KVt−(Xt−,Gt−;dx × dz)f (Xt−,Gt−;x, z).

PROOF. Since (Xt−,Gt−) are Gt -measurable, by a monotone class argument
and dominated convergence, it suffices to prove the formula

E
χ,τ [

f
(
�(A,D)E(t)

)|Gt

] =
∫
Rd+1

KVt−(Xt−,Gt−;f )(A.6)
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for all bounded measurable f defined on R
d+1. As in Lemma A.2, we consider the

two cases {Vt− = 0} and {Vt− > 0}. On {Vt− = 0}, we have �(A,D)Et = (0,0),
P

χ,τ -a.s., and hence

E
χ,τ [

f (�(A,D)E(t)1{Vt− = 0}|Gt

]
(A.7)

= f (0,0) = δ(0,0)(f ) = KVt−(Xt−,Gt−;f )1{Vt− = 0}.
On {Vt− > 0}, the process D jumps at Et (Lemma A.2), and since D has in-

creasing sample paths this is equivalent to

“there exists a unique number s > 0 such that Ds− < t ≤ Ds .”(A.8)

We rewrite the restriction of (A.6) to {Vt− > 0} in integral form:

E
χ,τ [

f
(
�(A,D)E(t)

)
1C1{Vt− > 0}]

= E
χ,τ [

KVt−(Xt−,Gt−;f )1C1{Vt− > 0}], C ∈ Gt ,

where 1C(ω) = 1 iff ω ∈ C. Now we invoke [14], Theorem IV.67(b), which says
that there exists an F -adapted predictable process Z such that 1C = ZE(t). Then
it suffices to show that for every F -adapted predictable process Z, the following
two random variables have the same expectation with respect to P

χ,τ :

f
(
�(A,D)E(t)

)
ZE(t)1{Vt− > 0},

(A.9)
KVt−f (Xt−,Gt−)ZE(t)1{Vt− > 0}.

We begin on the right-hand side and find, using (A.8) and Xt− = AEt−, Gt− =
DEt−

E
χ,τ [

KVt−(Xt−,Gt−;f )ZEt 1{Vt− > 0}]
= E

χ,τ [
Kt−DEt−(AEt−,DEt−;f )ZEt 1{DEt− < t}]

= E
χ,τ

[∑
s>0

Kt−Ds−(As−,Ds−;f )Zs1{Ds− < t ≤ Ds}
]

= E
χ,τ

[∑
s>0

Kt−Ds−(As−,Ds−;f )Zs1{Ds− < t}1{�Ds ≥ t − Ds−}
]

= E
χ,τ [

W(·, s;y,w)μ(·, ds;dy, dw)
] = · · · ,

where the optional random measure μ is as in (2.10) and

W(ω, s;y,w) = Kt−Ds−(ω)

(
As−(ω),Ds−(ω);f )

Z(s,ω)

× 1
{
Ds−(ω) < t

}
1
{
w ≥ t − Ds−(ω)

}
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is a predictable integrand. The compensation formula [19], II.1.8, and (2.11) then
yield

· · · = E
χ,τ [

W(·, s;y,w)μp(·, ds;dy, dw)
]

= E
χ,τ

[∫ ∞
0

Kt−Ds−(As−,Ds−;f )Zs1{Ds− < t}

× K
(
As−,Ds−;Rd × (t − Ds−,∞)

)
ds

]
.

Using the definition of Kv (3.2), this equals

= E
χ,τ

[∫ ∞
0

∫
Rd×[t−Ds−,∞)

K(As−,Ds−;dy, dw)f (y,w)Zs

× 1{Ds− < t}ds

]
(A.10)

= E
χ,τ

[∫ ∞
0

∫
Rd+1

K(As−,Ds−;dy, dw)f (y,w)Zs

× 1{Ds− < t ≤ Ds− + w}ds

]
.

Proceeding similarly with the left-hand side of (A.9), we find

E
χ,τ [

f
(
�(A,D)E(t)

)
ZE(t)1{Vt− > 0}],

= E
χ,τ

[∑
s>0

f
(
�(A,D)s

)
Zs1{Ds− < t ≤ Ds− + �Ds}

]
(A.11)

= E
χ,τ [

W̃ (·, s;y,w)μ(·, ds;dy, dw)
]

= E
χ,τ [

W̃ (·, s;y,w)μp(·, ds;dy, dw)
]
,

where W̃ (ω, s;y,w) = f (y,w)Zs(ω)1{Ds−(ω) < t ≤ Ds−(ω) + w}. We check
that (A.11) and (A.10) are equal. Hence, we have shown

E
χ,τ [

f
(
�(A,D)E(t)

)
1{Vt− > 0}|Gt

]
(A.12)

= KVt−f (Xt−,Gt−)1{Vt− > 0},
and adding equations (A.7) and (A.12) yields (A.6). �

For later use, we note the formula

Kv+t (x, z;C)Kv

(
x, z;Rd × [v + t,∞)

)
(A.13)

= Kv(x, z;C) (x, z) ∈ R
d+1, v, t ≥ 0,

valid for all Borel-sets C ⊂R
d × [v + t,∞).
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PROOF OF THEOREM 3.2. We begin with statement (ii). We consider the
two cases Hs ≥ t and Hs < t . On the set {Hs ≥ t}, E is constant on the inter-
val [s, t], and hence we have (G,X)t− = (G,X)s−. Using Gs− +�DEs = Hs and
Lemma A.3, we calculate

E
χ,τ [

f (Xt−,Vt−)1{Hs ≥ t}|Gs

]
= f (Xs−, t − Gs−)Pχ,τ (Hs ≥ t |Gs)

= f (Xs−, t − s + Vs−)Pχ,τ (�DEs ≥ t − Gs−|Gs)(A.14)

= f (Xs−, t − s + Vs−)KVs−
(
Xs−,Gs−; [t − Gs−,∞) ×R

d)
= f (Xs−,Vs− + t − s)KVs−

(
Xs−, s − Vs−; [t − s + Vs−,∞) ×R

d)
,

which corresponds to the first summand in (3.3).
We now turn to the case Hs < t , and recall the shift operators θt from (A.2). For

the left-continuous version of (A,D), we can write

(A,D)t−(θsω) = (A,D)s+t−(ω), s ≥ 0, t > 0.

Note that we had to assume t > 0 above, for the left-hand limit to be defined. We
find now, similarly to (A.4),

(A,D)Et− ◦ θEs = (A,D)Et−
on {Hs < t}. Indeed, by (A.3), Et(ω) = Es(ω) + Et(θEsω), and so

(A,D)Et−(θEsω) = (A,D)Et (θEs ω)−(θEsω) = (A,D)Es(ω)+Et (θEs ω)−(ω)

= (A,D)Et (ω)−(ω) = (A,D)Et−(ω).

If t > 0 and Hs(ω) < t , then by (A.3) Et(θEsω) = Et(ω) − Es(ω) > 0, and the
left-hand limit is well defined. Thus, we have shown that on the set {Hs < t} we
have (Xt−,Vt−) = (Xt−,Vt−) ◦ θEs . We will use the strong Markov property of
(A,D) in the following form:

E
χ,τ [F ◦ θT |FT ] = E

AT ,DT [F ], P
χ,τ -a.s.,

valid for all F -stopping times T and random variables F on (�,F∞,Pχ,τ ). Using
Lemma A.3 and the strong Markov property at Es , we then calculate

E
χ,τ [

f (Xt−,Vt−)1{Hs < t}|Gs

]
= E

χ,τ [
E

χ,τ [
f (Xt−,Vt−) ◦ θEs |Hs

]
1{Hs < t}|Gs

]
= E

χ,τ [
E

Ys,Hs
[
f (Xt−,Vt−)

]
1{Hs < t}|Gs

]
= E

χ,τ [
E

(X,G)s−+�(A,D)Es
[
f (Xt−,Vt−)

]
1{Gs− + �DEs < t}|Gs

]
=

∫
Rd+1

KVs−(Xs−,Gs−;dy × dw)(A.15)
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×E
(X,G)s−+(y,w)[f (Xt−,Vt−)

]
1{Gs− + w < t}

=
∫
Rd×[Vs−,Vs−+t−s)

KVs−(Xs−, s − Vs−;dy × dw)

×E
Xs−+y,s−Vs−+w[

f (Xt−,Vt−)
]
,

which corresponds to the second summand in (3.3). Adding equations (A.14)
and (A.15) yields statement (ii). For statement (i), we calculate

Pr,sPs,tf (x, v)

= Ps,tf (x, v + s − r)Kv

(
x, r − v;Rd × [v + s − r,∞)

)
+

∫
Rd×[v,v+s−r)

Kv(x, r − v;dy × dw)Ex+y,r−v+w[
Ps,tf (Xs−,Vs−)

]
= Kv

(
x, r − v;Rd × [v + s − r,∞)

)
×

{
f (x, v + t − r)Kv+s−r

(
x, r − s;Rd × [v + t − r,∞)

)

+
∫
Rd×[v+s−r,v+t−r)

Kv+s−r (x, r − v;dy × dw)

×E
x+y,r−v+w[

f (Xt−,Vt−)
]}

+
∫
Rd×[v,v+s−r)

Kv(x, r − v;dy × dw)Ex+y,r−v+w[
Ps,tf (Xs−,Vs−)

]
= · · · .

Using (A.13) and applying the statement (ii) with (χ, τ ) = (x + y, r − v + w)

yields

· · · = f (x, v + t − r)Kv

(
x, r − v;Rd × [v + t − r,∞)

)
+

∫
Rd×[v+s−r,v+t−r)

Kv(x, r − v;dy × dw)Ex+y,r−v+w[
f (Xt−,Vt−)

]

+
∫
Rd×[v,v+s−r)

Kv(x, r − v;dy × dw)

×E
x+y,r−v+w[

E
x+y,r−v+w[

f (Xt−,Vt−)|Gs

]]
= Pr,tf (x, v),

which is statement (i). �
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